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∗ Faculty of Electrical Engineering, Czech Technical University in
Prague. e-mail: (ladmarti@fel.cvut.cz, ivo.herman@fel.cvut.cz,

hurak@fel.cvut.cz)

Abstract: The paper reports on an affordable experimental platform for vehicular platooning.
The experimental platoon consists of several autonomous slot cars (typical experiments take
5 to 20 slot cars), hence it fits into an indoor laboratory. Each car is equipped with an
onboard controller and it can measure its own velocity, acceleration, and distances to its nearest
neighbors. Furthermore, each car can communicate with other vehicles including the leader of
the platoon. A convenient user interface allows to store, analyze and visualize the experimental
data in Matlab. The platform can be used for demonstrating various decentralized and
distributed control strategies for vehicular platoons, such as predecessor following, (a)symmetric
bidirectional control or cooperative adaptive cruise control. Moreover, the phenomenon of string
instability can be observed in experiments due to the fast dynamics of slot cars. The technical
design details including the source codes and electronic schematics are shared with the public.
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1. INTRODUCTION

Distributed control of platoons of vehicles has been an
active research topic for a few decades. Both theoretical
and technological aspects have been investigated. What
motivates this research are some promising properties of
platoons, such as reduced fuel consumption, increased
transportation capacity and safety. The research in pla-
tooning has accelerated recently with the advent of driver-
less vehicles.

Although many dozens if not hundreds of theoretical pa-
pers have been written on the topic of vehicular pla-
toons, descriptions of experimental verifications are dis-
proportionally rare in the literature. Among the project-
s/programs/activities with experimental verifications, the
University of Berkley’s PATH program was apparently
the first, having started in late 1980s, see Milanes et al.
(2014). In Europe, the EU funded research project named
SARTRE, which included Volvo company among its in-
dustrial partners, was succesfully accomplised in 2012 by
demonstrating a few driverless rides of a five-vehicle pla-
toon, see Coelingh and Solyom (2012). Truck platooning
was also demonstrated by KTH in Stockholm and Scania,
see Alam et al. (2015). In the Netherlands, the experimen-
tal platooning was demonstrated in Eindhoven, see Naus
et al. (2010).

Dominant control strategy in these experimental full-scale
projects was based on a time headway and a communi-
cation of the states of a few preceding vehicles. On the
other hand, there are other control strategies described in
the literature. One research direction is the fixed-distance
control. Examples are predecessor following analyzed in
? I.H. was supported by the Czech Science Foundation within the
project GACR 16-19526S.

detail by Seiler et al. (2004), symmetric bidirectional con-
trol investigated by Barooah and Hespanha (2005), asym-
metric bidirectional control examined by Barooah et al.
(2009) and control with different asymmetries in each
state elaborated on by Herman et al. (2016b). Except for
predecessor following, we are not aware of any experimen-
tal verification of these control architectures. One of the
reason for this absence of experiments is that real vehicles
are usually not equipped with a rear-distance measuring
device, which is required for bidirectional control archi-
tectures. Adding these extra sensors, as well as actually
planning and conducting experiments with real vehicular
platoons, may turn out unaffordable for most academic
research teams. And yet the experiments are badly needed
to keep the theoretical work well motivated.

And here comes our work. Our goal is to provide an
affordable experimental platform for testing distributed
control algorithms for vehicular platforms. Being based on
toy-size racing slot cars, experiments with more than 10
cars are easily feasible even in a small lab/office. And yet
the fast dynamics of the cars and the generous onboard
computational power give the experiments a flavour of
reality. Furthermore, since there is no need to be worried
about the consequences of crashes between the cars, the
platform can serve also as an educational tool.

The experimental platform is based on racing slot cars
produced by Carrera used commonly as toys by kids and
adults. Originally, these slot cars have no onboard con-
troller. They are also free of any sensor or communication
interface. Their velocity is controlled remotely by a human
player varying the voltage on the conducting strips on the
track. We upgraded the slot cars significantly by equip-
ping them with custom-made electronics including power-
ful microprocessors, sensors and communication interface.



The main computing unit is the popular and widespread
Raspberry Pi Compute Module, which runs Debian Linux.
Everything still fits within the small car, so the appearance
is (almost) unchanged—see Fig. 1.

Fig. 1. Platoon of autonomous slot cars.

The main features of the platform are

• Small size: each car is some 13 cm in length and 4 cm
in height. The simplest track required for experiments
is 1 meter in diameter, so it easily fits an office desk.
• Low cost: the total cost of each autonomous car is

approximately 300e, including the bare slot car itself.
The basic track costs about 70e.
• Durability: since all the electronics is located inside

the plastic cover of the slot car, it can easily withstand
almost any crash between cars.
• Ease of controller design: the overall software archi-

tecture is such that a controller is a just plugin for
the main application in the car. Hence it can be easily
developed, deployed and run. Moreover, source codes
for the most commonly used controllers (PI, PD, . . . )
are already provided.
• Graphical application for the platoon setup: a Java

application is provided for the platoon management.
It allows to select the type of a controller, set its
parameters and upload the controller to the onboard
unit. It also allows to update the firmware in the cars
conveniently.
• Matlab interface: the data measured by sensors at

each car are sent to the human operator’s PC running
Matlab. Matlab can be used not only to visualize and
analyze the measured data but it can also be used to
issue commands to the platoon, such as a change in
the leading vehicle’s desired velocity.

The platform is being developed within numerous student
projects following the spirit of open source and open hard-
ware. The code and the schematics are publicly available
through a Git repository https://gitlab.fel.cvut.cz/
SlotcarPlatooning.

A previous version of the experimental platform has al-
ready been reported to the community by Martinec et al.
(2012). The current report reflects major design changes
which now make the platform more scalable and also
reproducible by other teams.

This paper is structured as follows. In the next section we
introduce the basic hardware components of the car and
in the third section we describe the software. The fourth
section is dedicated to modelling of dynamics of a slot
car and description of a basic control architecture. In the

fifth section we present some experimental results, showing
the ability of the experimental platform to reveal some
basic properties of vehicle platoons. Concluding remarks
are presented afterwards.

2. SLOT CAR HARDWARE

We begin by the description of the overall hardware
configuration, see Fig. 2. The whole experimental platform
consists of the individual slot cars, the track set, and,
finally, a standard PC with Wi-Fi.

Track

GUIMatlab

PC

1 2 . . . N
Wi-Fi

Fig. 2. Overall structure of the system. Although not
shown, the cars also communicate among each other.

Each autonomous slot car is based on a 1:32 model of
Ford Capri by Carrera. The drivetrain is very simple: a
permanent magnet DC brushed motor which drives the
rear axle through a 3:1 gear. No differential is present and
the wheels are on a common shaft.

The car is kept on the track thanks to a guiding slot
into which a pin or blade extends from the bottom of
the car. This means that the car can move only forward
or backward. The power supply is taken from the pair of
metal strips along the slot. Since the side motion is severely
restricted, the platform is only suitable for experiments
related to longitudinal dynamics and control.

2.1 Electronics

We equipped the car with custom-made electronics, sketch
of which is shown in Fig. 3.

The supply (rail) voltage ranges from 9 V to 15 V. We
normally use 12 V. This is the voltage at which the
experimental identification was conducted (see Sec. 4).
There are several step-down voltage converters connected
in a cascade: 12 V → 5 V → 3.3 V → 1.8 V.

For a short amount of time, the car may loose a connection
with the power line, for instance, due to crash between
cars, which would lead to a loss of data. This issue is solved
by adding a supercapacitor (capacity 1 F; 5 V) which serves
as a power backup for the 5 V and lower branches. This
guarantees a power backup for cca 5 s, which seems to
be enough for most emergency situations. Note that since
the car has a significant power consumption, a regular
capacitor is not sufficient for this task. Another option
was to add a battery. However, a battery needs a regular
maintenance, which is not needed for the super capacitor.

There are two main processing units: i) ARM Cortex
M4 STM32 microcontroller (STM) and ii) Raspberry Pi
Compute Module (RPi). The STM processor collects and
processes the data from the onboard sensors and realized
velocity-control loop, while the RPi module realizes the
higher-level control loops and communication.

The motor is powered directly from the 12 V power branch.
It is driven through an H-bridge motor driver by Texas

https://gitlab.fel.cvut.cz/SlotcarPlatooning
https://gitlab.fel.cvut.cz/SlotcarPlatooning


Instruments. The driving signal is generated by the STM
and the H-bridge allows the STM to change the direction
and the speed of rotation. The speed is controlled by
generating a PWM (Pulse Width Modulation). Therefore
any desired speed is achievable (limited by the power
supply).

The communication interface is a standard USB Wi-Fi
(IEEE 802.11g) module, connected to the RPi. It allows
the cars to communicate with each other and with the PC.
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3.3V

Dist. meas.
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Speed. meas.

ADC

I2C
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H-bridge

Motor Wheels

12V

1:3

PWM

Wi-Fi module
USB
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Fig. 3. Overall configuration of the electronics.

2.2 Sensors

Each car is equipped with several sensors. The quantities
measured onboard each car are the car’s acceleration (in
all three directions), the car’s angular velocity (around all
the three body axes), the vehicle’s translational velocity
(along the slot), the distance to the car ahead and the car
behind, and, finally, also the rail voltage.

The acceleration and the angular velocity vectors are
measured by a 3-axis MEMS gyroscope and accelerometer.
This device is connected to STM using an I2C bus.

The translational speed is measured using two types of
sensors. The first one is a standard (albeit home-made)
incremental rotary encoder (IRC). The binary (black and
white) disk is connected directly to the rear-axle shaft,
and light pulses reflected from the disk are counted.
Since there is only one encoder, it is not possible to
obtain the direction of the rotation. The other mean of
speed measurement is based on measuring the back-EMF
(back-induced electromotoric force), denoted ve, which is
proportional to the motor angular speed as ve = kω, where
k is the so-called back-EMF constant (in SI units identical
to the motor torque constant). The voltage is measured
using the integrated analog-to-digital converter (ADC)
on the microcontroller. Unlike the IRC, the back-EMF
measurements also give a sign of the angular velocity. Since
we have two measurements, each with a different precision
and accuracy, they can be fused using an estimator,
namely Kalman filter. This filter also provides an estimate
of the friction force.

For distance measurements, we could not find any com-
mercially available sensor which would satisfy the following
requirements:

• small size, such that it fits to the car,
• wide field of view (important when going through

turnings),
• no interference between the front and rear distance

sensor.

It was possible to satisfy the first two requirements, how-
ever the third one seemed as a big obstacle. That is why
we designed our own sensor. It is based on an infrared (IR)
LED diode and a phototransistor. The diode emits square
pulses with a given frequency and the phototransistor
receives the signal. To get rid of disturbances such as
the sunshine or the room lighting, the demodulation of
the received signal exploits the correlation (synchronous
detection)—the frequency of the transmitted signal is
known. There are distinct frequencies for both front and
the rear distance measurements: for the front it is ff =
1111 Hz and for rear it is fr = 1666 Hz. Both are chosen to
be sufficiently well separated and also not being the mul-
tiplies (higher harmonics) of 100 Hz, which is a frequency
of the fluorescent tubes used in the lab.

In order to get rid of the dependence on the angle of
reflection, each car receives the signal emitted by its two
neighbors—the car ahead and the car behind. This gives
a good precision, since we used wide angle IR diodes and
phototransistors. The sketch of the distance measurement
is in Fig. 4. The car with index i − 1 emits the signal
from its rear LED with the frequency ff . The car i detects
this signal at its front transistor and demodulates it. From
the signal strength of the demodulated signal it calculates
the distance. The inter-vehicle distance d is then obtained
from the demodulated signal strength s as

d =
√
c/s, (1)

where c is a constant obtained from calibration. The range
of the sensor is approximately 70cm. Similarly, the car
i− 1 calculates its distance to the car i. Compared to the
distance measurement schemes based on reflections (some
commercially available hobby-grade distance sensors rely
on it), the proposed scheme achieves 4 times stronger
signal (the distance for the light to travel is halved).

LED

Trans.

Car i− 1

Trans.

LED

ff = 1111 Hz

fr = 1666 Hz

Car i

Fig. 4. Distance measurement using LEDs and phototran-
sistors.

The disadvantage of this solution is that it is required
to have a car ahead, transmitting the modulated signal.
However, this does not cause any problems in our setting,
since there is always a platoon leader. The leader drives
independently, following a desired speed profile. Hence the
leader itself does not need any front distance measurement.

3. SOFTWARE

The software splits into three main parts, corresponding to
the three processors on which it runs: the STM micropro-
cessor, the Raspberry Pi Linux computer and the PC. In



this section we describe the architecture of these software
parts.

3.1 Firmware running on the STM microprocessor

The main purpose of the code running on the STM (which
we will call firmware here) is to read off the data mea-
sured by the sensors (pulses from the IRC, back-EMF
voltage, angular rates and accelerations from a MEMS
inertial multi-sensor, distance to the car ahead and behind,
voltage on the conducting strips), preprocess them (dis-
tance measurement demodulation, fusion of speed sensors
using Kalman filter), close some fast low-level feedback
loops (speed of the slot car) and provide some of the
measurements to the higher level controller running on the
RPi computer. These tasks require very high sampling fre-
quencies (for instance, for the distance demodulation the
frequency is 60 kHz), which would be difficult to achieve
with the RPi computer running Linux.

On the other hand, thanks to a built-in SPI bootloader
on the STM microprocessor, firmware can be conveniently
uploaded to the STM processor from the RPi computer.

The firmware for the STM is written in C language. It is
relatively simple and will not require any modification by
a regular user, unless there are some specific requirements.

3.2 Software running on Raspberry Pi computer

The main control-related role of the code running on the
slot car onboard Raspberry Pi computer is to execute
the distance controller. In order to accomplish this, the
computer has to realize the communication with other slot
cars and the PC.

The controller accepts as its inputs the full states of all
the vehicles (obtained by wireless communication). Based
on these inputs it calculates the reference (desired) speed
for the speed controller. Alternatively, the controller can
also set the duty cycle for the PWM voltage applied to the
motor.

The choice of Raspberry Pi computer and Java language
Raspberry Pi computer runs a light operating system—a
Linux distribution called Raspbian (based on the popular
Debian distribution, as the name reflects). Having an
operating system allows the user to use many convenient
services such as SSH for easy maintenance and debugging,
FTP for firmware uploading and log files downloading, etc.

The code to be run on board of each slot car is written
in Java. One reason behind this choice was to make the
solution multi-platform (the code written for the slot car
can be reused in the PC application). Another reason
for this choice is a wide range of available libraries.
For instance a library for communication (TCP/UDP
stack), object serialization or file management. The RPi
application periodically polls the STM processor for the
measured data and communicates the control effort to it.

Although we do not use a real-time version of Linux, it
appears that the operating system is capable of running
the controller task with a sampling period of T = 30 ms.
However, we confess that have not conducted any system-
atic timing analysis yet.

Implementation of the inter-vehicle distance controller as
a plugin The distance controller is implemented as a plu-
gin. This gives an important advantage: with the structure
of basic controller fairly simple, even a person with little
programming experience can quickly implement his or her
own controller. Being decoupled from the development of
the main application, the control designer is freed from
the need to understand the complicated infrastructure. In
fact, the code for the controller looks similar to a Matlab S-
function, with which many control engineers and students
are familiar. A code snippet for a simple controller is given
in Appendix A.

3.3 Graphical User Interface running on PC

The highest-level managment tasks for the platooning
experiments are accomplished using a graphical user in-
terface (GUI) running on a PC. The application allows
to choose a type of a controller, set its parameters, set
the reference values for each car, upload the controller
to the car, as well as to start and stop the experiment.
On the top of that, the applicatin allows to upload the
cars’ firmware (using FTP and SSH), to reset the onboard
computer/controller and a few more system operations.

The GUI acts as a server, to which the clients (cars)
connect. Each car, after booting up, connects to this
server. After a car connects, the GUI updates the list
of all connected cars and shares this list with the other
cars. Once the car connects to the GUI, the application
retrieves the car’s setting—the control parameters (type of
controller, desired distance, controller parameters). Then
the user can modify the parameters and upload them back
to the car. A screenshot of basic parameter setting using
the GUI is in Fig. 5.

Fig. 5. Screenshot of the GUI. On the left there is a list of
connected cars.

The GUI has been mainly developed and tested on Win-
dows. However, thanks to multi-platformness of Java, it
also works in Linux.

We also implemented a Simulink model, which displays the
states in the platoon and allows to change some control
parameters of the platoon during the experiment. The
Simulink model reads the data from the GUI and sends
back the commands. Hence, it requires the GUI to get
data. This solution enabled keeping the Simulink model
very simple and did not require adding an extra code to
the cars’ software.



Ordering of the cars in the platoon In case the control
algorithm requires a knowledge of the order of the cars in
the platoon, an ordering procedure can be initiated using
the GUI. The procedure is based on a moving the cars one
by one. Starting off with a leader, the car moves ahead a
given distance, which triggers a detection of a change of the
inter-vehicle distance by some car, which then transmits
its recognized order. The procedure repeats until the order
of all cars is known.

3.4 Communication among the cars and with the GUI

The cars and the GUI share the same communication
protocol, which is the popular User Datagram Protocol
(UDP). The cars periodically broadcast their states. These
are then received by all the other cars and by the GUI. The
order, in which the cars broadcast, is based on the order
of vehicles in the platoon (the leader starts). If a vehicle
receives a packet from the preceding vehicle, it can share
its own state—a token ring policy is implemented.

On the top of this token ring communication, a simple ad-
dressed (peer-to-peer) communication was implemented,
which is only used between the GUI and the cars for
managing the platoon configuration.

4. MODELLING AND CONTROL

4.1 A control-oriented model of a slot car

A slot-car is basically just a loaded brush-type permanent
magnet DC motor. The total mass of the slot car (includ-
ing the mass of the motor) constitutes the load which is
steered along a trajectory determined by the slots. The
equations can be written down almost by inspection or
using the power bond graph in Fig. 6

di(t)

dt
=
u(t)

L
− R

L
i(t)− k

rnL
v(t) (2)

dv(t)

dt
=

k

mnr
i(t)− b

m
v(t) (3)

dx(t)

dt
= v(t). (4)

The states are: the current i through the motor winding
(in A), the velocity v of the car (in m/s), and the travelled
distance x (in m). The control input is the voltage u (in
V). In fact, the voltage signal comes in the pulse width
modulated (PWM) form with the duty cycle D, where
D ∈ [0, 1]. Hence u denotes just the low-frequency content.
The rail voltage Ur = 12 V and u(t) = UrD(t). The
relevant physical parameters are in Table 1.

Se : u 1i

I1 : L

R1 : R

G : k T : n T : r 1v I : m

R : Ff (v)

Fig. 6. Bond graph of the one-dimensional electromechan-
ical dynamics of a slot-car as a loaded permanent
magnet DC motor with a permanent magnet.

Table 1. Parameters for the vehicle model.

Physical parameter Symbol Value

Resistance of the motor winding R 4.9Ω
Inductance of the motor winding L 2 mH
Torque constant k 0.005 Nm A−1

Mass of the slot car m 0.4 kg
Friction coefficient (linear friction model) b 0.25 Nm−1 s
Radius of the wheel r 0.01m
Gear ratio n 1/3

Note that while the linear model turns out nearly perfect
for most aspects here, it fails badly when describing the
friction phenomenon. Here the friction comes from three
sources—friction induced by the angular motion of the
rotor shaft, friction in the slot, and the rolling friction. It is
well known that the rolling friction does not depend on the
velocity but only depends on the normal force (here it is
not only the weight but also the attractive force of magnets
that push the slot car against the track). Introducing
some nonlinearity into the model seems inevitable. But
temporarily, the linear model of a friction is used to get a
transfer function as rough models of the overall dynamics.

The electric current dynamics is very fast compared to the
mechanical dynamics of the velocity, so we can neglect it

by setting di(t)
dt = 0 in (2). Separating i(t) and plugging it

to (3), we get

dv(t)

dt
=

Urk

Rmnr
d(t)− b

m
v(t)− k2

Rmr2n2
v(t) (5)

dx(t)

dt
= v(t). (6)

Transfer functions from the input voltage are

G(s) =
v(s)

D(s)
=

kUr

Rmnr

s+ b
m + k2

Rmr2n2

(7)

H(s) =
x(s)

D(s)
=

1

s
G(s). (8)

After plugging in the values of the parameters,

G(s) =
5.28

0.58s+ 1
. (9)

Using an identification from a step response (see Fig. 7),
the transfer function was corrected to

G(s) =
5.1

0.58s+ 1
(10)

In experiments it was observed that there is a very large
static (dry, Coulomb) friction, which amounts up to 28%
of the torque (hence force) corresponding to the maximum
PWM duty cycle. A simple static friction model comes
in the form of a dead-zone with the range [−0.28, 0.28]
appended to the controller.

4.2 Controllers

The control architecture is in Fig. 8. It exhibits a cascade
structure—the innermost loop takes care of tracking the
desired speed while the outer loop takes care of tracking
the desired inter-vehicle distances.

Speed controller The speed controller is implemented in
the STM processor. It is a discrete PI controller with a
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Fig. 7. Comparison of true velocity and output of the
model (10). Two different steps at time 1.5 s are
shown. The value of the dead-zone was already sub-
tracted from the input d.

sampling period Ts,v = 0.005 s. Its output, which is the
PWM signal duty cycle, is saturated to [−1, 1]. The con-
troller implements an anti-windup in the form of clamping.
The transfer function of the controller is

Cv(z) =
z − 0.975

z − 1
. (11)

Distance controller The distance controller is imple-
mented in the RPi computer. It can take many forms.
In this demonstration paper we evaluate a simple bidi-
rectional control law, which accepts a single input—the
weighted regulation error as in

e = (di − dref) + ε(di+1 − dref), (12)

where di = xi−1 − xi is the distance to the car ahead,
di+1 = xi − xi+1 is the distance to the car behind, dref

is the reference distance the cars should keep among each
other, and ε is a constant of asymmetry. This constant
weighs the contribution of the rear spacing error. When
ε = 0, the controller only uses the distance to the car ahead
(the so-called predecessor following), when ε = 1, the car
weighs the rear spacing error with the same weight as the
front error (so called symmetric bidirectional control) and
when 0 < ε < 1, we have asymmetric bidirectional control.
The control law (12) was used in Herman et al. (2016a).

When the leader moves with a constant velocity, its
position is a linearly growing signal—a ramp signal. It
follows from internal model principle applied within the
domain of distributed systems Wieland et al. (2011); Lunze
(2012) that in order to track the leader, each car is required
to have at least two integrators (two poles at the origin) in
the open loop (Yadlapalli et al. (2006)). There is already
one integrator in the vehicle model: the integration of
velocity to position. Therefore, it is necessary to have
at least one integrator in the controller. Therefore, we
selected a discrete PI controller

Cx,1(z) =
3z + 2.976

z − 1
. (13)

Two integrators in the open loop usually mean slow and
oscillatory transients. When we only require tracking of the
leader’s velocity and the steady-state distance error can
be nonzero, it suffices to have only one integrator in the
open loop. An instance of such a controller is the following
filtered PD controller

Cx,2(z) =
15z − 7.5

z − 0.5
. (14)

For both controllers the sampling period was Ts,d = 0.03 s.

Since we can rely on a wireless communication among
the vehicles, it is possible to achieve a zero steady-state
distance error. The leader has to communicate its velocity
v0(t) to all the cars. The communicated velocity can be
added to the desired velocity produced by the feedback
controller, thus implementing a feedforward controller.
The control law for the ith car becomes

vrefi (t) = v0(t) + ri(t), (15)

where ri is the output of the distance controller (14). A
similar control law was used in Barooah et al. (2009);
Lin et al. (2012), where the leader’s velocity was called
a desired velocity of the platoon.

5. EXPERIMENTAL VERIFICATION

In this section we give an appetizer of how the proposed
experimental platform can be used as a testbed for showing
some properties of distributed control for vehicular pla-
toons.

In all experiments shown here, we were interested in
the responses of the distances among cars to changes in
the leader’s desired velocity. The leader has a reference
velocity

vref =





0.0 m/s for t ∈ [0, 1] s,

0.3 m/s for t ∈ [1, 19] s,

0.7 m/s for t ∈ [19, 34] s,

0.3 m/s for t ∈ [34, 50] s.

(16)

All other cars should follow the leader with the desired
distance dref = 0.15 m.

The first experiment compares the distance controllers
from the previous section in a predecessor following sce-
nario. That is, ε = 0. In Fig. 9a, after the initial growth of
the distances, the PI controller (13) was able to achieve
the desired inter-vehicle distance. On the other hand,
having a PD controller in Fig. 9b, the transient was bet-
ter, but the steady-state distances were about 0.25 m for
vref = 0.3 m/s and 0.30 m for vref = 0.7 m/s, instead of
desired 0.15 m. This confirms that the open loop with only
one integrator cannot achieve a zero steady-state error.
Instead, it behaves as a time headway spacing policy,
where the inter-vehicle distance is proportional to velocity.
When the leader’s velocity was available to all the cars
for feedforward (Fig. 9c), the transient was short and the
achieved distance was equal to the desired one. The change
in desired velocity at t = 19 s and t = 34 s did not have
almost any influence on the error in distance. Note that
there are turns on the track, which act as disturbances.
That is why that around t = 15 s, t = 25 s, t = 40 s there
are some oscillations in the plots.

For bidirectional control the transient was longer and
errors were larger too, see Fig. 10. In this figure we also
show the response of the model of the platoon. Although
the model still needs to be improved (mainly modelling of
the friction), it captures the reality reasonably well.

For the predecessor following architecture there is an
apparent string instability in Fig. 11 for vref = 0.3 m/s.
The higher the index of the car, the higher the peak in
velocity. This is a consequence of having two integrators in
the open loop, for which the string instability was proved
in (Seiler et al., 2004, Thm. 1).
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Fig. 8. Overall control system architure—cascade control structure. The distance controller implemented on the RPi
can also accept some other inputs through a wireless communication with other slot cars.
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(a) Cx,1 from (13)
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(b) Cx,2 from (14)
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(c) Cx,2 with feed-forward from (15)

Fig. 9. Performance of several control laws for predecessor following and changes in the leader’s desired velocity (16).
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Fig. 10. Response to steps in leader’s desired velocity with
PI controller Cx,1 (13) and ε = 1. The response of the
mathematical model of the platoon uses dashed lines.

A short video documenting some (early) experiments with
the slot car platoon described in this text is in https://
youtu.be/TBFM7v2_VAk.

6. CONCLUSION

In this paper we described our experimental platform for
demonstrating properties of distributed control systems
for vehicular platoons. The slot cars are equipped with
powerful onboard processors, sensors and communication
interface. The car can control itself based on its local
measurements but the measured/estimated states of the
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Fig. 11. Response to step in leader’s desired velocity with
PI controller Cx,1 (13) and ε = 0.

other cars can also be made available to it through
wireless communication among the cars. The platoon is
conveniently configured and controlled from Simulink. The
experimental data are available for further analysis in
Matlab.

The experiments shown briefly in this paper suggest that
the proposed platform is suitable for experimental demon-
stration of some effects of distributed control of vehicular
platoons. For instance, string instability is apparent for
a platoon with two integrators in the open loop, while
nonzero steady-state error appears when only one inte-

https://youtu.be/TBFM7v2_VAk
https://youtu.be/TBFM7v2_VAk


grator is used. Centralized information, such as leader’s
velocity, improves the transient response, as expected.

The platform is under an ongoing development. The to-
do list contains conducting experiments with more cars
(we aim at 20 to 30), improving the speed measuremen-
t/estimation and the estimation of the frictional force.
Nonetheless, we are convinced that the proposed platform
at its current state can already serve in research and
education. We are eager to share the details with the
interested collaborators and partners. The source codes
and electronics schematics are shared through a publicly
accessible GIT repository.
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Anastasia Vlasova and Alexander Dubeň, who all con-
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Appendix A. CONTROLLER CODE EXAMPLE

An example code in the Java language for a P controller
with a feedforward from the leader’s velocity is shown in
Listing 1.

@ClassInfo ( label = ”P c o n t r o l l e r with FF” )

public c lass Control lerP FF extends Cont ro l l e r {

@Fie ldInfo ( label=”Cont ro l l e r P constant ” )

public f loat kp = 5 f ;

public Control lerP FF ( ) {
super (OutputType .SPEED) ;

i n i t ( ) ;

}

public long ge tMi l iSecPer i od ( ) {
return 30 ;

}

public void i n i t ( ) {
// in t h i s case , nothing needs to be i n i t i a l i z e d

}

public f loat s tep (CarImage me, CarList ca r s ) {
f loat d i s tRe f = me . ge tRe fe renceDi s tance ( ) ;

f loat distMeas = me . getDistanceFront ( ) ;

f loat c t rE f f o r t = kp∗( distMeas − d i s tRe f ) ;

f loat ldrSpeed = car s . getPos ( 0 ) . getSpeed ( ) ;

f loat t o t a l E f f o r t = c t rE f f o r t + ldrSpeed ;

f loat desVel = Nonlin . sa t ( t o t a lE f f o r t , −1f , 1 f ) ;

return desVel ;

}
}

Listing 1. Code for a simple proportional controller aug-
mented with a feedforward of the leader’s velocity.

Some parts of the code are worth mentioning. Any con-
troller parameter can be made available to be edited by
the user in the GUI just by declaring the correspond-
ing property public (here “kp”—the P controller gain).
The label which is displayed in the GUI is given in the
“@FieldInfo” modifier. The controller description is given
by “@ClassInfo”. The most important method is “step”.
It calculates the control effort from the measured data
(“me”) and data received by communication (“cars”). The

leader’s index in the platoon is always 0, as can be seen
from the obtaining the leader’s speed. The output is satu-
rated when calculating the desired velocity for the velocity
controller (“desVel”). A simple controller template is also
provided at GIT.
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