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Abstract: In this paper we present a distributed adaptive consensus protocol, that solves
the cooperative regulator problem for multi-agent systems with general linear time-invariant
dynamics and directed, strongly connected communication graphs. The protocol addresses the
problems of recent distributed adaptive consensus protocols with large or unbounded coupling
gains. These problems are solved by introducing a novel coupling gain dynamics that allows the
coupling gains to synchronize and decay to some estimated value. Unlike the static consensus
protocols, which require the knowledge of the smallest real part of the non-zero Laplacian
eigenvalues to design the coupling gain, the proposed adaptive consensus protocol does not
require any centralized information. It can be therefore implemented on agents in a fully
distributed fashion.
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1. INTRODUCTION

In past few decades an increasing demand for the cooper-
ation of multiple interconnected systems initiated a great
progress made in the design of distributed controllers for
networked multi-agent systems. The inspiration came from
the collective animal behaviour such as schooling of fish,
flocking of birds, herding of quadrupeds and swarming of
insect.

The designs of distributed controllers were motivated by
the previously developed theoretical results in the central-
ized control. When the centralized controller is used for
the control of a network of agents, the controller views it
as a single complex system, therefore the complexity of the
centralized controller increases with the complexity of the
network. In most applications the centralized controller
can not observe the full state information due to commu-
nication constrains between agents. Moreover, centralized
controller might fail when the network topology changes,
e.g. an agent or an edge is added or dropped. Therefore the
distributed control approach was developed for the control
of the multi-agent systems. It handles all drawbacks of the
centralized approach and enjoys many advantages, such as
robustness, flexibility and scalability.

The basic distributed consensus protocols for formation
control in networked multi-agent systems are introduced
by Fax and Murray (2004), Olfati-Saber and Murray
(2004), Olfati-Saber et al. (2007) and Ren et al. (2007).
Various approaches of design of distributed controllers on
directed communication graphs are summarized by Zhang
et al. (2012). The passivity based design of cooperative
controllers is introduces by Arcak (2007). A unified view-
point on design of consensus regulator on directed graph
topologies using the synchronizing region is introduced by
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Li et al. (2010). The design of distributed controllers and
observers using state or output-feedback in continuous and
discrete-time is considered by Zhang et al. (2011), Zhang
et al. (2012) and Hengster-Movric and Lewis (2013).

The static consensus protocols, e.g. by Li et al. (2010) and
Zhang et al. (2011) are very popular in the community be-
cause of their well developed and simple controller design.
However, because the centralized information (knowledge
of the graph topology) is required by each agent by the
design, they are not fully distributed.

The recently developed adaptive consensus protocols by
Li et al. (2013) and Li et al. (2015) propose a solution to
this problem. Since they do not rely on any centralized
information, the distributed controllers of agents can be
implemented independently without using any global in-
formation. Nevertheless the benefit from distributiveness
suffers from the high control effort and weak robustness.

In Knotek et al. (2016) we present an adaptive consen-
sus protocol to solve the cooperative regulator problem
on undirected graphs. The protocol introduces a novel
coupling gain dynamics that forces the coupling gains
to synchronize and decay to some estimated value. This
solves the above mentioned problems of recent adaptive
consensus protocols. In this paper we expand these results
to solve the cooperative regulator problem on directed
strongly connected communication graphs.

This paper is structured as follows. Section 2 introduces
the basic notation and graph preliminaries used through-
out the paper. Section 3 states the problems that are being
solved by the novel adaptive consensus protocol presented
in Section 4. Numerical simulations of the introduced
protocol are given in Section 5. Section 6 concludes the
paper.



2. PRELIMINARIES

In this paper the following notations and definitions are
used. Rm×n denotes the set of m × n real matrices. A
matrix M = diag(v) for v ∈ Rn denotes Rn×n diagonal
matrix with elements of the vector v on the diagonal.
Positive (semi)-definite symmetric matrix is denoted by
M � (�)0.

A directed graph is given by G = (V, E), where V =
{v1, . . . , vN} is a nonempty finite set of nodes and E ⊂ V×
V is a set of arcs. An arc is an ordered pair of nodes (vj , vi),
vj 6= vi, where vi is a child node and vj is a parent node, i.e.
the information flows from node vj to node vi. A directed
path of length N from node v1 to node vN is an ordered set
of distinct nodes {v1, . . . , vN} such that (vl, vl+1) ∈ E for
all l ∈ [1, N − 1]. A directed graph is strongly connected if
there exist a directed path from every node to every other
node. In the sequel, we assume the graph G to be directed,
strongly connected and simple, i.e. there are no repeated
edges or self-loops (vi, vi) /∈ E ,∀i.
The adjacency matrix E = [eij ] ∈ RN×N associated with
the graph G is defined by eij > 0 if (vj , vi) ∈ E , otherwise
eij = 0. Let the degree matrix D = [dij ] ∈ RN×N be a
diagonal matrix given by dii =

∑
j 6=i eij . Then the graph

Laplacian matrix is defined by L = D−E. Denote p ∈ RN

the left eigenvector of L, such that pTL = 0.

3. MOTIVATION

Consider a graph G, that consists of N identical agents
with general LTI dynamics

ẋi = Axi +Bui, i = 1, . . . , N (1)

where xi ∈ Rn is the state, ui ∈ Rm is the input, and
A ∈ Rn×n and B ∈ Rn×m are constant matrices. The
matrix A is not necessarily stable but the pair of matrices
(A,B) is assumed to be stabilizable.

The goal is to design a control law to solve the cooperative
regulator problem in the sense of limt→∞ ||xj − xi|| =
0, ∀i, j = 1, . . . , N without requiring any centralized
information. An adaptive control approach proposes a
possible solution to this problem.

There has been several proposed distributed adaptive con-
sensus protocols. The adaptive consensus protocol intro-
duced in Li et al. (2013) solves the cooperative regulator
problem on undirected connected graphs. The more recent
adaptive consensus protocol by Li et al. (2015) solves the
cooperative tracking problem on directed graphs contain-
ing a spanning tree with the leader as the root node. The
distributed adaptive consensus protocols do not require
any global information of a communication graph, there-
fore they are fully distributed. Nevertheless they introduce
also several drawbacks.

Since their coupling gain dynamics contains a quadratic
term the coupling gain derivative is a monotonically in-
creasing function and the coupling gain values rise as
long as there is some error in states between agents. The
farther the initial conditions of the agents, the higher
the final values of the coupling gains. The coupling gains
might therefore reach higher values than it is needed for
the network stability. The coupling gains are decoupled,

therefore they end up with different final values and the
network gets unbalanced, i.e. the agents react differently
to the input signal.

Assuming some noise in state measurements, the coupling
gains would permanently rise until they reach some phys-
ical bound. Therefore the coupling gains could be just
statically set to the boundary value and the adaptive
consensus protocol would not be necessary.

To solve the cooperative regulator problem on directed
strongly connected graphs and address the above men-
tioned difficulties, we introduce a novel adaptive control
protocol, that allows coupling gains to decay and synchro-
nize.

4. ADAPTIVE CONSENSUS PROTOCOL

Let each agent implement a control input in the form

ui = ciK

N∑
j=1

eij(xj − xi), i = 1, . . . , N (2)

where ci ≥ 0 is the time-varying coupling gain associated
with an i-th agent. The i-th agent dynamics is given by

ẋi = Axi + ciBK

N∑
j=1

eij(xj − xi). (3)

Let each agent implement the coupling gain dynamics

ċi =

N∑
j=1

eij(xj−xi)T Γ(xj−xi)+

N∑
j=1

eij(cj−ci)−`(ci−κi)

(4)
where ` > 0 is a constant, κi ≥ 0 is a constant estimated
by the i-th agent and Γ ∈ Rn×n is the adaptation-gain
matrix.

The gain matrices K and Γ are designed by the LQR
method. Let Q ∈ Rn×n and R ∈ Rm×m be positive definite
symmetric matrices, then

K = R−1BTP (5)

Γ = PBK (6)

where the positive definite symmetric matrix P ∈ Rn×n

is the unique positive definite solution of the algebraic
Riccati equation (ARE)

0 = ATP + PA+Q− PBR−1BTP. (7)

The introduced adaptive consensus protocol (2, 4) is
motivated by Li et al. (2013) and Li et al. (2015), however
there are several major differences. The coupling gains are
associated with each agent as by Li et al. (2015) and not
each interconnection as by Li et al. (2013), but the protocol
is more similar to Li et al. (2013). This leads to qualitative
changes in the network interactions.

The coupling gain dynamics (4) is not a monotonically
increasing function as it was in Li et al. (2013) and Li
et al. (2015). It consists of three main terms. The first term
on the right-hand side

∑
j eij(xj − xi)T Γ(xj − xi) is the

non-negative quadratic term motivated by the coupling
gain dynamics from Li et al. (2013). Its purpose is to
push the coupling gains to higher values until the states
get synchronized. The second term on the right-hand side



∑
j eij(cj−ci) synchronizes the coupling gains and thereby

solves the above mentioned difficulties with different and
to some extent high coupling gains. The third term on
the right-hand side −`(ci − κi) pushes the coupling gains
to κi and by this solves the problem with generally high
gains. The value of κi is estimated by an estimation
algorithm. The decay rate ` determines the strength of
the convergence of the coupling gain ci to the value of κi.

The proper estimation of κi is required for the exponential
stability of the network dynamic (3, 4). Not estimating κi
and just setting it to zero would mean that the solution of
the network dynamics ends up in a bounded set. This worst
case behaviour guarantees that the states of agents can not
get arbitrarily far apart from each other and provides time
for the estimation of κi. The value of κi is estimated by an
estimation algorithm from the network trajectory. This is
thoroughly discussed in the next sections.

In the sequel, we derive the network dynamics (3, 4)
and investigate its stability. First we define a general
network dynamics (8, 9). Then step by step by modifying
the general network dynamics (adding new terms to the
coupling gain dynamics) we derive the introduced network
dynamics (3, 4). In each step we investigate the stability
of the obtained network dynamics. These results we use to
conclude the stability of the network dynamics (3, 4).

4.1 General network dynamics

Assume the general network dynamics (3, 4) with ` = 0

ẋi = Axi + ciBK

N∑
j=1

eij(xj − xi) (8)

ċi =

N∑
j=1

eij(xj − xi)T Γ(xj − xi) +

N∑
j=1

eij(cj − ci) (9)

where decay term −`(ci−κi) that pushes the coupling gain
value ci to the value of κi is omitted.

Assume that the general network dynamics starts with dif-
ferent initial states and different initial coupling gains of all
agents. Consider agents with unstable but stabilizable dy-
namics. If the coupling gains are small the general network
dynamics might be unstable and the states of agents might
diverge. The adaptive term is positive while there is some
error in states of agents, therefore it pushes the coupling
gains to higher values. At the same time the coupling gain
synchronization term pushes the coupling gains towards
each other to synchronize. When the coupling gains rise
sufficiently high the general network dynamics becomes
stable and the states of agents start to synchronize. When
the states of agents get synchronized the adaptive term
is zero. If the coupling gains are not synchronized yet the
synchronization term synchronizes the coupling gains and
they get steady at some common final value. Note that
since the coupling gains are non-negative real numbers the
coupling gain synchronization term can not push them to
negative values.

Starting with agents having a stable dynamics, the general
network dynamics behaves the same as in the previous case
except that it is always stable because it is stable for any
coupling gain values. Note that the control law just speeds

up the synchronization of the states of agents. Since all
agents end up in one common equilibrium the control law
does not need to be implemented to reach consensus.

From the previous analysis, one expects that the states of
agents synchronize and the values of the coupling gains
rise and synchronize to some finite value for all initial
conditions, i.e. the general network dynamics is globally
asymptotically stable. This result is confirmed by the
simulations.

Note that by the asymptotic stability of a network we
mean the stability with respect to the collective dynamics
of agents in the sense of ||xj − xi|| → 0 as t → ∞, ∀i, j.
Same holds for the exponential stability with addition,
that convergence ||xj − xi|| → 0 as t → ∞, ∀i, j is faster
than some exponential function.

The work on the proof of the global asymptotic stability of
the general network dynamics (8, 9) is currently in progress
therefore we introduce just an idea of the proof. Define the
virtual leader x0 =

∑
i pixi and the virtual tracking error

δi = xi− x0. Assume the coupling gain dynamics (4) with
` = 0, then the network error dynamic is

δ̇i = Aδi + ciBK

N∑
j=1

eij(δj − δi)

−
N∑

k=1

pkckBK

N∑
j=1

ekj(δj − δk) (10)

ċi =

N∑
j=1

eij(cj − ci) +

N∑
j=1

eij(δj − δi)T Γ(δj − δi). (11)

Consider a Lyapunov function candidate

V =

N∑
i=1

piδ
T
i Pδi +

N∑
i=1

pi(ci − α)2 (12)

where α is some positive constant. The time-derivative of
the Lyapunov function candidate along the trajectory of
the network error dynamics (10, 11) is

V̇ = δT [P1 ⊗ (ATP + PA)− α(P1L+ LTP1)⊗ Γ]δ

−cTP1Lv −
1

2
cT (P1L+ LTP1)c. (13)

where P1 = diag(p), δ = (δT1 , . . . , δ
T
N )T is the vector of

virtual tracking errors, c = (c1, . . . , cN )T is the vector
of time-varying coupling gains and v = (v1, . . . , vN )T is
the vector of quadratic forms given by vi = δTi Γδi. To
prove that the general network dynamics (8, 9) is globally
exponentially stable it has to be shown, that for every
initial condition there exists α such that V̇ ≤ 0.

The general network dynamics (8, 9) synchronizes the
coupling gains to one common value that is lower than
the final value of the largest coupling gain without using
the coupling gain synchronization. This is found to solve
the problems of the recent adaptive consensus protocols
Li et al. (2013) and Li et al. (2015) with different and
partially large gains. Nevertheless the general network
dynamics inherits the problem with unbounded coupling
gains. Therefore we modify the general network dynamics
to allow coupling gains to decay and introduce the uni-
formly ultimately bounded network dynamics (14, 15).



4.2 Bounded network dynamics

Assume the coupling gain dynamics (4) with κi = 0, ∀i,
then the network dynamic is given by

ẋi = Axi + ciBK

N∑
j=1

eij(xj − xi) (14)

ċi =

N∑
j=1

eij(xj−xi)T Γ(xj−xi)+

N∑
j=1

eij(cj−ci)−`ci. (15)

This network dynamics consists of the general network
dynamics (8, 9) and an additional decay term −`ci in
the coupling gain dynamics that pushes the values of the
coupling gains to zero.

Consider agents with unstable but stabilizable dynamics.
Assume that the network dynamics (14, 15) starts with
different initial states and different initial coupling gains
of all agents. Note that the network dynamics might
be unstable because of small coupling gains. Then the
adaptive term overpowers the decay term therefore the
coupling gains start to rise. When the coupling gains rise
sufficiently high the network becomes stable and the states
of agents synchronize. When the states of agents get close
to each other the decay term overpowers the adaptive term
and the coupling gains start to decay to zero. Decreasing
coupling gains slowly destabilize the network dynamics.
When the coupling gains decay sufficiently low the network
becomes unstable and the states of agents start to diverge.
With the states far from each other the adaptive term
again overpowers the decay term and the cycle repeats.
Hence one expects oscillatory behaviour of the network
trajectory in some set. The term that synchronizes the
coupling gains apparently does not have any influence on
this oscillatory behaviour. The simulations of the network
dynamics (14, 15) from Section 5 confirm the boundedness
of its solution.

If the agents are stable then also the network dynamics is
stable. The states of agents converge to the equilibrium
point and thereby synchronize, therefore the consensus
protocol is not necessary. Applying the adaptive consensus
protocol one expects faster convergence to consensus. Let
the network dynamics start with different initial states and
initial coupling gains of agents. The coupling gains start
to rise because the adaptive term overpowers the decay
term. The states of agents are pushed towards each other
to synchronize by the adaptive consensus protocol. When
the states of agents get close to each other the decay term
overpowers the adaptive term and the coupling gains start
to decay to zero. At the same time the states of agents
synchronize and the coupling gains tend to zero therefore
the states end up synchronized in the equilibrium point
and the coupling gains end up being zero.

The work on the proof of the boundedness of the solution
of the network dynamics (14, 15) is currently in progress
therefore we introduce just the possible sketch of the proof.
Define the coupling gain transformation zi = ci − β,
where β is some positive constant. Then the network error
dynamics (14, 15) in the new coordinates (δi, zi) is

δ̇i = Aδi+ziBK

N∑
j=1

eij(δj−δi)+βBK

N∑
j=1

eij(δj−δi)

−
N∑

k=1

pkzkBK

N∑
j=1

ekj(δj − δk) (16)

żi =

N∑
j=1

eij(δj − δi)T Γ(δj − δi) +

N∑
j=1

eij(zj − zi)− `zi− `β.

(17)

This network dynamics consists of some nominal dynamics
and the non-vanishing perturbation term −`β, therefore
consider it as the perturbed nominal dynamics. First it
has to be shown, that the nominal dynamics is globally ex-
ponentially stable and the Lyapunov function and its time
derivative are bounded. Then, since the non-vanishing per-
turbation term is bounded, following (Khalil, 1996, Lem.
5.2) it can be shown, that the perturbed nominal dynamics
(16, 17) is uniformly ultimately bounded.

The boundedness of the network dynamics (3, 4) is an
important property. It says that for κi = 0, ∀i, the solution
of the network dynamics is uniformly ultimately bounded,
i.e. in the worst case the solution ends up being bounded.

Having uniform ultimate boundedness is necessary, but not
sufficient for a practical implementation of the protocol.
For that reason we introduce the full form of the proposed
coupling gain dynamics (4). In comparison to the coupling
gain dynamics (15) it contains an additional term `κi, that
can cancel effects of the non-vanishing perturbation term
−`β from (17).

Consider the coupling gain dynamics (4), then the network
error dynamics reads

δ̇i = Aδi+ziBK

N∑
j=1

eij(δj−δi)+βBK
N∑
j=1

eij(δj−δi) (18)

żi = −`zi + `κi − `β +

N∑
j=1

eij(zj − zi)

+

N∑
j=1

eij(δj − δi)T Γ(δj − δi). (19)

Increasing the κi, effects of non-vanishing perturbation
term are continuously reduced until the condition κi = β,
∀i is met. If κi ≥ β, ∀i the non-vanishing perturbation
term is cancelled, the dynamics reduces to the case of nom-
inal dynamics and it gets globally exponentially stable.

4.3 Estimation of κi

Now we have to properly estimate the value of κi to reach
global exponential stability of the network dynamics (3,
4). We require sufficiently high value of κi to guarantee
global exponential stability but at the same time we want
the value as low as possible to minimize the control effort.

To estimate the value of κi we propose an algorithm based
on the interval halving method. The idea is to increase
the value of κi as long as the trajectory of the network
dynamics oscillates, i.e. it is uniformly ultimately bounded.
When the network trajectory oscillates the non-vanishing
perturbation term is present in the dynamics. To cancel
this term the value of κi has to rise until the non-vanishing



perturbation term is cancelled and the network dynamics
gets globally exponentially stable. The oscillating trajec-
tory implies oscillating coupling gain, therefore the cou-
pling gain ci is sampled by some sampling frequency fs
and recorded in some time window ∆t. The highest and
the lowest recorded values are averaged and this average is
then used as a new κi. This process is repeated all the time.
The coupling gain ci and the trajectory of the network
dynamics stop to oscillate when the network dynamics
becomes globally exponentially stable. Then also the κi
reaches the steady state value.

Note that the sampling frequency fs has to be chosen
according to the Nyquist-Shannon sampling theorem. The
sampling rate must exceed 2fmax and the time window 4t
must be greater than 1/fmin, where fmax and fmin are
the highest and the lowest frequency in the system. The
decay-rate and the size of the non-vanishing perturbation
are determined by the positive constant `. The decay
term can be interpreted as a filtration term therefore the
constant ` influences also the frequency and the amplitude
of oscillations of the coupling gain ci.

To handle the noise acting on state measurements the
value of κi is updated only if the difference between the
maximal and minimal recorded coupling gain values is
greater than some predefined dead-zone. Note that the
dead-zone influences just the estimation of κi therefore
it does not harm the stability of the network. The solution
of the network dynamics is uniformly ultimately bounded
and with a properly chosen dead-zone corresponding to the
measured noise it remains uniformly ultimately bounded
however it approaches the exponential stability as close as
the dead-zone, and thus the noise, allow.

The simulations verify the theoretical results on the
proposed adaptive consensus protocol with the interval-
halving estimation algorithm.

5. SIMULATIONS

This section shows the simulations of the proposed adap-
tive consensus protocol (2, 4) with agents described by
linear double integrator dynamics

ẋi =

[
0 1
0 0

]
xi +

[
0
1

]
ui, xi =

[
xi1
xi2

]
, ∀i. (20)

The interval-halving algorithm for the estimation of κi is
configured to the time window 4t = 5s and the sampling
frequency fs = 10Hz. The initial value of κi, ∀i is set to
zero. Initial conditions of the agents are

xi1(0) ∈ 〈−10, 10〉, xi2(0) = 0, ci(0) = 0, ∀i. (21)

The uniform ultimate boundedness of the solution of the
network dynamics (3, 4) for κi = 0, ∀i is shown by
simulations in Figure 1. The algorithm for estimation of
κi was not used and κi was just statically set to zero. The
simulation on a circular communication graph consisting
of 50 agents is situated on the top of the figure and the
simulation on a communication graph consisting of two
interconnected circles each with 25 agents is situated on
the bottom. The topology of the communication graph
with two interconnected circles is shown in Figure 4.

Fig. 1. Simulations of the proposed protocol without
estimation of κi, for κi = 0, ∀i. The simulation of
50 agents on a circular topology is shown on the top
and the simulation of two interconnected circles each
with 25 agents is shown on the bottom.

In following simulations the final coupling gain value is
compared to the minimal coupling gain value required
by the static consensus protocol. The static consensus
protocol implements the input in the form of (2), but
instead of ci it uses just one coupling gain c for all agents.
To guarantee stability by the static consensus protocol the
coupling gain value has to satisfy

c ≥ 1

2 min<(λi)
(22)

where min<(λi) is the smallest non-zero real part of the
eigenvalues of the Laplacian matrix L.

Simulations of the proposed protocol with the interval-
halving estimation algorithm for the estimation of κi are
shown in Figure 2. The simulation on a circular graph
consisting of 50 agents is situated on the top of the figure.
In the first few seconds of the simulation the response is
uniformly ultimately bounded because of the low coupling
gain values. As the coupling gain values rise the network
reaches cooperative stability and states synchronize. The
coupling gains reach steady state value 61.2 while the
calculated lower bound on the coupling gain required by
static consensus protocols is 63.4. The simulation on a
graph consisting of two interconnected circles each with
25 agents is situated on the bottom of the figure. The
topology of the communication graph is shown in Figure
4. The steady state value of the coupling gains reach 15.4
while the calculated lower bound on the coupling gain for
the static consensus protocol is 16.

Figure 3 shows the simulations of the proposed protocol
with and without noise acting on the state measurements.
The simulations have been done on the circular graph
consisting of 10 agents. The steady state value of the
coupling gains is 3.2 without noise and 5.5 for the case with
noise, respectively. The static consensus protocol require
the coupling gain value to be greater than 2.6. Since the
coupling gain values end in a bounded set and they do
not permanently rise as they do in Li et al. (2013) and
Li et al. (2015), the proposed protocol with the interval-
halving estimation algorithm is found robust to the noise
acting on states.



Fig. 2. Simulations of the proposed protocol on a circular
graph consisting of 50 agents on the top and on a
graph consisting of two interconnected circles each
with 25 agents on the bottom, respectively.

Fig. 3. Comparison of the protocol simulated on a circular
topology consisting of 10 agents on the top without
and on the bottom with the noise acting on states.
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Fig. 4. The communication graph of two interconnected
circles each with 25 agents.

6. CONCLUSION

We presented a novel distributed adaptive consensus pro-
tocol, that solves the cooperative regulator problem on
directed, strongly connected communication graphs. The
protocol introduces a novel coupling gain dynamics, that
forces the coupling gains to synchronize and converge to
some estimated value. This solves the problems of re-
cent adaptive consensus protocols with high gains and
consequently large control effort. The value to which the
coupling gains converge is estimated by the estimation
algorithm based on the interval-having method.

The simulations of the proposed adaptive consensus pro-
tocol verify the theoretical results. Due to decay term, the
coupling gains in some situations attain lower values than
conventional algorithms. The protocol is found robust to

the noise in state measurements unlike the recent adaptive
protocols whose gains would permanently rise.

The work on the proofs of the global asymptotic stability
of the general network dynamics (8, 9) and the uniform
ultimate boundedness and the global exponential stability
of the network dynamics (14, 15) for different κi is still
ongoing. The investigation of relation between the decay
rate ` and the parameters (time window ∆t and sampling
frequency fs) is the task of the future research.
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