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Optimal distributed control with application to asymmetric vehicular platoons
Ivo Herman

Abstract— This paper considers a distributed system of
identical agents with arbitrary models. A method for distributed
state-feedback design is provided. The proposed solution con-
sists of two steps: first a single-agent controller is derived
and then, based on the network topology, the gain of this
controller is adjusted. LQ optimality of this controller is proved
provided that the Laplacian has only real eigenvalues and
is non-defective. The result is subsequently used to design a
controller for asymmetric vehicular platoon. We show that the
same controller with fixed gain is the optimal controller for any
number of vehicles in the platoon. However, the performance
of the optimal controller is still subject to inherent limitations
given by the network topology. In some cases, even exponential
scaling in the number of vehicles must occur for any controller.

I. INTRODUCTION

Vehicular platoons are now an intensive field of research.
The reason is the possibility to increase the safety and
throughput at the same time.

There are many approaches for platoon control. The most
appealing is the fixed-distance scenario, in which a vehicle
is required to keep a fixed distance to its nearest neighbors.
The reason for its popularity is that in this case the potential
to increase the throughput is the highest. The strategy easiest
to implement is the predecessor following. It was shown to
be string unstable in [1]. String instability, roughly speaking,
means that a disturbance acting at one vehicle is amplified
as it propagates in the formation. Disturbance propagation
and scaling are issues also for other strategies.

Except for the nearest neighbor in front of a vehicle
also the nearest neighbor behind can be used for control.
This scheme is called bidirectional. Symmetric bidirectional
control was investigated in [2]. This type of control suffers
from long transients. Transient time can be improved using
asymmetry, which means that the vehicle pays more attention
to the car ahead than to the car behind. Asymmetry achieves
a uniform bound on eingevalues in some cases [3]–[5], which
improves the transient time a lot. Nevertheless, the price
to pay might be an exponential scaling of the H∞ norm
of the transfer functions in platoon when increasing the
number of vehicles [4]–[6]. To improve transients, different
asymmetries in position and velocity were introduced [7].
Inverse optimality of a controller for a platoon is considered
in [8] for a mass-spring-damper models.

The papers mentioned above mainly considered qualitative
behavior of vehicular platoons. Not many papers provide a
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general method how to design a controller for the platoon.
The first requirement on the platoon control is stability.
Distributed control literature provides a lot of very useful
approaches for achieving stability. It was shown in [9] that
stability of a formation depends on the agent model and
eigenvalues of the graph Laplacian. This fact was later used
in [10] to derive a state-feedback controller, which works for
any graph topology. Only the gain of the controller has to
be adjusted. A controller design presented in [11] uses an
LQR-like approach to achieve stability. Adaptive approaches
can also be used [12], [13].

Regarding performance, for undirected graphs there are
results presented in [14] for H2 and H∞ norms. Inverse
optimality of localized static-state feedback is proved in
[15] for directed graphs. The main idea of the paper is to
design a static feedback based on single-agent model. When
a sufficiently large coupling gain is used and certain criteria
are met, the control law will not only be stabilizing, but also
LQ optimal.

In this paper we are going to use the results of [15] to
derive very simple conditions for optimal LQ control. They
are very easy extensions of the results for synchronizing
region. Ussuming pinning control, the result holds for graph
Laplacian which is non-defective and has only real eigen-
values. Such control law is then applied to controller design
for asymmetric vehicular platoons. We show that a controller
designed using our approach is the optimal controller and that
it does not change with growing number of vehicles. Next
we discuss properties of the controller obtained this way. We
prove uniform boundedness of eigenvalues from zero, which
implies a good convergence time. On the other hand, not
even an optimal controller can break the inherent limitations
of the network structure. We prove that for two integrators in
the open loop the H∞ norm of a transfer function in platoon
scales exponentially with the graph distance between nodes.
As we show by simulations, the scaling of a system with one
integrator depends on the controller parameters.

II. SYSTEM MODEL

Consider N identical agents modelled as LTI systems

ẋi = Axi +Bui

yi = Cxi
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, xi ∈ Rn is the
state vector of the ith agent, ui ∈ Rm is the control input of
the ith agent and yi ∈ Rp is its output. We assume that the
pair (A,B) is stabilizable. We denote υ the number of the
eigenvalues of A at the origin—this number is also known as
the Type number of the system or the number of integrators
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in the open loop. The overall multi-agent system is

ẋ = (I ⊗A)x+ (I ⊗B)u

y = (I ⊗ C)x,
(2)

where x = [xT1 , . . . , x
T
N ]T, u = [uT1 , . . . , u

T
N ]T and y =

[yT1 , . . . , y
T
N ]T.

The agents are interconnected using a relative static state
feedback of the form

ui =
∑
j=Ni

cKlij(xj − xi), (3)

where N is a set of neighbors of the agent i, lij > 0 is a
weight of the coupling between agents i and j, K ∈ Rm×n
is a static-state feedback matrix and c is a coupling gain. We
will show how to optimally design K and c.

We also assume that there is a leader present in the system.
This leader serves as a reference available only to some of
the agents. The control law (3) is then modified to

ui =
∑
j=Ni

cK
[
lij(xj − xi) + pi(ρ− xi)

]
, (4)

where pi ≥ 0 is a weight of the coupling between the leader
and the ith agent and ρ is a state of the leader to which the
agents should synchronize. This control scheme is called a
pinning control [11].

In vector form, the control input can be written as

u = −[(L+ P )⊗ cK]x (5)

where P = diag[p1, p2, . . . , pN ] and L is the graph Lapla-
cian, capturing the interconnection. The Laplacian is defined
as L = D − E, where E = [lij ] is the adjacency matrix of
the graph and D = diag[d1, d2, . . . , dN ] with di being the
in-degree of the agent i. If the graph corresponding to L
contains a directed spanning tree and the leader pins to the
root of this tree, then the pinned Laplacian Lp = L+P is a
nonsingular matrix [16]. We denote the ith eigenvalue of Lp

as λi and λmin > 0 is a lower bound on eigenvalues, i.e.,
λmin ≤ |λi| ∀i.

Plugging (5) to (2), we get the model of the overall multi-
agent system

ẋ = (I ⊗A)x− (Lp ⊗ cBK)x

y = (I ⊗ C)x.
(6)

We denote the ith eigenvalue of the closed-loop feedback
matrix (I ⊗A)− (Lp ⊗ cBK) as νi.

III. CONTROLLER DESIGN

In this section we show how to obtain the feedback matrix
K and the coupling gain c for a special case. The feedback
matrix K will be designed using a standard LQR procedure
[11], [15] for individual agent. Consider the criterion

Ji(xi, ui) =

∫ ∞
0

xTi Qaxi + uTi Raui dt, (7)

where Qa ≥ 0, Ra > 0 (we use A > 0 (A ≥ 0) with a
meaning that A is symmetric and positive definite (semi-
definite)). Then the control law of individual agent is ui =
−cKxi with

K = R−1a BTPa, (8)

where Pa > 0 is the positive definite solution of the
continuous-time algebraic Riccati equation

ATPa + PaA− PaB
TR−1a BPa +Qa = 0. (9)

As was discussed in [11], this control law achieves an
unbounded synchronization region, that is, the matrix pencil
A − γBK, γ ∈ C has eigenvalues in the left half-plane if
<{γ} > 0.5, no matter what the imaginary part of γ is.

A sufficient condition for stability of the distributed feed-
back control law (6) was presented in [11] as c ≥ 1

2<{λmin}
with K designed by (8). However, this guarantees only
stability, it does not take into account any performance
measure of the interconnected system.

A condition, under which the local control law is optimal
with respect to some performance criterion, was presented
in [15]. Here we extend the result to a very simple sufficient
condition for the control law design.

Theorem 1. Assume that Lp is non-singular, non-defective
and has only real eigenvalues, i.e., LpV = V Λ, Λ is real and
diagonal and Λ−1 exists. Let λmin be selected such that 0 <
λmin ≤ λi ∀i. Then the local static state feedback control law
(5) with c ≥ 1

λmin
is the optimal control law with respect to

the performance criterion

J(x, u) =

∫ ∞
0

xTQx+ uTRudt (10)

with

Q = c2(Lp ⊗K)T(Rb ⊗Ra)(Lp ⊗K)

−cRbLp ⊗ (ATPa + PaA
T) (11)

R = Rb ⊗Ra (12)
Rb = (V −1)TV −1, (13)

for some Ra > 0, Qa ≥ 0 and K = R−1a BTPa with Pa > 0
satisfying (9).

Proof: We need to satisfy the conditions of [15, Thm.
2]. The conditions are that Q ≥ 0 and that there exits matrix
Rb > 0 such that Pb = cRbLp with Pb > 0. The control law
assumed there is (5) and the feedback matrix K is designed
using (8).

First we test if Pb = cRbLp is positive definite. Thus, let
Rb = (V −1)TV −1 as in (13). Then

Pb = cRbLp = c(V −1)TV −1Lp = c(V −1)TΛV −1 (14)

Based on the assumptions, Λ > 0 (the eigenvalues of Lp are
positive) and it follows that Pb = PT

b > 0.
Next we show that Q is positive semi-definite for the given

c. We rewrite Q in (11) as

Q = c
[
cLT

pRbLp ⊗KTRaK −RbLp ⊗ (ATPa + PaA
T)
]

= c
[
cLT

pRbLp ⊗KTRaK +RbLp ⊗ (Qa −KTRaK)
]

= c
[(
cLT

p − I
)
RbLp ⊗KTRaK +RbLp ⊗Qa

]
(15)

Note that RbLp ⊗ Qa ≥ 0 since Qa ≥ 0 and RbLp > 0
(this follows from (14)). Also KTRaK ≥ 0. It follows that
if
(
cLT

p − I
)
RbLp > 0, then Q ≥ 0.
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Consider the matrix H = V T
(
cLT

p − I
)
RbLpV . Since

V is nonsingular, it follows from [17, Obsv. 7.1.6] that if
H > 0, then H̃ = (V −1)TV T

(
cLT

p − I
)
RbLpV V

−1 =(
cLT

p − I
)
RbLp > 0. Thus, we will test positive semi-

definiteness of the matrix H = V T
(
cLT

p − I
)
RbLpV as

follows.

H=V T
(
cLT

p −I
)
RbLpV =cV TLT

pRbLpV −V TRbLpV

= cV TLT
p (V −1)TV −1LpV − V T(V −1)TV −1LpV

= c(V −1LpV )T(V −1LpV )− (V −1V )T(V −1LpV )

= cΛ2 − Λ = Λ(cΛ− I). (16)

The matrix Λ = diag[λ1, λ2, . . . , λN ] and recall that 0 <
λmin ≤ λi, ∀i. It follows that Λ > 0 and if (cΛ − I) > 0,
then also Q ≥ 0. We take c = 1

λmin
to guarantee that Q ≥ 0.

We satisfied the conditions of [15, Thm. 2], so the control
law u = −cLp ⊗K is optimal with respect to (10).

A. Discussion of optimality

The design procedure is as follows. First the local feedback
matrix K is designed. For this only the agent model and the
local weighting matrices Qa, Ra need to be known. This is
done independently of the network. Such approach is very
similar to those of [10], [11]. Then, when the cummunication
topology is known and the weights in the Laplacian selected,
the coupling gain c is set to satisfy c ≥ 1

λmin
. If the Laplacian

Lp is non-defective and has only real eingevaues, the control
law is optimal with respect to (10). The feedback matrix K
remains the same for all topologies. Note that although we
require that the Laplacian has real eigenvalues, our approach
is not limited to undirected graphs.

It is interesting to compare the optimal coupling gain c
with the gain required to stabilize the system. In Theorem
1 the condition on optimal control is c ≥ 1

λmin
, while for

stability it is sufficient to take c ≥ 1
2λmin

[11]. Thus, for the
graphs considered in Theorem 1, it suffices to increase the
gains just twice to achieve optimality on top of stability.

Note that both matrices R and Q depend on the Kronecker
product Rb ⊗ Ra. Matrix Rb = (V −1)TV −1, from which
follows that it has almost all entries non-zero. Consequently,
matrix Q penalizes products of states of agent which are
not neighbors. Similarly, matrix R does the same for inputs.
In order to evaluate the criterion, all states must be known.
This is kind of all-to-all coupling in the criterion. This might
become important when the criterion is to be evaluated
on-line, for instance in an MPC framework. However, the
resulting control law is local and requires for each agent to
know only the states of the neighboring agents.

This is in contrast to a more natural
performance criterion with matrices Q =
diag[q11, . . . , q1n, q21, . . . , qi1, qi2, . . . , qnn] and
R = diag[r11, . . . , r1m, r21, . . . , ri1, ri2, . . . , rmm]. Such
criterion is local, because it needs only the states and inputs
of individual agents. Nevertheless, it is well known that
in general such control law results in a centralized control
[8]. That is, all states of the multi-agent system have to be
known by the ith agent to calculate its own control effort.

Thus, we conjecture that all-to-all coupling must be present
either in the criterion, or in the control law.

IV. OPTIMAL CONTROL OF VEHICULAR PLATOONS

In this section we will specialize the result on optimal
control to vehicular platoons. We assume that there are N
vehicles travelling in one-dimensional space. The vehicles
are assumed to be identical and SISO. The model of the
vehicle is given by (1), only the dimensions of matrices and
vectors are different. They are xi ∈ Rn, ui ∈ R and yi ∈ R
is the position of the vehicle.

Only the nearest-neighbor interaction is allowed, hence
the communication topology is a weighted path graph. The
platoon is supposed to track the (virtual) leader which serves
as a reference for the formation. The pinned Laplacian is

Lp =



p1 + ε1 −ε1 0 . . . 0
−1 1 + ε2 −ε2 0 . . .
0 −1 1 + ε2 −ε3 . . .
...

...
...

. . .
...

0 . . . −1 1 + εN−1 −εN−1

0 . . . 0 −1 1

 (17)

The constant εi > 0 is called a constant of bidirectionality.
If εi = 1 ∀i we have so called symmetric bidirectional con-
trol, if εi = 0∀i we have predecessor following. Otherwise
we call the control law asymmetric bidirectional control.

The Laplacian is a non-symmetric tridiagonal matrix. Next
we state some some useful properties of Lp.

Lemma 1. Laplacian Lp in (17) and its eigenvalues λi have
the following properties:

a) The eigenvalues λi are all real and λi > 0 ∀i. The
eigenvalues are ordered as λ1 ≤ λ2 ≤ . . . ≤ λN .

b) The eigenvalues are upper-bounded by λmax, that is,
λi ≤ λmax ≤ 2(1 + εmax) for εi ≤ εmax ∀i.

c) Suppose that εi ≤ εmax < 1 ∀ i. Then the eigenvalues
λ1, . . . , λN are lower-bounded by

λi ≥ λmin ≥
1

2

(1− εmax)2

1 + εmax
> 0, ∀i. (18)

The bound is uniform, that is, it does not depend on N .

Proof: The property a) follows from the fact that Lp

is a tridiagonal real matrix with non-positive off-diagonal
terms, so its eigenvalues are real [18, Lem. 0.1.1]. b) The
upper bound follows from Gershgorins theorem [17, Thm.
6.1.1], c) is proved in [5, Thm. 1].

The uniform boundedness of eigenvalues allows us to
state a result about bounded distance of eigenvalues of the
formation from the imaginary axis.

Lemma 2. Suppose that the eigenvalues of Lp are real and
uniformly bounded from zero and that the transfer function
M(s) = K(sI − A)−1B has neither zero nor pole in the
closed right half-plane, except for υ poles at the origin. Then,
the eigenvalues νi of I⊗A−Lp⊗cBK in (6) are uniformly
bounded from the origin for all N , that is,

|νi| ≥ ξ > 0, (19)



4

for some constant ξ depending on the open-loop model M(s)
and λmin.

Proof: It is well known [9] that the eigenvalues of any
multi-agent system are given as a union of eigenvalues of

A− λicBK. (20)

Since our vehicle model is SISO and the Laplacian (17) has
only real eigenvalues, the equation (20) is an equation of a
standard root-locus plot [19] with a parameter λi. It is known
that the root-locus curves start at the poles of the open loop
and end at the zeros of the open loop. The open loop is in
our case M(s). When the parameter λi approaches zero, the
roots of (20) will approach the eigenvalues of A.

By the assumption, the eigenvalues λi are uniformly
bounded from below and above. Then, the eigenvalues of
(20) cannot approach the eigenvalues of A, they must stay
away from them for any formation size. Since the system
has only poles at the origin and other poles and zeros are in
the left half-plane, the eigenvalues of (20) are bounded away
from the imaginary axis. Moreover, if the curves A−λicBK
for λi ∈ [λmin, λmax] are in the left half-plane, the system
is stable. The distance ξ from the origin axis depends on the
shape of the root-locus curves.

As a special case for uniform boundedness of λi we have
the Laplacian (17) with εi ≤ εmax < 1. This results extend
the result on uniform boundedness of the eigenvalues in
[4], [20]. The most important consequence of the uniform
boundedness is that the system will not get arbitrarily slow
as the number of vehicles increases. This guarantees both
controllability and reasonable convergence time.

Using the properties of the Laplacian, we can design an
optimal control law for vehicular platoon.

Corollary 1. Consider Lp in (17) with 0 < εi ≤ εmax < 1
for all N . Further let the matrices Qa ≥ 0, Ra > 0 be given
and let K be given as in (8). Then the local state-feedback
control law

u = −c(Lp ⊗K)x (21)

with
c ≥ 2 + 2εmax

(1− εmax)2
(22)

is the optimal control law with respect to (10) for any N .

Proof: Recall the properties of the pinned Laplacian in
Lemma 1: the eigenvalues are real, positive and bounded
from below as λi ≥ λmin ≥ (1−εmax)

2

2+2εmax
for all i. These

properties satisfy the conditions in Theorem 1 and the result
follows.

The result holds for asymmetric platoons with stronger
gains towards the leader 0 < εi ≤ εmax < 1. The corollary
can be explained as follows. When a static state feedback
matrix K is calculated, then it suffices to take a fixed gain
c for any platoon size to achieve optimality. Hence, it is not
necessary to increase the gain with the platoon size.

Remark 1. When a symmetric control is used (εi = 1∀i),
then the gain has to be increased with a quadratic rate with
the number of vehicles growing. This is a consequence of

the fact that the smallest eigenvalue of the Laplacian matrix
decays to zero with a quadratic rate [21].

A. Scaling in asymmetric platoons

So far we have proved two positive effects of asymmetry
0 < εi ≤ εmax < 1 in vehicular platoons: the system has
bounded eigenvalues from zero and also the state-feedback
control is LQ optimal for any N . To this we might add
other important quantity: the steady-state gain of any transfer
function in the platoon is bounded [6, Thm. 1].

Therefore, using asymmetry might seems as a very good
choice. However, for reasonable systems there is one impor-
tant result which might prevent its use in vehicular platoons
without centralized information. As was shown in [4]–[6],
whenever the system has a uniform bound on eigenvalues and
the norm of an agent’s complementary sensitivity transfer
function is greater than one, the H∞ norm of any transfer
function in platoon scales exponentially in N . Hence, large
transient peaks are unavoidable.

The result [6, Thm. 2] was derived for output feedback.
Here we will specialize it to state feedback considered in this
paper. Suppose that there is an external input ri acting at the
agent with index i such that the input of its controller changes
form (3) to ui =

(∑
j=Ni

cKlij(xj − xi)
)

+ ri. This input
might represent the desired distance or a measurement noise.
We are interested in how this input affects the position of an
agent with index j. Consider the transfer function

Tij(s) =
yj(s)

ri(s)
. (23)

Due to the interconnection in the formation, this trans-
fer function is given by all vehicles in the platoon. Let
Tmin(s) = K(sI − A + cλminBK)−1B be the transfer
function of a single agent, which use the feedback matrix
also as its output matrix.

Theorem 2. If ‖Tmin(s)‖∞ > 1 and the eigenvalues of Lp

are uniformly bounded from zero, then for a transfer function
in the platoon holds

‖Tij(s)‖∞ ≥ ζδijξ, ζ > 1, ξ > 0 (24)

where δij is the graph distance between the nodes i, j and
ζ, ξ are constants independent of N .

Proof: This is a simple corollary of [6, Thm. 2].
Consider that the output matrix is K such that ŷj = Kxj .
Then the system would scale exactly as described in [6].
Since the interconnection between vehicles is realized via K,
the only difference between our system and the system in [6]
is the output equation of the jth agent. The output equation
will not qualitatively change the exponential scaling proved
in [6]. To see this, we write the transfer function as [22]

Tij(s) =
c(s)

b(s)
Tij(s) (25)

with M(s) = c(s)
a(s) = C(sI − A)−1B, M(s) = b(s)

a(s) =

K(sI−A)−1B and Tij(s) is the transfer function between ri
and ŷj . Let ω0 be the frequency for which |Tij(ω)| attains its
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(a) K1. (b) K2.

Fig. 1: Responses to step in leader’s position for Σ1, N =
100, εi = 0.5∀i.

Fig. 2: ‖T1N (s)‖∞ as a function of N in semilogarithmic
coordinates for Σ1

maximum. For the system Tij(s) it was shown in [6, Thm. 2]
that ‖Tij(s)‖∞ ≥ ζδijξ21Tij(0). Taking ξ = ξ21Tij(0)

∣∣∣ c(ω0)
b(ω0)

∣∣∣
gives the result (24).

Despite the fact that we use optimal control, when the
single agent closed-loop is not designed in a right way, expo-
nential scaling occurs. There are cases when ‖Tmin(s)‖∞ >
1 is unavoidable. The most important of them is when there
are at least two integrators in the open loop. It was shown in
[1] that for such system ‖Tmin(s)‖∞ > 1. When there are in
addition to that uniformly bounded eigenvalues of Laplacian,
we must have exponential scaling. Hence, in any asymmetric
control with 0 < εi ≤ εmax < 1 with two integrators in the
open loop, exponential scaling occurs.

Two integrators in the open-loop are a necessary condition
for tracking of the leader moving with constant velocity.
This follows from the internal model principle [23]. Thus,
exponential scaling is unavoidable even with optimal control.
In other words, not even an optimal controller can overcome
the inherent limitations given by the network structure. It can
only mitigate the undesired effects.

In literature, the authors reported a positive effect of
asymmetry even on the transients (e.g. [21]). This was thanks
to the fact that the vehicles were allowed to know the leader’s
velocity, which is a centralized information. On the other
hand, such vehicles can have only one integrator in the open
loop. In this case the controller can be designed such that
‖Tmin(s)‖∞ = 1 and very good scaling and performance is
achievable.

V. SIMULATIONS

In this section we verify the derived results using simula-
tions. We will simulate two systems

ẋi = A1xi +Bui

yi = Cxi

}
:= Σ1,

ẋi = A2xi +Bui

yi = Cxi

}
:= Σ2.

(26)

(a) K3. (b) K4.

Fig. 3: Responses to step in leader’s position for Σ2, N =
100, εi = 0.5∀i.

Fig. 4: ‖T1N (s)‖∞ as a function of N in semilogarithmic
coordinates for Σ2

The matrices A1 and A2 are

A1 =

0 1 0 0
0 0 1 0
0 0 0 1
0 −1 −3 −2

 , A2 =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 −1 −4

 , (27)

B = [0, 0, 0, 1]T and C = [1, 0, 0, 0]. The system Σ1 has
only one integrator in the open loop (Type-I), while Σ2 is has
two integrators in the open loop (Type-II). For each system
and controller we used the same constant εi = 0.5 ∀i. The
coupling gain c was set using (22) to c = 12. The coupling
weight with the leader was set to p1 = 1

cKi,1
with Ki,1 being

the first element of Ki. This was done in order to achieve
unit steady-state gain from the leader’s position to a position
of all other vehicles (see [5, Cor. 1]).

First consider the system Σ1. We use two pairs of weight-
ing matrices Qa, Ra. They are Q1 = diag[0.5, 1, 1, 1], R1 =
10 and Q2 = diag[3, 1, 1, 1], R2 = 1. The resulting feedback
matrix for the first pair is K1 = [0.32, 0.85, 1.84, 1.67] and
for the second pair it is K2 = [1.73, 3.67, 2.72, 1.23]. The
responses to the unit step in the leader’s position are shown
in Fig. 1. It is apparent that K1 has slower response but
has no overshoot. Scaling of H∞ norms of the transfer
function T1N (s) between the first and last vehicle for those
two controllers is illustrated in Fig. 2. Clearly, the faster
controller K2 suffers from exponential scaling, while the
norm of a system with K1 remains constant. We can check
that ‖Tmin(s)‖∞ = 1.006 for K2, hence the conditions of
Corollary 2 are satisfied and exponential scaling occurs. On
the other hand, ‖Tmin(s)‖∞ = 1 for K1 even with a scaled
coupling gain λmaxc, so condition [6, Thm. 3] is satisfied.
This means that the H∞ norm will be bounded in N . Thus,
Type-I systems can have both good and bad scaling, despite
the optimal controller.

For the system Σ2 we also designed two controllers. The
weighting matrices were Q3 = diag[1, 1, 1, 1], R3 = 10
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(a) Σ1,K1. (b) Σ2,K3.

Fig. 5: Eigenvalues νi of I⊗A−Lp⊗cBK for N = 40 (black
circle) and N = 60 (red crosses) and the corresponding root-
locus curve A− λicBK(dashed).

and Q4 = diag[0.2, 15, 1, 0.1], R4 = 10. The resulting
feedback matrices were K3 = [0.32, 1.18, 1.83, 1.66] and
K4 = [0.14, 1.62, 3.00, 0.69]. The step responses are shown
in Fig. 3 and scaling of the H∞ norm is in Fig. 4. It is
clear that the system with K4 has not only better transients,
but also quantitatively slower scaling of the norm. Never-
theless, in both cases the norm increases exponentially in
the number of vehicles. The conditions of Corollary 2 are
satisfied in both cases: ‖Tmin(s)‖∞ = 1.027 for K1 and
‖Tmin(s)‖∞ = 1.024 for K2. This is a consequence of
having two integrators in the open loop.

It is obvious that the transient with K4 is much better
than of K3, although both controllers have similar norm of
‖K‖ =

√
KTK ≈ 3.5. Therefore, for our setting is seems

(also from simulations not shown here) that giving a lower
weight to position and higher weight to velocity in the Qa

matrix helps the transient a lot. The transient for as much as
100 vehicles was acceptable and the design was easy.

The uniform bound on eigenvalues is illustrated in Fig. 5.
The eigenvalues for both Σ1 and Σ2 do not get close to zero
for any N.

VI. CONCLUSION

In this paper we presented a simple design of an LQR
optimal control for a class of distributed system. The graph
Laplacian must not be defective and must have only real
eigenvalues. Then it is possible to design a controller which
does not depend on the graph topology and change the gain
afterwards based on the smallest eigenvalue of the Laplacian.

We applied this design approach to control of asymmetric
vehicular platoons. Our control law guarantees optimal per-
formance with a fixed gain for any formation size. We proved
uniform bound on eigenvalues of the platoon. The transient
performance was good even for 100 vehicles. However, it
was also pointed out that there is an inherent limitation of
asymmetric control: the H∞ norm of a transfer function
in the platoon grows exponentially in graph distance, when
there are two integrators in the open loop. For a system with
only one integrator in the open loop, the scaling depends on
the controller.

An approach how to design a feedback matrix in order
to obtain good scaling remains to be solved in future work.
Moreover, the controller should be designed along with the
weights εi in the Laplacian.
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