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Preface

In this text I present my recent research results in the area of distributed control
of spatially distributed and/or interconnected dynamical systems. In particular,
I approach modeling, analysis and control synthesis for chains of dynamical sys-
tems by adopting the traveling-wave and scattering frameworks popular among
electrical engineers, and I hope that through this work (and the related publica-
tions) I will contribute to (re)introducing these powerful concepts into the control
systems engineering community.

The broader domain of spatially distributed systems, into which I include both
distributed-parameter systems and interconnected lumped systems, has been re-
cently witnessing a surge of interest among systems and controls researchers. I am
no exception because the topic indeed seems to be of growing practical importance
due to ubiquitous networking on one side and MEMS technology and lightweight
robotics on the other side. Together with my students we have been investigat-
ing the topic for the last several years. Mainly we tried to take advantage of the
strong footing on the polynomial (or input-output, or frequency-domain) theo-
retical grounds thanks to our great teachers and colleagues like Vladimı́r Kučera,
Michael Šebek, Jan Ježek and Didier Henrion, who significantly contributed to
the development of those techniques in the previous decades. With my students
Petr Augusta, Ivo Herman and Dan Martinec we have even succeeded in pub-
lishing some of our results in archival journals.

It was only in 2013 that I was made aware of an alternative and not widely
popular approach to control of chains of mechanical systems such as masses in-
terconnected with springs and dampers—the traveling wave approach based on
the concept of a wave transfer function (WTF) as introduced and promoted re-
cently by William J. O’Connor. My former MSc student—Dan Martinec—then
a doctoral student supervised by Michael Šebek, was trying to tailor O’Connor’s
techniques to the vehicular platooning framework. Namely, we was augmenting
the popular distributed control schemes based on onboard controllers regulating
the distances to the predecessor and possibly the follower, by a wave absorbing
controllers realized onboard the leading and/or trailing vehicle. His first results
looked impressive. The otherwise unsurmountable troubles associated with an
amplification of the regulation errors as they propagate along the string (or chain
or platoon) of vehicles were tamed with a single onboard feedback controller im-
plemented on the first or the last vehicle. It looked like a magic and I just wanted
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to understand the whole approach better. Although the description of the WTF
approach in the literature seems to be correct, I kept failing to develop confidence
in full understanding of its basic assumptions and limitations. In particular, I was
not able to link it to anything that I already knew. Waves in finite dimensional
systems? Irrational transfer functions? Furthermore, the concept was intimately
linked to the mechanical domain and I love thinking in a multidomain way1.

This stimulated my curiosity and triggered my research interest in this topic.
I was quite lucky that at that moment I was granted a scholarship from Ful-
bright Program for spending seven months at University of California at Santa
Barbara with one of the leading researchers in the research area of distributed
control of spatially distributed systems—Bassam Bamieh. This gave me a ter-
rific opportunity to delve deeply in this topic. My motivation was to see if the
impressive results obtained within the WTF framework by O’Connor (and some
others, including Dan Martinec) can be explained within some standard and well
established engineering frameworks, preferably while keeping relevance for sev-
eral physical domains. My quest brought me pretty soon to the classical electri-
cal engineering topics like impedance matching for transmission lines, maximum
power transfer, conjugate matching, paraconjugate matching, ladders, iterative
impedances, scattering and chain scattering description. Invoking Maxwell anal-
ogy among physical domains, these fundamental results found in classic texts for
electrical engineers, in particular for microwave specialists, could be easily rein-
terpreted in the hydraulic, mechanical and other physical domains as well. In
fact, what makes these results valid in multiple domains is that they always have
a very physical (because energy related) interpretation.

I felt and still feel so fascinated with the new understanding that I wanted
to share this with my closest colleagues and students. However, the underlying
formalism can be somewhat alien to control systems specialists of these days and
therefore I felt a need to provide some background info, perhaps even a tutorial.
That is what made me write these notes.

Besides developing and documenting my own understanding of the existing
fundamental concepts, I have also succeeded in creating a few original research re-
sults. Namely, I have proved some remarkable relationship between the impedance
matching for a lossless transmission line and an H∞-optimal control design for
the same “plant”. I investigated the same for the lossless chain (although I could
only cast a conjecture based on simulation outcomes) and then related the two.
Since the results appear new and original, I decided to use this text as one of
the required materials for my habilitation application. While submitting it, two
papers are being finalized for a submission to a journal (extracting the essential
facts from the two key chapters of this work).

1I now feel grateful for an opportunity to teach a course on modeling of dynamical systems at
CTU in Prague—power bond graphs rule. . . )
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1 Introduction

1.1 Problem statement and motivation

Our goal is to develop a suitable formalism for modeling, analysis and control
design for complex dynamical systems with the internal structure as in Fig 1.1.

Subsystem
1

Subsystem
2

Subsystem
3

. . . Subsystem
n

Figure 1.1: Chain of (sub)systems. The dynamics of the subsystems are coupled
with the dynamics of their nearest (one or two) neighbors

We are curious to understand how certain properties of the chains scale with the
number of subsystems. In particular, we are interested in the limits of achievable
control performance for very very large chains.

We are going to restrict ourselves to linear systems. While the common ar-
guments goes that the world is nonlinear, there is certainly a lot to learn about
fundamental limitations while studying the linear chains.

Let’s postpone the definition of the “coupling” among the subsystems after
going through a few simple examples of chains from diverse physical domains.

1.1.1 Examples of chains of dynamical systems

In the mechanical domain, consider the notoriously known system composed of
multiple masses interconnected with springs and dampers as sketched in Fig. 1.2.

m3

ẋ3

m2

ẋ2

m1

ẋ1

F

Figure 1.2: Multiple masses interconnected with springs and dampers
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1 Introduction

Although such simple mechanical chains very often serve just as approximations
of a spatially continuous mechanical system, they can also serve as physically
justified and relatively accurate models of interconnections of lumped mechanical
systems. Examples can be found in flexible serial robotic manipulators or in
modeling of tall buildings for the purpose of attenuation of the influence of seismic
activities or wind buffets.

In the electrical domain, what we call here the chain structure is more often
than not referred to as the ladder structure or cascade interconnection of two-port
networks as in Fig. 1.3, for which the most popular instances are cascades of the

i1 i2

u1 u2 = u3
+

−

+

−

i3 i4

u4 = u5

+

−Two-port 1 Two-port 2

i5 i6

u6

+

−Two-port 3

Figure 1.3: Chain (or cascade) interconnection of two-port networks

so-called L- or T- or Π-sections composed of resistors, inductors and capacitors
as in Fig. 1.4.

R L

C 1/G

R L

C 1/G

R L

C 1/G

Figure 1.4: An interconnection of a few L-sections (the letter L refers to the
topology of the section here) composed of the passive R, L and C
components

In hydraulics, the chain model can represent a series of reservoirs and accumu-
lators along a hydraulic pipe such as the one depicted in Fig. 1.5. The level of
water in each reservoir is coupled to that of its neighbors, hence the coupling.

Figure 1.5: Chain of hydraulic accumulators (reservoirs) along a pipe

The coupling between the neighbors in the above chains is apparently of nat-
ural physical origin. However, it can also be introduced artificially by a human.
As an example consider the vehicular platoon in Fig. 1.6. In its simplest version,
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1.1 Problem statement and motivation

the onboard controller (or a human driver) of each vehicle in the platoon (ex-
cept for the leader) measures its distance from its nearest neighbors (or at least
from its nearest predecessor) and adjusts its throttle so that some prescribed
intervehicular distance is kept.

k + 1 k k − 1

xk+1
xk

xk−1

dk+1 dk

Figure 1.6: Vehicular platoon

1.1.2 Coupling between the neighbors

The gray thick lines in Fig. 1.1 that connect the neighbor subsystems have only
been characterized indirectly through the examples. Of course, when it comes to
the actual computational realization of the models (state-space models, Simulink
graphs, . . . ), this two-directional coupling is realized by pairs of signals. Based on
the examples, these can be force and velocity in the mechanical domain, voltage
and current in the electrical domain, pressure and volumetric flow rate in the
hydraulic domain, etc. A very natural interpretation of the coupling is then that
of energy (or power) bond since the product of the variables in the pairs amounts
to the rate of transfer of energy—the power.

This interpretation of coupling is certainly not new. I has been widely used
in electrical engineering since 1940s or 1950s within the framework of multiports.
Indeed, through each port (implemented by two terminals/wires/leads), the en-
ergy is exchanges with the external world. In the late 1950s this was generalized
to other physical domains by Henry Paynter in the form of power bond graphs.
Indeed, the idea that coupling between subsystems has this physical meaning
is very appealing from the viewpoint of analysis. And yet, surprisingly, it has
not been very much explored in the control theory, the signal-based viewpoint
dominates.

In the examples of chains of dynamical systems that we gave above, we have also
mentioned one case which does not easily yield to the power bond description—
vehicular platooning. The reason is that this coupling can easily be asymmetric.
Consider, for example, the very extreme case of asymmetry—each driver (or
onboard controller) just senses the distance to the nearest predecessor and presses
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1 Introduction

the throttle or break pedal so that some prescribed distance is kept. Thus,
the behavior of the nearest follower does not influence our driver’s decisions—
the propagation of signals is clearly one directional. How can this coupling be
encoded as an energy exchange? To address this, we will revoke a very powerful
framework developed to maturity in some branches of electrical engineering—the
so-called scattering description, which will allow us to capture even situations
with asymmetric coupling within the convenient energy-based framework.

1.1.3 Extensions to spatially multidimensional
systems—systems on lattices

In all the examples considered so far, the individual subsystems are ordered in
a chain (cascade, ladder, string, . . . ), that is, each subsystem can be labeled
with an integer index which gives its position in the chain. Thus the resulting
composed system can be viewed as one-dimensional in space. An immediate
extension that comes into one’s mind is to consider systems that are two- or
three-dimensional. These are also called systems on latices. The motivation can
again come both from systems with natural physical coupling (mechanics, even
material science) or systems with artificial coupling (formations of autonomous
mobile robots or drones). We will not handle these higher-dimensional cases in
this work. The extension of some of the results proposed in this work may but
need not be straightforward.

1.1.4 Control architectures

For the presented class of interconnected dynamical systems, we consider a suit-
able control system architecture. The centralized one is described in Fig. 1.7.

Subsystem
1

Subsystem
2

Subsystem
3

. . . Subsystem
n

Controller
1

Controller
2

Controller
3

. . .Centralized controllerCentralized controller

Figure 1.7: Centralized control scheme for a chain of dynamical systems

Although this configuration certainly offers the best achievable control perfor-
mance, it is very often outruled by complexity of design (too high an order of
the model, too many inputs and outputs). Furthermore, from an implementation
viewpoint, the requirements on the bandwidth of the communication network
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1.1 Problem statement and motivation

may be prohibitive because all the local measurements need to be brought per-
petually to one central controller and similarly the commands produced by the
central controller need to be communicated to the subsystems. Vulnerability of
such scheme might also be an issue.

The alternatives are the distributed and decentralized control schemes at Fig. 1.8
and 1.9.

Subsystem
1

Subsystem
2

Subsystem
3

. . . Subsystem
n

Controller
1

Controller
2

Controller
3

. . . Controller
n

Figure 1.8: Distributed control scheme for a chain of dynamical systems

Subsystem
1

Subsystem
2

Subsystem
3

. . . Subsystem
n

Controller
1

Controller
2

Controller
3

. . . Controller
n

Figure 1.9: Decentralized control scheme for a chain of dynamical systems

The above mentioned two control schemes have been intensively investigated
by the control community. Therefore in this text we will focus on yet another
scenario—the whole chain is only controlled through a single controller attached
to one of the two ends of the chain. This is described in Fig. 1.10.

Subsystem
1

Subsystem
2

Subsystem
3

. . . Subsystem
n

Controller
1

Figure 1.10: Control of a chain of dynamical systems through the ends

Finally, into our framework of coupled systems easily fit systems which are
initially without coupling but the coupling is introduced by human designers.
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We showed an example of a platoon of vehicles traveling on a highway with
tight spacing in Fig. 1.6. The coupling highlighted in the original Fig. 1.1 is
implemented as in the block diagram in Fig. 1.11. The realizations of individual
coupling controllers can be physically hosted by one of the two participating
subsystems. Moreover, the measured variables available to the controllers can be
relative (difference in positions, temperatures, etc.).

Subsystem
1

Subsystem
2

Subsystem
3

. . . Subsystem
n

Controller
1

Controller
2

Controller
3

Controller
n

Figure 1.11: Coupling created artificially between the neighbors in a chain of
dynamical systems

1.2 State of the art in the control of chains, in
particular the traveling-wave approach

The topic of control of interconnected systems has been studied extensively by
the control theory community for many decades. Among the first motivations
in 1960s were vehicular platoons [41], [48], [12]. In particular, it turned out
that platoons exhibit a strange behavior as the number of vehicles grows—string
instability [14], [68].

The new millennium has been witnessing a surge of interest in the theory of
interconnected systems, which has been mainly driven by the networking per-
meating all aspects of life and supported by new achievements in mathematical
control theory, in particular graph theory. We mention just a few works that
highlighted some interesting aspects of control of interconnected/networked/dis-
tributed systems, namely [6], [20], [3] and [71].

A prevailing approach to the analysis of distributed systems is based on modal
analysis popular among mechanical engineers for analysis of flexible structures.
The oscillatory behavior of the system is analyzed using standing waves (or
modes). There is, however, an alternative approach which views the response
of the systems as a superposition of traveling waves. The first application of this
approach to analysis and control of flexible mechanical structures appeared in
late 1960s in [79]. A significant contribution was done by von Flotow and his
students and colleagues in 1980s and is archived in a series of papers such as
[81], [80], [50], [82]. An interest of researchers in this topic survived in the new
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1.3 My (co-)contribution to the theory of spatially distributed and interconnected systems

millennium, as reflected in the work by Halevi [23], [25], [24]. A special issue
of the Mechanical Systems and Signal Processing journal [11] gives some more
papers describing the state of the art as of 2013.

The research in traveling wave approach to control of mechanical structures
mimics to some extent the well-established results in electrical engineering, namely,
the transmission line theory. Indeed, the decomposition of the standing wave into
the incident and reflected traveling waves is crucial for devising proper termina-
tion of the transmission line—the (reflection-free) impedance matching, a classical
concept described in numerous texts such as [49], [42] or [69].

The situations in which the transmission medium is not spatially continuous
but rather is formed by (cascade) interconnection of lumped sections is studied
as well under various names such as ladder-network delay lines or artificial lines
[42] or analog delay lines. It is known that if a transmission line is terminated
with a load impedance equal to its characteristic impedance, the input impedance
has the same value. The same concept can be applied to the ladders and such
impedance is called an iterative impedance. These are typically irrational.

There have been a few adaptations of impedance matching concepts to con-
trol analysis and synthesis for interconnected lumped systems. Extension of the
“impedance matching based controller” for a heterogeneous mechanical chains
(masses interconnected by springs and dampers) is in [65] with an application
to vibration control of a multistory building was given in [53]. Reformulation
for heterogeneous electric ladder networks is in [52]. The same problem of inter-
connected mechanical systems was investigated by O’Connor who developed his
own framework of a wave transfer function (WTF) [59] which does not explicitly
relate to the impedance matching issues. A series of papers by the same author
followed [58], [62], [56], [57], [62], [55], [60], [61], [63], [64]. In [67] they aim at
reconciling the O’Connor’s approach with the continuum wave-based control by
Halevi. Moreover, they bring in yet another oscillation-suppressing approach into
their analysis—input shaping, see [73] for a survey.

1.3 My (co-)contribution to the theory of spatially
distributed and interconnected systems

The approach to the research topic of spatially distributed and/or interconnected
systems has been strongly influence by the background in polynomial (or input-
output or frequency-domain or algebraic) techniques. With my doctoral student
Petr Augusta we used multivariate (also n-D) polynomials and transfer functions
to describe systems with very regular interconnection structure—lattice, see [4]
(and a few conference papers). We were not only able to extend some classical
techniques such as LQ-optimal control but also incorporate some latest results
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for optimization over positive polynomials. With Michael Šebek we then applied
these techniques to analysis of vehicular platoons [31]. However, it turned out
that even though the n-D transfer function description is very compact (just

consider the neatness of the transfer function G(s, z) = z−1−1
ms2 of a however long

vehicular platoon with a predecessor following control strategy), the analysis is
far from trivial. The reason is that some standard results for 1-D polynomials
and 1-D transfer functions do not extend easily to their n-D counterparts. Even
the most fundamental concepts such as stability and coprimeness become very
contrived and mastery of the theory of complex functions of several variables is
a must. That is why I abandoned this approach, at least temporarily.

In the meantime, another doctoral student—Ivo Herman—whom I have been
co-advising with Michael Šebek—has continued using polynomial and transfer
function techniques but combined them with some classical results from algebraic
graph theory. In particular, in the paper [27] published in IEEE TAC we show
that the nonzero bound on the second smallest eigenvalue of the graph Laplacian,
which was once praised as a good quality of an asymmetric platoon, signals very
bad (exponential) scaling of the platoon as the number of vehicles grows. The
impact of asymmetry is further elaborated in [28] (already accepted for IEEE
TAC).

With Dan Martinec, while a MSc student, we built a few experimental demos
for vehicular platooning. First, using just some ten boxes of the popular Lego
Mindstorms NXT to build a platoon of ten autonomous vehicles traveling as a
platoon [44]. Second, building a significantly more agile platoon of vehicles using
Carrera slotcars and our own hardware that turned the dull toys into autonomous
machines with sufficient computational power [45]. We still continue with this
experimental platform, see the webpage http://aa4cc.dce.fel.cvut.cz or the
“aa4cc” Youtube channel for some videos.

Later, Dan Martinec, while a PhD student advised by Michael Šebek, tai-
lored the O’Connor’s wave transfer function approach to bidirectional control of
vehicular platoons and we describe this in [46].

Finally, with another doctoral student of mine—Jǐŕı Zemánek—we have been
working on a novel approach to (micro)manipulation which is based on shaping
the electric or magnetic field through a large array of actuators (electrodes for
the electric field and coils for the magnetic one). One of our early descriptions
of the problem from the viewpoint of control theory is in [30]. Recent report
on experimental achievements is in [86]. This research problem nicely combines
both the spatially continuous “physics” and the spatially discrete actuation and
possibly even sensing and control logic.
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1.4 Outline of the work

1.4 Outline of the work

The next chapter is dedicated to spatially continuous systems. Namely, I start
by giving a short intro to the problem of reflection-free impedance matching
for transmission lines. Then I reformulate the problem in the language of control
theory using the popular framework of linear fractional transformation (LFT) and
I show that this leads to a very unusual control design task consisting in solving
a quadratic (in the controller’s transfer function) equation. Finally, I relate this
unconventional control design to the widely popular H∞-optimal control design
and show that for lossless transmission lines these are identical.

This result may be of some interest on its own because many physically rele-
vant phenomena can be described by a wave equation (hence the transmission line
model) but my major motivation was to understand better the limits of the de-
signs to be done in the subsequent chapter. Namely, that chapter is dedicated to
spatially discrete systems—ladders or chains. Mimicking the development of the
well-understood reflection-free impedance matching of transmission lines brings
us to a related concept of an iterative impedance. After examining it closely,
I again aim at finding the relationship with the the H∞-optimal control design.
Then I discuss how these results, which were derived for the electrical circuits and
networks systems, could be applied in other physical domains, thanks to analogies
among physical domains. Namely, I show how these could be interpreted for the
mass-spring-damper chains. After this discussion I show how the presented re-
sults on matching and iterative impedances related to the wave transfer function
concept, which essentially triggered my interest in the topic.
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2 Spatially continuous
medium—transmission line theory

2.1 Introduction

In this introductory section we start by recalling a few basic terms and concepts
from both control and circuit theory so that we can later state the motivation
and goals of this chapter.

2.1.1 Linear fractional transformation and H∞-optimal control

Linear fractional transformation (LFT) within the control systems framework
denotes the feedback interconnection of a plant (the system to be controlled) and
a controller in Fig. 2.1.

G

K

w z

yu

Figure 2.1: Lower linear fractional transformation of a generalized plant (de-
scribed by a matrix transfer function G) with respect to the controller
(with a transfer function K)

The linear(ized) model of the (generalized) plant comes in the form of a matrix
transfer function G(s) structured as

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]
. (2.1)

This structure is given by classifying the inputs into two groups: exogenous
input(s) w and control input(s) u, and the outputs into: regulated output(s)
z and measured output(s) y. In this work we will only consider scalar signals
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2 Spatially continuous medium—transmission line theory

w, u, z and y, hence the matrix transfer function G will be of size 2 × 2. A
linear controller is described by its transfer function K. The closed-loop transfer
function F from the exogenous signal w to the regulated variable z is given by
the lower LFT (labeled Flower(·, ·) in equations) of G with respect to K

F = Flower(G,K) = G11 +G12K (I −G22K)
−1
G21, (2.2)

which in our scalar case simplifies to

F = G11 +
G12KG21

1−G22K
. (2.3)

After identifying properly all the four signals and building the (generalized)
plant description, the control design can be cast as an optimization problem:
find the feedback controller that not only stabilizes the feedback loop but also
makes the transfer function from w to z optimal in some sense.

One popular optimization framework is that of minimizing the H∞ norm of
the closed-loop system, that is,

minimize ‖Flower(G,K)‖∞ , (2.4)

over K stabilizing. Stabilization means that the closed-loop transfer function
F resides in the space H∞ of functions that are analytic and bounded in the
(extended) complex right half-plane. The H∞ norm of a scalar transfer function
F (s) is defined as

‖F‖∞ = sup
ω∈R
|F (jω)|. (2.5)

This norm also serves as the worst-case gain for the 2-norms of the correspond-
ing time-domain input and output signals

‖F‖∞ = sup
w\{0}

‖z‖2
‖w‖2

. (2.6)

2.1.2 Impedance matching

There are two related yet distinct notions of impedance matching used by engi-
neers. We will review them first and then comment on their relationship.

Reflection-free (or reflectionless or zero-reflection) impedance matching for
a transmission line

A standard situation encountered by electrical engineers is in Fig. 2.2, wherein a
(long) pair of closely spaced cables—a transmission line—is used to deliver a sig-
nal (or a power, depending on the context) to a receiver (or a load). The material

12



2.1 Introduction

Load

Figure 2.2: Transmission line loaded on one port

reviewed here can be found in texts on microwave engineering and transmission
lines such as [69], [49] or [42]. But nice exposition of the basics can also be found
in the control-oriented textbook [18], which also supports the use of analogies
among the physical domains.

Even if the losses in the cables are negligible, it is generally not possible to
neglect the dynamics of the transmission line. The voltage and current are then
parameterized by the position x along the transmission line, that is, we have to
consider u(x, t) and i(x, t). A linear model of a lossless transmission line is

∂u(x, t)

∂x
= −L ∂i(x, t)

∂t
,

∂i(x, t)

∂x
= −C ∂u(x, t)

∂t
, (2.7)

where L and C are unit-length inductance and capacitance, respectively.
The two PDEs (2.7) constitute one possible realization of the classical wave

equation
∂2u(x, t)

∂x2
=

1

c2
∂2u(x, t)

∂t2
, (2.8)

where the velocity coefficient is given by

c =
1√
LC

. (2.9)

The wave character of the (model of the) transmission line suggests that in
agreement with the d’Alembert’s solution of the wave equation, both the voltage
and current at any place can be expressed as a composition of incident and
reflected (traveling) waves, indexed with + and − indices, respectively, as in

u(x, t) = u+(x, t) + u−(x, t), (2.10)

i(x, t) = i+(x, t)− i−(x, t). (2.11)

The incident wave travels towards the loaded termination, the reflected wave
then travels back.

13



2 Spatially continuous medium—transmission line theory

For the lossless transmission line, the condition of no reflection at the end (on
the load side) is that the load impedance must be matched to the characteristic
impedance of the transmission line

ZL(s) = Zc(s), (2.12)

where the characteristic impedance of a transmission line is a ratio between the
Laplace transformed voltage and current, û(x, s) and î(x, s), respectively, for the
fictitious situation of a transmission line of an infinite length. This assumption
of an infinite length assures that there are no reflections at the end of the line
(there is no end at all). Thus

Zc(s) =
û+(x, s)

î+(x, s)
. (2.13)

For the lossless line the characteristic impedance is just a constant

Zc =

√
L

C
. (2.14)

A transmission line loaded with the matching impedance is called flat because
for a constant voltage applied across the driving terminals, the voltage remains
constant all along the line. This would not be the case for an unmatched trans-
mission line, where oscillations (standing waves) could be observed as a demon-
stration of superposition of the incident and reflected waves.

Maximum power transfer (conjugate) impedance matching

A setup for another concept of impedance matching is in Fig. 2.3—an intercon-
nection of a (voltage) generator and a load. According to Thévenin’s theorem, a
real generator of voltage can be represented as a series interconnection of an ideal
generator of voltage eG and an internal impedance ZG. The task is to choose
the load such that the maximum possible power is transferred from the generator
to the load. This is known as the Maximum Power Transfer problem (see, for
example [7], [37], [13] or essentially any textbook on electric networks/circuits).

i

u

+

− One-porteG

ZG

Figure 2.3: A load attached to a generator with an internal impedance
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2.1 Introduction

If the generator is producing a harmonic voltage eG(t) = eG,m cos(ω0t+ φ) at
a given frequency ω0, then in order to deliver as much power as possible from the
generator to the load, the two impedances must satisfy the

ZL(ω0) = ZG(ω0), (2.15)

where the bar denotes complex conjugation. Hence the name—conjugate match-
ing. If several frequencies are contained in the generator’s output, the conjugate
matching condition must be satisfied for all of them. This makes it generally
difficult to do a broadband conjugate impedance matching (note that for a given
passive impedance, its conjugate impedance is not passive any more).

If the internal impedance is real, that is, ZG = RG, the condition simplifies to

(ZL =)RL = RG, (2.16)

where RL and RG are the load and the internal generator resistances, respectively.
Although with the load resistance made identical to that of the generator,

the maximum power is transfered from the generator to the load, one half of
the power is still “burnt” on the internal resistor. The power transferred to an
arbitrary (real) load is

P(t) = u(t) i(t) = e(t)
RL

RL +RG

e(t)

RL +RG
, (2.17)

which for RL = RG gives the maximum value

Pa(t) =
e2(t)

4RG
. (2.18)

This is the best that could be achieved, thus this power is also called available
power (hence the subscript). For all other choices of the load impedance, even
more power will be dissipated on the internal generator resistor.

Beware that the condition of conjugate matching is valid for harmonic gener-
ators only. This constraint might be easily overlooked in the texts on electrical
circuits. As a matter of fact, we can only find a discussion of generalization of
this condition in [37], page 290. For rational impedances with real coefficients,
the condition reads

ZL(s) = ZG∗(s), (2.19)

where ZG∗ is called paraconjugate of ZG

ZG∗(s) = ZG(−s). (2.20)

and on the imaginary axis it agrees with the complex conjugate.
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2 Spatially continuous medium—transmission line theory

Relationship between the reflection-free and the maximum power transfer
impedance matching

The two concepts of impedance matching are fundamentally different. The
reflection-free impedance matching is conditioned by the local properties of medium
in which the wave is transmitted (the transmission line here) and its boundary
or termination, be it on the load side or the generator side. Whether or not
the voltage (or current) wave is reflected on load side does not depend at all on
the impedance matching (or any other condition) on the generator side. On the
other hand, the conjugate (or paraconjugate) impedance matching deals with the
relationship between the generator and the load. If a transmission line is used to
connect the two, its model becomes part of the model of the load or the generator
for the purpose of analysis.

For example, with the setup in Fig. 2.4 and with ZL = Zc = 1, ZG = 2, one can
prevent reflections of voltage (or current) waves at the load side and yet in this
setup the transfer of power from the generator to the load will not be optimal.

i1 i2

u1 u2

+

−

+

−
ZL

Transmission
line

eG

ZG

Figure 2.4: Interconnection of a voltage generator, a transmission line and a load

It is unfortunate that in many textbooks this distinction is not discussed in a
sufficient depth. A nice exception is [69]. Perhaps what adds to the potential
confusion is the fact that in the case of a real generator impedance and a loss-
less transmission line, both conditions come in the form of an equality of two
resistances, which conceals the fact that they are fundamentally two different
concepts. A similar complaint appeared recently in a clarifying tutorial paper
[84]. Another nice exposition is [70]. Both papers revolve around comparing
scattering description and power waves, which we will only lightly touch upon
towards the end of the chapter.

Some authors like [37] or [54] attempted to reconcile the two impedance match-
ing concepts by formally interconnecting the generator and the load with a
transmission line of zero length when investigating the maximum power transfer
impedance matching.

2.1.3 Impedance matching as linear fractional transformation

Analysis of a transmission line benefits from treating it as two-port network. That
is, we will only consider its voltage-current pairs at the left and right ends. We
assign the position of the the generator side of the transmission line to x = 0 and
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2.1 Introduction

the position of the load side to x = l, where l is the length of the transmission
line. For convenience we label the corresponding port variables as

u1(t) := u(0, t), (2.21)

i1(t) := i(0, t), (2.22)

u2(t) := u(l, t), (2.23)

i2(t) := i(l, t). (2.24)

With two equations, only two out of the four variables can be independent, that
is, two of the four variables can be considered as the inputs while the other two
will be the responses or the outputs. Hence we can find a number of combinations
leading to a number of formats of models. One particular choice considers u1 and
i1 as the inputs. This is called an inverse hybrid model, also g-parameters[

î1(s)
û2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

]
︸ ︷︷ ︸

G(s)

[
û1(s)

î2(s)

]
, (2.25)

where hat denotes Laplace transform of the corresponding time-domain signal
and G can be determined by solving the set of equations (2.7), which yields

G(s) =

 tanh(
√
LCls)

Zc(s) −sech
(√

LCls
)

sech
(√

LCls
)

tanh
(√

LCls
)
Zc(s)

 . (2.26)

The interconnections in the “physical diagram” in Fig. 2.5 can be redrawn in

i1 i2

u1 u2

+

−

+

−
ZL

Transmission
line

iL

Figure 2.5: Transmission line represented as a two-port network loaded on one
port with an impedance ZL

a signal-flow diagram as in Fig. 2.6.
The relationship between this signal-flow diagram and the lower LFT in Fig. 2.1

is now imminent, although one must not overlook that because of the conventions
that currents are entering the port, the feedback loop must be negative. The
loaded transmission line becomes a one-port network and its admittance (the
inverse of impedance)

Y1(s) =
î1(s)

û1(s)
(2.27)
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2 Spatially continuous medium—transmission line theory

Transmission line Load

i1 i2

u2u1

G11

G21

G22

G12

−1/ZL

Figure 2.6: Signal-flow diagram of an interconnection of a two-port network de-
scribed with an inverse hybrid transfer function and a load described
with an admittance

can be computed using

Y1 = Flower(G, YL) = G11 −
G12YLG21

1 +G22YL
. (2.28)

Combining this with the inverse hybrid description of the two-port network in
(2.26), we get

Y1(s) = Yc
YL(s) + Yc tanh(lγ(s))

Yc + YL(s) tanh(lγ(s))
, (2.29)

where γ(s) =
√
LCs and the characteristic admittance is given by

Yc =
1

Zc

(
=

√
C

L

)
. (2.30)

We have already recapped that in order to prevent the incident voltage and
current waves from reflections on the load, the load admittance must be real and
must satisfy

YL = Yc. (2.31)

We can arrive at an insightful interpretation of reflection-free impedance match-
ing upon evaluating the input-port admittance Y1 for the line terminated with a
matching load, namely

Y1 = YL, (2.32)

and, of course,

Z1 = ZL. (2.33)

In words, the matched transmission line seems transparent from the input port,
the only admittance (or impedance) that can be “seen” at the input port is that
of the load. This invites to exploit this equality in the LFT (2.28) for the loaded
transmission line

YL = G11 −
G12YLG21

1 +G22YL
. (2.34)
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2.1 Introduction

This is a quadratic equation in YL

G22 YL
2 + (1 +G12G21 −G11G22)YL −G11 = 0. (2.35)

Substituting for G into the general solution of a second-order equation we get

YL,matched =
−(1 +G12G21 −G11G22)

2G22

±
√

(1 +G12G21 −G11G22)2 + 4G11G22

2G22
, (2.36)

wherein the irrational part disappears and after some tedious manipulations one
can show that

YL,matched(s) = ±
√
C

L

(
= ± 1

Zc

)
. (2.37)

The fact that we have now discovered two solutions may come at surprise but
the new solution, having a negative value of resistance, can be interpreted as an
active solution. Indeed, a negative impedance is a well-known concept in electrical
circuits and is used to represent a special type of a source that sets its voltage
based on the current that flows through it (or sets its current based on the voltage
across its terminals).

2.1.4 Traveling waves and impedance matching in control

There are diverse physical phenomena in numerous engineering applications,
which exhibit the wave dynamics as sketched above. Instead of viewing the
oscillations in the systems as demonstration of a standing wave (and following
the well-established modal analysis), it sometimes turns out useful to decompose
the standing wave into two traveling waves going in the opposite directions. The
special issue of the Mechanical Systems and Signal Processing journal [11] gives
some up-to-date overview, although somewhat biased towards flexible mechanical
structures. See [81], [50], [25], [74] for some more examples of analysis of flexible
mechanical structures through traveling wave approaches. The traveling wave
viewpoint also proves useful in studying propagation of electromechanical distur-
bances in large and dense (hence could be approximated by a continuum model)
power generation and distribution networks, see for instance [72], [75] and [40].
Perhaps surprisingly, the wave approach was successfully used to compensate for
the detrimental effect of time delays in bilateral teleoperation of robots [2], [29].
There are also control design challenges in acoustic and thermoacoustic domains
where the traveling wave might yield some more insight [19].

Although these systems typically span two- or three-dimensional spatial do-
mains, some lesson can be learned by restricting attention to the one-dimensional
case.
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2 Spatially continuous medium—transmission line theory

If control is only allowed through the boundaries, the concept of impedance
matching offers itself as one suitable framework. The motivation for our work is
to see how this practical concept (or concepts) of impedance matching fit into
the framework of optimal control theory. Namely, we are going to show that in
the case of a lossless transmission line, the standard and relatively easy task of
terminating the line with a matching (real) impedance is equivalent to the much
more computationally involved task of finding an H∞-optimal controller for an
infinite-dimensional system.

2.2 Control theoretic formulation of impedance
matching within LFT framework

2.2.1 Reflection-free impedance matching

We can recognize the task of finding the matching load impedance (admittance)
for a transmission line in Fig. 2.6 as a special instance of the generalized feedback
control design problem within the LFT setting as in Fig. 2.1. We will now make
a switch to the notational conventions favored by the control theory community:
we rename the load admittance YL into the “controller” K

K := YL (2.38)

and instead of the input-port admittance Y1 of the loaded transmission line we
are going to speak about the closed-loop transfer function F (note however that
we opted to use the conventions that force us to use a negative feedback)

F := Flower(G,−K). (2.39)

The control-theoretic translation of the impedance matching requirement (2.32)
turns out somewhat nontraditional: find a stabilizing feedback controller K such
that

K = Flower(G,−K). (2.40)

In words, find a stabilizing feedback controller that yields the closed-loop sys-
tem with the identical transfer function! This is not quite a usual control design
problem, is it? Most often than not, the control design problems formulated in
the LFT framework lead to an optimization of some closed-loop characteristic
such as H1, H2 and `1 system norms. The question that will keep us busy till the
rest of the chapter is whether the impedance-matching “controller” is optimal in
any such usual (or unusual) sense.
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2.3 Static H∞-optimal control problem for a lossless transmission line

2.3 Static H∞-optimal control problem for a lossless
transmission line

For convenience we start our analysis using a model (2.29) of a transmission line
with normalized parameters L,C = 1, and assuming a transmission line of unit
length (l = 1). The closed-loop transfer function is then

F (K) := Flower(G,−K) =
K + tanh s

1 +K tanh s

=
sinh s+K cosh s

cosh s+K sinh s
. (2.41)

There are an infinite number of closed-loop poles and zeros and if we restrict
ourselves to proportional (also called static) controllers (K ∈ R), these are

P =

{
s ∈ C : s = −artanh

(
1

K

)
+ πm, m ∈ Z,  =

√
−1

}
(2.42)

and

Z =
{
s ∈ C : s = −artanh(K) + πm, m ∈ Z,  =

√
−1
}
, (2.43)

for which the plot of poles and zeros loci is in Fig. 2.7.
For K = 0, which corresponds to RL = ∞, hence an open circuit on the load

side, the closed-loop poles and zeros coincide with the open-loop ones, that is,
they are located on the imaginary axis. For a short-circuit on the load side of the
transmission line, which corresponds to K =∞, the closed-loop poles and zeros
are again on the imaginary axis.

It is exactly for the matching value of K = 1, that the closed-loop transfer
function changes into

F =
sinh s+ cosh s

cosh s+ sinh s

=
exp s

exp s

= 1. (2.44)

It has neither finite poles nor zeros, hence it is a constant function. Indeed,
this is no cancellation of poles and zeros but rather simultaneous vanishing of
poles and zeros. Thus, stability is trivially guaranteed.

We already know that Kmatched = 1 achieves the reflection-free impedance
matching but now will now examine how this controller Kmatched relates to a
stabilizing controller K∞ that minimizes the H∞ norm of the closed-loop transfer
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2 Spatially continuous medium—transmission line theory

0

2π

π

Re

Im

Figure 2.7: Root loci for the numerator (blue) and the denominator (red) of the
closed-loop system—the lossless transmission line loaded with a real
resistor with varying resistance. The closed-loop poles start at ’×’ and
move to the left as RL decreases (K increases). For the vanishing load
resistance (infinite controller’s gain) the closed-loop poles are back
on the imaginary axis, this time in the positions ’◦’ of the open-loop
zeros. Similarly, closed-loop zeros set out from ’◦’ to the left and
after K crosses 1 they return to the positions of open-loop poles on
the imaginary axis

function T , that is,

K∞ = argmin
K∈R+

∥∥∥∥ sinh s+K cosh s

cosh s+K sinh s

∥∥∥∥
∞
. (2.45)

Designing an H∞-optimal controller for an infinite-dimensional system is a
challenging task [21] because the system transfer function is irrational and one
might anticipate that the optimal controller must be infinite-dimensional as well.
However, a remarkable observation that we are going to prove is that if we re-
strict ourselves to proportional controllers, the minimum norm is achieved by the
“matching controller”, which is just a real-valued gain (a constant)! Namely,

K∞ = Kmatched = 1. (2.46)

Furthermore, from (2.40) we know that the matching controller makes the
closed-loop transfer function identical to its own transfer function, hence

F∞ = K∞, (2.47)
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2.3 Static H∞-optimal control problem for a lossless transmission line

which can be written explicitly as

K∞ = Flower(G,−K). (2.48)

Even though we are going to extend this results by considering dynamical
controllers (including those with irrational transfer functions), the restriction of
optimal control design to proportional controllers is surprising and interesting on
its own, hence we state it as a lemma and prove it. And we will do it for the
general nonnormalized lossless transmission line.

Lemma 1. We consider the closed-loop transfer function F (s) = Yc
K+Yc tanh(lγ(s))
Yc+K tanh(lγ(s) ,

which corresponds to the admittance of a lossless transmission line with a char-
acteristic admittance Yc =

√
C/L, length l and the propagation function γ(s) =√

LCs, terminated with a resistive load characterized with a real admittance K.
A stabilizing “controller” (=load admittance) K∞ that minimizes the H∞ norm
of the closed-loop transfer function F can be found as the positive solution of

the quadratic (in K∞) equation K∞ = Yc
K∞+Yc tanh(lγ(s))
Yc+K∞ tanh(lγ(s)) . This solution is

K∞ = Yc =
(
C
L

) 1
2 .

Proof. First, in order to get some insight, let’s restrict ourselves to the normalized
line (L,C = 1) of unit length (l = 1). The proof boils down to verifying that
‖F‖2∞ = max{K2, 1

K2 }. This can be seen by evaluating the squared magnitude
frequency response

|F (ω)|2 = F (ω)F (ω) (2.49)

=
K2 + tan2(ω)

1 +K2 tan2(ω)
(2.50)

=
K2 cos2(ω) + sin2(ω)

cos2(ω) +K2 sin2(ω)
, (2.51)

which is periodic with the period of π and the local minima and maxima are
located at integer multiples of π/2. The typical magnitude frequency responses
of F (squared) are in Fig. 2.8 for K = 0.9, 1.1 and K = 1.0.

Now, consider the full case in which L,C and/or l are not necessarily of unit
value. Then it can be shown that |F (ω)|2 is periodic with the period of π

l
√
LC

and

the extrema are located at positions equal to integer multiples of π
2l
√
LC

and they

assume values either K2 or
Y 2
c

K2 = 1
K2

C
L . Thus the optimal setting for the positive

and real-valued proportional controller is K∞ = Yc =
(
C
L

) 1
2 , which satisfies the

quadratic equation.
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Figure 2.8: Magnitude frequency responses (squared) of the closed-loop transfer
function F for three values of K

Although knowing that the proportional (static) controller that minimizes the
H∞ norm of the closed-loop transfer function can be computed without any
resort to solving Riccati equations (or whatsoever), the question is, if any further
performance improvement can be achieved by extending the search to dynamical
controllers.

2.4 Dynamical H∞-optimal control problem for a
lossless transmission line

We have just learned that with a proportional controller we can beat ‖F‖∞ as

down as to (C/L)
1
2 . For the normalized and unit-length transmission line this

means we can achieve ‖F‖∞ = 1.

We will now show that there is a lower bound on the achievable H∞ norm of
the closed-loop transfer function F , that is

‖F‖∞ ≥ Yc, (2.52)

which, again, for the normalized and unit-length transmission line specializes to

‖F‖∞ ≥ 1. (2.53)

In order to prove the existence of this lower bound, we use the popular scat-
tering description, which we recap next.
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2.4.1 Scattering description

History of the concept

The idea of scattering description (or representation) of dynamical systems has
its roots in research in fundamental physics in 1930s [83]. But soon it found its
way into electrical engineering. Namely, it was simultaneously developed during
the WWII in Belgium by Belevitch and in the USA by Dicke, Montgomery and
Purcell. Belevitch presented his results in his dissertation in 1945 and reproduced
them partially three years later in [8]). The results by Dicke and his colleagues
were published at the same time [17], [51]. Whereas the former considered cir-
cuits composed of lumped elements, the latter focused on response of spatially
distributed circuits in microwave frequency regions.

Later the concept was further developed by Kurokawa in his paper [38] and
book [39]. In particular, he elaborates on distinction between different types of
wave variables: voltage, current, power waves.

The concept of scattering description has found its way to perhaps every text-
book on electrical circuits such as [37], [16], [13], [54], [1] and [5] and including
Belevitch’s own monograph [7]. Especially those focused on microwave frequen-
cies such as [69] and transmission lines [49], [42]. Among shorter texts, [85] or
[43] can be recommended.

Scattering description

Scattering description is based on one particular transformation of the original
“physical variables” u and i into a new pair of variables

û+ =
1

2
(û+ Zref î), (2.54)

û− =
1

2
(û− Zref î), (2.55)

where Zref is some reference impedance that parameterizes the transformation
and the variables u+ and u− are called wave variables for the reasons to be
cleared up briefly. Ignore for the moment the fact that we have already discussed
objects with identical symbols (u+ and u−) earlier in the paper in (2.10); (indeed,
they are related). The two new variables have the physical dimension of voltage.
Although we can similarly transform the current, we will stick with the voltage.

We will write (2.54) and (2.55) in the matrix-vector format[
û+

û−

]
=

1

2

[
1 Zref

1 −Zref

] [
û

î

]
. (2.56)
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Inverting this relationship we get[
û

î

]
=

[
1 1

Z−1
ref −Z−1

ref

] [
û+

û−

]
, (2.57)

wherein we label the matrix on the right-hand side as T , that is

T =

[
1 1

Z−1
ref −Z−1

ref

]
. (2.58)

Compare this with (2.10) and (2.11) combined with (2.13)—the scattering
framework formalizes (and generalizes) the split of the original physical vari-
ables into incident and reflected quantities (waves). Note that here we consider
some as of yet unspecified reference impedance Zref .

An important step in our analysis is to apply Laplace transform to the temporal
variable in (2.7), which turns the two PDEs into a set of two ODEs in a state-space
format (note that the independent variable is x and the matrix A is parameterized
by s)1 [

∂û(x,s)
∂x

∂î(x,s)
∂x

]
=

[
0 −Ls
−Cs 0

]
︸ ︷︷ ︸

A(s)

[
û(x, s)

î(x, s)

]
. (2.59)

Standard procedure in the analysis of state space models is to diagonalize the
system’s A matrix through an eigen-decomposition[∂û

∂x
∂î
∂x

]
=

[
1 1

Z−1
c −Z−1

c

] [
−γ 0
0 γ

] [
1 1

Z−1
c −Z−1

c

]−1 [
û

î

]
, (2.60)

where the eigenvalues are given in terms of

γ(s) =
√
LCs. (2.61)

The middle term in the decomposition captures the decoupled dynamics in the
new wave variables [

∂û+(x,s)
∂x

∂û−(x,s)
∂x

]
=

[
−γ(s) 0

0 γ(s)

] [
û+(x, s)
û−(x, s)

]
(2.62)

Obviously, the transformation given by (2.54) and (2.55) diagonalizes the state-
space system for the particular choice

Zref = Zc. (2.63)

1Note that by transforming the temporal variable, we follow a completely different path here
then what is promoted in [6], where they turn the PDE into a state-space model by Fourier-
transforming the spatial variable.
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2.4 Dynamical H∞-optimal control problem for a lossless transmission line

e−τs 2

1
ZL

Yc 2 −1 e−τs −Zc

u1 u+
1 u+

2 u2

i2u−2u−1i1

Figure 2.9: Diagonal decomposition of the original two-port network description

The reason why we struggled to obtain a diagonal model is that now we can
easily solve it independently for each state variable (note that the independent
variable is x here)

û+(x, s) = e−γ(s)x û+(0, s) (2.64)

û−(x, s) = eγ(s)(x−l) û−(l, s) = e−γ(s)(l−x) û−(l, s), (2.65)

which allows us to find transfer functions

û+
2 (s)

û+
1 (s)

= e−γ(s) l, (2.66)

û−1 (s)

û−2 (s)
= e−γ(s) l, (2.67)

where

γ(s)l =
√
LCls =

l

c
s = τs (2.68)

and τ is the time the wave needs to travel across the transmission line of the
length l at velocity c.

This decomposition can also be visualized in the block diagram in Fig. 2.9,
wherein we used [

î1
û+

1

]
=

[
Yc −2Yc

1 −1

] [
û1

û−1

]
(2.69)

and [
û2

û−2

]
=

[
−Zc 2
−Zc 1

] [
î2
û+

2

]
. (2.70)

The transfer function from u+
1 to u−1 can be written as

û−1 (s)

û+
1 (s)

=
û−1 (s)

û−2 (s)

û−2 (s)

û+
2 (s)

û+
2 (s)

û+
1 (s)

, (2.71)

27



2 Spatially continuous medium—transmission line theory

in which we label the middle transfer function as SL(s)

SL(s) :=
û−2 (s)

û+
2 (s)

, (2.72)

and it can be found either directly from the block diagram or by substituting for
the û+

2 and û−2 the original (physical) variables û2 and î2 and relating the two
physical variables by their known relationship on the load side of the line

û2(s) = ZL(s) î2(s). (2.73)

Then substituting this into (2.54) and (2.55) while invoking (2.63) yields

û+
2 (s) = (ZL(s) + Zc(s)) î(l, s), (2.74)

û−2 (s) = (ZL(s)− Zc(s)) î(l, s), (2.75)

which finally gives the desired third transfer function

SL(s) =
ZL(s)− Zc(s)

ZL(s) + Zc(s)
. (2.76)

Within the microwave engineering community this transfer function has its
name—the reflection coefficient or reflectance2. Making it zero by setting

ZL = Zc (2.77)

is how the impedance matching condition (2.12) was arrived at.
For completeness we state here that in general the relationship between the

incident and reflected waves on both ports is captured by means of scattering
matrix S [

û−1
û−2

]
=

[
S11(s) S12(s)
S21(s) S22(s)

] [
û+

1

û+
2

]
(2.78)

used widely in the circuits [7],[54],[37] and microwave communities [69]. Scat-
tering matrix is nothing else then a two-port version of the reflection coefficient
defined in (2.72) for a one-port—the scattering matrix relates the incident waves
(u+

1 and u+
2 ) with the reflected waves (u−1 and u−2 ). For the reference impedance

set equal to the characteristic impedance of the line, the diagonal entries of the
scattering matrix vanish

S(s) =

[
0 e−τs

e−τs 0

]
(2.79)

and (2.71) can be evaluated as Flower(S, SL) into

û−1 (s)

û+
1 (s)

= e−2τsSL(s). (2.80)

2A more common symbol for the reflectance in the literature is Γ but here we choose SL to
emphasize that it is just a scalar version of the scattering matrix S.

28



2.4 Dynamical H∞-optimal control problem for a lossless transmission line

2.4.2 Closed-loop transfer function parameterized by the
reflection coefficient

At the end of the day, what we are after is the closed-loop transfer function
F (s) = î1(s)/û1(s) relating the physical variables u1 and i1. It can be written
using the wave variables as

F (s) =
î1(s)

û1(s)

=
î+1 (s)− î−1 (s)

û+
1 (s) + û−1 (s)

=
1

Zref(s)

û+
1 (s)− û−1 (s)

û+
1 (s) + û−1 (s)

, (2.81)

which for Zref = Zc gives

F (s) =
1

Zc

û+
1 (s)

(
1− e−2τsSL(s)

)
û+

1 (s) (1 + e−2τsSL(s))

=
1

Zc

1− e−2τsSL(s)

1 + e−2τsSL(s)
. (2.82)

For convenience (and without loss of generality), we will again consider the
normalized case and unit-length case, for which Zc = 1, τ = 1 and

F (s) =
1− e−2sSL(s)

1 + e−2sSL(s)
. (2.83)

Voilà a new parameterization of achievable closed-loop transfer functions!
Can we beat the H∞ norm of F in (2.83) below 1? Choosing the reflection

coefficient SL(s) = e2s sets the closed-loop transfer function to zero

F (s) =
1− e−2s e2s

1 + e−2s e2s
= 0/2 = 0. (2.84)

An important observation is that this reflection coefficient SL is not proper
(it is the opposite of a delay). This trivial fact can also be seen formally from
unboundedness of SL(s) in the extended right half plane (see [15]). Although one
may feel that there is no need to require properness (hence realizability) of the
reflectance SL(s) because what we are only interested in is realizability of the
“controller” K(s) in the physical domain, the need for properness of SL can be
physically justified as well. Being nonproper means that if a voltage is applied at
the input port, the reaction of the controller on the load side (the reflected wave)
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2 Spatially continuous medium—transmission line theory

can be delivered to the input port before the incident wave hits the controller
port. In this particular case, the controller essentially decouples the output i1
from the input u1: although voltage is applied to the input terminal pair of a
long transmission line, no current flows from the generator to the line.

Making a physical analogy with a slender flexible bar vibrating in a longitudinal
direction, the force acting on one end of the bar will see no movement as a
response because the controller on the other end of the bar sends special waves
with anticipation of the force so that the end of the bar on which the force is
exerted will behave as a “wall”, fixed in the inertial space. This is not realizable.

But we can also analyze the resulting controller itself. We can get the transfer
function by transforming SL back to the load impedance using

ZL =
1 + SL

1− SL
, (2.85)

from which the corresponding “controller” (admittance) is

K(s) =
1

ZL(s)
=

1− e2s

1 + e2s
. (2.86)

In the time-domain, the relationship between the input and output of the
controller is (note that here we use the variables as in Fig. 2.1)

u(t) + u(t+ 2) = y(t)− y(t+ 2), (2.87)

that is,
u(t) = −u(t+ 2) + y(t)− y(t+ 2). (2.88)

Here comes the key argument that it is not possible to get the norm of the
closed-loop system under 1. The transfer function F in (2.83) can be factored as

F (s) = 1− 2
e−2s SL(s)

1 + e−2s SL(s)
. (2.89)

Match this to Fig. 2.9. The first term on the right (the scalar 1) corresponds
to the leftmost direct path from u1 to i1 (in the nonnormalized case this path
contains the Zc term) and everything else in the diagram comes from the reflec-
tion of the wave (this also nicely reinforces the definition of the characteristic
impedance Zc as the local characteristic). Now, in order to get

‖F‖∞ < 1, (2.90)

we must have ∣∣∣∣1− 2
e−2ω SL(ω)

1 + e−2ω SL(ω)

∣∣∣∣ < 1, ∀ω ∈ R. (2.91)
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2.4 Dynamical H∞-optimal control problem for a lossless transmission line

Let’s label the second term as

H(ω) = 2
e−2ω SL(ω)

1 + e−2ω SL(ω)
, (2.92)

and it must reside for all frequencies in the open unit circle centered at 1, see
Fig. 2.10.

Re

Im

0−1

Figure 2.10: A unit circle centered at -1 inside which the Nyquist curve H(ω) =

2 e−2ω SL(ω)
1+e−2ω SL(ω) must reside, should the norm of the closed-loop trans-

fer function be strictly smaller than 1

If SL(s) is strictly proper, then lims→∞H(s) = 0, which breaks (2.91). If
SL(s) is just proper (see [15] for a discussion of properness for irrational transfer
functions), the limit need not exist but at least the function must be bounded as
the frequency ω goes to infinity along the imaginary axis. Therefore

lim sup
ω→∞

∣∣∣∣2 SL(ω)

1 + e−2ω SL(ω)

∣∣∣∣ <∞ (2.93)

and with a suitable choice of SL one can fit the above term into the circle. But
then comes the delay term, which effectively rotates the content of the term above
around the origin of the complex plane—no way to stick to the inside of the circle
in Fig. 2.10 after such rotation.

To conclude, even dynamical controllers can not make the H∞ norm of the
closed-loop transfer function F strictly smaller than 1. And since we have already
found one controller that achieves the norm exactly 1, we can claim we have
found an optimal controller. We do not exclude the possibility that there are
dynamical controllers that are optimal too. But we are happy with a simple
one—a proportional one. We conclude by stating the result as a theorem

Theorem 1. The achievable H∞ norm of the closed-loop transfer function F =
Flower(G,K), where G is the 2× 2 matrix transfer function corresponding to the
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2 Spatially continuous medium—transmission line theory

inverse hybrid model of a normalized lossless transmission line and K correspond-
ing to the admittance of the load, is bounded from below by Yc. Moreover, this
lower bound can be achieved using a proportional controller corresponding to a
matching real admittance.

Proof. The lower-boundedness by 1 was proved for the normalized and unit-
length case in the text above. The existence of the proportional controller achiev-
ing the value of the lower bound is given by the Lemma.

2.4.3 Power waves

To gain some additional insight into the difficulties of extending this result, it is
worth mentioning that the transformation given by (2.54) and (2.55) is not the
only reasonable one. Another useful one is

â =
1

2

û+ Zref î√
<(Zref)

, (2.94)

b̂ =
1

2

û− Zref î√
<(Zref)

, (2.95)

which for a real impedance Zref = Rref simplifies to

a =
1

2

u+Rref i√
Rref

, (2.96)

b =
1

2

u−Rref i√
Rref

. (2.97)

Sticking for a while with real reference impedances, the new variables a and b
are called power waves. The reason for this terminology is that if we now square
the two variables, we get

a2 =
1

4

(RL +Rref)
2

Rref
i2, (2.98)

b2 =
1

4

(RL −Rref)
2

Rref
i2, (2.99)

which simplifies significantly if RL = Rref

a2 = Rref i
2, (2.100)

b2 = 0. (2.101)
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2.4 Dynamical H∞-optimal control problem for a lossless transmission line

With the interpretation of Rref as the internal resistance of some generator of
voltage e that feeds the load, the above condition corresponds to the maximum
power transfer condition (2.16). To see this, plug in the current given by

i =
e

2Rref
, (2.102)

into (2.100) to get

a2 =
e2

4Rref
, (2.103)

which should look familiar since for Rref = RG this agrees with the available
power (2.18), whereas the squared b variable is the extra power that is dissipated
on the internal resistor (in addition to the minimum power that needs to be burnt
there anyway). If the load is not matched, the power delivered to the load can
be written as

P(t) = a2(t)− b2(t), (2.104)

hence the name power waves—if not all the available power is used by the load,
we view as if the power wave was reflected on the load and sent back to the
generator.

The situation gets more complicated when complex reference impedance is used.
As proposed (among others) by [38], the transformation can be defined differently

â =
1

2

û+ Zref î√
<(Zref)

, (2.105)

b̂ =
1

2

û− Z∗ref î√
<(Zref)

. (2.106)

One can check (or see in [70]) that for a complex reference impedance (hence
load and internal impedance), (2.104) is only valid with this modified transfor-
mation3. The original voltage or current waves (possibly normalized by a real
constant) cannot be immediately related to power waves.

Although introduced a long time ago, there are still some disputes such as
[84] related to this transformation. Furthermore, note that the concept of power
waves is still related to the harmonic generators. The transformation will have
to be further modified by replacing the harmonic conjugates with paraconjugates

3Beware the issue of time- vs. frequency-domain signal. Once switching to frequency domain
(Fourier transform), evaluating a power can be quite tricky. Some newer textbooks even
have it wrong in that they define power as a product of Laplace transformed current and
voltage. But this restricts the signals to decaying ones (unless one brings in the distribution
theory...), and then, what Parseval theorem gives, is a relationship for total energies and not
power, not to speak of average power. The classical books on electric networks and circuits
compute the average power in a harmonic steady state using using phasors.
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2 Spatially continuous medium—transmission line theory

(see [37], page 291). We will not delve into these since in this work we assume
a lossless transmission line, hence the characteristic resistance will be real. Our
motivation for including this material was to highlight the possible complications
when considering lossy transmission lines, for which the characteristic impedance
is complex.

2.5 Conclusions and future research

In this work we proved that the impedance matching load for a lossless transmis-
sion line minimizes the H∞ norm of the admittance of the loaded transmission
line. This result can be appealing for at least two reasons: first, this gives an
benchmark example for computational design of H∞-optimal controller for an
infinite-dimensional linear dynamical system described by an irrational transfer
function. Second, this result may help develop some insight into scaling of chains
of interconnected lumped dynamical systems. Research in this direction is under
way.

The restriction to lossless transmission lines that we applied in this work turns
out crucial. It is only in the lossless case that the characteristic impedance of a
transmission line is just a positive real constant. The characteristic impedance
of a lossy line is irrational transfer function. Moreover, the distinction between
the reflection-free impedance matching and conjugate impedance matching starts
playing a role, which deserves to be investigated further. In particular, it looks
worthy to investigate the possibilities in casting the problem of maximum power
transfer in the general Integral Quadratic Constraints (IQC) framework [47].
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3 Spatially discrete medium—chains
of lumped systems

3.1 Formats of models of a two-port linear network

Thanks to Maxwell analogy among physical domains (see, for example, [9]), we
can identify the same structure of dynamical systems across several physical
domains. The structure of interest for us is also shared by ladders or cascades of
simple sections composed of basic electric elements as shown in Fig. 1.4. Without
loss of generality we will adhere to the electric domain for a while and discuss
physical analogies later.

3.1.1 Two-port networks

Let us recall the concept of a two-port network here. This is a dynamical sys-
tem which interacts with the environment (other systems) by exchanging power
through two ports. Each port is realized as a pair of terminals (wires, leads).
The port voltage is defined as a potential difference the two terminals. The port
current enters one terminal and leaves through the other, see Fig. 3.1

i1 i2

u1 u2

+

−

+

−
Two-port

Figure 3.1: Electric two-port network. The port 1 is characterized by the voltage
u1 and the current i1, the port 2 is similarly characterized by u2 and
i2

A popular (because fairly general) internal structure of a two-port network is
in Fig. 3.2.

In this work we will restrict ourselves to L-sections in which the impedances

35



3 Spatially discrete medium—chains of lumped systems

Z1
i1

Z2

i2
+

−

u1

+

−

u2

Figure 3.2: An L-section with a series and shunt impedances, Z1(s) and Z2(s),
respectively

that define the section are frequency-dependent and their Laplace transforms are

Z1(s) = Ls+R, (3.1)

Z2(s) = 1/Y2(s) (3.2)

Y2(s) = Cs+G. (3.3)

as in Fig. 3.3.

R
i1

L

C 1/G

i2
+

−

u1

+

−

u2

Figure 3.3: A single lumped L-section from which the resulting chain is composed

We will actually consider lossless section, that is, R = 0 and G = 0, in this
paper.

In order to uniquely describe the system, two of these four variables u1, i1, u2, i2
must be chosen as the inputs and the other two are then the outputs. This gives
rise to several formats of input-output models. Here we will recall just two of
them: hybrid model (or actually inverse hybrid) and cascade (also called chain
or transmission or ABCD model), or actually its inverse (or backward) version.

3.1.2 Inverse hybrid transfer function matrix

Let us start with the inverse hybrid model, which is driven by u1 and i2 (we
call them inputs) and whose response is i1 and u2 (we call them outputs) as in
Fig. 3.5. The entries of the corresponding 2×2 transfer function matrix are called
g-parameters. Note that the hybrid description without the adjective inverse is
commonly defined with i1 and u2 as the inputs and u1 and i2 as the outputs.
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3.1 Formats of models of a two-port linear network

The entries of the corresponding 2×2 matrix are then the popular h-parameters.
The inverse hybrid transfer function model is[

î1(s)
û2(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
û1(s)

î2(s)

]
. (3.4)

In our case of an L-section with a series impedance Z1(s) and a shunt admit-
tance Y2(s) the inverse hybrid description is[

î1(s)
û2(s)

]
=

[
Y2(s)

1+Z1(s)Y2(s) − 1
1+Z1(s)Y2(s)

1
1+Z1(s)Y2(s)

Z1(s)
1+Z1(s)Y2(s)

]
︸ ︷︷ ︸

G(s)

[
û1(s)

î2(s).

]
. (3.5)

Considering the lossless and normalized case, that is, if R = G = 01 and
L = C = 1, the inverse hybrid description is[

î1(s)
û2(s)

]
=

[ s
1+s2 − 1

1+s2
1

1+s2
s

1+s2

] [
û1(s)

î2(s).

]
. (3.6)

This format of a model is particularly useful when a one-port load is to be
attached to a given two-port network as in Fig. 3.4.

i1 i2

u1 u2

+

−

+

−
ZLTwo-port

iL

Figure 3.4: Two-port loaded on the port 2 with an impedance ZL.

The convenience can be found in the signal-flow graph in Fig. 3.5—depending
on the chosen causality (whether the voltage u1 or the current i1 are the inputs)
we can immediately substitute one of the two equations for the load

− î2(s) = îL(s) = YL(s)û2(s) (3.7)

or
û2(s) = ZL(s)̂iL(s) = −ZL(s)̂i2(s) (3.8)

into (3.4) to get a transfer function from u1 to i1, see the discussion of linear
fractional transformation in the next section.

1Beware that there is a notational clash between the usage of G for the inverse hybrid matrix
and the shunt conductance. We do not resolve it by introducing some less common symbols
for one of the two variables. The context will certainly help resolve avoid confusion.
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3 Spatially discrete medium—chains of lumped systems

Subsystem Load

i1 i2

u2u1

Figure 3.5: Signal flow graph for an interconnection of two two-ports which are
modeled using the (inverse) hybrid parameters

3.1.3 Inverse chain transfer function matrix

The other format of a mathematical model of a two-port network that we are
going to use is the inverse chain (also called inverse ABCD) transfer function
matrix. The matrix defines the input-output model (after applying Laplace trans-
form) [

û2(s)

−î2(s)

]
=

[
b11(s) b12(s)
b21(s) b22(s)

] [
û1(s)

î1(s)

]
. (3.9)

Note the minus sign with the output current i2; the reason for its introduction
is that this format then allows building the models of cascade interconnections
as in Fig. 3.6 very easily—by multiplication of the inverse chain matrices (or by
raising them to an integer power in the case of identical inverse chain matrices).[

û2(s)

−î2(s)

]
= B2

[
û1(s)

î1(s)

]
(3.10)

= B2B1

[
û0(s)

î0(s)

]
. (3.11)

i0 := i
(1)
1 i

(1)
2

u0 u1

+

−

+

−

i
(2)
1 =: i1 i

(2)
2 =: i2

u2

+

−Two-port 1 Two-port 2−i0 −i3

Figure 3.6: Chain (or cascade) interconnection of two two-ports.

For an L-section with a series impedance Z1 and a shunt admittance Y2, the
inverse chain model is[

û2(s)

−î2(s)

]
=

[
1 −Z1(s)

−Y2(s) 1 + Z1(s)Y2(s)

]
︸ ︷︷ ︸

B(s)

[
û1(s)

î1(s)

]
. (3.12)
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3.2 Linear fractional transformation and feedback interconnection of two- and one-port networks

For the lossless and normalized case, that is, if R = G = 0 and L = C = 1, the
(inverse) chain model is[

û2(s)

−î2(s)

]
=

[
1 −s
−s 1 + s2

] [
û1(s)

î1(s)

]
, (3.13)

Although in Fig. 3.7 we give a signal flow graph for this interconnection, note
that there is a caveat when trying to give it the usual input-output interpretation
because the two variables on a given port are not independent—they are coupled
through the boundary conditions. Anyhow, we use the signal flow graph to encode
graphically the structure of the corresponding equations.

Subsystem 1 Subsystem 2

u0

i0 i1 i2

u2u1

Figure 3.7: Chain interconnection of two two-port networks described by their
(inverse) chain transfer functions.

There is a relationship between the inverse chain matrix (the B transfer matrix
above) and the inverse hybrid matrix (the G matrix above):[

g11 g12

g21 g22

]
=

[
−b−1

22 b21 −b−1
22

b11 − b12 b
−1
22 b21 −b12 b

−1
22

]
. (3.14)

Beware that if we were to stick to the sign conventions for the B matrix (3.9)
related to the current through the right port, the current i2 in Fig. 3.7 is regarded
as flowing into the port through the + terminal. This is unfortunately in conflict
with the convention in our later Section 3.4.

3.2 Linear fractional transformation and feedback
interconnection of two- and one-port networks

The feedback controller that we want to design (see Fig. 1.10) can be interpreted
as a design of a suitable termination for a ladder network. In Fig. 3.8 we redraw
such terminated ladder composed of several L-sections, each characterized by the
(identical) inverse hybrid transfer functionG, in a signal flow graph corresponding
to the so-called linear fractional transformation (LFT) framework popular in
control theory.
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3 Spatially discrete medium—chains of lumped systems

Note that from now on we change the indexing and start with 0 for the first
voltage-current pair so that for n blocks (sections in the ladder) the voltage-
current pair on the load side is indexed n.

Furthermore, because of our insistence on keeping the conventional directions
of currents i1 and i2 (inside the two-port network through the corresponding +
terminal), we deviate from the common control theory convention (for LFT) and
consider a negative feedback here.

G

G

G

−K

u0 i0

unin

...

i1 u1

u1 i1
u2i2

un−1 in−1

Figure 3.8: Lower linear fractional transformation of a generalized plant (grayed)
with respect to the controller (with a transfer function −K). The
plant is formed by interconnection of n blocks, each described by a
transfer function matrix G

The closed-loop transfer function F from the exogenous input (u0 in this case)
to the regulated output (i0 in this case) is given by

F = Flower(G̃,−K) (3.15)

= g̃11 −
g̃12Kg̃21

1 + g̃22K
, (3.16)

where G̃ is the inverse hybrid transfer function matrix for the ladder. Computing
the inverse hybrid matrix transfer function of the whole chain (unterminated
chain, the gray block in Fig. 3.8) can be quite tedious when using the inverse
hybrid matrices G for the individual blocks—it is described by the Redheffer
star product (see, for example, [87], Sec. 10.4). But it is easy when using the
(inverse) chain matrices B for the individual blocks—the model is then obtained
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3.3 H∞ control of a chain (ladder) through a boundary subsystem

as an integer power of B. This is what we exploit later. But first we state the
goal of this paper.

3.3 H∞ control of a chain (ladder) through
a boundary subsystem

With the setup described in Fig. 3.8, the control design can be cast as an op-
timization problem: find the feedback controller K that not only stabilizes the
feedback loop but also makes the transfer function from exogenous signals to the
output regulated signals optimal in some sense.

One popular optimization framework is that of minimizing the H∞ norm of
the closed-loop system, that is,

minimize
∥∥∥Flower(G̃,−K)

∥∥∥
∞
, (3.17)

over K stabilizing. Stabilization means that the closed-loop transfer function
F resides in the space H∞ of functions that are analytic and bounded in the
(extended) complex right half-plane. The H∞ norm of a scalar transfer function
F (s) is defined as

‖F‖∞ = sup
ω∈R
|F (jω)|. (3.18)

This norm also serves as the worst-case gain for the 2-norms of the correspond-
ing time-domain input and output signals

‖F‖∞ = sup
u\{0}

‖i‖2
‖u‖2

. (3.19)

The physical interpretation for electrical ladders is that the peaks in the magni-
tude frequency response of the input-side admittance are minimized. By casting
the controller design problem as the H∞ optimization, we aim at reducing the
oscillations of the current on the first section (closest to the input) in response
to the change in the applied (input) voltage as much as possible. Obviously, the
oscillations are induced by the interaction with the other sections in the ladder.
Our controller aims at mitigating these interconnection effects.

We will also study how the achievable performance scales with the length of
the ladder (the chain).
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3 Spatially discrete medium—chains of lumped systems

3.4 Diagonalization of the chain model and
reflectionless impedance matching

When analyzing a given chain, we need to build its overall model, be it the over-
all inverse hybrid transfer function matrix or backward chain transfer function
matrix (or any other format), and then analyze the properties of these result-
ing transfer function matrices (often of very high order). There is another path,
though. Recalling that the chain matrix B relates the voltage-current pairs at two
neighboring sections (indexed with an integer k), we can think of some fictitious
discrete dynamical system described by the equation[

ûk+1(s)

îk+1(s)

]
=

[
1 −Z1(s)

−Y2(s) 1 + Z1(s)Y2(s)

]
︸ ︷︷ ︸

B(s)

[
ûk(s)

îk(s)

]
. (3.20)

The independent variable is not the (discrete) time but the index of a section,
discrete spatial coordinate. Furthermore, unlike in the standard state space model
for a lumped LTI system, the state matrix (labeled B in this case) is not just a
constant real matrix, but it is parameterized by the complex variable s.

Note however, that since we do not keep the minus sign with ik+1 in (3.20), ik is
the current that leaves the right port of the k-th section and enters the connected
left port of the (k+ 1)-the section, as illustrated in Fig. 3.6 and Fig. 3.7. This is
a discrepancy that we have to keep in mind while interpreting the results arrived
at in this section2.

We can now view the task of relating the pair of variables (ûn, în) to the pair
(û0, î0) as the task of solving the state-space model (3.20).

A standard procedure for analysis of linear state-space models is to convert the
second-order system into a set of two independent first-order systems. This is
accomplished by finding a transformation of state variables which will diagonalize
the matrix B(s).

First, we find the eigenvalues by solving for the roots of the characteristic
polynomial

p(λ) = det(λ I −B(s)) = λ2 + (−2− Z1Y2)λ+ 1, (3.21)

2We could have redefined the inverse chain matrix in (3.9) so that the positive direction for
the current i2 on the right (output) port of the two-port network is always out of the port
(through the + terminal, but we wanted to stick to the conventions so that later some
energy-related arguments can be made without additional changes. The price to pay is this
temporary inconsistency in notation.
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3.4 Diagonalization of the chain model and reflectionless impedance matching

which gives these two eigenvalues

λ1(s) =
1

2

(
2 + Z1(s)Y2(s)

−
√
Z2

1 (s)Y 2
2 (s) + 4Z1(s)Y2(s)

)
,

λ2(s) =
1

2

(
2 + Z1(s)Y2(s)

+
√
Z2

1 (s)Y 2
2 (s) + 4Z1(s)Y2(s)

)
. (3.22)

where, thanks to the fact that the coefficient of the zero-th power of λ is one, we
can immediately conclude that

λ2(s) =
1

λ1(s)
. (3.23)

But the two eigenvalues are related also in another way

λ2(s) = λ1(−s). (3.24)

In the lossless and normalized case (L = C = 1) the two eigenvalues are

λ1(s) =
1

2

(
2 + s2 − s

√
4 + s2

)
, (3.25)

λ2(s) =
1

2

(
2 + s2 + s

√
4 + s2

)
. (3.26)

The matrix T (s) comprising two (column) eigenvectors is

T (s) =

[
1 1

2Y2

Z1Y2+
√
Z2

1Y
2
2 +4Z1Y2

2Y2

Z1Y2−
√
Z2

1Y
2
2 +4Z1Y2

]

=

[
1 1

Y2(s)
λ2(s)−1

Y2(s)
λ1(s)−1

]
(3.27)

In the lossless and normalized case it is

T (s) =

[
1 1
2

s+
√

4+s2
2

s−
√

4+s2

]
. (3.28)

Let’s label the inverses of the entries in the second row as

Zr1 :=
Z1Y2 +

√
Z2

1Y
2
2 + 4Z1Y2

2Y2
, (3.29)

Zr2 :=
Z1Y2 −

√
Z2

1Y
2
2 + 4Z1Y2

2Y2
. (3.30)
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3 Spatially discrete medium—chains of lumped systems

The matrix vector relationship between the original and the new state variables
is then [

ûk
îk

]
=

[
1 1

Z−1
r1 Z−1

r2

] [
û+
k

û−k

]
, (3.31)

where û+
k and û−k are new state variables.

The two functions Zr1 and Zr2 are related as

Zr1Zr2 = −Z1

Y2
, (3.32)

which specializes in the lossless and normalized case (but more generally if Y2 =
Z1) to

Zr1 = − 1

Zr2
. (3.33)

Moreover, in the lossless case3 it also holds that

Zr2(s) = −Zr1(−s), (3.34)

which can be rewritten compactly as in

Zr2 = −Zr1∗, (3.35)

where the asterisk denotes paraconjugate of the given real function. More gener-
ally, recall (for example [7], page 70–71) that a paraconjugate function to some
given function Z(s) is defined as

Z∗(s) := Z(−s̄), (3.36)

which reduces to
Z∗(s) = Z(−s) (3.37)

for real functions. The reason for using a paraconjugate is that it agrees with the
complex conjugate when the function is evaluated on the imaginary axis and yet
it is an analytic function.

Note that the choice of the eigenvectors defining the T (s) matrix was not
unique—we can scale the columns arbitrarily. Nonetheless, for our particular
choice the new state variables can be seen to have a dimension of voltage thanks
to the normalized first row, and we have

ûk(s) = û+
k (s) + û−k (s). (3.38)

Later we will see that these could be interpreted as “incident and reflected
(voltage) waves” which will justify the notation.

3It may also hold in the lossy case, but I did not prove it
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3.4 Diagonalization of the chain model and reflectionless impedance matching

Using the functions Zr1 and Zr2, the inverse matrix is

T−1 =

[
Zr1

Zr1+Zr2

Zr1Zr2

Zr1+Zr2
Zr2

Zr1+Zr2
− Zr1Zr2

Zr1+Zr2
,

]
(3.39)

which, upon substitution yields

T−1 =

 1
2

(
1 +

√
Z1

√
Y2√

4+Z1Y2

) √
Z1/
√
Y2√

4+Z1Y2

1
2

(
1−

√
Z1

√
Y2√

4+Z1Y2

)
−
√
Z1/
√
Y2√

4+Z1Y2
.

 . (3.40)

The new (transformed) state variables then obey the discrete state-space model[
û+
k+1(s)
û−k+1(s)

]
=

[
λ1(s) 0

0 λ2(s)

]
︸ ︷︷ ︸

Λ(s)

[
û+
k (s)
û−k (s)

]
. (3.41)

We now consider that there are in total n sections in the ladder. We want to
relate the variables at the beginning (the left end) and the end (the right end)
of the ladder using the diagonalized set of difference equations (3.41). Note that
the variables to the left of the k-th section are indexed with the (k − 1) index

û+
k (s) = λk1(s) û+

0 (s), (3.42)

û−k (s) = λk2(s) û−0 (s). (3.43)

We may now use the freedom to pick an arbitrary section as the “initial” one
(instead of û−0 ) for the û−k variable and we choose the rightmost section (indexed
n))

û−k (s) = λ
(k−n)
2 (s) û−n (s), (3.44)

= λ
(n−k)
1 (s) û−n (s). (3.45)

where in the last equation we exploited the fact that λ2 = λ−1
1 .

We now load the n-th (the right-most) section with some lumped impedance
ZL(s) and we want to find the transfer function from û+

0 (s) to û−0 (s). The first
and the third transfer functions in the composed transfer function

û−0 (s)

û+
0 (s)

=
û−0 (s)

û−n (s)

û−n (s)

û+
n (s)

û+
n (s)

û+
0 (s)

(3.46)
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3 Spatially discrete medium—chains of lumped systems

are particularly easy to evaluate thanks to the decoupled (diagonalized) state
matrix

û+
n (s)

û+
0 (s)

= λn1 (s) = λ−n2 (s), (3.47)

û−0 (s)

û−n (s)
= λn1 (s) = λ−n2 (s). (3.48)

The middle one is only a bit more tedious. We need to infer the relationship
between û+

n and û−n from that of ûn and în. The latter coupling is given by (recall
the our agreement here on the current going out of the last port and into the
load, that is, in = iL)

ûn(s) = ZL(s) în(s), (3.49)

which yields

û+
n =

1

Zr1 + Zr2
(Zr1ZL + Zr1Zr2) în, (3.50)

û−n =
1

Zr1 + Zr2
(Zr2ZL − Zr1Zr2) în. (3.51)

The needed third transfer function û−n (s)/û+
n (s) is then

ΓL =
Zr2

Zr1

ZL − Zr1

ZL − Zr2
. (3.52)

This diagonal decomposition can also be visualized in the block diagram in
Fig. 3.9

u0

i0

λ1 λ1 λ1

λ1λ1λ1

1/ZL

u+0

u−0

u+n

u−n

un

in

ΓL

Figure 3.9: Diagonalized inverse hybrid description of a loaded ladder. The high-
lighted (blue) direct path from u0 to i0 is what is left after the path
from u+

n to u−n (in the light blue block) is left open by a “suitable”
impedance
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3.4 Diagonalization of the chain model and reflectionless impedance matching

In order to find the transfer functions for the two nondiagonal blocks in Fig. 3.9,
we notice first that the full ladder model in the factorized chain format is

[
ûn(s)

în(s)

]
= Bn(s)

[
û0(s)

î0(s)

]
(3.53)

= T (s) Λn(s) T−1(s)

[
û0(s)

î0(s)

]
. (3.54)

The transfer function matrix for the left block is then

[
î0
û+

0

]
=

[
Z−1

r1 Z−1
r2 − Z−1

r1

1 −1

] [
û0

û−0

]
, (3.55)

which can be modified after invoking (3.32) into

[
î0
û+

0

]
=

[
− Y2

Z2
Zr2 − Y2

Z2
(Zr1 − Zr2)

1 −1

] [
û0

û−0

]
(3.56)

=

[
−Z1Y2+

√
Z2

1Y
2
2 +4Z1Y2

2Z1
−
√
Z2

1Y
2
2 +4Z1Y2

Z1

1 −1

] [
û0

û−0

]
, (3.57)

where the last equality is due to (3.29).

Similarly, we can find the individual transfer functions for the right block in
Fig. 3.9.

The signal flow diagram in Fig. 3.9 shows that the signal path to the right of
the diagonal block, that is, the transfer from u+

n to u−n can be broken by a suitable
choice of the load impedance ZL. Why should we do that? Identical reasoning
can be used as for the spatially continuous version of our setup—transmission
line—in which case the interruption of the signal path corresponds to prevention
of reflections at line termination. The particular impedance is called matching
impedance. That is where the notation and terminology for the new variables
(u+ and u−, incident and reflected (voltage) waves, respectively) comes from.
For a ladder, the condition for “no reflection” at the right end (on the load side)
is obtained by setting (3.52) to zero.

Since both the numerator and denominator are just affine functions of ZL, we
can only search for the value of ZL that set the numerator to zero. The solution
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3 Spatially discrete medium—chains of lumped systems

is given by

ZL = Zr1 (3.58)

=

√
4Z1Y2 + Z2

1Y
2
2 + Z1Y2

2Y2
(3.59)

= −Z1

Y2

1

Zr2
(3.60)

=
2Z1√

4Z1Y2 + Z2
1Y

2
2 − Z1Y2

. (3.61)

Since we have (arbitrarily) enforced un to be the input to the load and in the
output from the load, we will actually need the inverse of the load impedance
ZL(s), that is, the admittance YL(s)

YL =

√
4Z1Y2 + Z2

1Y
2
2 − Z1Y2

2Z1
. (3.62)

For the lossless case, Z1(s) = Ls and Y2(s) = Cs

YL =

√
4LCs2 + L2C2s4 − LCs2

2Ls
(3.63)

=

√
4LC + L2C2s2 − LCs

2L
. (3.64)

Finally, for the lossless and normalized case (L = C = 1) we get

YL(s) = 1/2
(√

4 + s2 − s
)
, (3.65)

which evaluates on the imaginary axis (s = ω,  =
√
−1) to

YL(ω) = 1/2
(√

4− ω2 − ω
)
. (3.66)

where principal branch of the square root function is considered. The Nyquist
and Bode plots are in Fig. 3.10a and Fig. 3.11a.

The load is passive and causal (with the voltage set as the input to the load).
Note the very peculiar property of this dynamical system: its gain remains

exactly equal to one up to a certain frequency (2 rad/s in our normalized case)
and then rolls off at the rate that ultimately comes close to that of a first-order
system, that is -20db per decade. Similarly, the phase lag is constant above the
given frequency. Hence, it can be (reasonably) approximated using a rational
first-order filter, which is shown in the Bode plots too.

48



3.4 Diagonalization of the chain model and reflectionless impedance matching

0 0.2 0.4 0.6 0.8 1

Real

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Im
a
g
in

a
ry

(a) Irrational YL(ω), ω ∈ (0,∞), the
principal branch of the square root

-6 -4 -2 0 2 4 6

Real

-9

-8

-7

-6

-5

-4

-3

-2

-1

Im
a
g
in

a
ry

(b) Irrational YL(ω), ω ∈ (0,∞), the
negative branch of the square root

Figure 3.10: Nyquist plots

Note that the square root function for a complex argument (as used in (3.66))
also has another (negative) branch, which yields another function that perfectly
satisfies the requirement of a frequency response

YL(ω) = 1/2
(
−
√

4− ω2 − ω
)
. (3.67)

The corresponding Nyquist and Bode plots are in Fig. 3.10b and Fig. 3.11b,
respectively. The response reveals the corresponding transfer function is not
causal and not passive.

Simulation example for an LC ladder

We have already mentioned that our analysis mimics the standard analysis per-
formed for the spatially continuous counterpart of our setup—a transmission line.
The particular load impedance that can be found following the diagonalization
procedure guarantees that there will be no reflections of waves on the load side.
It need not be immediately obvious if such interpretation can be given to the
lumped version of the results. After all, one might argue that the concept of a
wave (hence its reflection) has no justification in the lumped setting. We obtain
some insight into this by means of a numerical simulation.

Five L-sections, each composed just of a series inductor and shunt capacitor,
were connected into a ladder. A step in the voltage was applied on the input port
(the left side of the ladder) and voltages on all the sections were simulated. In
Fig. 3.12, no matching impedance on the load side (the right end) was attached.
A propagation of the input signal to the right is recognizable during the first few
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Figure 3.11: Magnitude frequency plots

seconds of simulation. The resulting oscillatory behavior can then be interpreted
as a superposition of the incident and reflected (voltage) waves. In Fig. 3.13a, a
first-order approximation to the irrational matching impedance was attached to
the right end of the ladder. Significant attenuation of oscillations is visible, which
could be attributed to almost no reflections. Finally, in Fig. 3.13b we only used a
real impedance, a resistor, which only approximates the matching impedance at
steady state (at zero frequency). Almost no impact on the performance is visible
(although for some other inputs this could be more visible).

3.5 Iterative impedances and LFT for chains

The simulation results suggest that the for the particular choice of the load
impedance, the oscillations are eliminated (or at least significantly reduced).
Hence it seems worth examining this kind of loading a bit more. It also turned
out that when the ladder is loaded with such impedance, its input impedance is
identical to the load impedance. To see this, note that the direct signal path from
u0 to i0 highlighted in Fig. 3.9 and represented by the (1,1) entry in the matrix
transfer function (3.57), which is what is left after the signal path from u+

n to u−n
is broken, agrees with YL given in (3.62). This is a remarkable observation. It
means that the dynamics of the ladder is transparent (invisible) from the input
port and only the dynamics of the load can be sensed. This observation lead to
the introduction of the concept of iterative impedances in literature on electrical
multiport networks (see, for example, [42], page 177).

It is now time to switch the language back to the one used in the control
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Figure 3.12: Simulation responses of voltages at individual sections of an LC lad-
der with 5 sections. Stepwise voltage applied to the first section.
Open circuit on the load side—huge oscillations

theory. We have already stated in Sec. 3.2 that we can view the problem of
finding the load impedance as the task of designing a feedback controller with a
transfer function K that closes the “generalized feedback loop” as characterized
by the lower linear fractional transformation. For that we generally need the
overall transfer function matrix. However, if we plan to plug in the “matching
controller” into the feedback loop, the situation is much simpler.

The simplification stems from the definition of an iterative impedance for the
whole ladder: the same iterative impedance must work for a single section too!
That is, we do not even have to find the model for the full ladder to design a
“matching controller”. We can just use a single section as the model on which
we base the design. The LFT setup is in Fig. 3.14.

The condition for an iterated impedance (or admittance in our case because
we have chosen u0 as the input) can be formally stated as

K = Flower(G,−K), (3.68)

where G for a single section is given by (3.5). Note the minus sign with the
controller K, which reflects the fact that while adhering to the definition of
inverse hybrid matrix (3.5), the current in is into the + terminal of the last
port; the current through the load then needs to be taken with the negative sign.
Alternatively, the inverse hybrid matrix G can be redefined so that in goes away
from the port and into the load.

The equation (3.68) expands to the quadratic equation

Z1 K
2 + Z1Y2 K − Y2 = 0. (3.69)
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Figure 3.13: Simulation responses of voltages at individual sections of an LC lad-
der with 5 sections. Stepwise voltage applied to the first section.

G

−K
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i0

Figure 3.14: Lower linear fractional transformation of a single section (described
by an inverse hybrid matrix transfer function G) with respect to the
controller (admittance K)

This quadratic (in K) equation has two solutions

K1 =
−Z1Y2 +

√
Z2

1Y
2
2 + 4Z1Y2

2Z1
(3.70)

K2 =
−Z1Y2 −

√
Z2

1Y
2
2 + 4Z1Y2

2Z1
. (3.71)

We can immediately recognize K1 as our matching admittance YL derived in
the previous section while relying on the principal square root. The K2 solution
then corresponds to the negative branch of the square root.

Let’s summarize the several interesting (and perhaps even striking) properties
of the new controller:
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3.6 Asymptotic behavior of chains (ladders)

1. Even for the lossless system the matching impedance is dynamical. Recall
that for a lossless transmission line, which can be viewed as a continuum
version of our lumped chain (more on this later), the matching impedance
is real—just a resistor is enough. In order words, for a lossless chain even a
proportional controller is not enough to achieve a perfect cancellation of the
oscillations. The simulations suggest, though, that reasonable reduction in
oscillations can be attained just with a proportional controller.

2. The matching impedance is irrational. This will certainly have an impact
on implementation. Some approximation schemes will have to be invoked.

3. The matching impedance does not depend on the number of sections! This
is a striking property. Even if we add more sections into the ladder, the
matching impedance (hence admittance too, the controller) does not have
to be redesigned. Single quadratic equation has to be solved using the model
of a single section. As we will see later, some other control schemes such
as H∞-optimal control suffer from the fact that the order of the chain and
hence the order of the resulting controller grows as additional subsystems
are inserted into the chain.

4. the matching impedance guarantees closed-loop stability since it is passive
(and the system is passive too).

3.6 Asymptotic behavior of chains (ladders)

Our primary motivation for the whole work is to understand better how the
control design scales with the growing number of subsystems in the chain (or
sections in the ladder). We consider two separate scenarios. First, sections are
simply added to the ladder. Second, sections are added after the parameters
were scaled by the number of sections in the ladder. The latter approach yields
a discrete approximation of the spatially continuous version of our problem—a
transmission line.

3.6.1 Number of sections is growing, no scaling of sections

The input impedance for an unterminated single section (ZL(s) = 0) is

Z
(1)
input(s) = Z1(s) +

1

Y2(s)
, (3.72)

while for two (cascaded) section it extends to

Z
(2)
input(s) = Z1(s) +

1

Y2(s) + 1
Z1(s)+ 1

Y2(s)

. (3.73)
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3 Spatially discrete medium—chains of lumped systems

The pattern is now obvious—the input impedance for an unloaded (untermi-
nated) ladder with k sections is given by the (finite) continued fractions

Z
(k)
input(s) = Z1(s) +

1

Y2(s) + 1
Z1(s)+ 1

Y2(s)+ 1
Z1(s)+...

. (3.74)

Note that this gives us the (1, 1) term of the G(s) inverse hybrid matrix. Simi-
larly we could encode the evolution of other elements of this matrix as the number
of sections grows.

The Fig. 3.15a and 3.15b show the location of the open-loop poles and zeros
for a ladder composed of 2 and 5 sections, respectively. Then the Fig. 3.16a and
3.16b show magnitude frequency responses.
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Figure 3.15: Poles and zeros for the input impedance for a lossless and normalized
n-section ladder. The red crosses are poles, the blue dots are zeros

Similar comparison can be done for frequency responses—see the Fig. 3.16a
and 3.16b. We observe that as the number of sections grows, no resonant peak
appears at frequencies above 2 rad/s. Instead, the lowest resonant frequency
decreases and the density of resonant peaks in the frequency interval ω ∈ [0, 2]
grows.

3.6.2 Sections are scaled while the ladder’s length is growing

Now we will investigate a different kind of asymptotic scenario. We will again
consider the lossless case (R = G = 0) and focus on the (1, 1) element, which
determines the open-loop dynamics. After considering a ladder containing just a
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3.6 Asymptotic behavior of chains (ladders)
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Figure 3.16: Magnitude frequency response for the input impedance for a lossless
and normalized n-section ladder

single section characterized by a series inductance L and shunt capacitance C, we
add another section, but this time we adjust the parameters L and C so that the
new ladder can be regarded as a higher accuracy model of a transmission line.
That is, the continued fractions for the input impedance with k = 2 sections is
then

Z
(2)
input(s) =

L

2
s+

1
C
2 s+ 1

L
2 s+

1
C
2

s

. (3.75)

The evolution of the pole-zero pattern as a function of the number of sections
is now dramatically different. We only show it here for n = 10 but compare it
with the frequency response of the lossless and normalized linear transmission
line.

The lossless and normalized (R = G = 0, L = C = 1) transmission line’s
open-loop transfer function is

g11(s) =
sinh s

cosh s
. (3.76)

There are apparently an infinite number of open-loop poles and zeros of g11

for the transmission line and these are given by

P =
{
s ∈ C : s = πm+ 

π

2
, m ∈ Z

}
(3.77)

and

Z = {s ∈ C : s = πm, m ∈ Z} , (3.78)
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3 Spatially discrete medium—chains of lumped systems

In order to avoid cluttering, we only show the open-loop poles and skip the
open-loop zeros in Fig. 3.17a. On the other hand, (some) open-loop poles of the
transmission line transfer function are indicated too (they extend towards the
infinity).
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(a) Open-loop poles of the input
impedance. The red crosses are
the poles. The blue dots dis-
tributed equidistantly are the open-
loop poles of the irrational trans-
fer function corresponding to a unit-
length lossless transmission line
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Figure 3.17: Open-loop poles and magnitude frequency response for the input
impedance for a lossless and scaled ladder with 5 sections

Obviously, by appropriately scaling the physical parameters of the individual
section as the number of sections in the ladder grows, the ladder becomes more
and more accurate finite-dimensional approximation of an infinite-dimensional
transmission line. The lower resonant frequency remains intact but other resonant
peaks appear at higher frequencies. The frequency content spreads towards higher
and higher frequencies and yet the poles (and zeros) remain isolated points in
the complex plane.

3.7 H∞-optimal control for chains

Besides the controller that realizes the impedance matching, we have already
mentioned in Sec. 3.2 another and very standard optimal control problem in
Sec. 3.2—the popular H∞-optimal control design.

Here we will build the G transfer matrices of increasing order by adding sec-
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3.7 H∞-optimal control for chains

tions, one by one, and design an H∞-optimal controller. The first few G’s are

G1(s) =

[ s
1+s2

1
1+s2

1
1+s2 − s

1+s2

]
(3.79)

G2(s) =

[
s(2+s2)

1+3s2+s4
1

1+3s2+s4

1
1+3s2+s4 − s(2+s2)

1+3s2+s4

]
(3.80)

G3(s) =

[
s(3+4s2+s4)

1+6s2+5s4+s6
1

1+6s2+5s4+s6

1
1+6s2+5s4+s6 − s(3+4s2+s4)

1+6s2+5s4+s6

]
(3.81)

The G3 matrix thus corresponds to the lossless ladder in Fig. 3.18.

L

C

L

C

L

C

Figure 3.18: A lossless ladder composed of a three L-sections consisting of an
inductor (inductance L) and capacitor (capacitance C)

The above is in the format compatible with the positive feedback assumption
of many numerical solvers. Currently we can only solve this series of H∞ opti-
mizations by invoking a numerical solver. Namely, we used the hinf() function
that can be found in Robust Control Toolbox for Matlab. We used it with the
option ’lmi’, which tells the function to used the algorithm based on linear
matrix inequalities. Magnitude frequency plots for the sequence of the achieved
closed-loop transfer functions is in Fig. 3.19. It is a striking observation that
after adding just a few sections (5 in total or so), the closed-loop transfer func-
tion starts resembling the irrational transfer function that we studied earlier (see
Fig. 3.11a). The irrational transfer function corresponding to the closed-loop re-
sponse of a ladder loaded with an iterative impedance is hardly visible because
it almost perfectly coincides with the achieved F5—the convergence is very fast.

In Fig. 3.20a we can see the evolution of the achieved norms of the closed-loop
transfer functions.

The convergence is indeed very fast, as the logarithmic plot of the evolution of
the error in Fig. 3.20a shows. Asymptotically it looks linear in the logarithmic
scale, hence we can suspect (hope for) an exponential decay. It is very fast!

We can run the whole sequence of control design problems for the case when
the parameters of the individual section are scale if the ladder is augmented with
other sections. The sequence of a few closed-loop magnitude frequency responses
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3 Spatially discrete medium—chains of lumped systems
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Figure 3.19: Magnitude frequency response for closed-loop transfer functions Fn
for ladders of growing n (the number of sections) and with their
corresponding H∞-optimal controller

is in Fig. 3.21. Unlike in the previous—unscaled—case, here we observe that as
the number of sections is increased (whiled the section’s parameters are scaled),
the bandwidth of the achieved closed-loop transfer function grows (although it
will never converge to the model of a transmission line, which has an infinite
bandwidth—it is a real constant).

The convergence of this closed-loop transfer function to the irrational transfer
function derived for the particular number of sections (recall that the parameters
are scaled by n) looks similarly fast as in the unscaled case, see Fig. 3.22

It is purely based on these empirical (numerical) observations that we make a
conjecture about the relationship between the H∞-optimal control design for a
ladder and the (irrational) iterative impedance (admittance).

Theorem 2. For a lossless ladder composed of finite number of sections, the
closed-loop transfer function obtained with an H∞-optimal feedback controller
converges to the irrational iterative transfer function as the number of sections
in the ladder grows. Furthermore, the convergence is exponential.

Proof. Currently missing.
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3.8 Analogy with the mechanical chain of masses, springs and dampers
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Figure 3.20: Evolution of the norms as the number n of sections grows

3.8 Analogy with the mechanical chain of masses,
springs and dampers

The results derived in the previous sections are tailored to electrical ladders (and
electrical transmission lines). How do these translate into other physical domains
such as the mechanical one? We are going to show that the results on electrical
ladders have immediate interpretation for chains of masses interconnected with
springs (and dampers in the lossy case). We invoke the powerful Maxwell analogy
among physical domains, which views the electrical voltage as the same kind of
physical variable as the force, and similarly the electrical current of the same
kind as the velocity. Note that there is alternative analogy, sometimes referred
to as across-through analogy, in which current is of the same kind as force, and
which is particularly popular in mechatronics because it does not extend easily
to other physical domains such as hydraulics. Our preference for the former is
supported by [9] as it might later enable making reference to some fundamental
thermodynamics arguments.

The Maxwell analogy is also exploited by the modeling methodology based on
power bond graphs. Introduced by Paynter in 1950s [66], bond graphs evolved
into a powerful tool with many excellent introductory texts such as [10] and [32].
The tutorial paper [22] can also serve well.
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Figure 3.21: Magnitude frequency response for closed-loop transfer functions Fn
for ladders of a growing number of sections and with their corre-
sponding H∞-optimal controller. The parameters of the sections
are always scaled as another section is added

3.8.1 Lossy ladders and chains

The bond graph for the electrical ladder composed of three L-sections is in
Fig. 3.23. We highlight the type-0 junctions since these correspond to the node
voltages.

The bond graph for a mechanical chain composed of three identical masses
interconnected with springs and dampers as in Fig. 1.2 is in Fig. 3.24. The input
is the force acting on the first mass. Note that in order to make the mechanical
scenario analogous to the electrical one, the last mass in the chain needs have a
spring and damper interconnection with the reference frame; it cannot be just
floating. We highlight the type-1 junctions since these correspond to distinct
velocities.

Obviously, the two bond graphs do not match. In the mechanical bond graph
the “resistor” corresponding to the relative friction (the dashpots between the
neighbor masses) enters the graph in a different way than the shunt resistor
(1/G) in the electrical bond graph. An L-section analogous to the mechanical
mass-spring-damper chain is in Fig. 3.25
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Figure 3.22: Evolution of the H∞ norm of the error between the optimal closed-
loop transfer function and and the irrational transfer function as the
number of sections in the ladder grows (while the parameters of the
sections are scaled)
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0u3

R : 1/G

C : C

Figure 3.23: Bond graph for an electrical ladder composed of three L-sections.
The input is the voltage u0.

The series impedance and shunt admittance are thus redefined to

Z1(s) = ms+ ba, (3.82)

Y2(s) =
1

br + k
s

=
s

brs+ k
. (3.83)

We include yet another word of warning here, perhaps redundant, that relates
to our choice of physical analogy (Maxwell). Some engineers well entrenched
in the domain of electromechanical systems might be more familiar with the
alternative across-through analogy, which has an impact on the definition of the
impedances and admittances here.
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Figure 3.24: Bond graph for an mechanical chain composed of three masses in-
terconnected with springs and dampers. The input is the force F0

on the first mass.
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Figure 3.25: A single L-section corresponding to the mass-spring-damper system

3.8.2 Lossless ladders and chains

For the lossless mass-spring chain, however, the match with a lossless ladder
reappears. The bond graph for the lossless case, common for the electrical and
mechanical domains, is in Fig. 3.26. We intentionally do not perform all the
possible reduction of the graph (in particular, canceling the type-0 junction for
u3) with the motivation to keep it clear where a possible load impedance should
come.

The impedance Z1(s) and the admittance Y1(s) corresponding to a single loss-
less L-section (analogous to a lossless mass-spring chain) are

Z1(s) = ms, (3.84)

Y2(s) =
s

k
. (3.85)
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Figure 3.26: Bond graph for a lossless electrical ladder composed of three L-
sections. The input is the voltage u0. The bond graph also describes
a chains of three masses interconnected with springs (no dampers)
with a force exerted on the first mass and a spring placed between
the last mass and a reference frame

3.8.3 Loading the lossless mass-spring chain

Now, let’s see where the matching impedance ZL(s) fits within the bond graph.
In the lossless case as we have just analyzed, it fits as described in Fig. 3.27.
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1

I : L

0u2

C : C

1

I : L

0u3
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S : YL

Figure 3.27: Bond graph for a lossless electrical ladder composed of three L-
sections. The input is the voltage u0. The blue bond at the end
attaches a load (sink) characterized by its impedance ZL(s). The
bond graph also describes a chains of three masses interconnected
with springs (no dampers) with a force exerted on the first mass and
a spring placed between the last mass and a reference frame.

Fitting the results on impedance matching derived for the lossless electrical
ladder to the lossless mechanical chain is straightforward. Analogous to the
inductance L we have a mass m and analogous to the capacitance C we have a
string compliance, which is defined as the inverse of the spring constant k. Hence
the mechanical version of the matching impedance is

ZL(s) =
2ms

−mk s2 +
√

m
k s
√

4 + m
k s

2
. (3.86)
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3 Spatially discrete medium—chains of lumped systems

After introducing

ωn =

√
k

m
(3.87)

we can write the matching load admittance as

YL =

√
1 +

(
s

2ωn

)2
s
ωn
− 1

2

(
s
ωn

)2

ms
. (3.88)

This format of the result will be useful later when we discuss the similarity of
the proposed approach to the existing approaches, namely the O’Connor’s wave
transfer function approach.

3.8.4 Unanchored mass-spring chain

There is another setup for a mechanical mass-spring-damper chain which is in
some sense dual to the one just discussed. We illustrate it in Fig. 3.28

m3

ẋ3

m2

ẋ2

m1

ẋ1

m0 = 0

ẋ0

Figure 3.28: Multiple masses interconnected with springs and dampers. The first
mass can be virtual, it travels at a prescribed velocity. The last mass
is floating

The power bond graph corresponding to this chain assuming absence of losses
is in Fig. 3.29.

If the bond graph is not enough, then the electrical circuit schematics in
Fig. 3.30 will give the full analogy

3.9 Asymmetric chains

So far the discussion revolved around system for which the coupling with the
neighbors was perfectly symmetric. And yet one of our initial motivations for
exploring the whole approach stems from vehicular platooning, in which asym-
metric interactions between the vehicles are common. At first it might seem that
the energy-based framework used in this work cannot offer much for asymmetric
chains. After all, one can hardly think of a chain of particles interconnected with
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1ẋ3

I : L

S : ZL

Figure 3.29: Bond graph for a lossless mass-spring chain with the velocity of the
0-th vehicle as the control input and the last mass floating. Anal-
ogously, it can be viewed as a model of a lossless ladder with the
current entering the first section as the input

C

L

C

L

C

L

Figure 3.30: A lossless ladder composed of a few reversed L-sections consisting of
an inductor (inductance L) and capacitor (capacitance C)

some special strings which would deny the third Newtons law (the action is equal
in magnitude to the reaction). However, the electrical engineering offers a very
systematic approach to the asymmetric chains (ladders) as well—active networks.

Consider the simplest possible vehicular platooning setup of Fig. 1.6, in which
each vehicle measures its distance from the immediate predecessor and adjusts
its throttle (hence force on the vehicle) so that some prescribed intervehicu-
lar distance is kept. Obviously, the coupling is only one-directional—whatever
disturbances are only propagated away from the leader towards the tail of the
platoon. According to this model, the vehicle’s control strategy does not care
about the vehicle(s) behind.

Now consider an active ladder composed of simple active sections as in Fig. 3.31.
Although it does not immediately correspond to the predecessor following model,
it does exhibit the one-directional propagation of signal, as needed in models of
vehicular platoon.

The inverse chain matrix of the voltage follower (also voltage buffer) is

B2(s) =

[
1 0
0 0

]
, (3.89)
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3 Spatially discrete medium—chains of lumped systems

+
−

u1 u2

i1 i2

Figure 3.31: Voltage follower appended to an LC section in order to create an
asymmetric section

which gives the combined inverse chain matrix model of the asymetric section[
û2(s)

−î2(s)

]
= B2(s)B1(s)

[
û1(s)

î1(s)

]
(3.90)

=

[
1 −Ls
0 0

] [
û1(s)

î1(s)

]
. (3.91)

The fact that the only way to introduce asymmetry into the system was to
have a generator there, seems fundamental. It is also related to the property of
reciprocity. But we will not elaborate on it in this work. It is certainly one of
next directions to explore, though.

3.10 Relationship with existing results

3.10.1 Chain-scattering approach to H∞-optimal control design

The task of minimizing the H∞ norm of the closed-loop transfer function in
Fig. 2.1, which is given by (2.2) recapitulated below

Flower(G,K) = G11 +G12K(I −G22K)−1G21 (3.92)

is far from easy and most papers on robust control in 1980s and 1990s revolved
around this computational issue. In the late 1980s, one (another) particular
framework for H∞-optimal control appeared in the control theory literature.
Rather then characterizing the response of the generalized plants to the inputs
w and u, find the mathematical model which would flip the causality of the first
input (w) and the second output (y). What we are heading for is a transfer
function matrix C that relates the new “inputs” and “outputs” as[

ẑ(s)
ŵ(s)

]
=

[
C11(s) C12(s)
C21(s) C22(s)

] [
û(s)
ŷ(s)

]
. (3.93)
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The entries of the matrix C relate to those of the G matrix as

C =

[
G−1

12 −G−1
12 G11

G22G
−1
21 G21 −G22G

−1
12 G11

]
. (3.94)

This new model corresponds to the block diagram in Fig. 3.32. Note however,
that the diagram may seduce one to misinterpretation that we are reallocating
the actuators and sensors in the system. No, it is only that we changed the
“format” of its mathematical model. One should perhaps abandon the input-
output viewpoint (that is why we used quotation marks with the terms inputs
and outputs above) and view (3.93) as an equation and not an assignment (which
is suggested by the block diagram).

z u

w yC(s)

Figure 3.32: Block diagram for the chain matrix.

Note that with the background on the formats of models of two-port networks
refreshed in this work, we can recognize the matrix C as the so-called chain matrix
(the matrix B that we used extensively in this work was actually its inverse—
the inverse chain matrix). Mapping it to the two-port setting, the matrix-vector
relationship is [

û1(s)

î1(s)

]
=

[
C11(s) C12(s)
C21(s) C22(s)

] [
û2(s)

î2(s)

]
. (3.95)

Having such new model and the controller description

û(s) = K(s) ŷ(s), (3.96)

the same closed-loop transfer function considering w as its input and z as the
output can be computed surprisingly conveniently. Upon substitution for u in
(3.93) we get [

ẑ
ŵ

]
=

[
C11K + C12

C21K + C22

]
ŷ, (3.97)

which yields the desired transfer function from w to z

ẑ = (C11K + C12)(C21K + C22)−1 ŵ. (3.98)

Observe that the unknown K now appears in a different manner in the closed-
loop transfer function. Note that similarly to (3.98), this is another instance of
linear fractional transformation (also called homographic transformation).

67



3 Spatially discrete medium—chains of lumped systems

With the new format of the model, different optimization procedures can be
anticipated. The new model has been called chain-scattering representation in
the control theory literature that we are going to reference. This makes reference
to the concept of a scattering description of an LTI dynamical system (in fact,
an N-port) introduced in late 1940s in the electrical circuits (called electrical
networks back in the days) community (see the next section for references). It
is now hard to trace who originally introduced this idea to the control theory
community. Apparently, there were several researchers working on the topic in
the late 1980s. Most probably the idea appeared first in one of Kimura’s papers
such as [33], [34]. Later in mid 1990s Kimura made the concept popular through
[36] and in particular through his monograph [35].

Among other key early contributors were Hara [26] and Tsai [76] and [78]. The
latter has recently published an update on the research in the domain [77].

In those works, no analysis of chains or ladders is actually made. Moreover, it
is actually difficult to understand more intimate relationship with the concept of
scattering (as introduced by electrical engineers) other than through the switch
from the (inverse) hybrid model to the (inverse) chain model by swapping the
causality of one input-output pair. Indeed, in [35], page 73, Example 4.1, an
electrical two-port circuits is considered, characterized by two voltage-current
pairs, one combination of inputs and outputs is (correctly) called hybrid descrip-
tion whereas the other is (incorrectly) called chain scattering representation. But
true scattering (as introduced by electrical engineers), hence also chain scatter-
ing, involves transformation of physical variables in the first place. Instead of
voltages and currents, voltage waves or current waves or power waves are used.
That is why I am still not able to map my own results to the results that claim
to make use of (chain) scattering framework in the controls literature.

3.10.2 Wave transfer functions for lumped chains by O’Connor

One of the primary motivations for the presented research was to understand
better the how the concept of wave transfer function (WTF) as promoted by
O’Connor [59] relates to the established theories. Now that we have exposed the
general control design methodology based on the concept of impedance matching,
it is time to see how it relates the the WTF methodology. For convenience of
the readers, we go through a mini intro to that methodology based on the above
mentioned paper.

The position of the k-th particle of mass m in the chain is labeled as xk. In
the simplest case, a uniform chain is considered. Assuming temporarily that the
chain has no beginning and no end, the global behavior can be captured by a
local model

x̂k+1(s) = G(s)x̂k(s), (3.99)
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where the hat denotes a Laplace transform of the corresponding time-domain
variable. It also immediately follows that

x̂k+n(s) = Gn(s)x̂k(s), (3.100)

It may come as a surprise that the model only contains a one-directional cou-
pling while the physics of the problem is certainly bidirectional. But the bidirec-
tionality is hidden in the suitable choice of the transfer function G. The equation
of motion is

mẍk(t) = k (xk−1(t)− 2xk(t) + xk+1) . (3.101)

Substituting (3.99) into (3.101), we get

ms2x̂k(s) = kx̂k(s)(G−1(s)− 2 +G(s)). (3.102)

Multiplying both sides by G we get a quadratic (in G) equation

k G2 − (2k +ms2)G+ k = 0. (3.103)

The equation has two solution

Ga(s) = 1 +
1

2

(
s

ωn

)2

− s

ωn

√
1 +

(
s

2ωn

)2

(3.104)

Gb(s) = 1 +
1

2

(
s

ωn

)2

+
s

ωn

√
1 +

(
s

2ωn

)2

, (3.105)

where

ωn =

√
k

m
. (3.106)

The frequency responses corresponding to the two transfer function are in
Fig. 3.33a and 3.33b.

The similarity with the results presented earlier in this chapter catches an eye.
Namely, Ga and Gb are identical with the two eigenvalues λ1 and λ2 (3.22) of
the (inverse) chain matrix B (3.20) of a single section of the ladder, respectively.

Now, of the two transfer functions, only Ga corresponds to a causal system.
It is argued in [58] that the position xk(t) of each particle in the chain can be
decomposed into two parts

xk(t) = ak(t) + bk(t) (3.107)

such that their Laplace transforms of the two components satisfy

âk+1(s) = Gaâk(s) (3.108)

69



3 Spatially discrete medium—chains of lumped systems

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-1

10
0

10
1

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Frequency  (rad/s)

(a) Ga

0

10

20

30

40

M
a

g
n

it
u

d
e

 (
d

B
)

10
-1

10
0

10
1

0

45

90

135

180

P
h

a
s
e

 (
d

e
g

)

Frequency  (rad/s)

(b) Gb

Figure 3.33: Magnitude and phase frequency responses for the two wave transfer
functions

and

b̂k+1(s) = Gb(s)b̂k(s) (3.109)

= G−1
a (s)b̂k(s), (3.110)

which can be turned into a causal relationship

b̂k(s) = Ga(s)b̂k+1(s). (3.111)

Since we will only use the causal transfer function, let’s relabel it into G for
the same of notational simplicity

G(s) := Ga(s). (3.112)

This can invoke the idea of viewing ak(t) as the forward (towards the right end)
traveling component of the position xk(t) and bk(t) as the backward traveling
component (away from the right end).

The Laplace transform of the position xk(t) can therefore be written as

x̂k(s) = G(s)âk−1(s) +G(s)b̂k+1(s). (3.113)

Now, for a finite-length chain whose first (the leftmost) particle’s position is
set by the actuator and the last (the rightmost) particle is freely floating, a
signal-flow diagram is in Fig. 3.34 (as given in [58]).

If no compensation is designed and implemented, each commanded change in
the actuator’s position x0(t) triggers a wave which travels towards the right end,
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Figure 3.34: Signal-flow diagram for the wave transfer function modeling

gets reflected and then travels backwards towards the actuator, then subtracts
from the actuator’s action and, provided no dissipation is in the chain, a nev-
erending cycle appears. This is how the rise of standing waves can be viewed. In
[58] a compensation scheme is proposed: first, estimate the traveling wave com-
ponent b0(t) arriving at the actuator’s side of the chain and subtracting from the
actuator’s action; second, build a signal that approximates this incoming wave
and add it to the actuator command. Hence, an active compensation scheme.

In order to estimate the incoming wave b0(t), one more (but only one more)
particle’s position (say, xk) needs to be measured and the wave transfer function
(WTF) G(s) needs to be approximately implemented as a real-time filter. Typ-
ically, standard second-order LTI filter suffices. The resulting compensator has
this transfer function model

b̂0(s) =
[
− G2(s)

1−G2(s)
G(s)

1−G2(s)

] [
x̂0(s)
x̂1(s)

]
. (3.114)

Now, let’s compare this with the impedance matching compensation scheme
studied in this work (see the signal flow diagram in Fig. 3.9): the concept of
iterative impedance (or matching impedance) offers two “controllers” that can
be implemented on one or both sides. One solution is passive, the other one
is active. The passive component dissipates just the right amount of energy so
no (or little) is reflected back. The active solution, on the other hand, lets the
incoming wave to reflect but it generates an output that acts in the opposite
sense, hence an active compensation.

3.11 Conclusions and further research

In this chapter we analyzed the problem of determining iterative impedances in
lossless ladders formed by sections composed of L and C elements, while our
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motivation was to find analogies to these results in other physical domains. We
learned that the iterative impedances play the role of reflection-free matching
impedances well known from transmission lines. We formulated this design prob-
lem in the popular LFT framework and showed that this leads to a nontraditional
control design assignment in which a controller needs to be designed such that
the transfer function of the closed-loop is identical to that of the controller. An
interesting property of this controller is that it does not depend on the number
of sections. It works perfectly well for one or one hundred sections. On the other
hand, the controller is described by an irrational transfer function. Finally, we
analyzed how the standard H∞-optimal controller relates to this nontraditional
impedance matching controller. We showed that for a ladder of growing number
of sections, the irrational impedance matching controller is a good approxima-
tion to the rational H∞-optimal controller, whose order grows with the number
of sections. We also strove to interpret this result as a reformulation of the wave
transfer function approach proposed in the literature.

The final message of the whole presented work is that the multiport frame-
work, and in particular the scattering description, developed several decades ago
for description, analysis and synthesis of electrical networks, both passive and
active, may be quite useful even in other physical domains. Of particular interest
might be further investigation of the relationship between asymmetry of coupling,
reciprocity and activeness (the opposite of passivity) of dynamical systems.
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