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Abstract: In this paper scaling of H-infinity norm of selected transfer functions in bidirectional
vehicle platoons is investigated. The vehicles are identical and use symmetric nearest-neighbor
interactions, hence the communication topology is a pinned undirected path graph. The LTI
open-loop model of individual vehicles can be of arbitrary order, but it is required to contain
two integrators in order to track the movement of the leader. It is shown that for any agent
model some transfer functions in the formation scale linearly, while others scale quadratically.
The type of scaling depends on the steady-state gain of the transfer function.
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1. INTRODUCTION

Symmetric control of bidirectional vehicle platoons re-
cently received a lot of attention. The popularity of sym-
metric control is partially thanks to its possible applica-
tions in real vehicle platoons, but also because it reveals a
few fundamental properties of the distributed control.

Asymptotic stability was discussed by Barooah and Hes-
panha (2005), who proved that such platoons cannot have
more than two integrators in the open loop. The same
paper also shows that the platoon’s response to noise is
unbounded in the number of vehicles N . This means a kind
of string instability. Effect of noise was also investigated
by Bamieh et al. (2012), which shows that one-dimensional
graph has the worst scaling of the H2 norm.

Veerman et al. (2007) showed that the H∞ norm of the
transfer function from the leader’s position to the position
of the last vehicle grows linearly with N . The same result
was later obtained by Hao and Barooah (2013). Transient
properties of a response of the platoon to the step in
leader’s velocity were derived by Veerman et al. (2009).
Knorn et al. (2014) analyzed scaling of bidirectional pla-
toons using port-Hamiltonian framework and Knorn et al.
(2015) discussed the effects of measurement errors.

In contrast, to shorten the transient in platoon, Barooah
et al. (2009) proposed asymmetric bidirectional control.
For one integrator in the open loop the properties can be
good (Lin et al. (2012)). However, as shown by Tangerman
et al. (2012), for double-integrator models an exponential
scaling of H∞ norm occurs. Hence, there is a price to pay
for faster transients.

All of the aforementioned papers considered only a par-
ticular vehicle model. Most typically it was a double inte-
grator or a vehicle controlled by a PI controller. Neverthe-
less, control theory allows us to design a controller of an
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arbitrary order and some design approaches yield higher-
order controllers. Therefore, it is important to generalize
the results from these papers to some general classes of
systems. First step in this generalization was by Seiler
et al. (2004), in which string stability was disproved for
predecessor following when agents have two integrators
in the open loop. Similarly, Herman et al. (2015) proved
that any asymmetric control has exponential scaling ofH∞
norm for vehicles with two integrators in the open loop.

In this paper we continue in this line of research. In partic-
ular, we generalize the results about scaling ofH∞ norm of
transfer functions in symmetric bidirectional platoons in
which vehicles have any LTI model with two integrators
in the open loop. Namely, we investigate a norm of two
transfer functions: from the input of the first vehicle to
position of the last vehicle and from the input of the last
vehicle to its own output. We show that the first one
scales linearly (as is known in the literature for particular
models), while the latter quadratically.

Recent results suggest that partial asymmetry—symmetric
coupling in position and asymmetric in velocity (or other
states)—achieves short transients with a good scaling (see
Herman et al. (2016)). In view of these results, a com-
pletely symmetric bidirectional control does not seem as a
good solution for a vehicle platoon. On the other hand, the
theoretical analysis of the systems with partial asymmetry
is still very limited and even a stability analysis is a
difficult task. The reason for this difficulty is that the
Laplacians for position and velocity are not simultaneously
diagonalizable. The authors therefore believe that even in
platoons it is useful to fully understand the implications
of symmetry for scaling. Moreover, the results for partial
asymmetry were derived only for particular models, while
here we provide results for general models.

2. SYSTEM MODEL

Assume a string of N + 1 identical vehicles indexed
i = 0, 1, . . . , N , having their outputs (positions) in one-



dimensional space. Except for platoons, one might consider
also a mass-spring-damper chain as an example. The
index 0 corresponds to the leader, which is controlled
independently of the rest of the platoon. In this paper we
work with an LTI open-loop model of the agent. That is, a

dynamic controller R(s) = q(s)
p(s) is connected in series with

a vehicle (plant) model G(s) = b(s)
a(s) . The output of the ith

vehicle is denoted as yi and it is the position of the vehicle.

The open-loop model is then M(s) = R(s)G(s) = b(s)q(s)
a(s)p(s) .

We only require that the open loop is a proper transfer
function, otherwise its order and structure are not limited.

Factor the open loop as M(s) = 1
sηMs(s) with |Ms(0)| <

∞. Then η is the number of integrators in the open loop
(also called a type number of the system). For instance, the
model M(s) = s+1

s2(s+b) has η = 2. For η = 2 and Ms(s) = 1,

we get the well-known double-integrator system.

Each vehicle uses for its control the outputs of its two
nearest neighbors—its predecessor yi−1 and its successor
yi+1— and an external reference ri. The control law is

ui = (yi−1 − yi)− (yi − yi+1) + ri (1)

and the last agent uses the control law uN = (yN−1 −
yN ) + rN . The general external input ri can represent, for
instance, a disturbance acting at the input of the controller
or a reference such as the reference distance ∆ref. The
leader’s control input is just r0.

2.1 Properties of the Laplacian

The regulation errors in (1) are given in a vector form as
u = −Ly + r with u = [u0, . . . , uN ]T, y = [y0, . . . , yN ]T

and r = [r0, . . . , rN ]T. The matrix L = [lij ] ∈ RN+1×N+1

is the Laplacian of a path graph with a leader. L has the
following structure

L =


0 0 0 . . . 0
−1 2 −1 . . . 0
...

. . .
. . .

. . .
...

0 . . . −1 2 −1
0 . . . 0 −1 1

 . (2)

Except for the first line, it is a symmetric tridiagonal
matrix. Next we state some useful properties of L.

Lemma 1. Laplacian L in (2) and its eigenvalues λi, i =
0, 1, . . . , N have the following properties:

a) Let Lp be the matrix obtained from L by deleting the
first row and column. Then λi(L) = λi(Lp),∀i ≥ 1.

b) The eigenvalues of L can be calculated as λ0 = 0 and

λi=2

(
1−cos

(
(2i−1)π

2N + 1

))
=4 sin2

(
(2i−1)π

4N + 2

)
.(3)

c) Let L̄kk be a matrix obtained from Lp by deleting
the kth row and column. Let the eigenvalues of L̄kk,
1 ≤ k ≤ N , be γ1 ≤ γ2 ≤ . . . ≤ γN−1. Then
λi ≤ γi ≤ λi+1.

d) The kth eigenvalue λk is bounded as

4(2k − 1)2

(2N + 1)2
≤ λk ≤

(2k − 1)2π2

4N2
(4)

and for k � N

λk ≈
(2k − 1)2π2

(4N + 2)2
. (5)

Thus, the kth smallest eigenvalue approaches zero as
N grows with a quadratic rate.

Proof. a) The pinned Laplacian Lp has a form

Lp =


2 −1 0 . . .

−1
. . .

. . . 0

. . .
. . . 2 −1

0 . . . −1 1

 . (6)

The result follows from the fact that L is a block lower-
triangular matrix with blocks [0, Lp]. b) The eigenvalues of
Lp were calculated in (Parlangeli and Notarstefano, 2012,
Prop. 3). c) This is so called Cauchy Interlacing Theorem
(Horn and Johnson (1990)). d) From (3) using sinx ≤ x

for x ∈ (0, π/2) we get λk ≤ 4
(

(2k−1)π
4N+2

)2
≤ (2k−1)2π2

4N2 =

c2(k)
N2 . The lower bound follows from (3) using sinx ≥

2x/π as λk ≥ 4
(

2
π

(2k−1)π
4N+2

)2
= 4(2k−1)2

(2N+1)2 ≥
c1(k)
N2 . The

approximation is a consequence of small angle argument
sinx ≈ x for small x. 2

A similar result on the quadratic approach of the smallest
eigenvalue to zero was presented by Barooah et al. (2009).

2.2 Transfer functions

In this paper we investigate the effect of an external input
to the position of some (other) vehicle. Consider an input
rc acting at a vehicle with index c (called control vehicle).
We are interested in how this input affects position yo
of the vehicle with index o (output vehicle). The transfer
function between such input and output is

Tco(s) =
yo(s)

rc(s)
. (7)

We are interested in how the H∞ norm of this transfer
function changes as a function of the indices c and o. The
H∞ norm of a stable transfer function T (s) is defined as
‖T (s)‖∞ = supω∈R |T (ω)|. In the sequel we work with the
pinned Laplacian Lp in (6) in order to get rid of λ0 = 0.

It was derived by Herman et al. (2014) that the transfer
function Tco(s) has the following form

Tco(s)=

[b(s)q(s)]1+δco
N−1−δco∏

i=1

(
a(s)p(s) + γib(s)q(s)

)
N∏
i=1

(
a(s)p(s) + λib(s)q(s)

) , (8)

where δco is the graph distance from c to o and λi are from
(3). The terms γi ∈ R, γi ≤ γi+1, are the eigenvalues of the
matrix L̄co ∈ RN−δco−1×N−δco−1 that is obtained from Lp

by deleting all the rows and columns corresponding to the
nodes on the path from c to o, see (Herman et al., 2014,
Thm. 10). Note that L̄co is a principal submatrix of Lp,
hence γi and λi interlace in the sense of Lemma 1 c).

We can rewrite the transfer function (8) into a more
convenient form. We define two types of transfer functions

Tj(s) =
λjb(s)q(s)

a(s)p(s) + λjb(s)q(s)
, (9)

Zij(s) =
a(s)p(s) + γib(s)q(s)

a(s)p(s) + λjb(s)q(s)
. (10)



From the product in (8), we can form δco + 1 transfer
functions of type Tj(s) and N − δco − 1 of type Zij(s). So
the transfer function can be written as

Tco(s) = Tco(0)

N−δco−1∏
i=1,j∈J

λj
γi
Zij(s)

N∏
j=1,j /∈J

Tj(s), (11)

where J is the set of indices j of eigenvalues λj which

are used in Zij(s). The term Tco(0) =

∏N−δco−1

i=1
γi∏N

j=1
λj

is the

steady-state gain.

Assumption 2. The overall system with the Laplacian Lp

(without the leader) is asymptotically stable for all N .

This is quite easy to achieve, since we just require that
the polynomial a(s)p(s) + λjb(s)q(s) is stable for any
λj ∈ (0, 4], i.e., for the real interval of eigenvalues. Since
the gain λi can be arbitrarily close to zero, we cannot
stabilize systems which have unstable open loops.

Assumption 3. M(s) has neither poles nor zeros in the
closed right half-plane, except for η = 2 poles at the origin.

3. SCALING OF H∞ NORM

In this paper we discuss scaling of platoons in which ve-
hicles have open-loop models with η = 2. Two integrators
in the open loop are required to satisfy the Internal Model
Principle in distributed control, see Lunze (2012).

We will approximate the frequency response of the open
loop for low frequencies ω as follows. Let the open loop
with η = 2 be written as

M(s) =
dms

m + dm−1s
m−1 + . . .+ d1s+ d0

s2(cn−2sn−2cn−3sn−3 + . . .+ c1s+ c0)
. (12)

Calculating its frequency response, separating to real and
imaginary part, we get

M(ω) = − d0c0 +O(ω2)

ω2 (c20 +O(ω2))
−d0c1 − d1c0 +O(ω)

ω (c20 +O(ω2))
. (13)

Assuming that ω is small, we can neglect the higher-
order terms in the numerator and denominator. Hence
the real part <{M(ω)} ≈ − d0co

ω2c20
and the imaginary part

={M(ω)} ≈ d0c1−d1c0
ωc20

. Using gr = d0
c0

and gi = d0c1−d1c0
c20

,

the approximated open-loop frequency response reads

M(ω) = −gr
1

ω2
− gi

1

ω
. (14)

We also need the following approximation of a square root√
1 + x ≈ 1 + 1

2x−
1
8x

2 + . . .. When x is very small, then
√

1 + x ≈ 1 +
1

2
x. (15)

In order to show scaling of the H∞ norm of transfer
functions in formation, we begin with an auxiliary result.
Consider the transfer function

T1(s) =
λ1b(s)q(s)

a(s)p(s) + λ1b(s)q(s)
. (16)

This is a closed-loop system with a gain equal to λ1. This
gain gets to zero as λ1 approaches zero.

Lemma 4. Suppose that η = 2. Then for N large and for
any M(s) it holds for some c1 ≤ c2 ∈ R,

c1N ≤ ‖T1(s)‖∞ ≤ c2N. (17)

The proof is in Appendix A. This means that the peak
in the magnitude frequency response of a closed loop
corresponding to the smallest nonzero eigenvalue of the
Laplacian scales linearly with the number of vehicles.

3.1 Particular transfer functions

In this section we analyze norms of two important transfer
functions, which capture the effects of the inputs on both
ends of the platoon. First, it is the transfer function

T1,N (s) = yN (s)
r1(s)

. This transfer function is quite important,

as it describes the effect of the movement of the leader on
the last vehicle. The second one under consideration is
the transfer function TN,N (s) from the input of the last
agent to its own position. The reason why we selected this
transfer function is that it has the worst scaling in the
platoon. Moreover, it also captures the effect of the rear-
end input on the platoon.

First we analyse the steady-state gain of transfer functions.

Corollary 5. The steady-state gain |Tco(0)| is given as

|Tco(0)| =
{
c if c ≤ o,
o if c < o.

(18)

Proof. This is a simple consequence of (Herman et al.,
2017, Thm. 1). 2

That is, the steady-state gain is just the index of the
control or output vehicle. Hence, if c = N , then the steady
state gain is equal to N and it also grows as N grows.

The norm of the transfer function T1,N (s) scales as follows.

Theorem 6. Suppose that η = 2. Then for N large, the
norm of the transfer function ‖T1,N (s)‖∞ for any M(s)
scales linearly in N , i.e., for some c1 ≤ c2 ∈ R,

c1N ≤ ‖T1,N (s)‖∞ ≤ c2N. (19)

The proof is in Appendix B. For the double-integrator
model, linear scaling was proved by Hao and Barooah
(2013) and Veerman et al. (2007). Theorem 6 therefore
generalizes the result to an arbitrary open-loop model.

Next we show the scaling of ‖TN,N (s)‖∞.

Theorem 7. Suppose that η = 2. Then for N large, the
norm of the transfer function ‖TN,N (s)‖∞ for any M(s)
scales quadratically in N , i.e., for some c1 ≤ c2 ∈ R,

c1N
2 ≤ ‖TN,N (s)‖∞ ≤ c2N2. (20)

The proof is in Appendix C. This is basically a consequence
of the linear scaling of the peak of T1(s) and the linear
scaling of the steady-state gain TN,N (0) as N grows. This
transfer function has the greatest norm among all in the
platoon.

Remark 8. Due to space limitations, we do show the
results for η = 1. We just state here that ‖T1,N (s)‖∞
is bounded and that ‖TN,N (s)‖∞ scales linearly. Another
practically relevant norm is the norm of the transfer
function matrix T(s), for which it holds ‖T(s)‖∞ ∝ N2

for η = 1 and ‖T(s)‖∞ ∝ N3 for η = 2.



Fig. 1. The norms of several transfer functions in loga-
rithmic scale with N growing. The crosses are 0.8N
and the asterisks are 0.6N2. The norm was calculated
using norm function in Matlab.

4. NUMERICAL EXAMPLES

We verify the results using the following models:

R(s) =
6.9s3 + 33s2 + 49s+ 23

s3 + 4.5s2 + 4.5s
, G(s) =

1

s(s+ 3)
. (21)

This is a higher-order controller with an integral action
designed for a second-order vehicle model with friction.

The scaling of various transfer functions in platoon is illus-
trated in Fig. 1. It is apparent from the figure that when-
ever the index of the control node c is kept fixed, the scal-
ing is linear. This is caused by the bounded steady-state
gain (for fixed c the steady-state gain (18) is fixed) and by
the linear growth of the peak T1(s). These are the transfer
functions T1,N/2(s), T1,N (s), T10,N (s). However, when the
index c grows with the number of agents, the linear growth
of ‖T1(s)‖∞ combines with the linear growth of |Tco(0)|,
therefore the scaling becomes quadratic, as it is apparent
for transfer functions TN/2,N/2(s), TN/2,N (s) and TN,N (s).
The crosses confirm that ‖T1,N (s)‖∞ scales linearly and
asterisks that ‖TN,N (s)‖∞ scales quadratically.

Magnitude frequency responses of the same transfer func-
tions for N = 50 are shown in Fig. 2. It can be seen
that all the transfer functions have their maximum at the
frequency where T1(ω) has its peak. Also the shape and
height of the peak for all transfer functions is similar to the
height and shape of T1(ω). This is a direct consequence of
the product form (11), where the term T1(s) is present for
any combination of c and o. The value of the peak differs
mainly due to different steady-state gains.

5. CONCLUSION

This paper considered scaling of H∞ norm of transfer
functions in symmetric bidirectional platoons. The vehicles
are supposed to be modelled by identical LTI systems
having two integrators in the open loop. It was proved that
the norm of the transfer function from the first vehicle to
the last vehicle grows linearly with the number of vehicles,
while the norm of the transfer function from the input of
the last vehicle to its own position grows quadratically.
The results presented here generalize the results previously
obtained for double-integrator models to arbitrary linear
model of the vehicle.

Fig. 2. Frequency response of several transfer functions.

Appendix A. PROOF OF LEMMA 4

Proof. As λ1 → 0, the bandwidth of the closed loop

T1(s) = λ1b(s)q(s)
a(s)p(s)+λ1b(s)q(s)

decreases, because λ1 acts as

a gain. Thus, the maximum of |T1(ω)| can be only in
low frequencies. The approximated frequency response of

T 1(ω) = λ1M(ω)

1+λ1M(ω)
is using M(s) in (14)∣∣T 1(ω)

∣∣2 =
λ1
(
g2i ω

2 + g2r
)

(grλ1 − ω2)
2

+ λ21g
2
i ω

2
. (A.1)

We can calculate the frequency ωm for which (A.1) attains
its maximum. It is

ωm =
gr
gi

√√
2λ1g2i /gr + 1− 1. (A.2)

Plugging this frequency for ω to (A.1), we get

max
ω
|T (ω)|2 =

g4i
√
gr + 2g2i λ1λ

2
1

ψ(λ1)
, (A.3)

where ψ(λ1)=g4i
√
gr+2g2i λ1λ

2
1+
(
− 2grg

2
i

√
gr + 2g2i λ1 +

4g2i
√
g3r

)
λ1−2g2r

√
gr + 2g2i λ1+2

√
g5r . Define τ =

√
2g2i λ1 + gr

and τ2 = 2g2i λ1 + gr. Then we simplify (A.3) to

max
ω
|T (ω)|2 =

g4i λ
2
1τ

g4i λ
2
1τ+2gr

√
gr(2g2i λ1 + gr)−grτ(2g2i λ1+gr)−g2r τ

=
g4i λ

2
1τ

g4i λ
2
1τ + 2gr

√
grτ2 − grτ3 − g2r τ

=
g4i λ

2
1

g4i λ
2
1 −

(√
grτ − gr

)2
=

g4i λ
2
1(

g2i λ1+gr

√
1+

2g2
i

gr
λ1−gr

)(
g2i λ1−gr

√
1+

2g2
i

gr
λ1+gr

) .
(A.4)

We can use (15) to get
√

1 +
2g2

i

gr
λ1 ≈ 1 +

g2i
gr
λ1 −

g4i
2g2r

λ21. Plugging this to (A.4) we get maxω |T 1(ω)|2 =
2gr

2g2
i
λ1−

g4
i

2gr
λ2
1

, from which after neglecting the term with λ21

follows the final result

max
ω
|T 1(ω)| ≈

√
gr
g2i λ1

=

√
gr
g2i

c

N
, (A.5)

because the eigenvalue λ1 is in the order of 1/N2. Numer-
ical verification is in Fig. A.1. 2

Appendix B. PROOF OF THEOREM 6

Proof. Using (18), equation (11) gets a form



(a) (b)

Fig. A.1. a) Frequency responses of |T1(ω)| (red) and
|T 1(ω)| (black) for N = 250, 350, 450, 550 (right to
left). The blue crosses are from (A.5). b) shows rela-

tive error ψ =
∣∣∣‖T1(s)‖∞−‖T 1(s)‖∞

‖T1(s)‖∞

∣∣∣ of the approxima-

tion as a function of N . It decays to zero.

T1,N (s) =

N∏
i=1

Ti(s) = T1(s)

N∏
i=2

Ti(s) (B.1)

Let ωm be the frequency at which T1(s) attains its max-
imum. It follows from (Herman et al., 2017, Lem. 2 a))
that at this frequency for all transfer functions Ti(s), i > 1

holds |Ti(ωm)| ≥ 1 since λi ≥ λ1. Then
∏N
i=2 Ti(ωm) ≥ 1.

Also Lemma 4 shows that ‖T1(s)‖∞ grows linearly in N .
Then from (B.1) we get a lower bound

‖T1,N (s)‖∞ ≥
N∏
i=1

|Ti(ωm)| ≥ |T1(ωm)| ≥ c1N. (B.2)

Now we show that the norm is upper bounded by c2N

by showing that
∏N
i=2 |T i(ωm)| is upper bounded with a

bound independent of N . Define T i(ω) = λiM(ω)

1+λiM(ω)
. The

frequency response |T i(ωm)|2 at ωm in (A.2) is given as∣∣T i(ωm)
∣∣2 =

λ2i g
4
i τ

(τ −√gr)g4i λ2i +
√
gr(g2i λi −

√
grτ + gr)2

(B.3)
with τ =

√
2g2i λ1 + gr. Since λ1 is small, using (15) we

approximate τ ≈ √gr
(

1 +
g2i
gr
λ1

)
. Then

∣∣T i(ωm)
∣∣2≈ g6i λ

2
iλ1 + g4i grλ

2
i

g6i λ
2
iλ1 + g4i gr(λi − λ1)2

=
λ1 + gr

g2
i

λ1 + gr
g2
i

(1− λ1

λi
)2

≈
gr
g2
i

gr
g2
i

(1− λ1

λi
)2

=
1

(1− λ1

λi
)2
⇒
∣∣T i(ωm)

∣∣ ≈ 1

1− λ1

λi

. (B.4)

We can bound λ1/λi using (4) as

λ1
λi
≤

π2

(4N+2)2

(2i−1)2
(2N+1)2

=
π2

(4i− 2)2
. (B.5)

Then
∣∣T i(ωm)

∣∣ ≤ 1 + π2

(4i−2)2−π2 . The product then is

N∏
i=2

|T i(ωm)| ≈
N∏
i=2

1

1− λ1

λi

≤
N∏
i=2

(
1 +

π2

(4i− 2)2 − π2

)

≤
N∏
i=2

(
1 +

2

i2

)
≤
∞∏
i=1

(
1 +

2

i2

)
(B.6)

The product can be bounded as (Melnikov (2011))

∞∏
i=1

(
1 +

2

i2

)
=

sinh
√

2π√
2π

= c2. (B.7)

It follows that |T1,N (ωm)| is bounded as

|T1,N (ωm)| ≤ |T1(ωm)|
N∏
i=2

|T i(ωm)| ≤ |T1(ωm)|c2 ≤ c2N

(B.8)
For other peaks caused by blocks Ti(s) in (B.1) we know
that their value is lower than that of T1(s). Moreover, at
higher frequencies the blocks Ti(s) with λi very low have
they roll-off, hence the frequency response is sufficiently
low. So it is the peak of T1(s) that sets the H∞ norm and
this peak scales linearly by (B.2) and (B.8). 2
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Proof. Consider the real part of the frequency response
<{λ1M(ωm)} with ωm in (A.2). Using (14) and (15) it is

α = <{λ1M(ωm)} ≈ −g2i λ1

gr

(√
1 + λ1

2g2
i

gr
− 1

)
≈ −g2i λ1
g2i λ1 −

g4
i

g2r
λ21

≤ −1 for λ1 → 0,

(C.1)

since gi, gr are fixed. This is the frequency response of the
open loop scaled by the smallest gain possible, λ1. Hence,
λiM(ωm) ≤ −1,∀i . Using (11), we get TNN (s) as

TNN (s)=TN,N (0)T1(s)
λN
γ1
Z1N (s)

N−1∏
i=2

(
λi
γi
Zii(s)

)
,

(C.2)

where Z1N = a(s)p(s)+γ1b(s)q(s)
a(s)p(s)+λNb(s)q(s)

. It follows from (Her-

man et al., 2017, Lem. 2 c)) that
∏N−1
i=2

λi
γi
Zii(ωm) ≥∏N−1

i=2
λi
γi
Zii(0) = 1, because λiα < −1. Therefore, we get

using (A.5) and (18)

TNN (ωm) ≥ TNN (0)T1(ωm)
λN
γ1
Z1N (ωm)

≥ c1N2λN
γ1
Z1N (ωm).

(C.3)

Let us now test if λN
γ1
Z1N (ωm) is bounded. Define

Z1N (ωm) = 1+γ1M(ωm)

1+λNM(ωm)
as an approximation of Z1N (ω)

at ωm. We can write∣∣∣∣λNγ1 Z1N (ωm)

∣∣∣∣2 =
τ + ( τ

g2
i
γ1
− gr)2

τ + ( τ
g2
i
λN
− gr)2

(C.4)

with τ = g2r

√
1 +

2g2
i
λ1

gr
− g2r . We can approximate the

square root as
√

1 +
2g2

i
λ1

gr
= 1 +

g2i
gr
λ1 to get τ ≈ grg

2
i λ1.

Then the modulus simplifies to∣∣∣∣λNγ1 Z1N (ωm)

∣∣∣∣2 ≈
(
λ1

γ1
− 1
)2

+
g2i
gr
λ1(

λ1

λN
− 1
)2

+
g2
i

gr
λ1

. (C.5)

Note that for N large, λ1 → 0 and λN → 4. Then
g2i
gr
λ1 ≈ 0

and
(
λ1

λN
− 1
)2

+
g2i
gr
λ1 ≈ 1. We can write



∣∣∣∣λNγ1 Z1N (ωm)

∣∣∣∣ ≈ ∣∣∣∣λ1γ1 − 1

∣∣∣∣ . (C.6)

Let us show that λ1/γ1 is bounded. γ1 is an eigenvalue of
a principal submatrix L̄NN of Lp

L̄NN =


2 −1 . . . 0

−1
. . .

. . . . . .

. . .
. . .

. . . −1
. . . 0 −1 2

 ∈ RN−1×N−1. (C.7)

The eigenvalues for such a graph are as follows (Parlangeli
and Notarstefano, 2012, Prop. 3.3)

γi = 2

(
cos

iπ

N
− 1

)
= 4 sin2

(
iπ

2N

)
. (C.8)

Using sinx ≥ 2x/π we get γi ≥ 4
N2 . Then using (4)

λ1/γ1 ≤ 4π2

(4N)2 /
4
N2 ≤ π2/16. Then |λ1/γ1Z1N (ωm)| >

|1 − π2/16| = ζ1, so it is bounded regardless of N . To
conclude,

TN,N (ωm) ≥ TN,N (0)T1(ωm)Z1N (ωm) ≥ c1N2. (C.9)

Now we show the upper bound. It follows from (C.6) that

|Z1N (ωm)| ≤ 1 = ζ2. We now show that
∏N−1
i=2 |Zii(ωm)| <

ζ3. Following the reasoning in (C.4), we can write∣∣∣∣λiγiZii(ωm)

∣∣∣∣2 =
τ +

(
τ

g2
i
γi
− gr

)2
τ +

(
τ

g2
i
λi
− gr

)2 ≈
(
λ1

γi
− 1
)2

(
λ1

λi
− 1
)2 (C.10)

⇒
∣∣∣∣λiγiZii(ωm)

∣∣∣∣ =
1− λ1

γi

1− λ1

λi

. (C.11)

We can bound the product
∏N−1
i=2

∣∣∣λiγiZii(ωm)
∣∣∣ as

N−1∏
i=2

λi
γi
|Zii(ωm)| =

1− λ1

γ2

1− λ1

λ2

1− λ1

γ3

1− λ1

λ3

. . .
1− λ1

γN−1

1− λ1

λN−1

≤
1− λ1

λ3

1− λ1

λ2

1− λ1

λ4

1− λ1

λ3

. . .
1− λ1

γN−1

1− λ1

λN−1

=
1− λ1

γN−1

1− λ1

λ2

≤ 1

1− λ1

λ2

≤ 1

1− π2

36

= ζ3. (C.12)

We used the facts that λi+1 ≥ γi and that λ1

λ2
≤ π2

36 using
(B.5). It follows that

|TN,N (ωm)|=TN,N (0)|T1(ωm)||Z1N (ωm)|
N−1∏
i=2

λi
γi
|Zii(ωm)|

≤ ζ2ζ3TN,N (0)|T1(ωm)| ≤ c2N2. (C.13)

Combining (C.9) with (C.13) we get the quadratic scaling
at ωm. Note that ‖T1(s)‖∞ > ‖Ti(s)‖∞. That is why
that at ωm is not only the peak of |T1(ω)|, but also of
|TN,N (ω)|. Thus, the bounds on the peak of |TN,N (ω)|
are the bounds on the H∞ norm. 2
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