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Preface

In this research work I propose a new approach to the standard `1-optimal control prob-

lem. I formulated and solved the `1-optimal control problem using linear equations with

polynomials and polynomial matrices, hence the adjective polynomial. The core mathemat-

ical results of this thesis rely on the theory of Toeplitz operators and their truncations and

hopefully this helped create a communication channel between the optimal control theory

and a Toeplitz operator theory.

I started this PhD work in the fall 2001, a couple of months after I became a member

of a research team lead by Professor Michael Šebek from Czech Technical University in

Prague, whose major research domain is development of polynomial methods for control

and filter design. This domain was successfully pioneered in the late 1970s by a world-

renowned colleague or ours, Professor Vladimı́r Kučera. The rationale behind choosing this

research topic of `1-optimal control via polynomials for my PhD thesis was quite direct

- polynomial methods now present a mature bunch of convenient control design methods

featuring reliable solutions to LQG, H2 and H∞-optimal control design problems, but a

solution to the `1-optimal control problem was completely missing in a designer’s toolset

and we knew nothing about it. But with the great polynomial expertise of my colleagues I

felt confident to devote three years of my research career to this topic, even though success

was not guaranteed at beginning...

Hopefully, this thesis is an evidence that now, after three years, we know a bit more;

we can formulate and solve the `1-optimal control problem in the polynomial framework,

using the same theoretical and computational tools that we are used to from the previous

work on LQG, H2 and H∞-optimal control problems. A complete theoretical solution

to a square SISO and one-block MIMO cases were proposed, including reliable numerical

algorithms. Towards the very end of this thesis we made good progress even in general

multiblock MIMO design and derived the missing lower bound on the optimum value of the

norm. Nontheless, bringing this procedure to computational maturity requires some more

work.

First and foremost, I would like to express my gratitude to my supervisor Michael

Šebek for giving me an opportunity to join his research team, for creating perfect conditions

for my research, for encouragement and motivation and for introducing me to the world of

research.

In the last phase of my PhD research I benefited much from collaboration with Al-
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brecht Böttcher from Fakultät für Mathematik, Technische Universität Chemnitz, Germany.

In fact, the key ideas of this thesis presented in the two chapters on control synthesis have

been described in our two joint papers submitted for publication. My thanks go to Albrecht

for helping me with this research and for showing me around in the wonderful world of

Toeplitz operators. This short but intensive collaboration was very inspiring and enjoyable.

I am happy to see that we are going on steadily these days.

My thanks also come to Didier Henrion, a young enthusiastic researcher from LAAS-

CNRS Toulouse, France, for numerous fruitful discussions and encouragement, which helped

a lot. I am lucky I can call Didier a friend and a colleague.

I also wish to thank to my colleagues at the Department of Control Engineering

at Czech Technical University in Prague, especially to Martin Hromč́ık, Zdeněk Vlček and

Radek Šindelář for making my stay in Prague more enjoyable. And I urge Martin to develop

a matrix version of his nice algorithm for a stable-unstable factorization of a polynomial

matrix as my further work hinges on it.

My deepest obligation comes to my parents for bringing me up in... well, a nor-

mal way...:-) under assistance of my lovely sister Blanka. Last nine years of my life were

truly fantastic, happy and peacefull thanks to my beloved fiancée Kateřina, who always

encouraged me to go my way.

Finally, financially...:-) This work was supported by the Ministry of Education of

the Czech Republic under Project LN00B096.

Zdeněk Hurák

Czech Technical University in Prague

February 2004
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`1 Optimal Control - A Polynomial Approach

Ing. Zdeněk Hurák

Czech Technical University in Prague, 2004

Supervisor: Doc. Ing. Michael Šebek, DrSc.

The thesis brings a new approach to a design of an `1-optimal feedback controller. A

new theoretical and computational framework for solving this problem was developed. It

relies on solving linear equations with polynomials and polynomial matrices. Advanced

results from the theory of Toeplitz operators were heavily exploited. Alternative proofs for

fundamental well-known results like existence of an optimal solution and finiteness of an

optimal impulse response of a closed loop in SISO and one-block MIMO cases are given.

Fast and reliable numerical algorithms were designed, implemented and tested. They avoid

computing zeros and zero directions of polynomial matrices completely. An optimal Youla-

Kučera parameter is returned as an outcome from the optimisation and can be used directly

to obtain an optimal controller. Hence no need for a numerically tricky extraction of a

controller from and optimal closed-loop transfer function. For general multiblock MIMO

case, an iterative procedure for finding an approximate solution is proposed. It is based

on solving a sequence of linear equations with polynomial matrices and at each iteration

provides converging upper and lower bounds on the optimal value of the norm.
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Notations

a(λ) Laurent (two-sided) power series a(λ) =
∑∞

j=−∞ ajλ
j (λ = eiθ ∈ T), 10

a+(λ) power series with zero coefficients associated with negative powers, 11

B(X) Banach algebra of all bounded linear operators mapping X into itself, 10

c0 a subspace of `∞ with decaying sequences, 10

C a set of complex numbers, 10

det A determinant of matrix A

`1 a normed linear space of infinite absolutely summable real sequences, 10

`∞ a normed linear space of infinite sequences of bounded real numbers

N (T ) nullspace of an operator T , 10

Pk a truncation operator, 13

R(T ) range of an operator T , 10

T (a) Toeplitz operator (infinite matrix) with a symbol a(λ), 10

Tk(a) truncated Toeplitz operator (finite matrix) with a symbol a(λ), 13

T a unit circle in the complex place, 10

W Wiener algebra of functions on the unit circle with coefficients in `1, 10

W+ functions in W with zero coefficients with the negative powers of λ, 11

〈x, x∗〉 value of a functional x at x∗ and vice versa, 10
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Chapter 1

Introduction

1.1 `1-optimal control problem: motivation

The objective of `1-optimal control is, loosely speaking, to minimize worst-case peaks in

the amplitudes of regulated variables that are induced by exogenous variables. The only

assumption about exogenous variables is that they are persistent and bounded in magni-

tude. Notice the difference with the popular H∞-optimal control, where the objective is to

minimize worst-case energy carried by regulated variables, under the assumption of bounded

energy of exogenous variables. This boundedness of energy implies that exogenous signals

are vanishing, which is not a realistic assumption in many engineering applications.

`1-optimal control can be regarded just as another control strategy extending control

engineers’ toolset. It has already proven useful in applications like irrigation channel control

[45], where the peaks in the regulated variable - water level - are of uppermost interest.

The objectives of this thesis were set as:

Develop a theoretical background and computational tools for the standard `1-

optimal control problem in the polynomial framework.

The focus of this work is on discrete-time systems. One of the reasons for this

choice is the current dominance of computerized control in industrial applications even for

continuous-time plants.

1.2 `1-optimal control problem: history, state of the art

The relationships between `1, H∞ and Hankel norms of linear time-invariant systems were

analyzed by Boyd [9]. The proposed bound on `1 system norm was used a few years later

Balakrishnan [1] to compute iteratively the `1 norm of a discrete-time linear system with

arbitrary precision.

The `1-optimal control problem was formulated and contrasted with the already

established H∞ control design methodology by Vidyasagar in late 1980s [56]. It was also
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Figure 1.1: An irrigation channel control is strongly oriented on attenuation of peaks in the
regulated variable.

shown that continuous-time and discrete-time cases need to be treated separately as there is

no norm preserving map between the two regions of convergence (right half-plane and unit

circle). Solutions to some special instances of the problem were given.

A complete solution to SISO and square MIMO problems (also called one-block

problems) was proposed by Dahleh and Pearson in [17]. The primal problem is cast as a

linear program with an infinite number of variables subject to a finite number of constraints.

The role of these conditions is to prevent unstable zero/pole cancellation. Using standard

results on duality between c0 space of bounded and decaying sequences and `1 space of

absolutely summable sequences [43], the dual problem is formulated with a finite number

of variables and infinite number of constraints. It is shown however, that only finitely

many constraints are active. Finite-dimensional linear program is thus obtained. Using the

alignment property of the optimal solution to the dual problem, it is shown that the optimal

closed loop impulse response is finite!

Vidyasagar focuses in [57] on the case where the plant has either poles or zeros

on the stability boundary, i.e., the unit circle in the discrete-time case. This is a very

important problem in practical control as all position control applications feature a pole at

1. Moreover, discrete-time models of strictly proper plants can have a zero at -1, depending

on the discretization method. The duality-based approach proposed by Dahleh breaks down

in this case, because the dual solution then lives in a `∞ space of bounded sequences instead

of c0. Vidyasagar shows that the consequences of having a pole or zeros on the imaginary
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Figure 1.2: Literature survey

axis have no parallel in the case of H∞ norm minimization, where this also causes troubles.

Namely, in both `1 and H∞ minimum distance problems, an optimal solution solution need

not exist. But it is always possible to construct a sequence of H∞-suboptimal controllers

whose performance approaches the unattainable infimum (see e.g. [55], sec. 6.4). However,

this is generally not possible in `1 case. It can be shown that the limit of a sequence of

`1-suboptimal controllers can be strictly larger then the infimum. The well-known trick

with weighting filters vanishing at the poles or zeros of the plant on the unit circle cannot

be applied either. Vast majority of papers on `1-optimal control ignores this hot problem,

which limits usability of the whole control strategy.

Meyer gives two examples [47] demonstrating that an optimal solution need not be

unique and that the length of the optimal closed loop impulse response is not bounded by

any function of the order n of the plant (this is in contrast with the H2 and H∞ problems).

Indeed, changing the coefficients of a plant transfer function of a given order, the order of

and optimal controller can be set arbitrarily high.

In order to relieve the high-order controller curse of `1-optimal control, Halpern

gives a heuristic technique in [25]. He shows that if the order of the controller is to be

less than that required for the optimal finite-impulse-response solution, a lower value of

‖.‖1 can be achieved if one places one of the closed loop poles somewhere in the interval

(1,∞). An analytical expression is then given for the unique optimal position of this pole.

Although this expression is usually nonconvex, Halpern’s observation that one should give

up dead-beat closed loop response when designing a `1-suboptimal control is inspiring.

A partial solution to the inverse problem of the `1-optimal control is given in [19]

for a class of problems with interpolation points located in some specific region. It is also

shown that every controller minimizing the H∞-norm or the weighted sensitivity function

3



is always `1-optimal for a possibly different stable weight. There are however `1-optimal

controllers that are not H∞-optimal.

The original solution proposed by Dahleh for SISO and one-block MIMO case was

immediately extended to the general four-block case [18]. Dahleh considers a simple case

with two exogenous inputs and one measured output, two regulated variables and one control

signal to show that both primal and dual problems have an infinite number of constraint

and variables. The reason is that besides the zero interpolation constraints a new type

of constraints called rank interpolation conditions appear. Therefore it is not possible to

compute the solution precisely. An optimal impulse response is no longer finite. It is then

necessary to approximate an optimal impulse response by a solution to a truncated problem

with only finitely many nonzero entries (in the primal domain). The sequence of optimal

solutions to truncated problems gives a converging upper bound on the optimal cost to

the original minimization problem. This approach is later named Finitely Many Variables

(FMV) Method.

McDonald and Pearson [46] made the proofs from [18] mathematically more direct

using coprime factorization and removed some minor technical assumptions. As a special

case, they also considered a design of a controller under constraints on the norm with respect

to some of the outputs outputs.

A missing lower bound on the optimal cost was obtained independently by Staffans

[52] and Dahleh [14] by solving a truncated dual problem (with finite number of dual vari-

ables, thus finite number of primal constraints). This was named Finitely Many Equations

(FME) Method. An iterative scheme FMV/FME in which two finite linear programs are

solved at each truncation is proposed. In the same paper, using a particular numerical

example of a scalar mixed sensitivity, Staffans explored in great detail the issue of redun-

dancy in the corresponding linear programs. He pointed out that although the iterative

truncation-based solution suggested an infinite-dimensional optimal solution, the actual so-

lution was rational and of low order. This articulated the bad property of truncation-based

approaches. Further generalizations of his conclusions to a MIMO case can be found in [53]

and [54].

Conceptually different solution to a general multiblock problem was proposed by

Diaz-Bobillo [20]. It was named Delay Augmentation (DA) Method because it converts

the multiblock problem into a one-block problem by introducing delays (right-shifts). It

attempts at reducing order inflation caused by straightforward truncation as in FMV/FME

and reduces some computational burdes because only one linear program is solved at each

iteration. On the other hand, additional effort is required for reordering the inputs and

outputs of the system because this has significant impacts on convergence. Both lower and

upper bounds converging to the optimum are provided too.

Robust stability with norm-bounded uncertainty was studied by Dahleh in [16] for

unstructured uncertainty (multiplicative and additive perturbations) and in [14] for coprime

stable factor perturbations. These results have been generalized by Khammash [37] for

structured uncertainties.

Khammash extended these results for robust stability with unstructured and struc-
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tured uncertainty and provided necessary and sufficient conditions on robust performance,

including numerical synthesis procedures, in [36] and [38], respectively. In [38] he even

relaxes the requirement of time-invariance of the linear plant and provides an iteration pro-

cedure of D-K type known from µ-synthesis. However, as in the case of Structured Singular

Values (SSV) such procedure does not guarantee that a global optimum has been found

as the problem is inherently nonconvex. In [39] a new procedure for finding a globally

optimal solution was proposed that is based on a linear relaxation of a nonconvex infinite

dimensional problem.

Shamma [51] addresses the question whether any improvement in disturbance rejec-

tion or robust stabilization of a plant with norm-bounded uncertainty can be achieved by

using time-varying controller. The answer is, perhaps surprisingly, no, no improvement can

be expected when the uncertainty is unstructured by using time-varying controller.

The major message from the work on robust stability and robust performance against

norm-bounded uncertainty described above is that a lot of theoretical results from the H∞-

optimal control framework can be accepted in `1-optimal control framework because of

validity of the celebrated small gain theorem.

Most of the above mentioned results have been obtained in the late 1980s and early

1990s and are perfectly documented in a comprehensive textbook by Dahleh and Diaz-

Bobillo [15]. A major feature of these methods is that both the derivation of theoretical

properties and the actual numerical computation are based on the numerically tricky in-

terpolation, that features solution to ill-conditioned Vandermonde linear system. There are

other two sources of numerical troubles. First, the computation of zeros and the so-called

zero directions of polynomial matrices and, perhaps even more importantly, the extraction

of an optimal controller from the closed loop-impulse response. The latter being magnified

especially if one achieves some suboptimal solution only.

Late 1990s in research in `1-optimal control can be characterized by attempts to

reformulate the standard problem of `1-optimal control and obviate the interpolation part.

A distinguished new approach that avoids zero interpolation was proposed by Khammash

in [34] and [35] and is called Q-scaled Method. In fact, this method takes some inspiration

from the convex Q-parameterization relying on Ritz approximations presented in [10]. The

method directly approximates the optimal Youla-Kučera parameter Q(λ) that determines

uniquely the closed loop transfer function. Khammash solves an auxiliary (regularized)

problem that includes a scaled norm of Q(λ) in the objective function, provides lower and

upper bounds, and then relates the result to the solution to the original problem. Optimizing

directly over Q(λ) brings an advantage that the numerically tricky extraction of a controller

from an optimal closed-loop transfer function was avoided. Moreover, although the order

of the finite impulse response Q(λ) can be high, a rational approximation of low order

can be conveniently found using system identification tools. The error introduced by this

approximation can be easily computed.

Another method that can do without interpolation was authored by Elia and Dahleh

[21]. Their method is based on mixed-objective minimization and provides a converging

lower and upper bounds on the optimal `1 norm and therefore can provide a suboptimal
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controller. Instead of using linear program, a semidefinite quadratic program is solved

at each step. An essence of this method is that at a given step, instead of minimizing

the `1 norm of the closed loop impulse response, the square of the `1 norm of the first N

samples plus the square of the `2 norm of the tail is minimized. This second term amounts to

solving the H2-optimal design first and then solving a finite-dimensional convex optimization

problem. Increasing N the closed-loop behaves more like `1-optimal then H2-optimal. A

nice feature is that an optimal controller is directly computed and need not be extracted

from the optimal closed-loop transfer function.

A state-space solution to the `1-optimal control problem when all the states are

available and the peak magnitudes of disturbances are known is proposed by Elia [22].

The procedure relies heavily on dynamic programming. The paper also includes important

references for other state-spaces flavoured results.

A polynomial approach to the `1-optimal control has been recently proposed by

Cassavola [13]. Some preliminary results on scalar mixed-sensitivity problem and scalar

multiblock problem were published earlier in [11] and [12], respectively. In this method,

both the closed-loop transfer function and Youla-Kučera parameter Q(λ) are parameterized

by some free term, resulting in a sequence of unconstrained and redundancy-free linear

programs. This approach and Khammash’s Q-scaled method share the same angle of attack

with this thesis as they both consider the Youla-Kučera parameter a component of the

optimization variable.

1.3 Contributions of the thesis

In accordance with the stated objectives, this thesis brings several concrete contributions

1. A major contribution of the thesis is a rigorous mathematical formulation and nu-

merical solution to an `1-optimal control problem within the so-called polynomial

framework. Advanced results from the theory of Toeplitz operators were heavily ex-

ploited. Alternative proofs for fundamental well-known results like existence of an

optimal solution and finiteness of an optimal impulse response of a closed loop in

SISO an one-block MIMO cases are given. Fast and reliable numerical algorithms

were designed, implemented and tested. They avoid computing zeros and zero di-

rections of polynomial matrices completely. An optimal Youla-Kučera parameter is

returned as an outcome from the optimisation and can be used directly to obtain an

optimal controller. Hence no need for a numerically tricky extraction of a controller

from and optimal closed-loop transfer function. For general multiblock MIMO case,

an iterative procedure for finding an approximate solution is proposed. It is based on

solving a sequence of linear equations with polynomial matrices and at each iteration

provides converging upper and lower bounds on the optimal value of the norm.

2. The core mathematical results developed in this thesis for `1-optimal controller design

are of independent results and contribute to the general theory of linear equations in

6



the ring of (matrix) Wiener functions (power series with absolutely summable coeffi-

cients) and theory of banded (block) Toeplitz operators.

3. A numerical algorithm for computing the `∞-induced system norm of a polynomial

matrix fraction was devised.

4. As a side-product of the work on algorithm for computing the norm, fast and realiable

algorithms were developed for modular shift and modular multiplication of polynomial

matrices.

5. All the numerical algorithms proposed in this thesis were implemented and tested in

Matlab and are considered for the next release of a commercial Polynomial Toolbox

for Matlab [42].

1.4 Author’s publications related to the thesis

The major result of this thesis - a solution to the SISO version of `1-optimal control design

via Diophantine equations - was submitted for publication in SIAM Journal on Control

and Optimization [29] at December 2003. A preliminary, very simple version was presented

at the 4th IFAC Symposium on Robust Control (ROCOND’03) [31] in Milan, June 2003.

The very recent results on design for MIMO systems were submitted to the 16th Inter-

national Symposium on Mathematical Theory of Networks and Systems (MTNS’04) [28] at

Katholieke Universiteit Leuven, Leuven, Belgium, July 2004. The work on algorithm for the

norm computation was presented at the IEEE CCA/CACSD conference [30] in Glasgow,

September 2002. The result on modular arithmetics for polynomial matrices was submitted

to Systems and Control Letters in June 2003 [32]. An invited talk on truncated Toeplitz

operators and their use in optimal control was given to the members of the Fakultät für

Mathematik at Technische Universität Chemnitz in December 2003.

1.5 Outline of the thesis

The immediately following, second chapter, contains the major contribution of the thesis: a

rigorous solution to an `1-optimal control problem for a SISO plant, including a numerical

example. The third chapter contains an extension to MIMO case. The fourth chapter

suggests an algorithm for computing `∞-induced norm of a polynomial matrix fraction. The

fifth chapter presents a new algorithm for modular shift of a polynomial matrix. Even though

this result is not directly tied to `1-optimal control, it can provide an computational efficient

step for the norm computation. The sixth, final chapter summarizes the achievements of

this thesis and outlines immediate opportunities for improvement and further research.
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Chapter 2

SISO feedback `1-optimal

control

2.1 Introduction

This chapter concerns the problem of finding a discrete-time controller that minimizes the

`1 norm of the impulse response of a closed-loop system that has one exogenous input

and one regulated variable. A plant is described by a transfer function and the proposed

design method relies on manipulation with coefficients of the numerator and denominator

polynomials. It avoids computing their roots completely. This is in contrast with the

existing interpolation-based approach ([17], or [15]). The presented work goes much in the

polynomial spirit of Kučera’s pioneering work [40], hence the name polynomial approach.

Basically, the proposed method relies on solving a linear equation in the ring of power

series with finite sum of absolute values of the coefficients a(λ)x(λ)+b(λ)y(λ) = c(λ), where

a(λ) is a given polynomial, b(λ) = 1 and c(λ) is an arbitrary power series with bounded

sum of absolute values of its coefficients. An optimal solution is sought that minimizes `1

norm of the coefficients sequence of y(λ). It is shown in this chapter that such solution is

guranteed to exist if and only if the polynomial a(λ) has no zeros on the unit circle and that

this solution has only finite number of nonzero terms, i.e., an optimal y(λ) a polynomial!

Avoiding interpolation was the major incentive for this work. The presented ap-

proach follows the line of reasoning pursued by Dahleh and Pearson [17], but the problem is

posed in a different setting, which leads to a different numerical algorithm. The problem is

formulated mathematically as finding the distance between a given sequence in `1 and the

range of a given infinite lower-triangular Toeplitz band matrix on `1. We establish necessary

and sufficient conditions for the solvability of the problem and design a numerical algorithm

for finding a solution. The convergence of this algorithm is rigorously proved. In contrast to

previous work, which used interpolation techniques relying on the solution to numerically

ill-conditioned Vandermonde systems, our algorithm is based on finding optimal solutions

of overdetermined but numerically much better behaved Toeplitz systems.
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2.2 The `1-optimal control problem

The objective of `1-optimal control is to design a feedback controller that guarantees mini-

mum worst-case peaks in the regulated (error) variable in response to a bounded and persis-

tent disturbance. Consider a standard feedback configuration with the exogenous variable

corrupting the output of the plant as in Figure 2.1. The plant is described by a transfer

function, say G(λ) = p(λ)/q(λ).

disturbance

Plant

Controller

error

Figure 2.1: SISO disturbance rejection

It is well known [40] that the achievable internally stable closed-loop transfer func-

tions y(λ) of a standard feedback connection are parameterized by y(λ) = b(λ) − a(λ)x(λ),

where all the terms in the equation are power series with coefficient sequences residing in `1;

a(λ) and b(λ) are derived from the description of the plant, and x(λ), which is also called

the Youla-Kučera parameter, is unknown and is to be determined. For finite-dimensional

systems, a(λ) is actually a polynomial.

Given a linear time-invariant (LTI) model of a plant, a principal task of `1-optimal

control is to design a stabilizing feedback LTI controller that minimizes the `1 norm of the

coefficient sequence of y(λ). This controller will guarantee optimal attenuation of peaks in

the amplitude of the error signal because the Wiener norm of y(λ), that is `1 norm of its

coefficient sequence, is equal to the `∞-induced operator norm1 of the closed-loop system

[56].

Any stabilizing controller is determined by its Youla-Kučera parameter x(λ). As

the coefficient sequence of a(λ)x(λ) results from that of x(λ) by the action of an infinite

lower-triangular Toeplitz band matrix, the problem of designing an optimal controller leads

to the minimum distance problem between a given sequence b ∈ `1 and the range R(T (a))

of the infinite lower-triangular Toeplitz matrix T (a) in `1. A concrete design procedure will

be exemplified in the next section.

A noteworthy feature of the approach proposed here is that the Youla-Kučera pa-

rameter is explicitly computed and that, consequently, there is no need to perform the

numerically tricky extraction of a controller from the optimal closed-loop transfer function.

1This standard fact and especially its extension to operators on vector sequences is restated for a reader’s
convenience in the introductory section in Chapter 4, in particular in Lemma 2 on page 39.
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2.3 Operator-theoretic statement of the problem

The Wiener algebra W is the Banach algebra of all complex-valued functions on the complex

unit circle T with absolutely convergent Fourier series. Thus, a function a : T → C belongs

to W if and only if

a(λ) =

∞∑

j=−∞

ajλ
j (λ = eiθ ∈ T), ‖a‖W :=

∞∑

j=−∞

|aj | < ∞.

Wiener’s theorem (e.g. [7], page 6) states that if a ∈ W has no zeros on T, then 1/a is also

in W . For a ∈ W , the infinite Toeplitz matrix T (a) and the finite Toeplitz matrices Tk(a)

are defined by T (a) = (ai−j)
∞
i,j=1 and Tk(a) = (ai−j)

k
i,j=1, respectively.

We denote by c0 the set of all real-valued sequences x = {xj}∞j=1 with |xj | → 0 as

j → ∞ and by `1 the set of all real-valued sequences x = {xj}∞j=1 satisfying
∑∞

j=1 |xj | < ∞.

The sets c0 and `1 are real Banach spaces under the norms ‖x‖∞ = supj≥1 |xj | and ‖x‖1 =∑∞
j=1 |xj |, respectively. Moreover, `1 is the dual space of c0, `1 = c∗0, under the pairing

〈z, b〉 =
∑∞

j=1 zjbj , {zj} ∈ c0, {bj} ∈ `1.

Given a Banach space X , we let B(X) stand for the Banach algebra of all bounded

linear operators on X . For A ∈ B(X), the norm ‖A‖B(X) is sup ‖Ax‖, the supremum over

all x ∈ X with ‖x‖ ≤ 1, and the range and null space of A are defined by R(A) = A(X)

and N(A) = {x ∈ X : Ax = 0}.
Let a ∈ W and suppose the Fourier coefficients of a are all real. Then the infinite

Toeplitz matrix T (a) induces a bounded linear operator on c0 and `1 via

(T (a)x)i =

∞∑

j=1

ai−jxj (j ≥ 1).

For j ∈ Z, define the function χj by χj(λ) = λj (λ ∈ T). The operators T (χ1) and T (χ−1)

are the forward and backward shifts acting by the rules

T (χ1) : {x1, x2, x3, . . .} 7→ {0, x1, x2, . . .},
T (χ−1) : {x1, x2, x3, . . .} 7→ {x2, x3, x4, . . .}.

Clearly, T (a) =
∑∞

j=−∞ ajT (χj). This implies that ‖T (a)‖B(c0) = ‖T (a)‖B(`1) = ‖a‖W .

The adjoint operator of T (a) : c0 → c0 is the operator T (a) : `1 → `1 where a(λ) =∑∞
j=−∞ ajλ

−j (λ = eiθ ∈ T).

Throughout this work we suppose that a+(λ) = a0 + a1λ + . . . + anλn with real

numbers a0, a1, . . . , an and with an 6= 0. Clearly, T (a+) is a banded lower-triangular Toeplitz

matrix, while T (a+) is a banded upper-triangular Toeplitz matrix. We always think of T (a+)

as acting on `1 and always consider T (a+) as an operator on c0. Thus, T (a+) is the adjoint

of T (a+).

This work concerns the following problem. Given b ∈ `1, determine the distance

d := dist`1(b,R(T (a+))) := inf
m∈R(T (a+))

‖b− m‖1,
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find out whether there is an m0 ∈ R(T (a+)) with ‖b − m0‖1 = d, and if yes, compute

such an m0. Note that once m0 is available, we can easily solve the lower-triangular system

T (a+)x0 = m0 to get x0.

2.4 Two results from functional analysis

We will employ the following two theorems (whose proofs can be found on pages 121 and

156 of [43]). Recall that the annihilator M⊥ of a set M ⊂ X is defined as M⊥ = {b ∈ X∗ :

〈z, b〉 = 0 for all z in M}. Furthermore, two elements z ∈ X and b ∈ X∗ are said to be

aligned if the equality ‖z‖ ‖b‖ = 〈z, b〉 holds.

Theorem 1. Let M be a linear subset of a real normed space X and let b ∈ X∗. Then

inf
m∈M⊥

‖b − m‖ = sup
z∈M,‖z‖≤1

〈z, b〉. (2.1)

The infimum in (2.1) is always attained at some m0 ∈ M⊥. If the supremum in (2.1) is

achieved for some z0 ∈ M with ‖z0‖ ≤ 1, then z0 and b − m0 are aligned.

Theorem 2. Let X be a Banach space and A ∈ B(X). Then R(A) is closed if and only if

R(A∗) is closed, in which case R(A∗) = [N(A)]⊥.

2.5 Toeplitz operators

In general, the product of two Toeplitz operators is not a Toeplitz operator. However, this

happens in certain special cases. Let W+ and W− denote the functions in W whose Fourier

coefficients with negative and positive indices vanish, respectively. Thus, if c± ∈ W±, then

T (c−) and T (c+) are upper and lower triangular, respectively. It is easily seen by direct

inspection that if c− ∈ W−, f ∈ W , c+ ∈ W+, then

T (c−)T (f)T (c+) = T (c−fc+). (2.2)

The following results are known to specialists (see, e.g., [8] and [24]). We include the proofs

for the reader’s convenience.

Proposition 1. The range R(T (a+)) is a closed subset of `1 if and only if a+ has no zeros

on T.

Proof. If a+ has no zeros on T, then a−1
+ belongs to W and has real Fourier coefficients.

From (2.2) we obtain that T (a−1
+ )T (a+) = I . Thus, T (a+) has a bounded left inverse, which

implies that the range of T (a+) is closed (see, e.g., [24, Section I.1.2]).

Now suppose a+(τ) = 0 for some τ ∈ T. Contrary to what we want, we assume

that R(T (a+)) is a closed subset of `1. We denote by `1(C) the complex Banach space of

all complex-valued sequences x = {xj}∞j=1 for which ‖x‖1 =
∑∞

j=1 |xj | < ∞. The range of

T (a+) on `1(C) is R(T (a+)) + iR(T (a+)), which is closed whenever R(T (a+)) is closed.
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From Theorem 2 we now infer that T (a+) : c0(C) → c0(C) has closed range, where c0(C)

is defined in analogy to `1(C). The operator T (a+) is upper-triangular, and it is easily

seen that the range of every nonzero upper-triangular Toeplitz operator contains all finitely

supported sequences. Consequently, T (a+) must be surjective. We may write

a+(λ) = a(1/λ) = a0 + a1
1

λ
+ . . . + an

1

λn

= an

(
1

λ
− τ

) (
1

λ
− z1

)
. . .

(
1

λ
− zn−1

)
= an(χ−1(λ) − τ)d(λ).

Since T (a+) = T (χ−1− τ)T (d) by (2.2), the operator T (χ−1− τ) is surjective together with

T (a+). The equation T (χ−1 − τ)z = 0 is satisfied if and only if zj = τ j−1z1 (j ≥ 1), and

this is a sequence in c0(C) only for z1 = 0. Thus, T (a+) is injective on c0(C). In summary,

T (χ−1 − τ) is invertible on c0(C). It follows that T (χ1 − 1/τ) is invertible on `1(C). But

the solution to T (χ1−1/τ)x = {1, 0, 0, . . .} is xj = −τ j (j ≥ 1), which is not in `1(C). This

contradiction proves that R(T (a+)) cannot be closed.

The function a+(λ) = a0 + a1λ + . . . + anλn is defined for all λ ∈ C.

Proposition 2. If a+ has no zeros on T, then the dimension of N(T (a+)) in c0 is equal

to the number of zeros of a+ in the open unit disk D := {λ ∈ C : |λ| < 1}.

Proof. Let a+ have κ zeros δ1, . . . , δκ in D and n − κ zeros µ1, . . . , µn−κ in C \ (D ∪ T).

We then have

a+(λ) = a+(1/λ) = an

n−κ∏

k=1

(
1

λ
− µk

) κ∏

j=1

(
1

λ
− δj

)

= γλ−κ

n−κ∏

k=1

(
1 − 1

µkλ

) κ∏

j=1

(1− δjλ)

with γ = an(−µ1) . . . (−µn−κ). We consider T (a+) on c0(C). Let N be the null space of

T (a+) on c0. Then N + iN is the null space of T (a+) on c0(C). From (2.2) we obtain that

T (a+) = γT (χ−κ)

n−κ∏

k=1

(
I − 1

µk

T (χ−1)

) κ∏

j=1

(I − δjT (χ1)) .

Since ‖(1/µk)T (χ−1)‖ = 1/|µk| < 1 and ‖δjT (χ1)‖ = |δj | < 1, we conclude that the

operators I − (1/µk)T (χ−1) and I − δjT (χ1) are all invertible. Consequently, the dimension

of N + iN is the dimension of the null space of T (χ−κ) on c0(C). It follows that the

dimension of N + iN over C is κ, which implies that the dimension of N over R is also

κ.

2.6 Existence of the solution

Here is our result on the solvability of the problem posed in Section 2.3.
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Theorem 3. The problem

‖b − m‖1 = dist`1(b,R(T (a+))) =: d (2.3)

has a solution m0 ∈ R(T (a+)) for every b ∈ `1 if and only if a+ has no zeros on T. If

a+(λ) 6= 0 for λ ∈ T, then for every b ∈ `1 there exists a z0 ∈ N(T (a+)) such that

‖z0‖∞ ≤ 1 and d = 〈z0, b〉 = sup
z∈N(T (a+)),‖z‖∞≤1

〈z, b〉, (2.4)

and if m0 ∈ R(T (a+)) is any sequence satisfying (2.3), then the sequence b − m0 has only

finitely many nonzero terms.

Proof. If a+ has a zero on T, then R(T (a+)) is not closed due to Proposition 1 and hence

(2.3) has no solution m0 ∈ R(T (a+)) if b is in the closure of R(T (a+)) but not in R(T (a+)).

Now suppose that a+ has no zeros on T. Then R(T (a+)) is closed by Proposition 1.

From Theorem 2 we deduce that R(T (a+)) = [N(T (a+))]⊥. The existence of an m0 ∈
R(T (a+)) satisfying (2.3) then follows from Theorem 1. This theorem also yields the equality

d = sup
z∈N(T (a+)),‖z‖∞≤1

〈z, b〉,

and since {z ∈ N(T (a+)) : ‖z‖∞ ≤ 1} is compact by virtue of Proposition 2 and the map

z 7→ 〈z, b〉 is continuous, we conclude that the supremum is attained at some z0 ∈ N(T (a+))

with ‖z0‖∞ ≤ 1.

The last assertion of the theorem is trivial for d = 0. So let d > 0, which implies

that ‖z0‖∞ > 0. The sequences b − m0 and z0 are aligned by Theorem 1. Consequently,

with b − m0 = {ej}∞j=1 and z0 = {zj}∞j=1,

∞∑

j=1

zjej = ‖z0‖∞
∞∑

j=1

|ej |. (2.5)

As {zj} ∈ c0, there is a j0 such that |zj | < ‖z0‖∞ for all j ≥ j0. From (2.5) we infer that

ej = 0 for j ≥ j0.

2.7 Finite sections of Toeplitz operators

In this section, we quote two known theorems that will be needed when proving the conver-

gence of and giving an error estimate for our numerical algorithm. For k ≥ 1, we denote by

Pk the projection on `1 and c0 that acts by the rule

Pk : {x1, x2, x3, . . .} 7→ {x1, . . . , xk, 0, 0, . . .}.

We identify R(Pk) and Rk, and hence we may think of vectors in Rk as elements of `1 or

c0. The following theorem was established by Reich [49] and Baxter [2]. Full proofs are also

in [5, Section 3.3] and [24, Section II.2].
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Theorem 4. If f ∈ W and T (f) is invertible on `1, then the matrices Tk(f) are invertible

for all sufficiently large k and T−1
k (f)Pky converges in `1 to T−1(f)y for every y ∈ `1.

The next theorem can be proved using the asymptotic inverses presented in [5,

Section 3.5] or [7, Section 2.3].

Theorem 5. Let f be a Laurent polynomial, that is, suppose f has only finitely many

nonzero Fourier coefficients, and let T (f) be invertible on `1. Fix a natural number κ.

Then there exist a natural number k0 and constants α > 0 and C < ∞ such that

‖PκT−1
k (f) − PκT−1(f)‖B(`1) = ‖T−1

k (f)Pκ − T−1(f)Pκ‖B(c0) ≤ C e−αk

for all k ≥ k0.

2.8 Numerical algorithm for the minimum distance prob-

lem

Fix b ∈ `1 and a+ as above. Suppose a+ has exactly κ zeros in D and no zeros on T. If

k ≥ κ + 1, the operator PkT (a+)Pk−κ may be identified with a k × (k − κ) matrix. The

system PkT (a+)Pk−κx(k) = Pkb is overdetermined for κ ≥ 1. However, we can find an

x
(k)
0 ∈ Rk−κ such that the residue

‖PkT (a+)Pk−κx(k) − Pkb‖1 (2.6)

assumes its minimum at x(k) = x
(k)
0 . Let d = dist`1(b,R(T (a+))) and let dk be the minimal

value of (2.6). The following theorem reveals that dk converges to d exponentially fast.

Theorem 6. There are constants E < ∞ and β > 0 such that |dk − d| ≤ E e−βk for all

k ≥ 1.

Proof. Put f(λ) = λ−κa+(λ) = λ−κ(a0+a1λ+ . . .+anλn). We claim that T (f) is invertible

on `1. Indeed, the proof of Proposition 2 shows that

T (f) = γ

n−κ∏

k=1

(
I − 1

µk

T (χ−1)

) κ∏

j=1

(I − δjT (χ1))

with all operators on the right being invertible on c0(C). It follows that T (f) is invertible

on c0 and hence that T (f) is invertible on `1.

From (2.2) we deduce that T (a+) = T (f)T (χκ). Let x(k) = {x(k)
1 , . . . , x

(k)
k−κ

, 0, . . .}
and define w(k) ∈ R(Pk) by

w(k) = {0, . . . , 0︸ ︷︷ ︸
κ

, x
(k)
1 , . . . , x

(k)
k−κ

, 0, . . .}.

Let Qk be given on `1 and c0 by Qk = I − Pk, that is,

Qk : {x1, x2, x3, . . .} 7→ {0, . . . , 0, xk+1, xk+2, . . .}.
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We have Pk−κx(k) = T (χ−κ)Pkw(k), and since T (χ−κ)T (χκ) = Qk and QκPk = PkQκ, we

get

‖Pkb − PkT (a+)Pk−κx(k)‖1 = ‖Pkb − PkT (f)T (χκ)T (χ−κ)Pkw(k)‖1

= ‖Pkb − PkT (f)PkQκw(k)‖1 = ‖Pkb − Tk(f)Qκw(k)‖1. (2.7)

The minimum of (2.7) as w(k) ranges over Rk is dk, and the minimum is attained at the

w
(k)
0 corresponding to any x

(k)
0 that minimizes (2.6). Hence, by Theorems 1 and 2,

dk = sup
z∈N(QκTk(f)),‖z‖∞≤1

〈z, Pkb〉. (2.8)

Theorem 4 implies that there is a k0 such that the matrices Tk(f) are invertible for all

k ≥ k0. Let k ≥ k0. We have QκTk(f)z = 0 if and only if there is a y ∈ Rκ such that

Tk(f)z = Pκy or, equivalently, z = T−1
k (f)Pκy (note that Tk(f) is simply the transpose of

Tk(f)). From (2.8) we therefore obtain

dk = sup
z=T

−1

k
(f)Pκy,‖z‖∞≤1

〈z, Pkb〉

= sup
‖T

−1

k
(f)Pκy‖∞≤1

〈T−1
k (f)Pκy, Pkb〉

= sup
‖T

−1

k
(f)Pκy‖∞≤1

〈Pκy, PκT−1
k (f)Pkb〉.

Put Mk = {y ∈ Rκ : ‖T−1
k (f)Pκy‖∞ ≤ 1} and define ϕk : Mk → R by ϕk(y) =

〈y, PκT−1
k (f)Pkb〉. Then

dk = sup
y∈Mk

ϕk(y).

From Theorem 3 we know that

d = sup
z∈N(T (a+)),‖z‖∞≤1

〈z, b〉.

As T (a+) = T (χ−κ)T (f), the equation T (a+)z = 0 is equivalent to the equation T (χ−κ)T (f)f =

0, that is, to the existence of a y ∈ Rκ such that z = T−1(f)Pκy. It follows that

d = sup
z=T−1(f)Pκy,‖z‖∞≤1

〈z, b〉

= sup
‖T−1(f)Pκy‖∞≤1

〈T−1(f)Pκy, b〉

= sup
‖T−1(f)Pκy‖∞≤1

〈Pκy, PκT−1(f)b〉 = sup
y∈M

ϕ(y),

where M = {y ∈ Rκ : ‖T−1(f)Pκy‖∞ ≤ 1} and ϕ : M → R is given by ϕ(y) =

〈y, PκT−1(f)b〉. By Theorem 5,

ϕk(y) =

κ∑

j=1

γj(k)yj , ϕ(y) =

κ∑

j=1

γjyj ,
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where γj(k) converges to γj exponentially fast as k → ∞. We remark that if y ∈ Mk, then

‖Pκy‖∞ ≤ ‖PkT (f)Pk‖B(c0)‖T−1
k (f)Pκy‖∞

≤ ‖f‖W‖T−1
k (f)Pκy‖∞ ≤ ‖f‖W .

Analogously, ‖Pκy‖∞ ≤ ‖f‖W for y ∈ M.

Now take y0 = (y
(0)
1 , . . . , y

(0)
κ ) ∈ M so that ϕ(y0) = d. Theorem 5 yields

‖T−1
k (f)Pκy0‖∞ ≤ ‖T−1(f)Pκy0‖∞ + ‖T−1

k (f)Pκy0 − T−1(f)Pκy0‖∞
≤ 1 + C e−αk‖Pκy0‖∞ ≤ 1 + C e−αk‖f‖W =: 1 + σk .

Thus, (1 + σk)−1y0 ∈ Mk. This implies that

dk ≥ ϕk[(1 + σk)−1y0] = (1 + σk)−1
κ∑

j=1

γj(k)y
(0)
j .

Since {γj(k) − γj}∞k=1 is exponentially decaying for each j, we have

κ∑

j=1

γj(k)y
(0)
j ≥

κ∑

j=1

γjy
(0)
j − τk = d − τk

with some exponentially decaying sequence {τk}. In summary, we have shown that (1 +

σk)dk ≥ d − τk, which gives

d − dk ≤ σkdk + τk ≤ σk ‖b‖1 + τk. (2.9)

Again taking into account that {γj(k)− γj}∞k=1 is exponentially decaying for each j

and using that ‖Pκy‖∞ ≤ ‖f‖W for all y ∈ Mk, we obtain

dk = sup
y∈Mk

κ∑

j=1

γj(k)yj ≤ sup
y∈Mk

κ∑

j=1

γjyj + %k

with an exponentially decaying sequence {%k}. For y ∈ Mk, Theorem 5 gives

‖T−1(f)Pκy‖∞ ≤ ‖T−1
k (f)Pκy‖∞ + ‖T−1(f)Pκy − T−1

k (f)Pκy‖∞
≤ 1 + C e−αk‖Pκy‖∞ ≤ 1 + C e−αk‖f‖W =: 1 + σk,

and therefore (1 + σk)−1y ∈ M. It follows that

dk ≤ sup
(1+σk)−1y∈M

κ∑

j=1

γjyj + %k = sup
v∈M

κ∑

j=1

γj · (1 + σk)vj + %k

= (1 + σk) sup
v∈M

ϕ(v) + %k ≤ (1 + σk)d + %k,

whence

dk − d ≤ σkd + %k. (2.10)

Combining (2.9) and (2.10) we arrive at the assertion.
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Corollary 1. For each k ≥ 1, let x
(k)
0 ∈ R(Pk−κ) be an element at which (2.6) attains

its minimum dk. If ki → ∞ and {x(ki)
0 }∞i=1 is any sequence that converges in `1 to some

x0 ∈ `1, then ‖b− T (a+)x0‖1 = d.

Proof. If ‖Pki
b − Pki

T (a+)Pki−κx
(ki)
0 ‖1 = dki

and x
(ki)
0 → x as i → ∞, then ‖b −

T (a+)x0‖1 = d because dki
→ d by Theorem 6.

2.9 Error estimate

In practice, we have an x
(k)
0 with

‖Pkb − PkT (a+)Pk−κx
(k)
0 ‖1 = dk,

and m̃0 = T (a+)Pk−κx
(k)
0 is taken as an approximate solution. The question is: How far is

‖b − m̃0‖1 away from the optimal value d? We have

‖b− m̃0‖1 ≤ ‖b − Pkb‖1 + ‖Pkb − PkT (a+)Pk−κx
(k)
0 ‖1

+‖PkT (a+)Pk−κx
(k)
0 − T (a+)Pk−κx

(k)
0 ‖1. (2.11)

Clearly, ‖b − Pkb‖1 = ‖Qkb‖1 = o(1) is given a priorily. The second term on the right of

(2.11) is just dk. Let x
(k)
i (i = 1, . . . , k − κ) denote the components of x

(k)
0 . The vector in

the third term on the right of (2.11) is

−QkT (a+)Pk−κx
(k)
0 = −




ak . . . aκ+1

ak+1 . . . aκ+2

...
...







x
(k)
1
...

x
(k)
k−κ




= −




0 . . . 0 an an−1 . . . aκ+1

0 . . . 0 0 an . . . aκ+2

...
...

...
...

...

0 . . . 0 0 0 . . . an







x
(k)
1
...

x
(k)
k−κ


 ,

which implies that

‖QkT (a+)Pk−κx
(k)
0 ‖1 ≤ (|aκ+1| + . . . + |an|)

(
|x(k)

k−n+1| + . . . + |x(k)
k−κ

|
)

≤ ‖a+‖W ‖Qk−nx
(k)
0 ‖1.

The vector x
(k)
0 is available and ‖Qk−nx

(k)
0 ‖1 is the `1 norm of the last n − κ components

of x
(k)
0 . If k is large, then the last n − κ components of x

(k)
0 are expected to be small. In

summary, (2.11) and Theorem 6 yield

‖b − m̃0‖1 ≤ ‖Qkb‖1 + ‖a+‖W ‖Qk−nx
(k)
0 ‖1 + d + exponentially small term.

If κ = n, then −QkT (a+)Pk−κx
(k)
0 = 0, and hence we even have

‖b− m̃0‖1 ≤ ‖Qkb‖1 + d + exponentially small term.
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Finally, if κ = n and b is finitely supported, then

‖b − m̃0‖1 ≤ d + exponentially small term.

2.10 Numerical example for the minimum distance prob-

lem

The following example illustrates the algorithm described above. We consider the banded

lower triangular Toeplitz matrix T (a+) with the symbol

a+(λ) = −0.1224− 0.2906λ + 0.7122λ2 + 2.7983λ3 + 2.9168λ4 + λ5

and are looking for a sequence x ∈ `1 minimizing ‖b− T (a+)x‖1 for the right-hand side

b = {1.8645,−0.3398,−1.1398,−0.2111, 1.1902,−1.1162, 0, 0, . . .}.

The zeros of the polynomial a+(λ) are all inside the open unit disk. Thus, we can proceed as

in Section 7 with κ = 5. (Notice that the algorithm of Section 7 would be applicable to κ < 5

as well.) Accordingly, we approximate T (a+) by the finite matrices Ak = P5+kT (a+)Pk

(k = 1, 2, . . .). For example,

A3 =




−0.1224 0 0

−0.2906 −0.1224 0

0.7122 −0.2906 −0.1224

2.7983 0.7122 −0.2906

2.9168 2.7983 0.7122

1 2.9168 2.7983

0 1 2.9168

0 0 1




.

Solving the corresponding overdetermined linear system for a solution minimizing the `1-

norm of the residue (using a general linear programming solver) and repeating this for

increasing index k, we obtain Figures 2.2 and 2.3. In Figure 2.2 we nicely see the expo-

nentially fast stabilization of the objective function (`1-norm of the residue) predicted by

Theorem 6. Figure 2.3 reveals that for k ≥ 36 the set length k is not decreasing any more.

Thus, although we offer more and more space to y, the actual length of the optimal solution

settles at 36.

Figures 2.4 and 2.5 show an optimal solution x and the residue sequence y = b −
T (a+)x. The very small number of nonzero terms in Figure 2.5 is a mystery we cannot yet

explain.

2.11 Improvement of conditioning

Both our Toeplitz approach and the Vandermonde interpolation approach of [17] lead to

linear systems. These can be tackled by invoking a linear programming solver. Numerical

18
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Figure 2.2: Evolvement of the `1-norm of the residue with increasing set length of the
optimal error sequence

experiments show that the condition numbers of the matrices emerging in our algorithm are

much smaller than those of the matrices that result from interpolation. To give a concrete

example, consider the task of finding the distance between a given x ∈ `1 and the range of

the Toeplitz operator T (a+) with a+(λ) having its 10 roots equally distributed in the interval

[0.5, 0.9], that is, a+(λ) = 0.0238−0.3520λ+2.3334λ2−9.1302λ3+23.3525λ4−40.7975λ5+

49.3052λ6 − 40.7037λ7 + 21.9685λ8 − 7λ9 + λ10. Let us set the length of the approximate

optimal error sequence to 13. The 2-norm condition number, that is, the ratio of the largest

and the smallest singular value, of the 10×13 Vandermonde matrix V13 built from the roots

of a+(λ) equals κ(V13) = 9.5458 · 109. In contrast to this, the 2-norm condition number of

the matrix A13 = P13T (a+)P3 is κ(A13) = 14.948.

2.12 Numerical algorithm: minimization of `1 norm of

sensitivity function

We consider the standard feedback configuration of Figure 2.1 with a discrete-time plant

G(λ) and a negative sign in the feedback loop. Our aim is to construct a stabilizing discrete-

time controller C(λ) that minimizes the Wiener norm of the sensitivity function of the closed-

loop system, that is, of the transfer function 1/(1+C(λ)G(λ)) between the disturbance and

the error or, equivalently, the `1 norm of the impulse response.

We suppose that the plant is given as the quotient of two polynomials p(λ) and

q(λ) without common zeros and with no zeros on the unit circle, G(λ) = p(λ)/q(λ). The
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Figure 2.3: Evolvement of the actual length of the optimal error sequence with increasing
set length of the optimal error sequence

Youla-Kučera parametrization of all stabilizing controllers is

C(λ) =
v(λ) + q(λ)x(λ)

w(λ) − p(λ)x(λ)
, (2.12)

where v(λ), w(λ) are polynomials determined by G(λ) and x(λ) is a function we can freely

choose in the Wiener algebra. The entire procedure can be done in four steps.

Step 1. Find stable-unstable factorizations p(λ) = ps(λ)pu(λ) and q(λ) = qs(λ)qu(λ).

Here the indices s and u label polynomials with all zeros inside and outside the unit circle,

respectively. Efficient algorithms for stable-unstable factorization are known (see, e.g., [4]

and the references cited there). In particular, reliable FFT-based algorithms are available

from [3], [27].

Step 2. Find polynomials x0(λ) and y0(λ) satisfying the Diophantine equation q(λ)x0(λ)+

p(λ)y0(λ) = 1. This problem can be conveniently solved using the Polynomial Toolbox [42].

Step 3. The polynomials v(λ), w(λ) in (2.12) are

v(λ) = qu(λ)pu(λ)y0(λ), w(λ) = qu(λ)pu(λ)x0(λ).

Step 4. Inserting the result of Step 3 in (2.12) we obtain

1

1 + CG
=

1

1 +
qupuy0 + qx

qupuyx0 − px

p

q

=
qqupux0 − qpx

qupu(qx0 + py0)
,

which equals qx0−qspsx by virtue of Step 2. Thus, the final task is to minimize ‖y(λ)‖W =

‖q(λ)x0(λ)−qs(λ)ps(λ)x(λ)‖W or, in terms of the coefficient sequences, to minimize ‖y‖1 =
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Figure 2.4: A sequence x ∈ `1 minimizing ‖b − T (a+)x‖1

‖b−T (a+)x‖1, where b ∈ `1 is the coefficient sequence of q(λ)x0(λ) and a+(λ) = qs(λ)ps(λ).

This problem can be solved using the algorithm of Section 2.8. The desired optimal controller

is given by (2.12) with v(λ), w(λ) from Step 3 and x(λ) from Step 4.

To have a numerical example, let

G(λ) =
p(λ)

q(λ)
=

−45λ − 132λ2 + 9λ3

−20− 48λ + 5λ2
.

The above procedure yields the Youla-Kučera parameter x(λ) = 0.1321 − 0.0052λ, the

sensitivity function y(λ) = 1.0000− 12.5000λ− 37.5000λ2, and the optimal controller

C(λ) =
−41.6667 + 4.1667λ

−7.5000 + 113.0000λ− 7.5000λ2
.

A simulation result is shown in Figure 2.6. The horizontal axis represents the discrete time

k.

The disturbance is only known to be bounded in magnitude. The response of the

closed-loop system to a disturbance bounded in magnitude by 1 is compared for the `1-

optimal controller computed above and some random stabilizing controller. Similar results

will be obtained even with other more sophisticated controllers like LQG, H2- and H∞-

optimal.
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Figure 2.5: The optimal error sequence (residue) y = b − T (a+)x

2.13 Summary

In this chapter we described a new theoretical framework for solving the standard `1-optimal

control problem. The objective of `1-optimal control is to design a discrete-time feedback

controller that will attenuate optimally the worst-case peaks in the amplitude of the reg-

ulated variable induced by a persistent disturbce that is only known to be bounded in

magnitude. Motivation for this kind of control can be found in applications, where large

peaks in the amplitude of a regulated variable are not acceptable.

The proposed method accepts a description of an LTI model of a plant in the form

of a rational transfer function, i.e., a ratio of two univariate polynomials. In the theoretical

derivation, advanced results from the theory of banded Toeplitz operators were invoked.

Formulating the optimal control problem as searching for a minimum distance between a

given sequence in `1 and a range of a given Toeplitz operator, an alternative proof has been

given for the fact that an optimal controller exists if and only if the plant has neither pole nor

zero on the unit circle. Moreover, an optimal controller need not be unique. Additionally,

the optimal closed-loop impulse response is finite.

A numerical procedure for solving this design problem relies on solving linear equa-

tions with polynomials. Since, the corresponding linear program is build directly from the

coefficients of polynomials, computation of roots is avoided and the problem is much better

conditioned. Moreover, the optimal Youla-Kučera parameter is returned as an outcome

of the optimization and there is no need for a numerically tricky extraction of an optimal

controller from the optimal closed-loop transfer function.
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Figure 2.6: Simulation of a disturbance rejection with `1-optimal and non-optimal controllers
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Chapter 3

MIMO feedback `1-optimal

control

3.1 Introduction

In this chapter we present an extension of the `1-optimal control design procedure to a

MIMO case. This is a useful direction of extension not only for the sake of real systems

with many inputs and many outputs but also for SISO systems with more refined control

requirements. For example, among the exogenous inputs to an artificial generalised plant

one may include a reference angular position for an elevation axis of a telescope as well as

a disturbing torque induced by wind buffeting. Among the regulated variables it is possible

to include an error between the required position and a true (measured) position and a

control voltage applied to the armature of the motor (possibly frequency-weighted). The

objective of `1-optimal control in this particular case is then to minimise the peaks in the

positionning error and the control voltage, induced by the disturbing torque and changes in

reference position.

The major theoretical achievement presented in this chapter is that for systems

with no poles or zeros on the unit circle an optimal controller is always guaranteed to exist,

morever in the square MIMO case an optimal closed loop transfer function is a polynomial

matrix and an optimal controller is rational. In fact, these results have been known since

Dahleh’s seminal paper [17] but we provide alternative mathematical framework for theo-

retical derivation and numerical computation. The proposed numerical procedure avoids

computing zeros and zero directions of polynomial matrices, hence enjoys better numeri-

cal properties. Algorithmically speaking, the key problem solved in this section is: given a

triple of stable rational matrices A(λ) , B(λ) and C(λ), find a solution to the linear equation

A(λ)X(λ)B(λ) + Y (λ) = C(λ) that minimizes row-sum norm of Y (λ).

In a general multiblock case an optimal solution Y (λ) need not be a polynomial

matrix. Solving a sequence of the above equations for a polynomial matrix Y (λ) of an

increasing degree gives an upper bound on the optimal norm, whose converge is rigorously
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proven. A relaxation procedure for computation of a converging lower bound is proposed.

In this work we often invoked both standard and advanced results for block Toeplitz

operators. Therefore, let’s start with some basic definitions.

3.2 Block Toeplitz operators

By a proper transfer function we mean a function g(λ) =
∑∞

k=0 gkλk with real coefficients

gk that is analytic in a neighborhood of the origin. The Toeplitz matrix T (g) associated

with a proper transfer function g is the infinite lower triangular matrix

T (g) =




g0

g1 g0

g2 g1 g0

. . . . . . . . . . . .


 .

For a real sequence s = {sj}∞j=0, we define the sequence T (g)s as the sequence σ = {σj}∞j=0

given by 


σ0

σ1

σ2

. . .


 =




g0

g1 g0

g2 g1 g0

. . . . . . . . . . . .







s0

s1

s2

. . .


 .

We denote by `∞ the real Banach space of all real sequences s = {sj}∞j=0 for which

‖s‖∞ := sup
j≥0

|sj | < ∞.

It is well known that T (g) induces a bounded operator on `∞ if and only if

‖g‖W :=

∞∑

k=0

|gk| < ∞. (3.1)

The set of all proper transfer functions g satisfying (3.1) is called the (real and analytic)

Wiener algebra and is denoted by W+. Clearly, functions in W+ are analytic for |λ| < 1 and

continuous for |λ| ≤ 1. If g ∈ W+, then the norm of T (g) on `∞ is known to be just ‖g‖W .

Now let G(λ) =
∑∞

k=0 Gkλk be a matrix function with coefficients in Rm×n that

is analytic in a neighborhood of the origin. We refer to such matrix functions as proper

transfer functions as well. We write G = (Gij)
m,n
i=1,j=1 and define the block Toeplitz matrix

T (G) by

T (G) =




T (G11) . . . T (G1n)
...

...

T (Gm1) . . . T (Gmn)


 .

This matrix transforms n-tuples (s1, . . . , sn) of real sequences into m-tuples (σ1, . . . , σm) of

real sequences in the natural fashion. We denote by `k
∞ the real Banach space of all k-tuples
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(s1, . . . , sk) of sequences s1, . . . , sk ∈ `∞ with the norm

‖s‖∞ := max(‖s1‖∞, . . . , ‖sk‖∞).

From the preceding paragraph we know that T (G) generates a bounded operator of `n
∞ to

`m
∞ if and only if G ∈ W m×n

+ . In that case the norm of T (G) as an operator of `n
∞ to `m

∞,

‖T (G)‖B(`n
∞

,`m
∞

) := sup
‖s‖∞≤1

‖T (G)s‖∞,

equals the row-sum norm

‖G‖W := max
1≤i≤m

n∑

j=1

‖Gij‖W . (3.2)

3.3 The `1-optimal control problem

We consider the configuration of Figure 3.1 with discrete-time linear time-invariant systems.

The inputs and outputs are real sequences {sj}∞j=0. We suppose that we have nw exogenous

inputs, nu control inputs, nz regulated outputs, and ny measured variables. The entire

feedback system can be written in the form

z = T (Pwz)w + T (Puz)u,

y = T (Pwy)w + T (Puy)u,

u = T (C)y.

Here Pwz, Puz , Pwy, Puy are given proper transfer functions of appropriate sizes and C is a

proper transfer function of appropriate size that has to be designed.

Generalized
plant

Controller

Exogenous inputs Regulated outputs

Figure 3.1: Standard feedback control configuration

We have z = T (G)w with the proper transfer function

G = Pwz + PuzC(I − PuyC)−1Pwy. (3.3)
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The objective of `1 control is to find the C’s such that T (G) is a bounded linear operator

of `nw
∞ to `nz

∞ , and in `1 optimal control we look for the C’s for which

‖T (G)‖B(`nz
∞ ,`

nw
∞ ) = ‖G‖W

is minimal or close to the infimum.

We make the usual assumptions. Thus, we assume that Pwz, Puz , Pwy are ra-

tional matrix functions with entries in W+ and that Puy is a rational matrix function

that may have poles in the closed unit disk. Then there exist (real) matrix polynomials

BR, AR, BL, AL, Y 0
R, X0

R, Y 0
L , X0

L such that

Puy = BRA−1
R = A−1

L BL (3.4)

and (
X0

L −Y 0
L

−BL AL

) (
AR Y 0

R

BR X0
R

)
=

(
I 0

0 I

)
. (3.5)

Under these assumptions, the set of all controllers C for which ‖G‖W is finite is given by

the Youla-Kučera parametrization:

C = YRX−1
R = X−1

L YL (3.6)

where

XR = X0
R + BRQ̃, YR = Y 0

R + ARQ̃, (3.7)

XL = X0
L + Q̃BL, YL = Y 0

L + Q̃AL, (3.8)

and Q̃ is an arbitrary matrix function in W
nu×ny

+ . Inserting (3.7) in (3.6) and taking into

account (3.4) and (3.5) we obtain

C(I − PuyC)−1 = (Y 0
R + ARQ̃)AL,

and inserting this in (3.3) we arrive at the representation1

G = H + ŨQ̃Ṽ

with

H = Pwz + PuzY
0
RALPwy,

Ũ = PuzAR, Ṽ = ALPwy.

The rational matrix functions Ũ and Ṽ can be written as

Ũ = −UU−1
R , Ṽ = V −1

L V

1We really have the plus sign in the formula for G. The minus sign in (6.116) of [44] is actually false,
because already (6.60) has the wrong sign.
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with (real) matrix polynomials U, UR, VL, V such that det UR(λ) 6= 0 and det VL(λ) 6= 0 for

|λ| ≤ 1. We put Q = U−1
R Q̃V −1

L and have

G = H − UQV.

Thus, our problem is as follows: we are given a rational matrix function H ∈ W nz×nw

+ and

two matrix polynomials U ∈ W nz×nu

+ and V ∈ W
ny×nw

+ , and we look for a matrix function

Q ∈ W
nu×ny

+ such that ‖H − UQV ‖W is minimal or close to the infimum. Furthermore, it

is desirable to find a rational matrix function Q with this property.

3.4 Existence of the solution

In practically relevant control problems we always have nz ≥ nu and nw ≥ ny. Throughout

what follows we assume that these two inequalities are satisfied. Our main assumption is

that the two matrix polynomials U and V have full rank on the unit circle T, that is,

rankU(λ) = nu and rankV (λ) = ny for all λ ∈ T. (3.9)

The following lemma is well known known and can be easily proved using the Smith normal

form. For the reader’s convenience, we cite it with an absolutely elementary proof.

Lemma 1. Under assumption (3.9), there exist rational (real) matrix functions L and K

without poles on T such that LU = I and V K = I.

Proof. To avoid heavy notation, let us consider the case where

V =

(
v1 v2 v3 v4

v5 v6 v7 v8

)
.

We denote by V1, . . . , V6 the 2 × 2 submatrices of V . From (3.9) we infer that

6∑

k=1

|det Vk(λ)|2 > 0 for all λ ∈ T.

Put

hj(λ) =
det Vj(λ)

∑6
k=1 |det Vk(λ)|2

,

the bar denoting complex conjugation. Then hj is a rational function without poles on T

and
6∑

j=1

(det Vj)hj = 1.

The following trick is from [6, Proposition 13.9] and [50, Lemma 3.1]. Let adj Vj denote the

adjugate matrix of Vj . Then

(det Vj)I = Vj(adj Vj)
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and letting Kj = (adj Vj)hj we get

6∑

j=1

VjKj =

6∑

j=1

Vj(adj Vj)hj =

6∑

j=1

(det Vj)hjI = I.

Write

Kj =

(
aj bj

cj dj

)
.

We have

(
v1 v2

v5 v6

) (
a1 b1

c1 d1

)
+

(
v1 v3

v5 v7

) (
a2 b2

c2 d2

)

+

(
v1 v4

v5 v8

) (
a3 b3

c3 d3

)
+

(
v2 v3

v6 v7

) (
a4 b4

c4 d4

)

+

(
v2 v4

v6 v8

) (
a5 b5

c5 d5

)
+

(
v3 v4

v7 v8

) (
a6 b6

c6 d6

)
=

(
1 0

0 1

)

and hence

(
v1 v2 v3 v4

v5 v6 v7 v8

)



a1 + a2 + a3 b1 + b2 + b3

c1 + a4 + a5 d1 + b4 + b5

c2 + c4 + a6 d2 + d4 + b6

c3 + c5 + c6 d3 + d5 + d6


 =

(
1 0

0 1

)
,

which completes the proof.

It will be convenient to write the matrix H − UQV as a column. This can be done

in a standard fashion, or better in two standards manners, namely by column stacking on

the one hand and by row stacking on the other. As we are concerned with the row-sum

norm (3.2), we stack matrices by rows. For example, the equality

(
H1 H2

H3 H4

)
−

(
u1

u2

) (
Q1 Q2

) (
v1 v2

v3 v4

)
=

(
E1 E2

E3 E4

)

is equivalent to the equality




H1

H2

H3

H4


 −




u1v1 u1v3

u1v2 u1v4

u2v1 u2v3

u2v2 u2v4




(
Q1

Q2

)
=




E1

E2

E3

E4


 . (3.10)

Let `1 be the usual real Banach space of real sequences s = {sj}∞j=0 with

‖s‖1 :=

∞∑

j=0

|sj | < ∞.
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We denote by hj ∈ `1 the sequence of the Taylor coefficients of Hj and define qj and ej

analogously. (By Taylor coefficients we always mean the Taylor coefficients at the origin.)

Then (3.10) can also be written in the form




h1

h2

h3

h4


 − T




u1v1 u1v3

u1v2 u1v4

u2v1 u2v3

u2v2 u2v4




(
q1

q2

)
=




e1

e2

e3

e4


 . (3.11)

We have
∥∥∥∥
(

E1 E2

E3 E4

)∥∥∥∥
W

= max(‖E1‖W + ‖E2‖W , ‖E3‖W + ‖E4‖W )

= max(‖e1‖1 + ‖e2‖1, ‖e3‖1 + ‖e4‖1) (3.12)

Thus, when viewing (3.11) as an equality in `4
1, we must define the norm in `4

1 by (3.12).

In the general case we write H − UQV = E as

vecH − (U ⊗ V >) vecQ = vec E,

where ⊗ is the Kronecker product of matrices and vec is defined in the obvious way, and

then we pass to `nznw

1 by writing

h − T (F )q = e

with F = U ⊗ V >. The norm in `nznw

1 is defined in analogy to (3.12), that is, if

e =
(

e11 . . . e1nz
. . . enw1 . . . enwnz

)> ∈ `nznw

1

then

‖e‖1 := max
1≤i≤nw

(‖ei1‖1 + . . . + ‖einz
‖1). (3.13)

Clearly,

‖H − UQV ‖W = ‖h− T (F )q‖1. (3.14)

The block Toeplitz operator T (F ) acts from `
nuny

1 to `nznw

1 . While the norm in `nznw

1 is

given by (3.13) we need not and do not specify a concrete norm in `
nuny

1 - we equip this

space with any vector norm of the `1 norms of the components.

Theorem 7. Under assumption (3.9), the operator T (F ) : `
nuny

1 → `nznw

1 has closed range.

Proof. Suppose ‖z − T (F )xn‖1 → 0. There are Z ∈ W nz×nw

+ and Xn ∈ W
nu×ny

+ such

that z and xn are the Taylor coefficients of vecZ and vecXn, respectively. By (3.14),

‖Z − UXnV ‖W → 0. We denote by W the (real and full) Wiener algebra of all function g

on T with real Fourier coefficients and absolutely convergent Fourier series, Thus, g ∈ W if

and only if

g(λ) =
∞∑

k=−∞

gkλk (|λ| = 1), gk ∈ R, ‖g‖W :=
∞∑

k=−∞

|gk| < ∞.
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Let L and K be the rational matrix functions of Lemma 1. Obviously, L ∈ W nu×nz and

K ∈ W nw×ny . Therefore,

‖LZK − Xn‖W = ‖L(Z − UXnV )K‖W ≤ ‖L‖W‖Z − UXnV ‖W ‖K‖W → 0,

which implies that Xn → LZK =: X in W nu×ny . As Xn ∈ W
nu×ny

+ , it follows that

X ∈ W
nu×ny

+ . Let x ∈ `
nuny

1 be the sequence of the Taylor coefficients of vecX . Since

xn → x in `
nuny

1 , we obtain that z = T (F )x is in the range of T (F ).

Corollary 2. Under assumption (3.9), there exists a Q ∈ W
nu×ny

+ at which ‖H −UQV ‖W

attains its minimum.

Proof. Let d = inf{‖H − UQV ‖W : Q ∈ W
nu×ny

+ }. From (3.14) we infer that

d = inf{‖h− m∗‖1 : m∗ ∈ R(T (F ))}, (3.15)

where R(T (F )) is the range of T (F ). Let c0 be the real Banach space of all real sequences

that converge to zero. The norm in c0 is the `∞ norm and c0 is known to be a closed

subspace of `∞. Since `nznw

1 is the dual space of cnznw

0 , the norm in cnznw

0 being,

∥∥∥
(

e11 . . . e1nz
. . . enw1 . . . enwnz

)>∥∥∥
c0

:=

nw∑

i=1

max(‖ei1‖∞, . . . , ‖einz
‖∞), (3.16)

and, by Theorem 7, the range of T (F ) is closed, the infimum in (3.15) is attained by virtue

of a well known duality result (see, e.g., Theorem 2 on page 121 of [43]).

3.5 The square case

We now consider the case where U and V are square. Thus, suppose nz = nu and ny = nw.

Condition (3.9) is then equivalent to the requirement

det U(λ) 6= 0 and det V (λ) 6= 0 for all λ ∈ T. (3.17)

Theorem 8. Let (3.17) be satisfied. If Q ∈ W
nu×ny

+ is any matrix function at which

‖H − UQV ‖ attains its minimum, then Q is a rational matrix function and the residue

H − UQV is a matrix polynomial.

Proof. Given a scalar transfer function g(λ) =
∑∞

k=0 gkλk, we define the Toeplitz matrix

T (g∗) as the upper triangular matrix

T (g∗) =




g0 g1 g2 . . .

g0 g1 . . .

g0 . . .

. . .


 .
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Let F = U⊗V > and write F = (Fij)
M,N
i=1,j=1 with scalar functions Fij . Notice that M = nznw

and N = nuny. We define the block Toeplitz matrix T (F ∗) by

T (F ∗) =




T (F ∗
11) . . . T (F ∗

M1)
...

...

T (F ∗
1N ) . . . T (F ∗

MN )


 .

Obviously, T (F ) : `N
1 → `M

1 is the adjoint of T (F ∗) : cM
0 → cN

0 . Let N (T (F ∗)) be the

null space of T (F ∗) on cM
0 . Due to Theorem 7, R(T (F )) = N (T (F ∗))⊥. Consequently, by

Theorem 2 on page 121 of [43], the number (3.15) equals

d = sup{〈z, h〉 : z ∈ N (T (F ∗)), ‖z‖c0
≤ 1}. (3.18)

We have

det F (λ) = det (U(λ) ⊗ V >(λ)) = (det U(λ))ny (det V (λ))nu

and hence det F (λ) 6= 0 for λ ∈ T. This implies that N (T (F ∗)) is finite-dimensional (see,

e.g.,[29, Proposition 13.3] or [24, Section VIII.4]). It follows that the supremum in (3.18)

is a maximum. Assume this maximum is attained at z0. Again by Theorem 2 on page

121 of [43], z0 and e := h − T (F )q are aligned, that is, 〈z0, e〉 = ‖z0‖c0
‖e‖1. Taking into

account definitions (3.13) and (3.16), this easily gives that e is finitely supported. Hence

E = H − UQV is a matrix polynomial, which shows that Q is rational.

3.6 A numerical algorithm

By (3.14), the problem ‖H − UQV ‖W → min is equivalent to the problem

‖h − T (F )q‖1 → min (3.19)

with a matrix polynomial

F (λ) = F0 + F1λ + . . . + Frλ
r, Fj ∈ Rnznw×nuny =: RM×N .

We replace (3.19) by the finite problem

‖Pnh − PnT (F )Pn−rq‖1 → min . (3.20)

Here Pn : `1 → `1 is projection onto the first coordinates, that is,

Pn : {s0, s1, s2, . . .} 7→ {s0, s1, . . . , sn−1, 0, . . .}.

For a k-tuple s = (s1, . . . , sk) ∈ `k
1 , we define Pns = (Pns1, . . . , Pnsk). Let Qn = I − Pn. In

the special case (3.11), for example, problem (3.20) amounts to minimizing

∥∥∥∥∥∥∥∥




Pnh1

Pnh2

Pnh3

Pnh4


 −




PnT (u1v1)Pn−r PnT (u1v3)Pn−r

PnT (u1v2)Pn−r PnT (u1v4)Pn−r

PnT (u2v1)Pn−r PnT (u2v3)Pn−r

PnT (u2v2)Pn−r PnT (u2v4)Pn−r




(
Pn−rq1

Pn−rq2

)
∥∥∥∥∥∥∥∥

1

.
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Notice that PnT (uivj)Pn−r may be identified with an n× (n−r) matrix, and hence we may

regard the problem as the problem of finding an `4
1 optimal solution of an overdetermind

system with 4n equations and 2(n − r) variables. In the general case, (3.20) involves Mn

linear expressions (= “equations”) and N(n − r) variables.

We denote the minima in (3.19) and (3.20) by d and dn, respectively.

Theorem 9. We have

d ≤ dn + ‖Qnh‖1

for all n ≥ 1. If (3.9) is satisfied, then dn → d as n → ∞.

Proof. Let

dn = ‖Pnh − PnT (F )Pn−rq
∗
n‖1.

We may think of Pn−rq
∗
n as the Taylor coefficients of a matrix polynomial D of degree at

most n − r − 1 and we know that F is a matrix polynomial of degree r. This implies that

DF has at most the degree n − 1 and hence QnT (F )Pn−rq
∗
n = 0. It follows that

dn = ‖Ph − PnT (F )Pn−rq
∗
n‖1

= ‖Pnh − T (F )Pn−rq
∗
n‖1

≥ ‖h − T (F )Pn−rq
∗
n‖1 − ‖Qnh‖1

≥ d − ‖Qnh‖1, (3.21)

as claimed.

If (3.9) holds, we deduce from Corollary 2 that there is a q0 such that

d = ‖h − T (F )q0‖1. (3.22)

Since ‖Pny‖1 ≤ ‖y‖1 for every y, we get

dn = ‖Pn(h − T (F )Pn−rq0)‖1

≤ ‖h − T (F )Pn−rq0‖1

≤ ‖h − T (F )q0‖1 + ‖T (F )Qn−rq0‖1

≤ d + ‖T (F )‖ ‖Qn−rq0‖1. (3.23)

Combining (3.21) and (3.23) we arrive at the conclusion that dn → d.

We remark that since H is a rational matrix function with entries in W+, the term ‖Qnh‖1

goes to zero exponentially fast. In the square case, we can say even more.

Corollary 3. If U and V are square matrix polynomials satisfying (3.17), then there are

constants C < ∞ and δ > 0 such that

dn − Ce−δn ≤ d ≤ dn + Ce−δn

for all n ≥ 1.
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Proof. Let ‖H −UQV ‖W = d and, accordingly, ‖h−T (F )q0‖1 = d. We already noted that

h ∈ `M
1 is exponentially decaying, and hence the estimate d ≤ dn + Ce−δn follows from

Theorem 9. By Theorem 8, the Taylor coefficients of Q are exponentially decaying, which

implies that q0 ∈ `M
1 is also exponentially decaying. This in conjunction with (3.23) gives

the estimate dn − Ce−δn ≤ d.

It is clear that (3.20) is the simpler to handle the smaller the defect r between n

and n− r is. In [29], we considered the SISO case and showed that then Corollary 3 is true

with (3.20) replaced by

‖Pnh − PnT (F )Pn−κq‖1 → min,

where κ is the number of zeros (counted with multiplicities) of the scalar polynomial F in

the open unit disk. Clearly, κ ≤ r. However, the proof of this result is much more involved

than the proofs of Theorems 9 and Corollary 3.

Theorem 9 provides us with pretty good upper bounds for d. The search for tight

lower bounds motivates the following modification of problem (3.20). Note that (3.20) is

equivalent to finding

dn := min
Qn−rPnq=0

‖Pnh − PnT (F )Pnq‖1,

because the constraint Qn−rPnq = 0 forces the last r components of Pn to be zero. We now

fix a number ε > 0 and consider the problem of determining

d̃n := min
‖Qn−rPnq‖≤ε

‖Pnh − PnT (F )Pnq‖1. (3.24)

As, obviously, d̃n ≤ dn and dn + ‖Qnh‖1 is only slightly larger than d, there is some hope

that d̃n is a close lower bound for d. The vector-valued sequence q is living in `
nuny

1 and as

said in Section 3.4, there is no need for specifying a concrete norm in `
nuny

1 . We now may

take advantage of this freedom. In fact, the requirement ‖Qn−rPnq‖ ≤ ε is a constraint for

Nr variables and we may choose ‖ · ‖ to be any vector norm on RNr. For example, in the

context of (3.11), we can take

‖Qn−rPnq‖ = max(‖Qn−rPnq1‖∞, ‖Qn−rPnq2‖∞),

and if we write

Pnqi = (q
(i)
0 , q

(i)
1 , . . . , q

(i)
n−1),

then ‖Qn−rPnq‖ ≤ ε is the constraint

|q(1)
n−r| ≤ ε, . . . , |q(1)

n−1| ≤ ε, |q(2)
n−r| ≤ ε, . . . , |q(2)

n−1| ≤ ε.

Since QnT (F )Pn−rq = 0, we have the estimate

‖QnT (F )Pnq‖1 = ‖QnT (F )Qn−rPnq‖1 ≤ ‖T (F )‖ ‖Qn−rPnq‖, (3.25)

and ‖T (F )‖ depends on the norm on RNr we have chosen but not on n.

Let q0 satisfy ‖h − T (F )q0‖1 = d and put e = h − T (F )q0.
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Theorem 10. Suppose (3.9) holds. If ‖Qn−rPnq0‖ ≤ ε then

d̃n − ‖Qne‖1 ≤ d,

and for arbitrary n ≥ 1 we have

d ≤ d̃n + ‖Qnh‖1 + ‖T (F )‖ ε.

Proof. Our assumptions guarantee that

d̃n ≤ ‖Pnh − PnT (F )Pnq0‖1

= ‖Pnh − PnT (F )q0‖1

= ‖Pn(h − T (F )q0)‖1

= ‖Pne‖1 = ‖e − Qne‖1

≤ ‖e‖1 + ‖Qne‖1 = d + ‖Qne‖1.

On the other hand, let q∗n be a solution of the minimum problem (3.24):

‖Qn−rPnq∗n‖ ≤ ε, ‖Pnh − PnT (F )Pnq∗n‖1 = d̃n.

Then

d ≤ ‖h − T (F )Pnq∗n‖1

= ‖Pnh + Qnh − PnT (F )Pnq∗n − QnT (F )Pnq∗n‖1

≤ ‖Pnh − PnT (F )Pnq∗n‖1 + ‖Qnh‖1 + ‖QnT (F )Pnq∗n‖1

≤ d̃n + ‖Qnh‖1 + ‖T (F )‖ε,

the last estimate resulting from (3.25).

We know that ‖Qnh‖1 → 0 (exponentially fast) and ‖Qne‖1 → 0 (in the square case

even ‖Qne‖1 = 0 for all sufficiently large n). Consequently, we certainly have ‖Qnh‖1 ≤ ε

and ‖Qne‖1 ≤ ε if only n is large enough. Thus, Theorem 10 shows that d̃n − ε is a lower

bound for d whenever n is large enough and, moreover, that this bound is at a distance of

at most 2ε + ‖T (F )‖ε to d. If e (or equivalently, q0) decays exponentially, then the n’s for

which the lower bound d̃n − ε is applicable are certainly not of astronomic dimensions.

3.7 Numerical example

We consider the triple of polynomial matrices U , V , and H given by

U(λ) =

 

4.2 + 6.5λ + 0.0025λ
2 + 0.39λ

3
−1.4 − 2.1λ + 0.11λ

2
− 0.17λ

3

2.1 − 1.3λ + 0.32λ
2

−0.79 + 0.66λ − 0.13λ
2

!

V (λ) =

 

0.2 + 4.5λ + 4.1λ
2 + 0.92λ

3 0.51 + 5.8λ + 7.7λ
2 + 2.4λ

3

0.27 + 3.5λ + 1.4λ
2 0.7 + 4.5λ + 3.6λ

2

!

H(λ) =

 

−3 + λ + 4λ
2

−5 + 3λ + 9λ
2

13λ − 3λ
2 14 + λ

2

!

.
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We look for a pair of matrix functions Q and E in W 2×2
+ that solve the equation UQV +E =

H and minimize the row-sum norm of the matrix function E.

For a matrix function S(λ) =
∑

j≥0 Sjλ
j , we define the matrix polynomial πnS by

(πnS)(λ) =

n−1∑

j=0

Sjλ
j .

With this notation, the equation

PnT (F )Pn−rq + Pne = Pnh

is equivalent to the equation

(πnU)(πn−rQ)(πnV ) + πnE = πnH. (3.26)

We solve (3.26) successively for n = r, r + 1, r + 2, . . .. In the case at hand, the matrix

polynomial F = U ⊗ V > has the degree r = 6 and since U , V , H are of degree 4, they are

not affected by πn for n ≥ r = 6. Thus,we have to find matrix polynomials πn−6Q and πnE

such that

U(πn−6Q)V + πnE = H, ‖πnE‖W → min . (3.27)

We call n the expected degree of E and n−6 the expected degree of Q. If (3.27) is uniquely

solvable, we refer to the degrees of the solutions πnE and πn−6Q as the true degrees of E

and Q, respectively. Table 3.1 reports the results. The relative error is defined as

‖U(πn−6Q)V + πnE − H‖W /‖(U, V, H)‖W .

Thus, as seen from Table 3.1, the optimal solution pair can be found within 5 steps. This
pair is

Q(λ) =

„

−6.4 − 15λ − 0.5λ2 + 0.09λ3
− 0.6λ4 7.6 + 23λ + 11λ2 + 0.11λ3 + 0.8λ4 + 0.4λ5

−26 − 59λ − 6.9λ2
− 0.8λ3

− 1.5λ4 29 + 92λ + 48λ2 + 5.3λ3 + 2.5λ4 + 0.97λ5

«

E(λ) =

„

−2.6 − 6.6λ − 9.8λ2
−4 + 3.3λ4

0.51 + 7.8λ 15 − 2.6λ

«

.

3.8 Numerical algorithm for a solution to a square MIMO

problem

The equation U(λ)Q(λ)V (λ) + E(λ) = H(λ) analyzed in the previous sections consitutes

a major computational step in solving the one-block `1-optimal control problem and the

contribution of this thesis. However, the whole control design procedure is outlined here for

completeness. Given a discrete-time linear time-invariant model of a generalized plant with

a transfer matrix

P (λ) =

(
Pwz(λ) Puz(λ)

Pwy(λ) Puy(λ)

)
(3.28)
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Table 3.1: Sequence of the optimal solutions to (3.27) for increasing n ≥ 6.

Expected True Expected True ‖πnE‖W Relative error
deg E deg E deg Q deg Q

6 6 0 0 25.72 1.24e-10
7 7 1 1 16.99 6.03e-10
8 8 2 2 16.27 1.65e-08
9 6 3 3 15.14 1.88e-10
10 2 4 4 14.94 1.37e-10
11 2 5 4 14.94 4.85e-10
12 2 6 4 14.94 3.12e-10
13 2 7 4 14.94 1.94e-09
14 2 8 4 14.94 2.40e-09
15 2 9 4 14.94 2.11e-09
16 2 10 4 14.94 1.86e-10
17 2 11 4 14.94 3.74e-11
18 2 12 4 14.94 5.47e-11
19 2 13 4 14.94 4.86e-11
20 2 14 4 14.94 5.76e-11

Step 1. Express the block relating the control and measured variables as a left and right

ratio of polynomial matrices

Puy(λ) = BR(λ)AR(λ)−1 = AL(λ)−1BL(λ) (3.29)

Step 2. Solve the linear equation with polynomial matrices

AL(λ)XR(λ) + BL(λ)YR(λ) = I (3.30)

Step 3. Build the three rational matrices expressed as ratios of polynomial matrix fractions

H(λ) = Pwz(λ) + Puz(λ)YR(λ)AL(λ)Pwy(λ) (3.31)

U(λ) = Puz(λ)AR(λ) (3.32)

V (λ) = AL(λ)Pyw(λ) (3.33)

Step 4. Keep only the numerator polynomial matrices of matrix fractions U(λ) and V (λ)

and perform stable-unstable factorization of these polynomial matrices. A possible proce-

dure is to convert them into Smith form. Store the result in U(λ) and V (λ).

Step 5. Solve the equation

G(λ) = H(λ) − U(λ)Q(λ)V (λ) (3.34)

for G(λ) and Q(λ) with Q(λ) of a given degree and minimum row-sum. Repeat this step

until there is no improvement in the achieved norm of Y (λ).
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Step 5. Substitute Q(λ) into the expression for the controller

C(λ) = (YR(λ) + AR(λ)Q(λ))(XR(λ) − BR(λ)Q(λ))−1 (3.35)

3.9 Summary

In this chapter we extended the new theoretical and computational framework for solving

the standard `1-optimal control problem introduced in the previous chapter to a MIMO

case.

The problem was formulated using linear equations with polynomial matrices and

therefore supplies a missing tool a designer’s polynomial control design toolset, with reliable

procedures for LQG, H2 and H∞-optimal control already available.

At a mathematical level, advanced results from the theory of block Toeplitz operators

were employed. The optimal control problem was formulated as a search for a minimum

distance between a given vector sequence in `1 and a range of a block Toeplitz operator.

Alternative derivation of existence conditions for an optimal controller was provided, which

shows that an optimal controller is guaranteed to exist unless the generalized plant has poles

or zeros on the unit circle. An optimal controller need not be unique. An alternative proof

has also been given for the fact that an optimal impulse response of a square system is

finite. These alternative theoretical derivations not only lend new insight into the problem,

but also lead to new numerical algorithm, which is conceptually extremely simple, yet very

reliable compared to the existing interpolation based approaches. No need to compute zeros

and zero directions of polynomial matrices and no need to extract an optimal controller

from a closed-loop transfer function.

For a general multiblock MIMO case, the optimal closed-loop impulse response is not

finite and therefore an iterative scheme for obtaining an approximate solution was proposed.

At each step, a linear equation with polynomial matrices is solved and both lower and upper

bounds on the optimal norm of a closed-loop transfer function are provided. These bounds

are shown to converge to the optimum value for increasing degree of a polynomial matrix

approximating the optimal closed-loop transfer function.
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Chapter 4

Computing the `1 norm of a

polynomial matrix fraction

4.1 Introduction

This chapter presents a secondary result of this thesis, a numerical algorithm for computing

the `∞-induced norm of a system described by a polynomial matrix fraction. For practical

control design, knowing the exact value of this norm is not crucial, but it can be useful for

comparison of an optimal design with a non-optimal one.

The modern optimal and robust control takes much advantage of viewing (the model

of) a plant as an operator mapping some normed space of infinite real sequences into the

same space. An operator norm is then a measure of how much the plant magnifies the

exogenous (input) variables when mapping them into the regulated (output) variables.

This thesis is confided to linear time-invariant (LTI) systems for which both the

exogenous and the regulated variables are known to be bounded and persistent, that is to

say, they can be modeled as real sequences living in `∞. The corresponding system norm then

expresses the worst-case magnification of the amplitude of disturbing exogenous variables.

It is a standard result that in scalar case the `∞-induced operator norm is equal to the `1 of

the impulse response of the system. Using the operator-theoretic terminology, this operator

norm is equal to the Wiener norm of a generating function, called symbol. MIMO systems

can be described as operators mapping the space `n
∞ into `m

∞, where the norm of an infinite

sequence u = {u0, u1, . . .} of real n-tuples in `n
∞ is ‖u‖∞ = supk∈Z+

maxi=1,2,...,n |ui
k|.

Lemma 2. Consider a causal LTI system T with n inputs and m outputs described by

a transfer matrix G(z) =
∑∞

k=0 Gkz−k. Assuming that input signals are persistent and

bounded, the greatest possible factor, by which the system T magnifies the amplitude of the

input signals, i.e., the `∞-induced norm of an operator mapping `n
∞ into `m

∞, is

‖T (G)‖`∞−induced
= ‖G(z)‖W = max

1≤i≤m

n∑

j=1

‖Gij(z)‖W (4.1)
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where Gij(z) is a scalar transfer function and its norm is equal to a sum of absolute values

of its impulse response.

Proof. This result is standard (see, e.g. [15]) and follows directly from systematic application

of triangle inequality for norms.

A note on notation: Note that we encounter three types of objects here, that de-

scribe the same thing. First, we use the concept of an operator/system, which can be

measured using `∞-induced norm. Second, we work with functions of a complex variable,

called symbols/transfer functions, that uniquely represent these operators/systems, and we

measure them with Wiener norm. Third, in time domain there are infinite sequence of real

matrices that can be measured using the `1 norm. To relax these notational issues, with

some abuse of notation, we will use the notation `1 norm for operators, symbols and the

corresponding sequences. This is generally accepted in the control community. Also, we

express transfer funtions as functions of a variable z = 1/λ.

The main idea about the computation of this norm is identical to [1] but the compu-

tation is based on polynomial equations and therefore does not require conversion to state

space format. Consider a stable discrete-time linear time-invariant system described by a

transfer matrix G(z) = G0 + G1z
−1 + G2z

−2 + . . . Its state-space realization is

x(k + 1) = Ax(k) + Bu(k), x(0) = 0 (4.2)

y(k) = Cx(k) + Du(k) (4.3)

with n inputs, m outputs and d-dimensional state space. The matric coefficients Gk in the

power series G can be easily obtained by

Gk =

{
D, k = 0

CAk−1B, k = 1, 2, . . .

A simple method for computing the `∞-induced gain of the operator T (G) is to approximate

it by considering the first Ns terms only, with Ns being sufficiently large. How large? Just

large enough to guarantee the required precision of the norm. A procedure to compute the

norm of the tail system Gtail(z) = GNs+1z
−1+GNs+2z

−2+ . . . is proposed in [1]. This norm

directly gives an error introduced by truncation ‖Gtail‖1 = ‖G‖1 − ‖GFIR−approx‖1. The

method is based on the important Theorem 2 from [9] (with slight extension to MIMO case

in [15]) that relates the `∞-induced system norm and the singular values of the associated

Hankel operator. For the tail {CANs+1B, CANs+2B, . . .} having the state-space realization

[
A ANsB

C 0

]
(4.4)

the `1 norm of the coefficient sequence of the tail is bounded by

σH1 ≤ ‖Gtail‖1 ≤ 2
√

m(σH1 + σH2 + . . . + σHd) (4.5)
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where σH1 ≥ σH2 ≥ . . . ≥ σHd are the singular values of the associated Hankel

operator and d is the McMillan degree of the system. It is shown in [1], that with increasing

Ns, the difference between the lower and upper bounds converges monotonically to zero

and therefore a binary search can be used to find the least Ns guaranteeing the required

precision.

4.2 Discussion of computational steps for polynomial

matrices

Two versions of a complete algorithm for l1 norm computation differing in a way they

compute the polynomial matrix fraction description of the plant are given at the next two

sections. Both algorithms are composed of several computational steps. These are briefly

discussed below.

4.2.1 Computing the polynomial matrix fraction for the tail

Computing the `1 norm of a polynomial matrix fraction via impulse response truncation

necessarily introduces some error. To evaluate how large the error is for a given number

Ns of samples, the polynomial matrix fraction description of the tail must be obtained.

Basically, there are two ways to accomplish this. Either exactly via division of polynomial

matrices or approximately using FFT-based long division of polynomial matrices and a

matrix version of the well-know relations between Markov parameters and coefficients of

the transfer function.

Shift the impulse response (and consequently also the system description) forward

by Ns steps. The resulting polynomial matrix fraction is obviously noncausal. Divide

the polynomial matrices to extract the strictly proper part, which now represents the tail

of the system. To state this more formally, let N(z) and D(z) are polynomial matrices of

appropriate dimensions defining the transfer function via the left polynomial matrix fraction

Ĝ(z) = D(z)−1N(z). The polynomial matrix D(z) is assumed Schur stable, nonsingular and

row reduced. The tail Ĝtail(z) = Dtail(z)−1Ntail(z) of Ĝ(z) obtained by truncating the first

Ns terms of the impulse response is given by

Ntail(z) = zNsN(z) − D(z)Q(z)

Dtail(z) = D(z) (4.6)

where Q(z) is a polynomial matrix determined uniquely by the condition deg Ntail(z) <

deg Dtail(z) with the inequality extending to the corresponding row degrees of Ntail(z) and

Dtail(z), i.e., Dtail(z) is row-reduced.
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4.2.2 Computing the singular values of Hankel operator

Hankel operator describes relation between past inputs and future outputs and as such

it doesn’t depend on a particular state-space realization. A well-established method for

computing the singular values of Hankel operator in state-space is due to Glover [23]. Young

[58] presents an attempt to circumvent the realization step using directly the coefficients

of the polynomial matrices. Kwakernaak [41] then gives a revised and improved version

of Young’s algorithm based on two-sided polynomial equations. The algorithm will not be

described here, the reader is referred to the original paper. Nonetheless, the computational

steps of the algorithm are listed in the algorithm summary in the next section. This is

aimed to give a picture about the numerical properties of the proposed solution to `1 norm

computation.

4.2.3 Long division of polynomial matrices via FFT

Once the (lowest necessary) number Ns of samples that is necessary to guarantee the required

precision is known, the only remaining task is to compute the `1 norm of the Finite Impulse

Response (FIR) approximation of the original operator. As the number Ns of samples is

usually quite high, it is reasonable to compute the impulse response of the FIR system only

approximately using Fast Fourier Transform (FFT). This is also why it is advantageous to

consider Ns = 2w − 1, w > 0, w ∈ Z only. The FFT-based approach towards manipulation

with polynomial matrices is now standard and widely employed in modern algorithms. The

idea is to use FFT to evaluate the polynomial matrix fraction D(z)−1N(z) at (complex)

points along the unit circle and then to apply inverse FFT on the sequence of Ns constant

matrices D(zi)
−1N(zi), i = 1, 2, . . . , 2w. See [26] for details.

4.2.4 Identification from the truncated long division

Let Ĝ(z) = G0 + G1z
−1 + G2z

−2 + . . . is a matrix semiinfinite formal power series in

indeterminate z obtained by (left) long division of polynomial matrices D(z) and N(z). Set

Gi = 0, i = 0, 1, . . . , Ns to obtain the tail Gtail(z) = zNs(GNs+1z
−(Ns+1)+GNs+2z

−(Ns+2)+

. . .). Let Ntail(z) and Dtail(z) be left coprime polynomial matrices such that Gtail(z) =

Dtail(z)−1Ntail(z). From (4.6) it is clear that Dtail(z) = D(z) = D0 +D1z + . . .+Ddz
d and

therefore the only polynomial matrix that remains to be computed is Ntail(z) = N0tail
+

N1tail
z + . . . + Ndtail

zd. can be obtained by straightforward extension of the standard

relation between Markov parameters and coefficients of a scalar transfer function. Equating

the coefficient matrices of equal powers in the equation Dtail(z)Gtail(z) = Ntail(z) we get

Nd = 0 and 


NT
0tail

NT
1tail

...
NT

d−1tail




T

=




DT
1

DT
2

...
DT

d




T 


GNs+1 0 ... 0

GNs+2 GNs+1 ... 0

...
...

. . .
...

GNs+d GNs+d−1 ... GNs+1
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4.3 Algorithm l1norm-I

Two versions of the algorithm for computing the `1 norm of a polynomial matrix fraction

are presented differing in the way they compute the polynomial matrix fraction description

of the tail of the truncated sequence of matrices. The algorithm l1norm-I described in

this section computes the tail exactly via standard Euclidean division algorithm, while the

algorithm l1norm-II given in the next section computes the polynomial matrix fraction

description of the tail approximately via the FFT and identification routines.

Input.

1. Polynomial matrices N(z) and D(z) of appropriate dimensions with D(z) square,

roots inside the unit circle, row reduced. The fraction D(z)−1N(z) is an m×n stable,

strictly proper transfer matrix.

2. Tolerance ε (a reasonable value is 10−4 or 10−6).

Output. The `1 norm of a polynomial matrix fraction computed within a given tolerance

ε.

Step 1. Set Ns = 2w − 1 (reasonable initial guess is Ns = 63).

Step 2. Apply Ns times the forward shift operator z to G:

Ĝshifted(z) = zNsD(z)−1N(z) (4.7)

Step 3. Extract the strictly proper part from Ĝshifted(z) performing polynomial matrix

division:

zNsD(z)−1N(z) = Q(z) + D(z)−1Ntail(z)

The tail is then described by the polynomial matrices Ntail(z) = zNsN(z)−Q(z), Dtail(z) =

D(z) defining the strictly proper transfer matrix

Ĝtail(z) = Dtail(z)−1Ntail(z) (4.8)

with Dtail(z) row reduced.

Step 4. Perform left-to-right conversion

D(z)−1N(z) = N̄(z)D̄(z)−1

with D̄(z) column reduced.

Step 5. Compute the singular values σH1, σH2, . . . , σHk of Hankel operator associated with

Ĝtail(z) (for details see [41]).

1. Perform left-to-right polynomial matrix fraction conversion

D̄∼(z)−1V (z) = Ṽ (z)D̃(z)−1

where D̄∼(z)−1V (z) denotes adjoint D̄T ( 1
z
) multiplied by zdeg(D(z)), V (z) is a poly-

nomial matrix with columns eiz
v, v = 0, 1, . . . , ci − 1, i = 1, 2, . . . , m, ci is a column

degree of D̄(z), and ei is the ith m-dimensional unit vector.
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2. Solve the bilateral linear polynomial matrix equation

Ntail(z)Ṽ (z) = A(z)D̃(z) + D(z)B(z)

for polynomial matrices A(z) and B(z) such that D(z)−1A(z) is strictly proper.

3. Perform left-to-right polynomial matrix fraction conversion

D(z)−1A(z) = Ǎ(z)Ď(z)−1

4. Solve two bilateral symmetric linear polynomial matrix equations

Ṽ ∼(z)Ṽ (z) = D̃∼(z)Cc(z) + C∼
c (z)D̃(z)

Ǎ∼(z)Ǎ(z) = Ď∼(z)Cr(z) + C∼
r (z)Ď(z)

for square polynomial matrices Cc(z) and Cr(z) such that Cc(z)D̃(z)−1 and Cr(z)Ď(z)−1

are strictly proper.

5. Compute the Gramians Γc and Γr of the bases of the cokernel and the range of Hankel

operator respectively as

Γc = CclD̃
−1
l

Γr = CrlĎ
−1
l

where D̃l and Ďl are leading coefficient matrices of the column reduced matrices D̃(z)

and Ď(z) respectively. The matrices Ccl and Crl are the associated leading coefficient

matrices of Cc(z) and Cr(z) respectively.

6. Factor the Gramians as Γc = T T
c Tc and Γr = T T

r Tr.

7. Compute the singular value decomposition TrT
−1
c = UΣW H ,

where Σ = diag(σH1, σH2, . . . , σHk , 0, . . . , 0)

Step 6. Compute the difference δbounds between the lower and upper bounds on the `1

norm of the operator described (in frequency domain) by Ĝtail(z):

δbounds = 2
√

m(σH1 + σH2 + . . . + σHk) − σH1 (4.9)

Step 7. Check the achieved precision and if insufficient,increase the number of samples Ns:

if δbounds ≥ ε then w = 2w, Ns = 2w − 1, goto Step 2.

Step 8. Compute the first Ns terms of the long division of the original polynomial matrix

fraction D(z)−1N(z) using FFT algorithm:

1. Compute the FFT transform N(zi) i = 1, 2, . . . , 2w of the sequence of n×m coefficient

matrices Ni padded with zero trailing matrices.
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2. Compute the FFT transform D(zi) i = 1, 2, . . . , 2w of the sequence of n×n coefficient

matrices Di padded with zero trailing matrices.

3. Compute the inverse FFT transform Gi i = 1, 2, . . . , 2w of the sequence of n × m

matrices D(zi)
−1N(zi). The first Ns terms of the long division are now given by

G0 + G1z
−1 + G2z

−2 + . . . + GNs
z−Ns.

Step 9. Find the system `1 norm of a FIR (truncated) approximation of the operator G:

‖G‖1 ≈ ‖GFIR−approx‖1 = max
1≤i≤m

n∑

j=1

Ns∑

k=0

|Gij(k)| (4.10)

4.4 Algorithm l1norm-II

Input.

1. Polynomial matrices N(z) and D(z) of appropriate dimensions with D(z) square, roots

outside the unit circle, row reduced. The fraction D(z)−1N(z) is an m × n strictly

proper transfer matrix.

2. Tolerance ε (reasonable value is 10−4 or 10−6).

Output. The `1 norm of a polynomial matrix fraction computed within a given tolerance

ε.

Step 1. Set N0 = 2w − 1 for some w large enough (reasonable initial guess is N0 = 1023).

Step 2. Perform long division D(z)−1N(z) of the two polynomial matrices N(z) and D(z)

using FFT interpolation approach to obtain a sequence of matrices G(0), G(1), . . . , G(N0).

Step 3. Use the last d = N0 − Ns samples to compute the polynomial matrix fraction

description of the tail Ĝtail(z) = Dtail(z)−1Ntail(z) via solving




NT
0tail

NT
1tail

...
NT

d−1tail




T

=




DT
1

DT
2

...
DT

d




T 


GNs+1 0 ... 0

GNs+2 GNs+1 ... 0

...
...

. . .
...

GNs+d GNs+d−1 ... GNs+1




for Ntail(z) = N0tail
+ N1tail

z + . . . + Nd−1tail
zd with Dtail(z) = D(z).

Step 4. Compute the singular values σH1, σH2, . . . , σHd of Hankel operator associated

with Ĝtail(z) using the same Kwakernaak’s algorithm [41] as in Step 4 in the algorithm

l1norm-I.

Step 5. Compute the difference δbounds between the lower and upper bounds on the `1

norm of the operator described (in frequency domain) by Ĝtail(z):

δbounds = 2
√

m(σH1 + σH2 + . . . + σHd) − σH1 (4.11)
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Step 6. Check the achieved precision and if insufficient, increase the number of samples

N0: if δbounds ≥ ε then w = 2w, N0 = 2w − 1, goto Step 2.

Step 7. Compute the `1 system norm of a FIR approximation corresponding to the (already

computed) first Ns samples G(k) by

‖G‖1 ≈ ‖GFIR−approx‖1 = max
1≤i≤m

n∑

j=1

Ns∑

k=0

|Gij(k)|

Remark: In practice, there is almost no computational effort associated with considering

all the (already computed) N0 = Ns + d terms in the above relation. The precision can be

further improved.

4.5 Example

For the ease of comparison, the data is taken from [15] because the state-space solution

to the `1 norm computation is given there. Consider the following 2 × 2 MIMO transfer

function with state-space realization




1 −0.6 0.8 0 0

0.6 0.4 −0.5 1 0

−0.3 0.1 −0.9 0 1

1 0 0 0.5 0

0 1 0 −0.5 0




(4.12)

The left polynomial matrix fraction D(z)−1N(z) corresponding to the state-space realization

(4.12) is

N(z) =

[
0.9 + 0.57z − 0.73z2 −0.79− 0.25z − 0.9z2

−0.34 + 0.16z 1 − 0.53z

]

D(z) =

[
0.21− 0.25z − 0.9z2 −0.59− 0.26z + 0.56z2

1 − 0.53z 0.021− 0.85z

]

The `1 norm computed using l1norm-I algorithm is

‖D−1(z)N(z)‖1 = 9.7441± 10−4

using N = 128 samples of the impulse response.

4.6 Summary

A new algorithm for computing `1 norm of a polynomial matrix fraction has been described

in this chapter. The algorithm uses directly the coefficients of the polynomial matrix frac-

tion description and thus avoids the realization step. Two variants of the algorithm were

developed differing in the way they compute the polynomial matrix fraction description of
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the so-called tail system. Numerical example has been given to show that the results agree

with those obtained using the state-space algorithm.

Obviously, the most critical step is the computation of the bases of the Hankel

operator. This requires solving two symmetric and one general two-sided linear equations

with polynomial matrices. Currently, this cannot compete with the state space approach

based on solving two Lyapunov equations to obtain grammians.
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Chapter 5

Modular arithmetics for

polynomial matrices

5.1 Introduction

As a side-product of the work on `1-optimal control, this chapter gives two efficient algo-

rithms for modular arithmetics for polynomial matrices: one for modular shift of a poly-

nomial matrix and one for modular multiplication of two polynomial matrices. Both algo-

rithms avoid division by another polynomial matrix. The algorithms are are just extensions

of well-known principles for scalar polynomials. It is shown in this work that row and column

reducedness of a polynomial matrix are the right concepts for this extension.

The relevance of modular shift for the `1-optimal control is that the presented al-

gorithm can replace division of two polynomial matrices in those steps where a polynomial

matrix fraction of a tail after truncation must be obtained. Superiority of the algorithm over

the naive division-based approach is demonstrated using a numerical example with random

data. The whole story with modular arithmetics for polynomial matrices is of independent

control-theoretic interest, though.

In scalar case, the modular shift operation describes evolution of a state vector of

a linear system. This is known as Nerode equivalence [48] (also described for example in

[33], pp. 316). In matrix case, a strictly proper part of the polynomial matrix fraction

D(z)−1N̂(z) for N̂(z) = zkN(Z) describes a tail system, i.e. the system with the same

impulse response as the error sequence that is cut off after FIR truncation, which is a useful

computational step in `1-optimal control [30], [21].

The chapter is organized in several sections. The following, second section gives some

definitions used in the chapter. The third section presents the numerical algorithm for a left

modular shift of a polynomial matrix. The fourth section extends the idea used for modular

shift to modular multiplication of two polynomial matrices and offers a fast algorithm. The

final, fifth section reports on numerical experiments and compares the performance of the

presented algorithms with the naive ones.
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5.2 Basic definitions

Definition 1 (k-step shift). Let N(z) be a polynomial matrix in complex variable z. A

shifted polynomial matrix N̂(z) is defined as N(z) with the powers of the complex variable

increased by k

N̂(z) = zkN(z) (5.1)

Definition 2 (Left modular k-step shift). Let N̂(z) = zkN(z) be a shifted polynomial matrix

and D(z) be another square nonsingular polynomial matrix such that the left polynomial

matrix division D(z)−1N̂(z) is well defined. Left D(z)-modular shift of a polynomial matrix

N̄(z) is the (unique) remainder in the left division of the shifted polynomial matrix N̂(z)

and D(z)

N̄(z) = N̂(z) mod D(z) (5.2)

= zN(z) − D(z)Q(z) (5.3)

where Q(z) is the quotient determined uniquely by the polynomial matrices N̂(z) and D(z),

with the rational matrix D−1(z)N̄(z) strictly proper, i.e. limz→∞ D−1(z)N̄(z) = 0.

Definition 3 (Left modular multiplication of two polynomial matrices). Consider three

polynomial matrices A(z), B(z) and square nonsingular C(z) such that a left polynomial

matrix division C(z)−1A(z)B(z) is well defined. The result of left modular multiplication of

A(z) and B(z) is the unique remainder after left division of A(z)B(z) by C(z).

5.3 Algorithm for left modular shift of a polynomial

matrix

Consider two polynomial matrices N(z) and D(z) of appropriate sizes such that the left

polynomial matrix division D(z)−1N(z) defines a matrix of strictly proper rational func-

tions. In other words, the polynomial matrix N(z) = N(s) mod D(z). Assume that D(z)

is row-reduced. If it is not, it can be always made so [33] at some additional computational

cost. Now, write the polynomial matrix D(z) as follows

D(z) =




zk1 0 . . . 0

0 zk2 . . . 0
...

...
. . .

...

0 0 . . . zkn


Dq +




zk1−1 . . . 0

0 . . . 0
...

. . .
...

0 . . . zkn−1


 Dq−1 + . . .

+




∗ . . . 0

0 . . . 0
...

. . .
...

0 . . . ∗


 D0 (5.4)
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where ki, i = 1, . . . , n are the row degrees of D(z), q = max1≤i≤n ki and Dq is the leading

row coefficient matrix and the star denotes an element that is either 1 or 0. Under the

assumption of row-reducedness of D(z), the constant matrix Dq is nonsingular, i.e., detDq 6=
0. Perform the same decomposition of the polynomial matrix N(z)

N(z) =




zk1−1 . . . 0

0 . . . 0
...

. . .
...

0 . . . zkn−1


 Nq−1 +




zk1−2 . . . 0

0 . . . 0
...

. . .
...

0 . . . zkn−2


Nq−2 + . . .

+




∗ . . . 0

0 . . . 0
...

...

0 . . . ∗


 N0 (5.5)

The result that follows uses the arguments used for scalar polynomials in [33], pp.337, with

the role of the leading coefficient of the scalar polynomial taken over by the leading row

coefficient matrix that is guaranteed to be nonsingular.

Lemma 3 (k-step left modular shift of a polynomial matrix). Consider two polynomial

matrices N(z) and D(z) of appropriate sizes such that the left polynomial matrix division

D(z)−1N(z) defines a matrix of strictly proper rational functions, D(z) being row-reduced.

Using the row degree decomposition of the polynomial matrices as in (5.4) and (5.5), the

relationship between the constant matrices of N(z) and N̄(z) = zkN(z) mod D(z) is given




N̄0

N̄1

...

N̄q−1


 =




0 0 0 . . . 0 −D0D
−1
q

I 0 0 . . . 0 −D1D
−1
q

...
...

...
. . .

...
...

0 0 0 . . . I −Dq−1D
−1
q




k 


N0

N1

...

Nq−1


 (5.6)

Proof. First, prove the lemma for one-step shift. Combining the definition (5.1) of a shifted

polynomial matrix N̂(s) and the equation (5.5)

zN(s) =




zk1 0 . . . 0

0 zk2 . . . 0
...

...
. . .

...

0 0 . . . zkn


 Nq−1 +




zk1−1 . . . 0

0 . . . 0
...

. . .
...

0 . . . zkn−1


Nq−2 + . . .

+




∗z . . . 0

0 . . . 0
...

. . .
...

0 . . . ∗z


N0 (5.7)

Substituting for the diagonal matrix diag(zk1 , zk2 , . . . , zkn) in (5.7) from (5.4) and comparing

the matrix terms with equal (diagonal) powers the lemma follows for k=1. The extension
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to k > 1 can be devised easily because the resulting constant matrix N̄ can be placed at the

position of matrix N in (5.6) to obtain a two-step modular shift. By induction, the lemma

follows.

5.4 Algorithm for left modular multiplication of poly-

nomial matrices

The idea is fairly simple yet computationally efficient: express the multiplication of two

polynomial matrices as a sequence of modular shifts and apply the fast algorithm from the

previous section.

Lemma 4 (Algorithm for left modular multiplication of two polynomial matrices). Given

polynomial matrices A(z), B(z) and C(z) of appropriate sizes with C(z) square and non-

singular and of degree q, the left modular multiplication can be computed in the following

steps

1. express the C(z) matrix in the row degree form (5.4) and build the block companion

matrix M according to (5.6)

2. initialize the power index i = 1, the actual companion matrix M̄ = M and the resulting

polynomial matrix Y (z) = 0

3. compute Ab(z) = A(z)Bi

4. express the auxiliary polynomial matrix Ab(z) in the row degree form (5.5) and con-

catenate the matrix coefficients into a block vector

Ab =
(
A′

b0 A′
b1 . . . A′

b(q−1)

)′

5. compute Ab(z)zi mod C(z) as Āb = M̄Ab

6. convert the polynomial matrix in row degree form represented by the block column

vector and row degrees to the standard matrix polynomial format and add this to the

polynomial matrix Y (z) storing the result.

7. if i < deg B(z) then i = i + 1, update the block companion matrix M̄ = MM̄ and go

to step 3 otherwise end

Proof. Self-evident. The only issue that might not be obvious at first is that the second

step cannot break the strict properness of the polynomial matrix fraction. Indeed, A(z)

is assumed to have row degrees strictly less than the corresponding row degrees of C(z).

Multiplying A(z) by an arbitrary constant matrix from the right cannot increase the row

degrees. The strict properness is thus preserved.
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Table 5.1: Typical computation times [s] and relative errors for MTIMESMOD and
MTIMES-LDIV algorithms.

Size and degree MTIMESMOD MTIMES-LDIV Relative error

m=n=5, d=5 0.15 0.04 2.8681e-014
m=n=5, d=15 0.34 0.09 3.8701e-015
m=n=10, d=10 0.31 0.19 2.2448e-014
m=n=10, d=20 0.79 1.03 7.7952e-016
m=n=20, d=10 0.58 1.10 1.7120e-014
m=n=20, d=20 2.30 6.98 2.1058e-015

Remark: It appears wise to take advantage of the special structure of the companion

matrix for the update in step 7. This multiplication operation can be efficiently computed

as:

M̄ =




0 0 0 . . . 0 −C0C
−1
q

I 0 0 . . . 0 −C1C
−1
q

...
...

...
. . .

...
...

0 0 0 . . . I −Cq−1C
−1
q




k 


M̄0

M̄1

...

M̄q−1


 =




0

M̄0

...

M̄q−2


 +




−C0C
−1
q M̄q−1

−C1C
−1
q M̄q−1

...

−Cq−1C
−1
q M̄q−1




(5.8)

5.5 Numerical experiments

The platform on which the numerical experiments were performed was: PC, Intel Pentium

4, CPU 1300MHz, 512 MB RAM, Microsoft Windows 2000, Matlab 6.5, Polynomial Toolbox

3.0 [42]. Accuracy and computational speed were compared with random data between the

proposed algorithm MTIMESMOD and the standard approach MTIMES-LDIV based on

multiplicaton followed by Euclidean division. Some results are reported in Table 5.1 and

visualised in in Figures 5.1 and 5.2.

5.6 Summary

Two algorithms for modular arithmetics with polynomial matrices were described: modular

shift and modular multiplication. Numerical experiments confirm computational superiority

over naive approaches based on division of two polynomial matrices. This is significant for

larger problems (size and degree of polynomial matrices, number of steps of a modular shift).

The presented algorithms avoid division altogether. Practical interpretation of the modular

shift operation was given. A research is under way that aims at utilizing the modular

multiplication in solving linear Diophantine equations with polynomial matrices.
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Figure 5.1: Typical computation times for the new MTIMESMOD algorithm for modular
multiplication
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Figure 5.2: Computation times for the naive MTIMES-LDIV algorithm for modular shift
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Chapter 6

Conclusions

6.1 Summary

In this thesis I formulated and solved the standard problem of a design of an `1-optimal

feedback controller within the convenient framework of polynomials and polynomial matri-

ces. I provided alternative proofs for existence of an optimal controller and proposed reliable

interpolation-free numerical algorithms. In SISO and one-block MIMO cases I showed that

an optimal solution can be achived by solving a linear equation with polynomial matrices.

In a general multiblock MIMO case, I proposed an approximation method that solves a

sequence of linear equations with polynomial matrices and gives a converging upper and

lower bounds on the optimal value of the norm. Superiority of the proposed methodology

over the interpolation-based algorithms was shown by means of numerical experiments for

a scalar plant. Addidionaly, I devised efficient and reliable numerical algorithms for com-

puting the norm of a polynomial matrix fraction. Finally, stating this important control

problem in the language of polynomials and polynomial matrices, I believe that I opened a

new angle of attack to this challenging problem and contributed to better understanding of

this promising yet not mature optimal control strategy.

6.2 Future research

This thesis laid a theoretical and computational foundation of a direct polynomial approach

to `1-optimal control, but it was out of my reach during this PhD period to bring this

methodology to maturity and turn it into a viable control design tool. A lot of work remains

to be done. A few hot topics of immediate need are outlined bellow.

• Reliable algorithms for stable-unstable factorization of polynomial matrix.

While avoiding the computation of zeros of a polynomial matrix turned out numerically

very pleasing, separation of stable and unstable part of a polynomial matrix is currently

not a reliable step. Fast and reliable routines are available for scalar polynomials but
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when it comes to polynomial matrices, the only available procedure is a conversion to

the Smith form and obtaining the scalar stable-unstable factorization for each invariant

factor. This is numerically very weak.

• Handling the case of zeros or poles at 1 and -1. From a practical point of view,

this is a very common situation. Either the original plant has an integrator that maps

to a pole at 1 after discretization or it is strictly proper, which shows as a zero a -1

when using Tustin discretization method. However, a general cure to this problem

seems unobtainable in `1-optimal control for the reasons outlined in the first chapter.
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