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Abstract

The paper tailors the so-called wave-based control, popular in the field of flexible mechanical structures, to the field of distributed
control of vehicular platoons. The proposed solution augments the symmetric bidirectional control algorithm with a wave-absorbing
controller implemented on the leader, and/or on the rear-end vehicle. The wave-absorbing controller actively absorbs an incoming
wave of positional changes in the platoon and thus prevents oscillations of inter-vehicle distances. The proposed controller sig-
nificantly improves the performance of platoon manoeuvrers such as acceleration/deceleration or changing the distances between
vehicles without making the platoon string unstable. Numerical simulations show that the wave-absorbing controller performs effi-
ciently even for platoons with a large number of vehicles, for which other platooning algorithms are inefficient or require wireless
communication between vehicles.
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1. INTRODUCTION

1.1. Vehicular platooning

The field of vehicular platooning was active as early as the
1960’s and remains so today. The task is to safely and effec-
tively control several vehicles driving behind each other, for
example on a highway lane. It is motivated by higher through-
put, lower fuel consumption, increase of traffic safety, etc.

Regarding control strategies; among the first treatments of
vehicular platooning were papers by [22] and [26]. They ex-
amined a centralized control approach with a single global
controller governing all vehicles. However, [19] later showed
that one has to be careful about the stability of the system,
since it might degrade with an increasing number of vehicles.
Nevertheless, more attention is paid to fully or partially dis-
tributed control, wherein each vehicle is controlled by its own
on-board controller with only limited knowledge about the pla-
toon. Among the first papers dealing with such distributed con-
trol was the work by [6]. Basic questions about the feasibility
and performance of such systems was introduced by [8] and
later formalized by [35] under the term string stability. String
stability, or more precisely string instability, is a phenomenon
that causes higher control demands on the members of a vehic-
ular platoon that are further from the source of regulation error.
Although string stability does not guarantee that the vehicles do
not crash into each other, it is a useful analysis tool. Propaga-
tion of a regulation error or a disturbance through a platoon of
vehicles controlled by various distributed control strategies was
examined in several papers, see for instance [33], [3] and [34].
A fundamental limitation of many distributed algorithms with
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only local information about the platoon is the inability to main-
tain coherence in a large-scale platoon subjected to stochastic
disturbances [2]. However, the coherence can be improved by
introducing optimal non-symmetric localized feedback [23].

A common goal of each platooning algorithm is to drive the
platoon with a reference velocity and inter-vehicle distances.
Many distributed algorithms have been introduced in the pla-
tooning field. The most simple algorithm, relying only on
the measurement of the distance to the immediately preced-
ing vehicle, is the so-called predecessor following algorithm.
A straightforward extension is the so-called bidirectional con-
trol algorithm, which additionally measures the distance to the
immediate follower. Depending on the weight between these
two distance measurements, we distinguish either symmetric
or asymmetric bidirectional control. Although, the asymmetric
version improves the stability in terms of the least stable closed-
loop eigenvalue as proved by [4], we allow our in-platoon ve-
hicles to be controlled by the symmetric version, analysed for
instance in [21], [27] and [15]. For simplicity, we consider only
a symmetric bidirectional controller and the wave (described in
the next section) reflects on the platoon ends only. In a more
general case, when the asymmetric bidirectional controller is
considered, the wave also partially reflects on each in-platoon
vehicle.

1.2. Wave-based control concept

The origins of control based on travelling waves lies in the
1960’s in the mathematical modeling and analysis of flexible
structures. [36] was one of the first treatments analysing sim-
pler instances of flexible structures such as beams and plates.
Analysis and control of a more complex flexible structures from
the viewpoint of travelling wave-modes was investigated in a
series of papers by von Flotow and his colleagues in [11] and
[12].
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Recently, the concept was revisited by O’Connor in [29] and
[30] for vibrationless positioning of lumped multi-link flexible
mechanical systems. It was named wave-based control and it is
based on the so-called wave transfer function, which describes
how the traveling wave propagates in the lumped system. Si-
multaneously with O’Connor, the wave concept was also con-
sidered for the control of continuous flexible structures by [14]
under the name absolute vibration suppression. It relies on the
transfer function as well, though in this case, the time delay
plays a key role. Surprisingly, it was shown by [32], that both
wave-based control and absolute vibration suppression are just
a feedback version of the input shaping control. It was also
shown that the wave-based control can be generalized even for
continuous flexible systems, e.g., a steel rod, and then it coin-
cides with the absolute vibration suppression.

The key idea of the wave-based control is to generate a wave
at the actuated front end of the interconnected system and let
it propagate to the opposite end of the system, where it reflects
and returns back to the front-end actuator. When it reaches the
front again, it is absorbed by the front-end actuator by means of
the wave transfer function. A both interesting and troublesome
property of the wave transfer function is the presence of the
square root function. This makes its implementation in the time
domain very challenging. To be able to run numerical simula-
tions, we therefore introduce a convergent recursive algorithm
that approximates the wave transfer function for an arbitrary
dynamics of the local system.

There are other viewpoints on wave-based control. One was
introduced by [31] in terms of the characteristic impedance for
a mass-spring system. Another possible viewpoint was intro-
duced by [28] for the wave control of ladder electric networks.
The impedance matching in power networks is also closely re-
lated to the wave-based control, e.g., [20].

1.3. Objective of the paper
In this paper, a finite one-dimensional platoon of vehicles

moving in a highway lane is considered. Each individual vehi-
cle in the platoon is locally controlled by a bidirectional con-
troller, which plays the role of string-damper connection in me-
chanical structures and hence enables a wave to propagate back
and forth. One or both of the platoon ends are controlled by
the wave-absorbing controller allowing active absorption of the
traveling wave. The similarity of bidirectional control with the
continuous wave equation was described in [16].

The key objective of the paper is to generalize the principle
of the wave-based control used in the field of mechanics for ve-
hicular platooning control in such a way that the distances be-
tween vehicles are additionally considered. In this regard, the
presented concept offers a symmetric version of bidirectional
control enhanced by the feedback control of one or both platoon
ends. Thus, it significantly decreases long transient oscillations
during platoon manoeuvres such as acceleration/deceleration or
changing the distances between vehicles. In addition, the paper
contributes the following: a) It generalizes the wave transfer
function description for the arbitrary dynamics of the local sys-
tem, b) it offers a convergent recursive algorithm that approx-
imates the wave transfer function, c) it presents an alternative

way of deriving the wave transfer function using a continued
fraction approach, and d) it provides a mathematical derivation
of the transfer functions describing reflections on the platoon
ends.

The paper is structured as follows. Section 2 gives a math-
ematical model of the vehicle. Section 3 describes the wave
transfer function as a requisite tool for the wave description.
A mathematical description of wave reflections on forced and
free ends is given in Section 4. Section 5 introduces the wave-
absorbing controller as an addon for the bidirectional control.
The new controllers are analyzed by numerical simulations in
section 6. The necessary mathematical derivations are given in
the four appendices.

2. LOCAL CONTROL OF THE PLATOON VEHICLES

A vehicle in a platoon indexed by n is modelled in the
Laplace domain as

Xn(s) = P(s)Un(s), (1)

where s is the Laplace variable, Xn(s) is a position of the nth ve-
hicle in the Laplace domain, P(s) represents the transfer func-
tion of the system dynamics and Un(s) is the system input which
is generated by the local controller of the vehicle specified in the
following.

Except for the leader, indexed n = 0, and the rear-end vehi-
cle, each vehicle in the platoon is equipped with a symmetric
bidirectional controller C(s) with the task of equalizing the dis-
tances to its immediate predecessor and successor, giving

Un(s) = C(s)(Dn−1(s) − Dn(s)), (2)

where Dn(s) is the distance between vehicles indexed by n and
n + 1, hence Dn(s) = Xn(s) − Xn+1(s) and Dn+(s) = Xn−1(s) −
Xn(s). Substituting (2) into (1) yields the resulting model of the
in-platoon vehicle with the bidirectional control for the inter-
vehicle distances,

Xn(s) = P(s)C(s)(Xn−1(s) − 2Xn(s) + Xn+1(s)). (3)

Using the notation,

α(s) =
1

P(s)C(s)
+ 2, (4)

equation (3) is thus rewritten as

Xn(s) =
1
α(s)

(Xn−1 + Xn+1). (5)

The vehicle at the rear end of the platoon is driven by the prede-
cessor following algorithm and is supposed to equalize the dis-
tance to its immediate predecessor and reference distance Dref,

XN(s) =
1

α(s) − 1
(XN−1(s) − Dref(s)), (6)

where XN(s) is the position of the last vehicle in the platoon.
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To carry out numerical simulations, we will use the model
that is often used in such theoretical studies. The vehicle is
described by a double integrator model with a simple (linear)
model of friction, ξ, and controlled by a PI controller. Hence,
P(s) = 1/(s2 + ξs) and C(s) = (kps + ki)/(s), where kp and ki
are proportional and integral gains of the PI controller, respec-
tively. Such a model was also used in the experimental studies
presented in [25].

3. WAVE TRANSFER FUNCTION

The bidirectional property of locally controlled systems
causes any change in the movement of the leading vehicle to
propagate through the platoon as a wave up to the last vehi-
cle. To describe this wave, we need to find out how the posi-
tion of a vehicle is influenced by the position of its immediate
neighbours. For a moment, let us assume that the length of the
platoon is infinite, so that there is no platoon end from where
the wave can reflect. A generalization for a platoon with one
platoon end, i.e., a semi-infinite platoon, is done in the next
section.

3.1. Mathematical model of the wave transfer function

Following the standard arguments for the wave equation as
found, for instance, in [1], the solution to the wave equation can
be decomposed into two components: An(s) and Bn(s) (also
called wave variables in the literature), which represent two
waves propagating along a platoon in the forward and backward
directions, respectively.

To find a transfer function describing the wave propagation,
we are searching for two linearly independent recurrence re-
lations that satisfy (5). We first recursively apply (5) and (6)
with Dref(s) = 0, for a platoon with an increasing number of
vehicles. The transfer function for a platoon with two vehi-
cles is A1/A0 = (α − 1)−1, for a platoon with three vehicles is
A1/A0 =

(
α − (α − 1)−1

)−1
, for a platoon with four vehicles is

A1/A0 =

(
α −

(
α − (α − 1)−1

)−1
)−1

and so on. Continuing re-
cursively, A1/A0 is expressed by the continued fraction

A1

A0
=

1

α −
1

α −
1

α −
1
. . .

. (7)

The continued-fraction expansion of a square root is given by
[18] √

z2 + y = z +
y

2z +
y

2z +
y

2z +
y
. . .

. (8)

Letting the number of vehicles approach infinity, the right-hand
sides of (7) and (8) are equal, provided that y = −1 and z = α/2.

Hence,
A1

A0
=
α

2
−

1
2

√
α2 − 4. (9)

Likewise, the transfer function A2/A1 can be derived from (5)
and (6) for n = 2 as

αA1 = A0 + A2. (10)

Substituting for A0 from the previous recursive step (9) gives

αA1 = A1

(
α

2
+

1
2

√
α2 − 4

)
+ A2, (11)

which provides

A2

A1
=
α

2
−

1
2

√
α2 − 4. (12)

Continuing recursively, we can find that the transfer function
An+1/An is again equal to (9) or (12). We can conclude that the
transfer function from the nth to (n + 1)th vehicle is the same
for each vehicle, and is equal to

G1(s) =
α

2
−

1
2

√
α2 − 4. (13)

Analogously, the second linearly independent recurrence re-
lation of (5) and (6) is searched for by their recursive applica-
tion with a decreasing index of vehicles. After similar algebraic
manipulations as for An, we find

Bn

Bn−1
= α −

1

α −
1

α −
1

α −
1
. . .

. (14)

Letting the number of vehicles approach infinity, the right-hand
sides of (14) and (8) are equal provided that y = −1 and z =

α/2. Hence,
Bn

Bn−1
=
α

2
+

1
2

√
α2 − 4. (15)

The transfer function from nth to (n − 1)th vehicle is again the
same for each vehicle, and is equal to

G2(s) =
α

2
+

1
2

√
α2 − 4. (16)

The resulting model of the vehicular platoon with an infinite
number of vehicles is therefore described as follows:

Xn = An + Bn, (17)
An+1 = G1An, (18)

Bn = G2Bn−1, (19)

G1 = G−1
2 , (20)

where (20) follows from the multiplication of (13) and (16).
Equations (18)-(19) express the rheological property of the pla-
toon, that is, they define the form of how these two compo-
nents propagate through the platoon. Equation (20) expresses
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the principle of reciprocity, that is, if A(s) propagates with the
help of G1(s) to higher indexes of vehicles, then B(s) propa-
gates with the help of G1(s) to lower indexes of vehicles. The
function G1(s) is hereafter referred to as the wave transfer func-
tion.

It should be noted that if there is a boundary in the system,
e.g., if the length of the platoon is finite, where the rheology
property for wave propagation changes abruptly, the principles
must be supplemented by boundary conditions. We discuss this
case in the following section.

3.2. Verification of the wave transfer function

We now outline an alternative way to derive the wave transfer
function. Let the model of the vehicular platoon (17)-(20) hold
and now search for the transfer functions G1(s) and G2(s) that
satisfy these four equations. Substituting (17) into (5) yields

α(An + Bn) = An−1 + Bn−1 + An+1 + Bn+1, (21)

which, in view of (18) and (19), is

α(s) = G1(s) + G2(s). (22)

We can substitute either for G1(s) or G2(s) from (20). Either
possibility leads to the same quadratic equation (m = 1, 2),

G2
m(s) − α(s)Gm(s) + 1 = 0, (23)

with two linearly independent solutions,

Gm(s) =
α

2
∓

1
2

√
α2 − 4. (24)

Let G1(s) be chosen as the solution with the negative sign in
front of the square root. Then (20) only allows G2(s) to be
the solution with the positive sign in front of the square root.
Hence, G1(s) and G2(s) are identical to those derived in the
previous section. The quadratic equation (23) can be employed
as a starting model for the positioning of multi-link flexible me-
chanical systems [29].

3.3. Approximation of the wave transfer function

It will be shown later in the paper that to be able to imple-
ment the wave-absorbing controller discussed at the beginning
of the paper, we need to find the impulse response of the wave
transfer function, i.e., the inverse Laplace transform of G1(s).
Due to the presence of the square root in the function, it is very
challenging to find an exact impulse response of G1(s). How-
ever, we can approximate the impulse response with a finite im-
pulse response (FIR) filter. Therefore, we first approximate the
wave transfer function in the Laplace domain, then transform
this approximate form to the time domain and finally truncate
and sample the approximate impulse response to obtain FIR fil-
ter coefficients.

The square root function in (24) can be approximated by var-
ious ways, e.g., Newton’s method, the binomial theorem, or
continued fraction expansion (7). We employ the last option
since it guarantees the convergence of iterative approximations

and is applicable to an arbitrary dynamics of the local system
with a generalized parameter α(s) as in (4). The recursive for-
mula (7) immediately provides the iterative approximation of
G1(s),

Gl
1(s) =

1
α(s) −Gl−1

1 (s)
, (25)

where l = 1, 2, . . ., and the initial value G0
1(s) = 1. The approxi-

mate Gl
1(s) can be transformed to the time domain by Matlab or

Mathematica. Our experience with the inverse Laplace solvers
for the Fractional Calculus invlap [9], weeks [37] and nilt [5] in
Matlab is that, while they were not capable of performing the
inverse Laplace transform of (24) due to the square root func-
tion, they carried out the inverse Laplace transform of Gl

1(s)
without complications since (25) is a rational function.

The approximate Gl
1(s) can be interpreted as follows. Equa-

tion (25) represents the transfer function from the position of
the leader to the position of the first follower in a platoon of l
vehicles. Increasing the number of iterations (25) means that
the length of a platoon grows and the effect of the rear-end ve-
hicle on G1(s) weakens. The approximation of G1(s) therefore
successively improves. Figs. 1 and 2 show the Bode charac-
teristics Gl

1(s) and the associated impulse responses for vari-
ous numbers of iterations, respectively. Increasing the numbers
of iterations makes the peak in the Bode characteristic sharper,
more localized and moves it towards lower frequencies, even-
tually disappearing entirely. The basic characteristic of the im-
pulse response is fitted after a few iterations while small differ-
ences occur at longer times. To obtain the FIR filter coefficients,
we truncate the approximate impulse response at a few seconds
and sample it with an appropriate frequency. In our numerical
simulations it was sufficient to stop the iterative procedure af-
ter 20 iterations, to truncate the impulse response at 15 seconds
and sample it at a frequency of 100 Hz.
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Figure 1: The Bode characteristics of G1(s) approximations after several itera-
tions by (25) for kp = ki = ξ = 4.

4. REFLECTION OF THE WAVE ON PLATOON ENDS

To be able to design a wave-absorbing controller for the pla-
toon end, we first need to mathematically describe the wave

4



0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Time [s]

Im
pu

ls
e 

re
sp

on
se

 [−
]

 

 

Approx. G
1
 − 5 iter.

Approx. G
1
 − 10 iter.

Approx. G
1
 − 20 iter.

Approx. G
1
 − 30 iter.

Figure 2: The impulse responses of G1(s) after several iterations by (25) for
kp = ki = ξ = 4.

reflection. In the previous section an infinite platoon is consid-
ered, whereas here, we assume a semi-infinite platoon having
one end that is either externally controlled (forced end) or al-
lowed to move freely (free end). When a wave propagates along
a platoon and reaches its free end, it is reflected with the same
polarity, i.e., the same sign of amplitude, but with the oppo-
site polarity at the fixed/forced end. This phenomenon, known
from basic wave physics [13], is discussed in the following in
terms of the wave transfer function. The necessary mathemati-
cal derivations are given in Appendix A and B.

4.1. The forced-end boundary

We call the forced-end boundary such a vehicle that is ex-
ternally controlled and is not linked with the other vehicles.
However, the neighbouring vehicle is one-directionally linked
with this forced boundary. The platoon leader therefore repre-
sents the forced-end boundary. The reflection on the forced-end

0 1 2

X
0

Platoon

leader B
1

B
2

A
1

A
2

Figure 3: Scheme of wave reflection on the leader, i.e., reflection on the forced-
end boundary, described by (26).

boundary is sketched in Fig. 3. Changing the position of the
forced end, X0, generates the outgoing wave as a first contri-
bution to A1. Moreover, the incoming wave (B1) is reflected
on the forced end and transformed to the outgoing wave as the
second contribution to A1. The force-end reflection is derived
in Appendix A and summarized by (A.8),

A1 = G1X0 −G2
1B1. (26)

This first shows that changing the position of the forced end is
translated to A1 through G1. Second, since the DC gain of G1
is equal to plus one (see Fig. 1), the minus sign in front of G2

1
causes the wave to be reflected with the opposite sign.

4.2. The free-end boundary
A free-end boundary is a boundary where a vehicle is two-

directionally linked with one neighbour only and, additionally,
it is aware of the reference distance. The rear-end vehicle de-
scribed by (6) represents the free-end boundary.

N-1

B
N

A
N

B
N-1

A
N-1

Rear-end

vehicle

D
ref

NN-2

B
N-2

A
N-2

Figure 4: Scheme of wave reflection on the rear-end vehicle, i.e., reflection on
the free-end boundary, described by (27).

The reflection on the free-end boundary is outlined in Fig. 4.
The wave travelling from the free-end boundary (BN) is com-
posed of two parts, the incoming wave (AN) which is reflected
back through G1 and the component due to adjusting the ref-
erence distance Dref. The free-end reflection is derived in Ap-
pendix B and summarized by (B.5),

BN = G1AN +
G1 − 1
α − 2

Dref. (27)

The reflection from the free-end boundary does not change the
sign that is expressed by the plus sign in front of G1AN . More-
over, the signal reflected from the free-end is delayed as a linear
function of G1(s), while as a quadratic function when it is re-
flected from the forced-end boundary, as shown by (26).

It should be noted that the verification of the above wave-
based model was done in [30]. The transfer function

XN

X0
= GN

1
1 + G1

1 + G2N+1
1

, (28)

where N is the index of the last vehicle, was shown to be iden-
tical to the transfer function derived by the state space descrip-
tion. This result is valid not only for a double integrator with
P controller, but also for an arbitrary dynamics of the local sys-
tem.

5. WAVE-ABSORBING CONTROLLER

The three main control requirements are: i) to have travel
the platoon travel at the reference velocity vref, ii) to keep inter-
vehicle distances dref and iii) to actively absorb the wave travel-
ling towards the platoon’s end.

This section introduces three possible configurations of the
platoon with the wave-absorbing controller. First, we will de-
scribe the configuration where the wave-absorbing controller is
implemented at the platoon leader.
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5.1. Front-sided wave-absorbing controller
5.1.1. Absorption of the wave

To absorb the incoming wave at the platoon front, the transfer
function from B1 to A1 in (26) has to be equal to zero, where
B1 is the amplitude of the wave travelling from the rear-end
vehicle and observed at the vehicle indexed as 1, while A1 is the
amplitude of the wave travelling from the leader and observed
at the vehicle indexed as 1. In other words, we are searching for
X0 (commanded position for the leader) to satisfy the equation
G1X0/B1 −G2

1 = 0. The only solution is

X0 = G1B1. (29)

To be consistent with the model (17)-(20), we denote B0 =

G1B1 and A0 = X0 − B0, then (26) is expressed as A1 =

G1X0 −G1B0 = G1A0. Summarizing this yields the wave com-
ponents of the leader

B0 = G1X1 −G2
1A0, (30)

A0 = X0 − B0. (31)

This means that if one component of the position of the leader
is equal to B0, then the leader absorbs the incoming wave. We
can imagine that if the leader is pushed/pulled by its followers,
thus it manoeuvres like one of the in-platoon vehicles.

5.1.2. Acceleration to the reference velocity
The previous algorithm actively absorbs the incoming wave

to the platoon leader. To change the platoon’s velocity and inter-
vehicle distances are other tasks that need to be solved.

To accelerate the platoon, we need to add an exter-
nal/reference input, Xref, for the leader. This changes (29) to
X0 = B0 + Xref. The rear-end vehicle represents the free-end
boundary, therefore, B0 is expressed by the combination of (18),
(19), (26) and (30) as B0 = G2N+1

1 Xref. This leads the transfer
function from Xref to X0 to be

X0

Xref
= 1 + G2N+1

1 . (32)

Fig. 1 showed that the DC gain of G1 is equal to one, therefore,
the DC gain of (1 + G2N+1

1 ) is equal to two. This means that
to accelerate the platoon to reference velocity vref, the leader
has to be commanded to accelerate to a velocity vref/2 at the
beginning of the manoeuver, as shown in Fig. 5.

Fig. 5 additionally shows an independent validation of the
wave transfer function approach. The derivation of the sum of
A + B velocity components (red crosses) of the wave travelling
through the platoon are compared against the velocities simu-
lated by the Matlab Simulink (green plus signs). We can see
an agreement between the wave-transfer-function-derived and
independently-simulated velocities.

5.1.3. Changing of the inter-vehicle distances
Increasing the inter-vehicle distances poses a more difficult

task than merely accelerating the platoon. The reason is that
the rear-end vehicle reacts to the change of reference distance
dref by acceleration/deceleration. This creates a velocity wave

propagating towards the leader who absorbs it by changing its
velocity. This means, however, that when all vehicles reach
the desired inter-vehicle distance dref, the whole platoon travels
with a new velocity different from the original. Only by an
additional action by the leader, see the next paragraph, will the
original velocity be reestablished.

Although the platoon has a finite number of vehicles, it be-
haves like a semi-infinite platoon because no wave reflects from
the platoon leader, who is equipped with the wave absorber.
Since (27) holds for a semi-infinite platoon, it can be now used
to determine the transfer function from Dref to the velocity of
the leader, V0(s), that is

V0

Dref
= GN

1
s(G1 − 1)
α − 2

. (33)

The DC gain of (33) reads as

κf = lim
s→0

(
GN

1
s(G1 − 1)
α − 2

)
. (34)

In the case where the reference distance is changed and the
leader does not accelerate, the velocity of the platoon changes
by (κfdref). This means that the platoon slows down or even
moves backwards. To compensate for this undesirable veloc-
ity change, the leader is commanded to accelerate to the ve-
locity (−κfdref)/2. The platoon will consequently travel with
the original velocity, hence compensating for the accelera-
tion/deceleration of the rear-end vehicle. This leads to the DC
gain of (33) for the PI controller case equal to (−

√
ki/ξ).

5.1.4. Overall control of the leader
Let us now assume that the leader has a positional controller

with input Xf. Summarizing preceding subsections yields the
resulting control law of the leader,

Xf(s) = Xref(s) + B0(s), (35)

where B0(s) = G1(s)X1(s)− (G1(s))2Xref(s) is the transfer func-
tion of the wave absorber. From the above discussion, Xref(s)
must be represented by a ramp signal with slope w0,

w0 =
1
2

(vref − κfdref) , (36)

to ensure that the platoon travels with a reference velocity vref
and inter-vehicle distances dref. In case of the PI controller,
w0 =

(
vref +

√
ki/ξdref

)
/2. The Front-sided wave-absorbing

controller is summarized in Fig. 6.

5.2. Rear-sided wave-absorbing controller
Instead of placing the wave-absorbing controller at the pla-

toon’s front, it can be placed at the platoon’s rear. In this
case, the platoon has one leader in the front and one wave-
absorbing controller at the rear. However, the absence of the
predecessor follower in the platoon has an important conse-
quence. Any velocity change by the leader, V0(s), causes a
change in the distance to the first follower, D1(s), as shown
in (A.10). Consequently, all other distances between vehicles
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Figure 5: Simulation of the velocity wave propagating through the platoon with the Front-sided wave-absorbing controller at several time instances. At the
beginning, t = 0 s, all platoon vehicles are standing still except for the leader which accelerates to a velocity 0.5 ms−1. At intermediate times, the wave travels to
the rear vehicle, where it is reflected and travels back to the leader to be completely absorbed. By propagating, it forces platoon vehicles to accelerate by another
0.5 ms−1 to a velocity 1 ms−1. At the final stage, t = 30 s, the leader is the last one reaching the velocity 1 ms−1 and the whole platoon moves with 1 ms−1. The red
crosses represent the derivation of A + B positional components computed by the wave transfer function approach, the green plus signs are the velocities simulated
by the Matlab Simulink.
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Figure 6: Scheme of the Front-sided wave-absorbing vehicular platoon controller.

are changed. This negative effect is to be compensated by an
acceleration/deceleration of the rear-end vehicle. We denote κr
to be the DC gain of the transfer function from V0(s) to D1(s).

Having specified the DC gain, a certain reference signal
needs to be sent to the platoon end to set up a desired inter-
vehicle distance dref. The input to the positional controller of
the rear-end vehicle, Xr(s), is expressed, analogous to (35), as

Xr(s) = Xref,rear(s) + G1(s)AN−1(s), (37)

where G1(s)AN−1(s) = G1(s)XN−1(s) − (G1(s))2Xref,rear(s) is the
transfer function of the wave absorber and Xref,rear(s) is a refer-
ence ramp signal with slope wr,

wr =
1
2

(vref − κrdref) . (38)

In other words, the platoon leader drives the platoon to travel
with velocity vref, while the rear-end vehicle makes the platoon
travel with inter-vehicle distances dref. For the PI controller
case, κr = ki/ξ.

It should be stressed that, for this type of control, the last ve-
hicle must know the reference velocity of the whole platoon.
This may be undesirable, since only the leader is usually aware

of the reference velocity. It may, however, be useful in situa-
tions, for instance, when the leader is not able to measure the
distance to its immediate follower, or when the leader has no
access to the reference distance.

5.3. Two-sided wave-absorbing controller
The Front-sided and Rear-sided wave-absorbing controllers

can be combined by implementing wave absorbers to both the
platoon leader and the rear-end vehicle. In this case, no wave is
reflected back from neither of the platoon ends.

The input to the positional controller of the leader is given
by (35) with the ramp signal (36), while the input to the posi-
tional controller of the rear-end vehicle is (37) with the ramp
signal (38). In this way, each platoon end generates a velocity
wave propagating towards the opposite end. Likewise, as for the
Front-sided and Rear-sided wave-absorbing controllers (Sec-
tion 5.1 and 5.2), the amplitudes of the two waves are summed
up to vref, meaning that the platoon travels with velocity vref and
inter-vehicle distances dref.

5.4. Asymptotic and string stability
Using the same technique as in [16], it can be shown that a

platoon with the symmetric bidirectional controller is asymptot-
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ically stable. Since G1(s) can be represented by such a platoon,
it is also asymptotically stable. The truncated approximate of
g1(t) is BIBO (bounded-input bounded-output) stable, which is
a well known fact about FIR filters. Therefore, a platoon with
the wave-absorbing controller on one or both platoon ends re-
mains asymptotically stable.

We follow the L2 string stability definition from [10], which
states that a system is called L2 string stable if there is an up-
per bound on the L2-induced system norm of T0,n that does not
depend on the number of vehicles, where T0,n is the transfer
function from position of the leader to the position of the vehi-
cle indexed n.

In the case of the platoon with the Front-sided wave-
absorbing controller, the position of the nth vehicle is described
as

Xn = (Gn
1 + G2N+1−n

1 )X0. (39)

Due to the triangle inequality and the fact that ||G1||∞ ≤ 1,
which is shown in Appendix C, we obtain

||Gn
1 + G2N+1−n

1 ||∞ ≤ ||Gn
1||∞ + ||G2N+1−n

1 ||∞ ≤ 2. (40)

This means that the magnitude of the maximum peak in the
frequency response of the transfer function from the position of
the leader to the position of the nth vehicle is less than or equal
to 2. Since the L2-induced norm and H∞ coincide, we can state
that the platoon with the Front-sided wave-absorbing controller
is L2 string stable.

The position of the nth vehicle with an absorber placed at the
rear-end vehicle is

Xn = Gn
1X0 + (GN−n

1 −GN+n
1 )XN . (41)

We apply the same idea and state that the H∞ norm of both
Gn

1 and (GN−n
1 − GN+n

1 ) are bounded regardless of the number
of vehicles. Therefore, the platoon with the Rear-sided wave-
absorbing control is L2 string stable.

The position of the nth vehicle in a platoon with absorbers on
both ends is expressed as

Xn = Gn
1X0 + GN−n

1 XN , (42)

which immediately shows that the platoon with the Two-sided
wave-absorbing controller is also L2 string stable.

6. NUMERICAL SIMULATIONS

We consider the linear friction of our system to be ξ = 4 and
search for the parameters of the PI controller such that oscil-
lations of the impulse response of G1(s) are minimized. The
parameters kp = ki = 4 satisfy this requirement. All numerical
simulations are run for a platoon of 50 vehicles to demonstrate
that the wave-absorbing controllers are capable of controlling
large platoons.

To demonstrate the advantages of the wave-absorbing con-
trollers, we will compare their performance against a pure bidi-
rectional control without any wave-absorbing controller. This
means that the leader travels with a constant velocity vref for the

whole time of the simulation. Fig. 7 shows the outcome of a
numerical simulation when the leader without wave-absorbing
controller increases its velocity. We can see significant lim-
itations in the bidirectional control, where the oscillatory be-
haviour in the movement of the platoon is caused by numer-
ous wave reflections from both platoon ends. Eventually, the
platoon settles to the desired velocity after many velocity os-
cillations. These oscillations not only significantly prolong the
settling time, but they could lead to accidents within the pla-
toon.

The performance of the Front-sided wave-absorbing con-
troller during two platoon manoeuvrers is shown in Fig. 8. In
the first 150 s manoeuver, the platoon accelerates to reach a de-
sired velocity. In comparison with the pure bidirectional con-
trol, see Fig. 7, the settling time is now significantly shorter.
Moreover, under some circumstances, it can be guaranteed that
vehicles do not crash into each other during the platoon accel-
eration. In fact, the distances between vehicles are increased
at the beginning of the acceleration as suggested by (A.10) and
shown in the middle panel of the Fig. 8. However, the distances
may undershoot the initial inter-vehicles distances in the second
part of the acceleration manoeuver. If the impulse response of
the wave transfer function is tuned such that it does not under-
shoot the zero value, then the distances between vehicles can
not become less than the initial inter-vehicle distances. In the
opposite case (not shown here), where the platoon travels with a
constant velocity and starts to decelerate, the distances between
vehicles are temporarily decreased and a collision may occur.

At time t = 150 s in Fig. 8, the platoon is commanded to
perform the second manoeuver such that the reference distance
is increased, but the reference velocity is kept unchanged. The
rear-end vehicle reacts to this command at the same time as
the leader since it is controlled by the reference distance that is
now changing. However, the end vehicles differ in action; the
leader accelerates, while the rear-end vehicle decelerates. This
behaviour creates an undesirable overshoot in distances.

A numerical simulation of the two manoeuvrers for the pla-
toon controlled by the Rear-sided wave-absorbing controller is
shown in Fig. 9. During the acceleration manoeuver the inter-
vehicle distances between vehicles closer to the rear end are
temporarily decreased while those for vehicles near the leader
are temporarily increased. During the changing-distance ma-
noeuver, on the other hand, no overshoot in distances occurs.

In Fig. 10, the acceleration and changing-distance manoeu-
vrers carried out for the one-sided wave-absorbing controllers
are now performed for the two-sided wave-absorbing controller.
Since both platoon ends are fully controlled, the settling time is
only half of that for the one-sided wave-absorbing controllers.
The middle panel in Fig. 10 shows that there is no overshoot
in distances during the second manoeuver. On the other hand,
there is no guarantee that the vehicles will not collide during
the acceleration manoeuver.

6.1. Asymmetric bidirectional controller
The so-called asymmetric bidirectional controller, intro-

duced in [4], is another approach to improve the performance
of the bidirectional controller. The idea is to implement two
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Figure 7: Simulation of the platoon without the wave-absorbing controller when the leader accelerates to a velocity vref = 1 ms−1. The reference distance is kept
fixed, dref = 1 m, for the whole time.
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Figure 8: Simulation of two platoon manoeuvrers with the Front-sided wave-absorbing controller. At the beginning, the vehicles are standing still separated by one
meter. For the first manoeuver, the platoon is commanded to accelerate to vref = 1 ms−1 with dref = 1 m starting at time t = 0 s. At time t = 150 s, the platoon is
commanded to perform the second manoeuver such that the reference distance is increased to dref = 1.5 m without changing the reference velocity.
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Figure 9: As in Fig. 8 but with the Rear-sided wave-absorbing controller.
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Figure 10: As in Fig. 8 but with the Two-sided wave-absorbing controller. The second command to increase dref comes at t = 100 s.
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local controllers with different parameters for each vehicle, the
’front’ controller and the ’rear’ controller. The ’front’ controller
keeps the reference distance to the predecessor, while the ’rear’
controller keeps the reference distance to the follower. In our
numerical simulations, we choose the same parameters for the
’front’ PI controller kf

p = kf
i = 4, but different parameters for the

’rear’ PI controller kr
p = kr

i = 3.6. The parameter of the linear
friction remains the same, i.e. ξ = 4.

Numerical simulations of the asymmetric bidirectional con-
troller are shown in Fig. 11. The settling time is shorter than
for the symmetric bidirectional controller (in agreement with
[4]) but at the cost of higher overshoots, which corresponds to
the fact that H∞ norm grows exponentially with the number of
vehicles in the platoon, [17]. Fig. 11 also reveals that the per-
formance of the asymmetric bidirectional controller is worse,
in terms of the settling time and the overshoots, than the perfor-
mance of a platoon with a wave absorber.
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Figure 11: Numerical simulation of the platoon with the asymmetric bidirec-
tional controller accelerating to vref = 1 ms−1 .

6.2. Evaluation of the performance

We now evaluate the performance of the acceleration ma-
noeuver described in the previous section with the help of the
mean squared error (MSE) criterion,

MSE =
1

N + 1

N∑
n=0

1
T

T∑
t=0

(vref(t) − vn(t))2, (43)

where T is the simulation time (in our case T = 500 s), vref(t)
is the reference velocity of the platoon at time t and vn(t) is the
actual velocity of the nth vehicle at time t.

The comparison in performance of the five controllers for
various platoon lengths is depicted in Fig. 12. We can see
that the MSE increases linearly for all wave-absorbing con-
trollers, but quadratically for the pure symmetric bidirectional
control and exponentially for the asymmetric bidirectional con-
trol. Moreover, a linear increase in MSE for the Two-sided con-
troller is only about half of that for the Front-sided controller.
The linear increase of MSE for the Rear-sided controller lies
between these two cases. Evidently, the wave-absorbing con-
troller qualitatively improves the performance of the bidirec-
tional control.
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Figure 12: MSE performance evaluation of the acceleration manoeuver from
Figs. 7, 8 and 10. The five controllers are evaluated; pure symmetric bidirec-
tional and asymmetric bidirectional (left panel), Front-sided wave-absorbing
controller (solid line in the middle panel), Rear-sided wave-absorbing con-
troller (dashed line in the middle panel) and Two-sided wave-absorbing con-
troller (right panel) for various platoon lengths according to (43).

The settling time of the acceleration manoeuver arising from
the all five types of controllers are compared in Fig. 13. We can
see that the settling time increases quadratically with platoon
length for a platoon with pure symmetric bidirectional con-
troller with no wave absorber, as was shown in [15], but approx-
imately linearly for a platoon with wave-absorbing controllers.
The qualitative improvement of the settling time is caused by
the fact that the wave absorber changes the structure of a pla-
toon to a multiple identical system connected in series, for in-
stance, the transfer function of the Two-sided wave-absorbing
architecture is GN

1 . In fact, the settling time of such a system
grows nearly linearly, as analytically outlined in Appendix D.
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Figure 13: The time required for platoons of various lengths to accelerate and
stay within a range of 5% of vref. The left panel shows comparison of the asym-
metric bidirectional architecture with the symmetric bidirectional controller
with no wave absorber. The middle panel compares the asymmetric bidirec-
tional architecture with the Front-sided wave absorber. The settling time of all
the wave-absorbing architectures is compared in the right panel.

6.3. Effect of noise in the platoon
This subsection examines the performance of the five con-

trollers when noise is present in the system. The reference
commands for a platoon of 20 vehicles are vref = 0 ms−1 and
dref = 0 m, that is, the platoon is commanded not to move.
Normally distributed noise is simulated for 2000 seconds and
added to distance measurements of each vehicle, except for the
leader. Different realizations of normally distributed noise with
the mean value µ = 0 and variance σ2 = 1 are applied to each
vehicle.

Table 1 assesses quantitatively the effect of noise on the
performance of the five controllers. The mean squared error
of positions, MSEpos, and the arithmetic mean of positions,
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Meanpos, show that the platoon without any absorber and with
the Rear-sided wave-absorbing controller perform significantly
better than with the other two controllers. This is due to the
fact that at least one of the platoon ends is anchored at posi-
tion 0, meaning that the platoon does not drift away from posi-
tion 0, which is not the case for the Front-sided and Two-sided
wave-absorbing controllers. Despite the disturbances by noise,
all wave-absorbing controllers are better at maintaining the co-
herence of the platoon than the pure bidirectional controller, as
indicated by the mean squared error of inter-vehicle distances,
MSEdist, and the maximum distance between the leader and the
rear end, MAXdist.

Table 1: Performance of the five controllers when considering normally dis-
tributed noise affecting distance measurement of vehicles. Four criterions used
for evaluation are introduced in the text.

MSEpos Meanpos MSEdist MAXdist

Sym. (no abs.) 2.7 × 107 2 × 10−3 1.9 × 105 5.75
Asym. (no abs.) 1.1 × 107 22 × 10−3 1.7 × 105 5.6

Front-sided
wave abs.

8.4 × 107 −3.9 2.4 × 104 1.37

Rear-sided
wave abs.

7.1 × 105 3.2 × 10−3 2.5 × 104 1.15

Two-sided
wave abs.

1.3 × 108 −3.1 1.8 × 104 0.64

6.4. Oscillatory bidirectional controller
It should be pointed out that the wave-absorbing controller is

conceptualized as an extension of the symmetric bidirectional
controller. It is not capable of attenuating the wave travelling
inside the platoon, but only at the platoon ends. If the bidirec-
tional control scheme is not properly designed, then the wave
may be amplified before it reaches one of the ends. In such a
case, the bidirectional controller needs to be redesigned to re-
solve the amplification problem. A rule of thumb is to design a
bidirectional controller such that the impulse response of G1(s)
does not undershoot the zero value.

Numerical simulations of a poorly designed bidirectional
controller are shown in Fig. 14, where the PI coefficients are
the same as in the previous section, kp = 4, ki = 4, but the
linear friction is significantly smaller, ξ = 1.03 (compared with
ξ = 4 previously). We can see that the behaviour of the whole
platoon is oscillatory and that the wave is amplified as it travels
inside the platoon. When the wave reaches the rear-end vehicle,
it is absorbed with the Rear-sided wave-absorbing controller.

7. CONCLUSIONS

This paper introduces novel concepts for the control of a ve-
hicular platoon, which significantly improve the popular bidi-
rectional control. The main idea is to control the front or both
ends of a platoon to actively damp the waves of positional
changes arriving from the opposite platoon end. The absorbing-
end vehicle is assumed to i) measure the distance to its neigh-
bour, ii) know its own position and iii) represent the dynamics
of a vehicle in terms of the wave transfer function.
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Figure 14: Numerical simulation of the platoon accelerating to vref = 1 ms−1

with a poorly designed bidirectional controller. The vehicles are indexed from
left to right by 0, 5, 10, 15, . . ., 120. The rear-end vehicle is equipped with the
wave-absorbing controller.

The new schemes allow us to control the platoon veloc-
ity and the inter-vehicle distances without long-lasting tran-
sient and oscillatory behaviour. The velocity errors during the
platoon manoeuvres with the traditional bidirectional control
grows quadratically with the number of vehicles in the platoon,
while errors grow only linearly for the bidirectional control en-
hanced with the wave-absorbing controller. Moreover, the pla-
toon with the wave-absorbing controller is string stable.

Additionally, the wave-absorbing controller preserves the ad-
vantages of bidirectional control such as: i) The lack of a need
for vehicle-to-vehicle communication, ii) none of the vehicles
need to know the number of vehicles in the platoon, iii) an in-
platoon vehicle does not need to know its index relative position
in the platoon, and iv) an in-platoon vehicle does not need to
know the reference velocity and the reference distance for the
platoon.

However, a considerable mathematical difficulty in the wave-
absorbing control lies in finding the impulse response of the
wave transfer function. In this paper, we proposed the iter-
ative approach of constructing an approximation of the wave
transfer function that is based on a continued fraction repre-
sentation. Even for a small number of iterative steps, when
the wave transfer function is rather roughly approximated, the
wave-absorbing control still performs efficiently to damper os-
cillations in the platoon’s characteristics (i.e., velocity, inter-
vehicle distances).

It should be noted that the absorbing-end vehicle is assumed
to be equipped with the positional controller since the differ-
ences in positions between vehicles are controlled. Alterna-
tively, when the absorbing-end vehicle is equipped with a ve-
locity controller, the commanded position of the vehicle derived
using (35) or (37) can be numerically differentiated to obtain the
velocity commanded to the absorbing-end vehicle.

Undesirable overshoots in the velocities or inter-vehicle dis-
tances of the wave-absorbing control can be eliminated by in-
troducing time delays in the reference signal applied to one of
the platoon ends. An appropriate value of this time delay is
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dependent upon the platoon length and thus requires the exten-
sion of the wave-absorbing control. This topic warrants further
investigation.

This paper extends [24] in the following way: i) It presents
the mathematical derivation of the approximating formula for
the wave transfer function and derivation of the transfer func-
tions describing wave reflection on platoon ends, ii) it gener-
alizes the results from the double integrator model with lin-
ear friction and PI controller for an arbitrary local system dy-
namics, iii) it introduces two additional modifications of the
wave-absorbing controller for the vehicular platoon, iv) it anal-
yses asymptotic and string stability of a platoon with the wave-
absorbing controller and v) it more thoroughly evaluates the
performance of the wave-absorbing controller.
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Appendix A. Reflection on a forced-end boundary

In this appendix, we derive the formula describing the re-
flection of a wave on a forced-end boundary that is defined in
Section 4.1.

We first combine (17)-(19) to obtain

Xn+1 = G1An + G2Bn, (A.1)
Xn−1 = G2An + G1Bn. (A.2)

Equation (5), specified for the first vehicle behind the platoon
leader, is therefore

αX1 = X0 + X2. (A.3)

Substituting (17) for X1 and (A.1) for X2 yields

α(A1 + B1) = X0 + G1A1 + G2B1, (A.4)

which can be reformulated as

A1 =
1

α −G1
X0 +

G2 − α

α −G1
B1. (A.5)

The term in front of B1 can be arranged as

G2 − α

α −G1
=
−α2 + 1

2

√
α2 − 4

α
2 + 1

2

√
α2 − 4

= −
G1

G2
= −G2

1, (A.6)

where the principle of reciprocity from (20) has been applied.
Similarly, the term in front of X0 is expressed as

1
α −G1

=
1

α
2 + 1

2

√
α2 − 4

=
1

G2
= G1. (A.7)

Finally, we have
A1 = G1X0 −G2

1B1. (A.8)

The wave-based platoon control in Section 5.3 requires one
to specify the way how the velocity of the leader V0(s) influ-
ences the distance to the first follower D1(s), D1(s) = X0(s) −
X1(s). Assuming a semi-infinite platoon, equation (9) gives
X1(s) = G1(s)X0(s). Hence,

D1(s) = X0(s) −G1(s)X0(s) =
1
s

(1 −G1(s))V0(s), (A.9)

In other words, the transfer function from velocity V0(s) to dis-
tance D1(s) is

D1(s)
V0(s)

=
1
s

(1 −G1(s)). (A.10)

Appendix B. Reflection on a free-end boundary

In this appendix, we derive the formula describing the reflec-
tion of a wave on a free-end boundary that is defined in Section
4.2.

Substituting (17) and (A.2) into (6) yields

(AN + BN)(α − 1) = G2AN + G1BN − Dref, (B.1)

which, after rearranging, gives

BN =
G2 − α + 1
α − 1 −G1

AN −
1

α − 1 −G1
Dref, (B.2)

where

G2 − α + 1
α − 1 −G1

=
1 − α

2 + 1
2

√
α2 − 4

−1 + α
2 + 1

2

√
α2 − 4

=

α − α2

2 −
√
α2 − 4 + α

2

√
α2 − 4

2 − α
=

2 − α
2 − α

G1 = G1. (B.3)

Similarly,

1
α − 1 −G1

= G1
1

G2 − α + 1
=(

α

2
−

1
2

√
α2 − 4

)
1 − α

2 + 1
2

√
α2 − 4(

1 − α
2

)2
− 1

4 (α2 − 4)
=

G1 − 1
2 − α

. (B.4)

Hence, (B.2) is

BN = G1AN +
G1 − 1
α − 2

Dref. (B.5)

Appendix C. PROOF OF ||G1(s)||∞ ≤ 1

We will show that ||G2(s)||∞ ≥ 1. Then (20) implies that
||G1(s)||∞ ≤ 1. To inspect the amplification and phase shift on
frequency ω, we substitute ω for s in the definition of G2(s)
in (16), where  is the imaginary unit, and obtain the complex
number z2 in the polar form,

z2 = r2 exp( ϕ2). (C.1)

Similarly as in (16), we can separate z2 into two parts,

z2 =
1
2

z +
1
2
√

zs, (C.2)
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where

z = α( ω) = r exp( ϕ),

zs = z2 − 4 = rs exp( ϕs). (C.3)

The magnitude rs is given by

rs = (r2 cos(2ϕ) − 4)2 + (r2 sin(2ϕ))2 = r4 + 8r2 + 16 − 16r2 cos2 ϕ.
(C.4)

with magnitude r2 then expressed as

r2 =

[
1
4

(
r2 + rs + 2r

√
rs

(
cos

ϕs

2
cosϕ + sin

ϕs

2
sinϕ

))] 1
2

=

[
1
4

(
r2 + rs + 2r

√
rs cos

(
ϕ −

ϕs

2

))] 1
2

. (C.5)

The minimum of rs over all possible phases is for ϕ = kπ, k ∈ Z,
and is equal to

min(rs) =
√

r4 − 8r2 + 16 = |r2 − 4| =

4 − r2 if 0 ≤ r ≤ 2
r2 − 4 if r > 2

(C.6)
Therefore,

1
4

(r2 + rs) ≥ 1. (C.7)

In the next step, we will show that |ϕ − ϕs/2| ≤ π/2, which
means that cos (ϕ − ϕs/2) is nonnegative. It is a known fact that
the sum of two complex numbers with phases δ1 and δ2, where
δ1 ≤ δ2 and δ1, δ2 ∈ [−π, π) , yields a complex number with the
phase δ ∈ [−π, π), that is

δ ∈ [δ1, δ2] if |δ1 − δ2| < π, (C.8)
δ ∈ [δ2, δ1] if |δ1 − δ2| > π, (C.9)

δ = δ1 or δ = δ2 if |δ1 − δ2| = π. (C.10)

This implies that

|δ − δ2| ≤ π ∧ |δ1 − δ| ≤ π. (C.11)

The phase ϕs calculated from (C.3) is ϕs = 2ϕ − θ, where
|θ| ≤ π according to (C.11). Then,∣∣∣∣∣ϕ − ϕs

2

∣∣∣∣∣ =

∣∣∣∣∣ϕ − ϕ +
1
2
θ

∣∣∣∣∣ =
1
2
|θ| ≤

1
2
π. (C.12)

Therefore,

cos
(
ϕ −

ϕs

2

)
≥ 0 (C.13)

and (C.5) gives,
r2 ≥ 1. (C.14)

This means that the amplification of G2(s) for all frequencies is
greater or equal to one. Since G1(s) = G2(s)−1 (20), it means
that the amplification of G1(s) on all frequencies is less than or
equal to one, hence ||G1(s)||∞ ≤ 1.

Appendix D. THE SETTLING TIME OF IDENTICAL
SYSTEMS CONNECTED IN A SERIES

We aim to show that the settling time of the identical systems
connected in a series grows nearly linearly with the number of
vehicles. The key idea is to find an appropriate first-order sys-
tem with an envelope that contains the impulse response of the
given individual system, therefore, it gives an upper-limit es-
timate of the settling time. It is important to stress that this
’proof’ considers the settling time of the impulse response.

Let us assume an asymptotically stable linear system T (s) of
an arbitrary order and first-order system Te(s) = λ/(s + ε). We
denote the settling times of (T (s))K and (Te(s))K as τK and τe,K ,
respectively. The parameters λ and ε are chosen such that: a)
τe,1 > τ1 and b) the impulse response of T (s) is bounded by
the envelope of the impulse response of Te(s), which implies
that τe,K > τK for K ∈ N. This means that τe,K gives an upper
limit to the settling time τK . We define τe,1 as the time elapsed
until the impulse response of Te(s) enters (and does not leave
it afterwards) a deviation band ±η. In other words, τe,1 is a
solution of the equation

λ exp
(
−ετe,1

)
= η, (D.1)

that is

τe,1 = −
1
ε

ln
(
η

λ

)
. (D.2)

Inverse Laplace transform of (Te(s))K is

gK(t) = λK 1
(K − 1)!

tK−1 exp (−εt) . (D.3)

Therefore, the settling time τe,K is a solution of the equation

λK 1
(K − 1)!

τK−1
e,K exp

(
−ετe,K

)
= η. (D.4)

It may happen that there are more than two solutions of (D.4).
In that case, we take the largest real solution. In this regard, the
settling time τe,K is expressed as

τe,K = −(K − 1)
1
ε

W−1

(
−(K − 1)−1ελ−N/(N−1) K−1

√
η(K − 1)!

)
,

K > 1, (D.5)

where W−1 is the lower branch of the Lambert-W function, see
[7]. Finally, substituting (D.1) into (D.5) gives

τe,K = −(K − 1)
1
ε

W−1

(
−(K − 1)−1ελ−1 exp

(
−ετe,1

(K − 1)

)
K−1
√

(K − 1)!
)
, K > 1. (D.6)

The settling time described in (D.6) grows nearly linearly
with the increasing number of vehicles as shown in Fig. D.15.
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Figure D.15: The settling time of the identical systems connected in a series
evaluated according to (D.2) and (D.5) compared with a linear growth of the
settling time. Parameters of the system are: ε = 1, λ = 1 and η = 0.05.
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