
Czech Technical University in Prague

Faculty of electrical engeneering

Bachelor thesis

Matej Grajciar

Any-angle path-planing algorithms

Department of Cybernetics

Bechelor thesis supervisor: RNDr. Kulich Miroslav Ph.D

Praha, 2012

Prehlásenie

Prehlasujem, že som svoju bakalársku prácu vypracoval samostatne. Všetky podklady
(literatúru, SW, zdroje atď.), ktoré som použil sú uvedené v priloženom zozname.

V Prahe dňa .
podpis

zadani

Abstrakt

Táto bakalárska práca skúma výhodnosť any-angle plánovaćıch algoritmov (Basic Theta*,
Lazy Theta*, Phi*, Incremental Phi*). Algoritmy sú testované v rôznych reprezentáciách
(mriežka, triangulačná sieť, tetrahedrónová sieť). Všetky zmienené algoritmy sú napro-
gramované a otestované v rozsiahlych experimentoch. Výsledky any-angle algoritmov sú
porovnané s výsledkami najznámeǰsieho štandardného algoritmu A*.

Abstract

This thesis examines the profitability of the any-angle path-planning algorithms (Basic
Theta * Lazy * Theta, Phi * Incremental Phi *). Algorithms are tested in different repre-
sentations (Grid, triangulation mesh, tetrahedral mesh). All of the mentioned algorithms
are programmed and tested in large scale experiments. The results of any-angle algorithms
are compared with the results of the most known standard algorithm A*.

Proďakovanie

Rád by som poďakoval vedúcemu práce RNDr. Miroslavovi Kulichovi Ph.D za odborné
vedenie a poskytnutie cenných rád, ktoré boli pre mňa vělmi pŕınosné ako pri ṕısańı práce
tak do života.

Contents

1 Introduction 1
Introduction . 1

2 Problem definition 2

3 Workspace Representation 3
3.1 Grid representation . 5
3.2 The triangulation mesh for R2 space . 6
3.3 The tetrahedral mesh for R3 space . 7

4 Path-planning algorithms 10
4.1 A* . 10
4.2 Basic Theta* . 12
4.3 Lazy Theta* . 14
4.4 Phi* . 17
4.5 Incremental Phi* . 18

5 Experiments 21
5.1 Experiments on grid workspace in R2 space environment 21
5.2 Experiments on triangulation mesh workspace in R2 space environment . . 25
5.3 Experiments in R3 space environment . 27
5.4 Experiments in R2 space dynamic environment 31

6 Conclusion 33

Attachment A: CD Content 36

i

List of Tables

5.1 Path length . 23
5.2 Computation time (milliseconds), existing path 23
5.3 Computation time (milliseconds),non existing path 23
5.4 Path length . 27
5.5 Computation time (milliseconds) . 27
5.6 Path length . 28
5.7 Computation time (milliseconds) . 28

1 Directory structure on CD . 36

ii

List of Figures

3.1 A photography of an environment . 4
3.2 Transformation of workspace into a grid 4
3.3 Transformation of workspace into a triangulation mesh 4
3.4 Transformation of workspace into polyhedral map 5

4.1 Constrained and not constrained path example 13

5.1 Path of Basic Theta* . 22
5.2 Autolab map . 24
5.3 Cave map . 24
5.4 Hospital map . 24
5.5 Comparision of A* a Lazy Theta* paths, when Lazy Theta* has significantly

shorter runtime than A* . 25
5.6 Difference in path between any-angle algorithm and A* on var-density map 26
5.7 Gear environment . 29
5.8 Example path of A* in Gear environment 29
5.9 Example path of Theta* in Gear environment 29
5.10 Example path of A* in Bunny environment 30
5.11 Example path of Theta* in Bunny environment 30
5.12 Hospital environment with a new obstacle of a big size 31
5.13 Example path of Incremental Phi* in hospital environment with all four

new obstacles . 32
5.14 Example path of Basic Theta* in hospital environment with all four new

obstacles . 32
5.15 Avarage runtime for rising number of the obstacles 32

iii

Chapter 1

Introduction

The aim of this thesis is to examine the potential contribution of any-angle algorithms
to the path-planning.

The objective of path-planning algorithms is to find the shortest path from a start po-
sition to a goal position. Due to complexity of the path-planning problem the environment
is discretized into a graph, in that are the algorithms computing the path.

While the standard algorithms plan the path only along the edges of the graph, any-
angle path-planning algorithms plan the path trough free space (the path is not constrained
to the edges) so the path-planning of any-angle algorithms runs in a continuous environ-
ment. This property of any-angle algorithms causes that the final path is shorter and more
realisticly looking than path found by standard algorithms.

This thesis accrues from the work of Sven Koenig [11] about the any-angle path-planning
algorithms. His work describes these algorithms and compares them with the best known
standard algorithm, A*. In this thesis, the algorithms are not tested only in the grid
representation, as in the work of Sven Koenig but are also tested in other commonly used
environment representations for R2 and R3 environment.

The objective of this thesis is to examine the advantages of any-angle path-planning
algorithms for other environment representations than a grid, while achieving similar results
for a grid environment representation as in Sven Koenig’s work.

The aim of this thesis is not to develop a perfectly optimized algorithm, but to compare
the generated paths and the computation times of any-angle and standard algorithms.

The structure of the thesis is as follow, in Chapter 3 are described the environment
representations. The individual algorithms are presented in Chapter 4 and the results of
experiments from these algorithm are discussed in Chapter 5.

1

Chapter 2

Problem definition

The objective of this thesis is to solve a path-planning problem for mobile robotics,
where a robot must move from a start position to a goal position in the shortest time. The
path-planning problem and it’s solution is composed of two parts. The first subproblem is
called generate-graph [11]. It’s aim is to discretize a continuous environment into a graph.
The discretized environment where robot moves is called workspace. A workspace is a
operation space of a robot. A workspace is divided into two kinds of objects, free space and
obstacles. The obstacles are locations in the workspace, trough which is the robot unable
to move. There exist many workspace representations : Grids, Voronoi diagrams, Framed
Quadtrees, Triangulation mesh, Tetrahedral mesh etc. These representations differ in space
complexity, the speed of creation, algorithm heftiness etc. Workspace is transformed into
a weighted graph. This graph consists of a finite set of vertices V (points in a workspace),
a finite set of weighted edges E (visible paths in workspace), and function ε that assigns
to each edge two end vertices (neighbors) [5].

This graph is needed as an input for the subproblem find-path [11]. The objective of
the Find-path subproblem is to search the minimum weighted path from start point to
the goal point. Several algorithms can be used to compute the path. Probably the most
known algorithm is A*. Other algorithms are typically improvements of A*. A* algorithm
is fast enough but the path is constrained only to the graph edges, so the final path looks
unrealistic and is longer than necessary. The main property of each any angle algorithm is
the line-of-sight check. The line-of-sight check test if exists a visible straight path between
two points in the workspace. However Theta*, a variant of A*, propagates information
along the graph edges without constraining the path to them. Theta* finds shorter and
more realistic looking paths than A*. Theta* is extended to Lazy Theta algorithm, which
is much faster than Theta*. Phi* algorithm is a variant of Theta* with slightly differences,
such as storing additional data of each point in the graph. This information is further
used to speed up the path-planning. Incremental Phi* is an incremental version of Phi*,
that us designed for path-planning in changing environment. Incremental Phi* recomputes
any-angle paths faster than repeated single shot Theta* because it adjust the path during
the movement of a robot.

2

Chapter 3

Workspace Representation

As mentioned before the workspace can be represented in many ways. The following
representations, are used in this thesis: grid, triangulation mesh and tetrahedral mesh.

Grid workspace is a matrix A = [n,m] the elements of matrix can have value 0-
unblocked or 1-blocked. Around each cell of matrix are four vertices, in a grid defined
as the matrix A contains [n + 1,+1] vertices. Each vertex has four crossbar neighbors and
eight neighbors (Figure 3.2) [13]. The green dots are the eight neighbors of the black vertex
and the green lines are the visible path between them. The blue triangles connected with
the black vertex trough the blue lines are the vertex’s four crossbar neighbors with visible
paths. The edges of a graph G (created from grid representation) are the edges between
visible neighbors in grid. This edges represent the visible path for a robot.

Grids are used because it is a fast way to represent a workspace. Terrain can be easily
discretized into grid by laying the grid net over the terrain and labeling all cells that are
partially or completely obstructed as blocked [11]. The discretization into grid is inaccurate.
To achieve a precise discretization into grid, the size of cells must be as small as possible,
which causes a higher time complexity by path-planning. In Figure 3.1 is shown an example
of robot’ workspace. The example of creating a grid from a workspace is shown in Figure
3.2.

A triangulation mesh can be considered as a graph, that is created by the Delaunay
triangulation. A triangulation mesh comprises a set of triangles, these triangles are con-
nected by their common edges. However the triangulation mesh represents a workspace for
a fraction of the memory than the grid representation, the speed of mesh creation is very
high in comparison to grid. The memory saving is caused due to less space complexity.
The triangulation mesh does not contain so much points as grid, which is consequence of
the polygonal map representation. This representation not only saves the memory but also
speed-ups the path-finding algorithm. Polygonal map is defined by one or more polygons,
one polygon refers to boundaries of the workspace and other polygons represent the obsta-
cles inside the workspace. A simple polygon is a finite chain of line segments called edges,
their endpoints called vertices and without self-intersection. In Figure 3.3 can be seen a
polygonal map created from the workspace shown in Figure 3.1 and also the triangulation
mesh created from this polygonal map.

3

Figure 3.1: A photography of an environment

(a) The environment with grid lines (b) A grid representation of the environ-
ment

Figure 3.2: Transformation of workspace into a grid

(a) A polygonal map of the environment (b) A triangulation mesh of the environ-
ment

Figure 3.3: Transformation of workspace into a triangulation mesh

4

(a) A photography of a clay bunny (b) A polyhedral map of the bunny

Figure 3.4: Transformation of workspace into polyhedral map

A tetrahedral mesh is an equivalent for the triangulation mesh in R3 space. Both meshes
share same attributes in comparison to grid. A tetrahedral mesh is created from a 3D
triangulation mesh by process called tetrahedralization. This triangulation mesh consists
of points end edges, which represent the constraining facets of the workspace. These facets
are either the boundary facets or the obstacle facets, these facets constrain the free space
of robot’s motion. Even if the grid representation may be used in R3,it’s space complexity
is too high. Figure 3.4 shows a real life object represented as a 3D triangulation mesh. The
image and the map in this Figure are taken from The Stanford 3D Scanning Repository
[3].

3.1 Grid representation

After an environment is discretized into grid, the planar graph is formed of all vertices
and the visible edges. The neighbors of current vertex are not saved, but computed by each
expansion again.

The line-of-sight check is inspired by Bresenham algorithm. It is checked trough which
cells passes the line segment formed by two points. The line-of-sight check does not draw
the current pixel (cell in grid), but checks if the curresponding cell in grid is blocked or
unblocked. If all cells along the line are unblocked, the path between points is marked
as a visible path. The Bresenham line algorithm is an efficient algorithm to render a line
with pixels. The long dimension is incremented for each pixel, and the fractional slope is
accumulated [15].

5

3.2 The triangulation mesh for R2 space

The triangulation mesh represents R2 space. The triangulation is the division of a
surface or a plane polygon into a set of triangles, relative to the restriction that each
triangle side is entirely shared by two adjacent triangles. It was proved in 1925 that every
surface has a triangulation, but it might require an infinite number of triangles and the
proof is difficult [14].

The triangulation of a polygon means partition of into the non-overlapping triangles
using the diagonals only. The triangulation maximizes the minimal angle of each triangle.
The triangulation theorem says that every simple polygon admits the triangulation. Every
triangulation of an n-gon has exactly n− 2 triangles [12].

The triangulation mesh is converted into a planar graph as an input for algorithm.
Edges of created triangles stands as edges in the planar graph. They also represent the
visibility between vertices. The information of the vertex neighbors is no longer computed
by each expansion newly. The neighbors of each vertex are known on the basis in which
triangles is given vertex located. Both of two points,which are associated with the expanded
vertex to the current triangle, are considered as the vertex neighbors.

The main intention by developing the line-of-sight check for the triangulation mesh is
the test of the path’s visibility without usage of the obstacle knowledge. The algorithm is
much faster when the check whether path crosses an obstacle is avoided. Thus it is used
the knowledge of the adjacent triangles and it is assumed that none of the obstacles has a
shape of triangle. While the evaluation, if the path crosses any edge of obstacle polygon,
can be very slow on large maps and will use additional memory space. It is tested, whether
the path lies in triangles, because it is set that the adjacent triangles are not obstacles so
the path is passing trough unblocked space. The line-of-sight algorithm is build on this
basis.

In this section,the used line-of-sight algorithm will be described. This algorithm tests
whether the path between the goal vertex and the parent vertex is visible or not. The
actual vertex is the closest neighbor of the goal vertex along the path between goal and
parent. The loop is repeated unless the path crosses a new triangle edge(line 2, 9, 12, 18)
or there are no edges of the triangles to check (the path crosses an edge of an bstacle, is
unblocked). The goal vertex and actual vertex are always the vertices of first triangle along
the path between goal and parent. There are two possible triangles in space, that contains
both goal and actual vertices. After these two triangles are found (line 4) by determination
of the goal and actual mutual neighbors. The two determined vertices are stored in the
neighbors stack(line 4). It is tested whether an edge of the triangle 4(sucess actual child)
intersects the line segment goal and parent (line 9, 12). If there is an intersection of these
two line segments, the actual and child vertices are moved to the next triangle (line 10, 13).
The inner loop stops and neighbors are reloaded. The hasLineLineIntersection() function
tests whether the line segment goal and success (line 9) or the line segment parent and
success (line 12) intersects the line segment goal and parent. Every success vertex that
has already satisfied the hasLineLineIntersection function during the algorithm is removed
from neighbors to prevent the endless loop. This is repeated until there are no triangle

6

edges left to check, or the start vertex is found (line 7).

Script 1: Line-of-Sight algorithm for triangulation mesh

Data: Triangulation mesh
Input: Goal,actual and parent vertex
Result: Returns true if the path between two points is visible, false if it is blocked
child = goal;1

repeat2

continue = false;3

neighbors = actual.neighbors ∩ child.neighbors;4

while neighbors.notEmpty() and continue == false do5

success = neighbors.front();6

if success = start then7

return ”path is visible”;8

if hasLineLineIntersection(start goal , actual sucess) then9

child = success;10

continue = true;11

else if hasLineLineIntersection(Start Goal , child sucess) then12

actual = success;13

continue = true;14

end15

neighbors.delete(v2);16

end17

until continue ;18

return ”Path is not visible”;19

3.3 The tetrahedral mesh for R3 space

The tetrahedral mesh is an improved triangulation mesh to be used in the R3 space. The
tetrahedralization divides the environment into tetrahedrons, the pyramid like geometrical
objects. Even if the tetrahedralization is based on the triangulation, it does not share
every advantages of the triangulation. The computation time of creating tetrahedral mesh
is much longer. The vertices of the tetrahedral mesh must belong to given convex hull.
The intersection of two tetrahedrons is either empty or a vertex or an edge or a facet. The
number of the created tetrahedrons is no longer firmly determined as by triangulation.
Every polyhedron with N vertices can be triangulated with O(N2) tetrahedral [12] [7].

The graph created from the tetrahedral mesh must be no longer planar. It contains all
the points contained in tetrahedral mesh and the new created edges of polyhedrons stands
as the visible paths between these points. The information of vertex neighbors is known on
the basis in which tetrahedrons is given vertex located. All of the three points, that create
with the current vertex a tetrahedron, are considered as vertex neighbors.

7

Line-of-sight check for tetrahedral mesh is developed with the same intention as for
triangulation mesh This intention is to avoid the test of the path’s visibility without usage
of the obstacle knowledge. The essential precondition is, that none of obstacles has a
shape of a tetrahedron and the tetrahedrons are considered as an unblocked space. The
algorithm tests if the path crosses a facet of tetrahedron, and thus lies in a tetrahedron,
and thus is visible and unblocked. The evaluation if the path crosses any obstacle facet is
not used,because it can be very slow with rising number of the blocked facets and will also
use an additional memory space.

In this section,the used line-of-sight algorithm will be described. This algorithm checks
the visibility between the goal vertex and parent vertex in tetrahedral mesh. The actual
vertex is a closest neighbor of goal vertex along the path between goal and parent. The
loop is repeated unless the path crosses a new tetrahedron facet(line 2, 11, 24, 21) or
there are no facets of the tetrahedrons to check (the path crosses an facet of an obstacle, is
unblocked). The goal vertex and the actual vertex are always the vertices of first tetrahedron
along the path between goal and parent. All triangles that contain the two goal and actual
vertices and the third success vertex (line 4), represents one of the three facets (the base)
of a tetrahedron. The neighbors queue and the neighbors2 stack represents the all possible
facet in tetrahedron with the base facet 4(success actual child). It is tested which facet
of the tetrahedron(success actual child roam) is intersected by the line segment goal and
parent (line 11, 14). If there is and intersection of the facet and the line segment, actual and
child vertices are moved to the next tetrahedron (line 12, 15). The inner loop stops and
neighbors and neighbors are reseted. The hasLineLineIntersection() function tests whether
the facet child, success, roam (line 11) or the facet parent, success, roam (line 12) is
intersected by the the line segment goal and parent. Every roam vertex that has already
satisfied the hasLinePlaneIntersection() function during the algorithm is removed from the
neighbors queue to prevent the endless loop. This is repeated until there are no tetrahedron
facets left to check, or the start vertex is found.

8

Script 2: Line-of-Sight in 3D algorithm

Data: Tetrahedral mesh
Input: Goal,actual and parent vertex
Result: Returns true if the path between two points is visible, false if it is blocked
continue = false;1

repeat2

neighbors = actual.neighbors ∩ child.neighbors;3

while neighbors.notEmpty() and continue == false do4

success = neighbors.front();5

neighbors2 = success.neighbors ∩ neighbors;6

while neighbors2.notEmpty() do7

roam = neighbors2.front();8

if roam = start then9

return ”path is visible”;10

if hasLinePlaneIntersection(start goal , 4(actual success roam)) then11

child = roam;12

continue = true;13

if hasLinePlaneIntersection(start goal , 4(child success roam)) then14

actual = roam;15

continue = true;16

neighbors2.delete(roam);17

end18

neighbors.delete(success);19

end20

until continue ;21

return ”Path is not visible”;22

9

Chapter 4

Path-planning algorithms

In this chapter, four any-angle path-planning algorithms are described. All these algo-
rithms are planning the path in graphs produced from various workspace representations.
There exist several any-angle path-planning algorithms, that slightly differs in the compu-
tation time and the path length.

First, A* algorithm is presented as a base algorithm for following algorithms. A* finds
long and non-realistic looking paths, because the path is constrained only to graph edges.
The path of A* can be improved with post smoothing. A* PS (with post smoothing)
adjusts the found path on end of A* algorithm to be smoother and more realistic looking.
This adjustment shortens the former path created by A* at an increase in runtime [11].

Theta* is the name for family of any-angle path-planning algorithms based on same
principles. All Theta* algorithms adjusts the path during the algorithm unlike A* PS
that smooths the path after it is found. Following algorithms belong to Theta* family:
Basic Theta*, Angle-Propagation Theta*, Lazy Theta*, Lazy Theta*-R, Lazy Theta*-
P[4]. From Theta* family are presented Basic Theta*, as basic any-angle path-planning
algorithm that adjusts the path during algorithm, and it’s improvement Lazy Theta*, that
runs significantly faster than Basic Theta*.

All algorithms mentioned above are designed to find path in static a environment, but
the environment used in praxis rarely static. In most cases,the environment is dynamic,
new obstacles arise or the some obstacles disappear. The re-computation of a single shot
algorithms like Theta* or A* by each change of environment, mainly in large environments,
can be very slow and inconvenient. Algorithm Incremental Phi*, which is presented, adjusts
the path only in places, where the path is blocked instead of running the path-planning
from scratch. Phi* is presented as algorithm which computes the initial path which is lately
adjusted by the Incremental Phi* algorithm[9].

4.1 A*

A* is a basic algorithm widely used to solve informed path-finding problems in various
workspaces. This algorithm is well described in almost every books or articles handling

10

with path-finding. A* was first described by Peter Hart, Nils Nilsson and Bertram Raphael
in year 1968. [6]

A* is correct, complete and optimal. Correctness means that the final found path from
the start vertex to the goal vertex will be unblocked. Completeness means that a path
from the start vertex to the goal vertex is found, if one exists. Optimality means that it is
guaranteed to find the true shortest paths [11].

It is mentioned that A* is a well know algorithm, but in comparison of the other
algorithms to A*, the main steps are described to be easier recognized the differences.
Given the fact, that A* is very effective and fast, it also provides the ability to improve
itself in many ways. On basis of this A*’s property, any-angle path-planning were developed
from the A*. They differ from A* in the time complexity, the length of found path and the
shape of path.

At the line 1-3 begins the initialization of the start vertex. It is the only vertex which
parent is itself. Open is a priority queue, which sorts the unexpanded vertices inside as-
cending, using the f value as the key. Expanded vertices are stored in the Closed queue, to
prevent A* from re-expanding them. By expansion, it is computed the valuation function
f for every child vertex of the actual vertex (line 10). Childes are the visible neighbors of
actual. Open is resorted at every start of the while loop (line on 5). Function front() means
that the first vertex in Open queue, with the lowest f value, will be saved as the actual
vertex and is deleted from the Open queue. This vertex is supposed to be the one closest
to the goal vertex. All expanded vertices are added to the Open queue (line 15), and the
actual vertex is set as their parent (line 19) unless the child has already an another parent
and the path trough it is shorter than the path trough actual (line 17). After the goal
vertex is found (line 6), the path is re-construed recursively by the parent property. It is
found the parent of the goal vertex. Then the parent of goal’s parent etc, untill it reaches
the start vertex and the path is complete.

All algorithms presented use the same valuation and the same heuristic function as A*
:

f(n) = g(n) + h(n)

If A* should find the optimal solution first, the next statement must be true:

∀(n) : 0 ≤ h(n) ≤ h ∗ (n)

This statement means that heuristic function is valid.
h(n) is the straight-line distance from the n vertex to the goal vertex.
g(n) = g(n− 1) + c(n, n− 1) where c(n, n− 1) is the value of the current edge E identified
by the two vertices n and its parent n− 1.

The time complexity of A* depends on the heuristic. The number of expanded vertices
is polynomial in this case, because the search space is a graph, there is only one goal vertex
and the heuristic function h(x) meets the following condition:

|h(x)− h∗(x)| = O(log h∗(x))

11

Script 3: A* algorithm

Data: Graph
Input: two vertices start and goal
start.g = 0;1

start.parent = parent;2

open.add(start);3

while open.notEmpty() do4

actual = open.front();5

if actual.isGoal() then6

return ”path found”;7

end8

close.add(actual);9

neighbors = actual.expand();10

foreach child ∈ neighbors do11

if child /∈ closed then12

if child /∈ open then13

child.g = ∞;14

child.parent = actual;15

open.add(child);16

end17

if actual.g + length(actual, child) < child.g then18

child.g = actual.g + length(actual,child);19

child.f = child.g + length(child,goal);20

end21

end22

end23

end24

return ”no path found”;25

h∗(x) is the optimal heuristic, the true distance from vertex x to goal vertex. This means
the error of h(x) will not grow faster than the logarithm of h∗ [8]. h(x) function is used
as the value of weighted edge in a graph, that means the straight-line Euclidean distance
between two points. This next basic pseudo code describes the exact algorithm.

4.2 Basic Theta*

Basic Theta* is a version of A* for any-angle path planning that propagates information
along graph edges without constraining the paths to graph edges. The motivation of using
Basic Theta* is to find shorter and realistic looking paths in the grids and the meshes.
Basic Theta* adjusts the path during the algorithm by allowing to be the parent any vertex
not only the neighbor. To allow any vertex to be the parent, current vertex there must be

12

(a) Constrained path (b) Not constrained path

Figure 4.1: Constrained and not constrained path example

a visible path between them. For visibility verification are used the line-of-sight checks.
This ability also extend the algorithm time complexity, that is longer than as by A*. As
mentioned in the beginning, Basic Theta* differs from A* in the use of Not constrained
path instead of Constrained path as A* does. Not constrained path is a path that is not only
constrained to the edges in graph but is placed in the continuous free space. The difference
between the use of Not constrained path (by Basic Theta*) and the use of Constrained path
(by A*) can be seen in the Figure 4.1.

Basic Theta* is correct and complete but not optimal. It is not optimal, because the
parent p of a vertex v has to be either a visible neighbor of the vertex v so p ∈ v.neighbors
or the parent of a visible neighbor p Such condition is not always the case for true shortest
paths[11].

The function line-of-sight is the only difference in the pseudo code and can be seen
on (line 19-24). At this point, the algorithm decides which path will it use if the Not
constrained path or Constrained path.
Constrained path is only constrained to the initial graph edges, this means that the parent
of a vertex can be only it’s neighbor.
Not constrained path means that any vertex can be the parent, so the final path will not
lead only along the edges, but freely trough the unblocked space. This decision is always
defined on the basis, if there is a visible path between child and child’s grandparent (actual’s
parent), this means whether the line-of-sight check is true, or not. If the line-of-sight check
is true, this Not constrained path path is used and the expediency of Constrained path is not
checked (to this refers the if else statement). The possible Not constrained path is shorter
than the Constrained path, due to the triangleinequality. In case there is a Constrained
path from the parent to the child that leads trough the actualm that means the path
connect the vertices via parent⇒ actual⇒ child. And there exist a Not constrained path
from the parent to the child, it is chosen the Not constrained path and the parent of child
is parent instead of its neighbor actual. This new Not constrained path, connecting the
vertices viaParent ⇒ Child, must meet the requirement. parent ⇒ child path must be

13

shorter than path via parent ⇒ actual ⇒ child. This requirement is satisfied due to the
triangleinequality. The triangle 4parent, actual, child is constructed and the following
statement about triangle length of edges is true:

parent, actual + actual, child ≤ parent, child

If it is assumed that the child node is added to open list at the first time, so there is
no former path to it, which can be shorter. The weighted function f(child) of Constrained
path will be:

f(child) = child, goal + actual.g + child, actual

actual.g = parent.g + actual, parent

f(child) = child, actual + parent.g + actual, parent + child, actual

The weighted function f(child) of Not constrained path will be:

f(child) = child, goal + parent.g + child, parent

After comparison of both these functions f(child) we can see that the that the Not con-
strained path is in this case shorter than the Constrained path mentioned before.

4.3 Lazy Theta*

Lazy Theta* is a version of Basic Theta*. Lazy Theta* is developed to achieve less
number of line-of-sight checks and thus shorter the computation time of the algorithm.
The reduction of line-of-sight checks are achieved by delaying them, until they are com-
pletely necessary. This delay causes some mistakes in order of vertex expansion, but the
computation time is shorter than by Basic Theta* and the path is complete and correct.
The nature of line-of-sight check remains identical as in Basic Theta*. This means that it
still uses the triangle inequality as main property.

The expanded vertices childes are first all considered to have a visible path to the actual
also the f value is updated and the line-of-sight check is executed first when the child is
chosen as actual. The benefit of this procedure lies in the fact that only at such vertices,
that are truly close to the goal vertex, the line-of-sight check is proceeded. On the other
hand, a little error occurs during the computation of the f value on path that might not
exist and thus the order in Open queue might be wrong. This mistake causes the expansion
of unwanted vertices, that do not have generally the lowest f value of all in Open queue.
But it saves the computation time of line-of-sight check per vertices, that are farther from
goal vertex, in other words they are in the end of Open queue.

14

Script 4: Basic Theta* algorithm

Data: Graph
Input: two vertices start and goal
start.g = 0;1

start.parent = parent;2

open.add(start);3

while open.notEmpty() do4

actual = open.front();5

parent = actual.parent;6

if actual.isGoal() then7

return ”path found”;8

end9

close.add(actual);10

neigbors = actual.expand();11

foreach child ∈ neighbors do12

if child /∈ closed then13

if child /∈ open then14

child.g = ∞;15

open.add(child);16

end17

parent = actual.parent;18

if line-of-sight(parent,child) then19

//Not constrained path

if parent.g + length(parent, child) < child.g then20

child.g = parent.g + length(parent,child);21

child.parent = parent;22

child.f = child.g + length(child,goal);23

end24

else if actual.g + length(actual, child) < child.g then25

//Constrained Path

child.g = actual.g + length(actual,child);26

child.parent = actual;27

child.f = child.g + length(child,goal);28

end29

end30

end31

end32

return ”no path found”;33

15

Script 5: Lazy Theta* algorithm

Data: Graph
Input: two vertices start and goal
start.g = 0;1

start.parent = parent;2

open.add(start);3

while open.notEmpty() do4

actual = open.front();5

parent = actual.parent;6

if Not-line-of-sight(parent,actual) then7

//Constrained Path

localparent = actual.localparent;8

actual.g = localparent.g + length(localparent,actual);9

actual.parent = localparent;10

end11

if actual.isGoal() then12

return ”path found”;13

end14

close.add(actual);15

neigbors = actual.expand();16

foreach child ∈ neighbors do17

if child /∈ closed then18

if child /∈ open then19

child.g = ∞;20

open.add(child);21

end22

parent = actual.parent;23

localparent = child.localparent;24

//Not constrained path

if parent.g + length(parent, child) < child.g then25

if length(actual,child) <= length(localparent,child) then26

child.localparent = actual;27

end28

child.g = parent.g + length(parent,child);29

child.parent = parent;30

child.f = child.g + length(child,goal);31

end32

end33

end34

end35

return ”no path found”;36

16

4.4 Phi*

Phi* is a version of Basic Theta* however it is strictly used only at grids. This algorithm
was developed to describe the initial state of dynamic workspace sufficiently. When the
single-shot algorithms like Theta* can be very slow by recomputing the path from scratch
by each newly blocked cell, Incremental Phi* algorithm provides the new re-construed
path much faster. To describe Incremental Phi* must be described Phi* first, because Phi*
computes the initial shortest path in workspace without new obstacles. This path and
properties of Phi* are used as the input for Incremental Phi*, that adjust the Phi* path.
Incremental Phi* will be described later.

The most suitable representation of a dynamic environment is grid,because new obsta-
cles are represented as newly blocked cells in grid. The blockage status of some cells in grid
can be changed very fast, but the triangulation mesh must be triangulated for every new
change of the environment. Thus triangulation mesh represents a very slow representation
of a dynamic environment.

Phi* is complete and correct but not optimal.
Phi* gathers the local parents of vertices to be made incremental.[11] The main differ-

ence is, that Phi* uses angle ranges to constrain the direction. This property is also used
to find out the best local parent along the path. The best local parents are not identified as
in Lazy Theta* algorithm. Local parents are stored for further use and are for additional
change of path, because on every new child vertex is executed the line-of-sight check. This
means, that by every expanded vertex determine the algorithm properly whether use Not
constrained path or Constrained path. Phi* also maintains two additional values for each
vertex and that is the lb - lower bound and ub - upper bound angle.

The first difference can be seen on (line 19) where even more conditions are added
to choose the Not constrained path. There must a visible path between parent and child
vertex. Additionally the angle ∠(actual, parent, child) ∈< actual.lb, actual.ub > are com-
puted. This represents the condition, that the child must lie inside the constrained area,
which is defined by value of angles stored in actual lower and upper bound. Function an-
gle(actual,parent,child) is defined as the smaller angle ∠(actual, parent, child) ∈ [−180◦, 180◦)
between the ray from parent through actual and the ray from parent through child. The an-
gle is positive if and only if the parent - actual ray is counterclockwise of the parent - child
ray. ∠(child, parent, axis) 6= k∗45◦(where k is an integer), stands there to avoid unwanted
execution of Not constrained path when the Constrained path is sufficient. Function an-
gle(child,parent,axis) is the smaller angle formed by the ray parent - actual and the vertical
line through parent. Not constrained path is no longer than Constrained path due to the tri-
angle inequality, but they are equally long if ∠(child, parent, axis) = k∗45◦(kisaninteger).
In this case it is better to define the values of child vertex via Constrained path to save
computation time. The bounds of new created constraining angle are updated (line 25-26).
Crossbar-neighbors are 4 neighbors on the grid lying on the crossbar centered on current
vertex. Crossbar-neighbors of a vertex also satisfies the condition that the distance between
them and the vertex is the lowest of all neighbors, they are 4 for 2D grid and 6 for 3D

17

grid. At (line 25), the angle ∠(child, parent, crossbarneighbor) of all crossbar-neighbors
is minimized. At (line 26), this angle is maximized. This sets the next values of lower and
upper bound of child. At (lines 34-36) the local parent of child is set and child lower and
upper bound is initialized to initial values.

4.5 Incremental Phi*

Incremental Phi* as a version of Phi* is usable only at grids. Incremental Phi* provides
faster results by recomputing paths than repeated single shot Phi* or Theta* algorithms.
As mentioned before the initial path is computed by Phi* and its recomputed for each
newly blocked cell in dynamic workspace by Incremental Phi*.

Same as Phi* can be Incremental Phi* only used on grids.
Incremental Phi* first detect whether the newly occurred obstacle lies on a path. It

detects whether corner C of newly blocked cell is in the Closed or the Open list. Incremental
Phi* recomputes the g value and reset the parent of each visible neighbor of all vertices
that have as their local parent C and lies in Closed list.

The efficiency of using incremental Phi* instead of single shot algorithms depends on the
number of newly blocked cells C. By small amount of newly blocked cells C is Incremental
Phi* algorithm much faster than repeated singe shot algorithms.

This code is only extension for Phi* algorithm where ComputePath function at (line
1), is the whole algorithm Phi*. First the initial shortest path is computed and after new
cells becomes blocked the path is recomputed, with former knowledge. AlongPath and
ChangedPath are queues of vertices. ResetVertex() (line 9) resets all information about
current vertex. After the reset, the new best parent of current vertex is found. This is
steps are executed to found new parent with visible path. Set Eightneighbors at (line 17)
is a set of all 8 neighbors of a vertex on grid, regardless to their’s visibility. Function
recomputePath() is shown in the Phi* algorithm at (lines 19-39), it rebuilds the former
shortest path if it becomes blocked by new obstacle.

18

Script 6: Phi* algorithm

Data: Graph
Input: two vertices start and goal
start.g = 0;1

start.parent = parent;2

open.add(start);3

while open.notEmpty() do4

actual = open.front();5

parent = actual.parent;6

if actual.isGoal() then7

return ”path found”;8

end9

close.add(actual);10

neighbors = actual.expand();11

foreach child ∈ neighbors do12

if child /∈ closed then13

if child /∈ open then14

child.g = ∞;15

open.add(child);16

end17

parent = actual.parent;18

//Recompute Path function,also used in incremental Phi*

if line-of-sight(parent,child) and angle(actual,parent,child)19

∈ [actual.lb, actual.ub] and angle(child,parent,axis) 6= k ∗ 45◦ k ∈ Integer
then

//Not constrained path

if parent.g + length(parent, child) < child.g then20

child.g = parent.g + length(parent,child);21

child.parent = parent;22

child.f = child.g + length(child,goal);23

child.localparent = actual;24

l = min(angle(child,parent,crossbarneighbors));25

u = max(angle(child,parent,crossbarneighbors));26

child.lb = max(l, actual.lb - angle(actual,parent,child));27

child.ub = min(u, actual.ub - angle(actual,parent,child));28

end29

else if actual.g + length(actual, child) < child.g then30

//Constrained Path

child.g = actual.g + length(actual,child);31

child.parent = actual;32

child.f = child.g + length(child,goal);33

child.localparent = actual;34

child.lb = −45◦;35

child.up = −45◦;36

end37

end38

end39

end40

return ”no path found”;41

19

Script 7: Incremental Phi* algorithm

Data: Graph
Input: two vertices start and goal
ComputePath;1

if New cells blocked then2

foreach corner C of newly blocked cell do3

if (C ∈ Closed or C ∈ Open) and C 6= start then4

AlongPath.add(C);5

while AlongPath.notEmpty() do6

first = AlongPath.front();7

ChangedPath.add(first);8

Open.remove(fist);9

Open.remove(fist);10

first.g = ∞;11

first.lb = −∞;12

first.ub = ∞;13

first.localparent = null;14

first.parent= null;15

foreach vertex v ∈ first.eightneighbors do16

if v.localparent = first then17

AlongPath.add(v);18

end19

end20

while ChangedPath.notEmpty() do21

second = ChangedPath.front();22

foreach vertex v ∈ second.neighbors do23

if v ∈ Closed then24

recomputePath();25

end26

end27

end28

end29

end30

end31

end32

return ”no path found”;33

20

Chapter 5

Experiments

In this chapter, properties of the presented algorithms are studied. The properties
are the computation time and the length of a found path by the particular algorithms.
The Results are obtained from three workspaces (grids, triangulation meshes, tetrahedral
meshes). All computations were performed on Notebook MSI GX610P, processor AMD R©
Mobile Turion64 X2 2.0GHz, operation system Linux ubuntu 2.6.38-10-generic 64bit.

5.1 Experiments on grid workspace in R2 space envi-

ronment

In this section, experimental results from path-planning on a grid workspace in R2

space are shown and discussed.
The maps used in this experiment are from player stage [2]. Next Figure 5.1 shows

the used maps with the reachable (green) and the non-reachable (purple) vertices, that are
used in experiments.

Following experiment consist of a complex algorithm test. Twenty reachable vertices
are chosen from each map. The algorithms has to find the path between a pair of two
different vertices. For each pair of the vertices is the algorithm ran ten times to achieve
a high accuracy. Totally, each algorithm is ran 3800 times on each map. The average and
relative path length and computation time are displayed in the Tables 5.2, 5.1. The
relative values are relative to the lengths and the times of A* algorithm.

All path results for each pair of two different reachable vetices are compared, and it
is proven that any-angle path-planning algorithms never find longer path than A*. Basic
Theta* and Lazy Theta* find approx. 7% shorter paths than A* in avarage, which is similar
to results of Sven Koenig’s work [11].

The decrease of the path length causes the increase of the runtime shown in 5.2. It
can be seen that the computation time of Lazy Theta* is only one and a half times higher
than time of A* when the time of Basic Theta* is two times higher. This big difference
of computation time between Basic and Lazy Theta* is caused by the number of line-
of-sight checks that are executed during the program. Phi* does not have better results

21

(a) autolab map (b) cave map

(c) hospital map

Figure 5.1: Path of Basic Theta*

in path length nor in computation time. As was mentioned Phi* is a base algorithm for
Incremental Phi*, described in next section 5.4. Phi* is supposed to compute the initial
path and maintain the specific properties for vertices for Incremental Phi*.

In the next experiment is compared and discussed the computation time of a non-
existing path (Table 5.3). Twenty reachable vertices were chosen and twenty not reachable.
The Start vertex is always one of the reachable vertex this means it lies in a free space
and the goal vertex lies in an obstacle. This experiment compares the time complexity of
the line-of-sight check. The number of expanded vertices by the former experiments (with
existing path) differs. Algorithm in this case has to expand each vertex in a free space which
causes the number of expanded vertices be same by all algorithms. The difference in the
runtime between Lazy and Basic That* is so high, because Basic Theta* executes more
line-of-sight checks than Lazy Theta*. Basic Theta* performs one or more line-of-sight
checks per vertex while Lazy Theta perform always only one. From results of Tables 5.2
and 5.3, it can be seen that Lazy Theta* expands more vertices in free space than necessary
because Lazy Theta* updates the g value incorrectly due to optimistic assumption of a
non-blocked path. This causes that some vertices are expanded by Lazy Theta*, while
Basic Theta* does not expand them.

22

algorithm A* Basic Theta* Lazy Theta* Phi*
map lA % lBT % lLT % lP %
autolab 97.3 1 91.1 93.6 90.9 93.5 95.6 98.3
cave 109.8 1 103.9 94.6 103.7 94.5 106.4 97.0
hospital 113.8 1 105.8 92.0 105.7 92.9 111.4 97.9

Table 5.1: Path length

algorithm A* Basic Theta* Lazy Theta* Phi*
map tA % tBT % tLT % tP %
autolab 16.8 1 33.4 198.5 26.1 155.1 34.7 206.1
cave 33.1 1 62.1 187.3 49.5 149.3 64.3 194.1
hospital 46.9 1 88.2 188.0 69.6 148.4 94.1 200.5

Table 5.2: Computation time (milliseconds), existing path

algorithm A* Basic Theta* Lazy Theta* Phi*
map tA % tBT % tLT % tP %
autolab 92.7 1 411.6 443.9 191.0 206.0 258.4 278.7
hospital 209.1 1 1025.8 490.5 459.2 219.6 570.2 272.6
cave 275.5 1 1200.2 435.6 566.8 205.8 743.5 269.8

Table 5.3: Computation time (milliseconds),non existing path

The next experiments shows the unusual cases of any-angle algorithms behavior. These
cases are obtained from set of experiments with random position of the start vertex and
the goal vertex.

The first set of Figures 5.2, 5.3 and 5.4 refers to optimality of Theta* algorithms.
In these Figures can be seen that the paths differ, so the any of Theta* algorithm is not
always guaranteed to find the shortest path. Lazy Theta* can sometime find shorter paths,
because it assumes that the path is not blocked, thus the path leads straight from the start
vertex to the goal vertex and the path is only adjusted along the obstacles. In some cases
the path found by Basic Theta* is shorter than the path found by Lazy Theta*, because
Basic Theta* updates newly expanded vertices properly.

Figures 5.5 displays cases when the * algorithm is slower than the Lazy Theta* algo-
rithm, despite Lazy Theta* is more complex . This property of Lazy Theta* occurs always
when the path is not blocked by any obstacle, because A* expands far more vertices. Lazy
Theta* expands only vertices along the straight path from the start vertex to the goal ver-
tex. Also the computation time of Basic Theta* is sometime lower in this cases, but not as
short as time of Lazy Theta* algorithm because Basic Theta* performs more line-of-sight
checks than Lazy Theta* thus slows the computation time.

23

(a) Path of Basic Theta* (b) Path of Lazy Theta*

Figure 5.2: Autolab map

(a) Path of Basic Theta* (b) Path of Lazy Theta*

Figure 5.3: Cave map

(a) Path of Basic Theta* (b) Path of Lazy Theta*

Figure 5.4: Hospital map

24

(a) A* path in autolab
map

(b) Lazy Theta* path in
autolab map

(c) A* path in cave map (d) Lazy Theta* path in
cave map

Figure 5.5: Comparision of A* a Lazy Theta* paths, when Lazy Theta* has significantly
shorter runtime than A*

5.2 Experiments on triangulation mesh workspace in

R2 space environment

The objective of this experiments is to examine the results of any-angle path-planning
algorithms and compare them with the grid results.

The maps used in this experiment are from Mr. Kalisiak and from Intelligent and
Mobile Robotics Group [1]. Next Figure 5.6 shows the used triangulated maps (large, jari,
density) with example paths of A* and Theta*. The maps differs in number of vertices
and in the shape and the number of the obstacles. As expected Theta* generates shorter
and smoother path than A*. In Figure 5.6 can be seen generated paths from three unique
pairs of thestart and goal vertices and the paths generated by A* and Theta* (red, green,
yellow).

Experiments are done at all three maps. The start vertex is fixed in the right bottom
corner of the map and the goal vertex is randomly chosen from one of the map points. On
each map are planned paths with fifty goal vertices. Every planned path is repeated ten
times to achieve accurate computation time.

Table 5.6 shows the average and the relative path length. As it can be seen, any-
angle algorithms find in the triangulation mesh paths only approx 2.5% shorter than A*.
This low value of the any-angle algorithms main property to find shorter paths than A*
is caused by the workspace representation. The shortest path is located near the triangle
edges. In despite of the grid, where the vertices are symmetrically placed in the space and
many vertices can be placed in free space. Vertices in triangulation mesh are placed only
on edges of obstacles.

Another difference from the grid workspace representation can be seen between paths
of Basic and Lazy Theta*. When on the grid Lazy Theta* founds slightly shorter paths
than Basic Theta*, on triangulation mesh it is otherwise, because Basic Theta* expands
the values of vertices more properly.

Table 5.7 displays the results of any-angle algorithm’s runtimes in triangulation mesh.
The difference between relative computation times on grid and triangulation mesh is caused

25

(a) A* paths in density map (b) Theta* path in density map

(c) A* path in large map (d) Theta* path in large map

(e) A* path in jari map (f) Theta* path in jari map

Figure 5.6: Difference in path between any-angle algorithm and A* on var-density map

by time complexity of line-of-sight checks.
For the triangulation is used external C library Triangle developed at University of

California at Barkley [10].

26

algorithm A* Basic Theta* Lazy Theta*
map lA % lBT % lLT %
large 3276.6 1 3230.1 98.5 3239.8 98.8
density 1591.0 1 1552.2 97.5 1553.0 97.6
jari 2125.5 1 2037.9 95.9 2042.8 96.1

Table 5.4: Path length

algorithm A* Basic Theta* Lazy Theta*
map tA % tBT % tLT %
large 410 1 1440 3.5 720 1.7
density 910 1 3030 3.3 1450 1.6
jari 1190 1 4090 3.4 2000 1.7

Table 5.5: Computation time (milliseconds)

5.3 Experiments in R3 space environment

In this section, experimental results from path-planning in R3 space are shown. In the
beginning of this section, example paths are shown to prove that any-angle algorithms can
work properly with all their properties also in tetrahedral mesh.

Following figures are created by plotting the object facets in matlab and then plotting
the path (red line) with it’s vertices (red dots) into same Figure. The path is planned
from the chosen start vertex and the chosen goal vertex.

In Figure 5.7 an example environment is displayed, this is an simple 3D image of gear’s
part. Figures 5.7, 5.8, 5.9 do not represent an complex environment, but in these Figures
are shown the main properties of A* and Theta* algorithms. All three figures are displayed
from two views to provide better projection of an image. An example path of A* is shown
in Figure 5.8. The same goal and start vertices are used for Theta* algorithm. In Figure
5.9 can be seen the key difference between A* and Theta* algorithms. Theta* algorithms
plan the path trough the unblocked space unlike A*, which path is only constrained to
graph edges.

The next set of Figures 5.10 and 5.11 provides a better comparison of the different
path construction between A* and Theta* algorithms. This bunny environment can be
considered as a complex environment. The 3D tetrahedral mesh of bunny environment
comes from The Stanford 3D Scanning Repository [3]. On these Figures can be better seen
the usage of Not constrained path by Theta* algorithms where it significantly shortens and
smooths the path. In Figure 5.10, it may seem that A* do not use the optimal path trough
object like it is in Figure 5.8 and plans the path along the triangulated hull, this happens
because the created tetrahedrons inside bunny are not symmetric like 3D grid and thus
the map trough the object is not optimal. This property of tetrahedral mesh can appear
as very inconvenient but it has any negative effect on any-angle algorithms.

Results shown in Table 5.6 are obtained from randomly chosen goal vertices with

27

fixed start vertex. Totally there were chosen fifty goal points for every map. Input map is
is the bunny map obtained form The Stanford 3D Scanning Repository [3]. This map is
compressed with different resolutions, res4 is the biggest compression.

Because tetrahedral mesh has similar properties as triangulation mesh except the di-
mension, results are corresponding to results from triangulation mesh and differs in same
way results from triangulation mesh do. An exception is by using Basic Theta* when the
computation time reaches double relative value than in triangulation mesh 5.7. Because
the values of computation were so different the relative time were computed separately for
each map and than averaged into one value displayed in Table 5.7. The relative runtimes
has increased compared to relative runtimes from triangulation mesh, due to higher time
complexity of line-of-sight checks. The relative value of path lengths (Table 5.6) rises
from 2.5% (triangulation mesh) to circa 5% for any-angle algorithms compared to A*.
This decrease of relative path length in comparison with triangulation mesh is because in
tetrahedral mesh is much more edges in the unblocked space and are not only along the
blocked facets.

algorithm A* Basic Theta* Lazy Theta*
map lA % lBT % lLT %
bunny-res2 0.097 1 0.091 93.8 0.092 94.8
bunny-res3 0.109 1 0.103 94.5 0.105 96.3
bunny-res4 0.144 1 0.137 95.1 0.138 95.8

Table 5.6: Path length

algorithm A* Basic Theta* Lazy Theta*
map tA % tBT % tLT %
bunny-res2 9178.4 1 76456 833.0 14033.2 152.9
bunny-res3 551.6 1 4945 896.5 1027.8 186.3
bunny-res4 596.4 1 5370.2 900.4 1118.4 187.5

Table 5.7: Computation time (milliseconds)

28

Figure 5.7: Gear environment

Figure 5.8: Example path of A* in Gear environment

Figure 5.9: Example path of Theta* in Gear environment

29

(a) Front view (b) Back view (c) Rear view

Figure 5.10: Example path of A* in Bunny environment

(a) Front view (b) Back view (c) Rear view

Figure 5.11: Example path of Theta* in Bunny environment

30

5.4 Experiments in R2 space dynamic environment

The experiments in the dynamic environment has the objective to test whether the
Incremental Phi* algorithm, especially designed for dynamic environment, achieves shorter
runtime than single shot algorithm Basic Theta*. As mentioned Basic Theta* recomputes
the path for every change (state) of environment while Incremental Phi* is only adjusting
the path if new obstacle of environment appears along the assumed path. Incremental
phi* is designed to handle new appearing obstacles in environment. When an obstacle
disappears (moves away or change position), the path must be newly recomputed via
single shot algorithm because Incremental Phi* cannot is not designed for such cases.

Experiments are done in ”hospital” map , where in the middle of path four new obsta-
cles (purple squares) are located into the map sequential. Figures 5.13 and 5.14 shows
example paths that are adjusted (Incremental Phi* path) or newly recomputed (Basic
Theta* paths). Basic Theta* was computed on this map without new obstacle, and then
again recomputed with on for every new obstacle occured in the environment.

In Figure 5.15 is shown a graph that contains the average computation times for
sequential adding of obstacles. One of the objectives was to compare the results with
results from work of Sven Koenig [9]. In this case it is irrelevant to compare the relative
time results because the nature of experiments in work of Sven Koenig is different from
this. But as it can be seen Incremental Phi* has significantly shorter runtime as single
algorithm Basic Theta*.

Incremental Phi* is not optimal and must not always find a path around new obstacle, if
the obstacle is big enough 5.12. This happens because of Incremental Phi*’s nature, when
the algorithm needs the property of local parents for each vertex, the path will be replaned
trough, and this property is maintained with the expansion of current vertex. Because
Incremental Phi* is also a version of A* and inherits A*’s properties, when A* expands
only verices along the path. It may happen that if the obstacle is too big and vertices
around the obstacle are not expanded, thus the local parent property is not maintained,
the path must be not found even if one exists. On the other hand it is nepravdepodobne
that a new obstacle will have that big size.

(a) Path of Incremental Phi* (no path
found)

(b) Path of Basic Theta*

Figure 5.12: Hospital environment with a new obstacle of a big size

31

Figure 5.13: Example path of Incremental Phi* in hospital environment with all four new
obstacles

Figure 5.14: Example path of Basic Theta* in hospital environment with all four new
obstacles

Figure 5.15: Avarage runtime for rising number of the obstacles

32

Chapter 6

Conclusion

The objective of this thesis is to show and discuss the advantages of any-angle path-
planning algorithms for other workspace representations than grid, while achieving similar
results for the grid workspace representation as in the Sven Koenig’s work [11]. As it can
be seen in the Experiments Chapter 5, the relative results of the any-angle algorithms are
very similar to the results from Sven Koenig’s work. This fact indicates, that the presented
implementation is correct.

Following algorithms are implemented and they are tested in high amount of experi-
ments : A*, Basic Theta*, Lazy Theta*, Phi*, Incremental Phi*.

By exploring the potential of any-angle algorithms in different workspace representation
than a grid (namely triangulation mesh and tetrahedral mesh), following has been proven
:
The any-angle algorithms finds shorter and smoother paths in comparison to the standard
algorithms at the cost of increased runtime.
The any-angle algorithms provides better results in runtime and path length in unblocked
areas of environments than standard algorithms.
Time complexity of the any-angle algorithms depends on the time complexity of line-of-
sight check.

The usage of any-angle algorithms can be convenient in more complex path-planning
problems, with high requirements on the shortest path (for example Exploration problem
or the Inspection problem). The any-angle algorithms can be used in every representation
where is able to execute a line-of-sight check. They can be also used in non Euclidean
space.

It can be seen a great potential in any-angle algorithms because the plan in continuous
space, which is important for some complex path-planning problems.

33

Bibliography

[1] Motion planning maps. http://imr.felk.cvut.cz/planning/maps.xml.

[2] The player project. http://playerstage.sourceforge.net/.

[3] The stanford 3d scanning repository. http://graphics.stanford.edu/data/

3Dscanrep/.

[4] A.Nash S.Koenig C.Tovey. Lazy theta*: Any-angle path planning and path length
analysis in 3d, 2010. http://idm-lab.org/bib/abstracts/papers/aaai10b.pdf.

[5] Doc.RNDr.Marie Demlova Csc. Prof.RNDr.edrich Pondelicek DrSc. Matematicka
Logika. CVUT, 1999.

[6] Hart P. E., Nilsson N. J., and Raphael B. A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths. IEEE, 1968.

[7] Maur P. Kolingerová I. Post-optimization of delaunay tetrahedrization. http://

herakles.zcu.cz/research/triangulation/index2.php.

[8] Pearl Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[9] A.Nash S.Koenig M.Likhachev. Incremental phi*: Incremental any-angle path plan-
ning on grids, 2009. http://idm-lab.org/bib/abstracts/papers/ijcai09d.pdf.

[10] Jonathan Richard Shewchuk. Tetgen a two-dimensional quality mesh genera-
tor and delaunay triangulator. http://www.cs.cmu.edu/~quake/triangle.html,
year=2012, note=[cited 06 April 2012],.

[11] K.Daniel A.Nash S.Koenig and A.Felner. Theta*: Any-angle path planning on grids,
2010. http://idm-lab.org/bib/abstracts/papers/jair10b.pdf.

[12] Subhash Suri. Triangulation. http://www.cs.ucsb.edu/~suri/cs235/

Triangulation.pdf.

[13] H. Choset K. Lynch S. Hutchinson G. Kan tor W. Burgard L. Kavraki and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press,
2005.

34

http://imr.felk.cvut.cz/planning/maps.xml
http://playerstage.sourceforge.net/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://idm-lab.org/bib/abstracts/papers/aaai10b.pdf
http://herakles.zcu.cz/research/triangulation/index2.php
http://herakles.zcu.cz/research/triangulation/index2.php
http://idm-lab.org/bib/abstracts/papers/ijcai09d.pdf
http://www.cs.cmu.edu/~quake/triangle.html
http://idm-lab.org/bib/abstracts/papers/jair10b.pdf
http://www.cs.ucsb.edu/~suri/cs235/Triangulation.pdf
http://www.cs.ucsb.edu/~suri/cs235/Triangulation.pdf

[14] Weisstein Eric W. Triangulation, 2012. http://mathworld.wolfram.com/

Triangulation.html.

[15] Jǐŕı Žára Bedřich Beneš Jǐŕı Sochor Petr Felkel. Moderńı poč́ıtačová grafika (2. vydáńı).
Computer Press, 2005.

35

http://mathworld.wolfram.com/Triangulation.html
http://mathworld.wolfram.com/Triangulation.html

CD Content

The attached CD contains source codes for Any-angle algorithms, A* algorithm, tri-
angulation program Triangle, tetrahedralization program TetGen, 2D and 3D maps, the
thesis text in PDF format and source codes of the thesis text in LATEXformat. In following
Table is the CD structure described.

Directory Description
src source codes
doc source codes of the thesis
thesis.pdf thesis text in PDF format
maps 2D maps
maps3D 3D maps
cfg 2D grid maps

Table 1: Directory structure on CD

36

	Introduction
	Introduction

	Problem definition
	Workspace Representation
	Grid representation
	The triangulation mesh for R2 space
	The tetrahedral mesh for R3 space

	Path-planning algorithms
	A*
	Basic Theta*
	Lazy Theta*
	Phi*
	Incremental Phi*

	Experiments
	Experiments on grid workspace in R2 space environment
	Experiments on triangulation mesh workspace in R2 space environment
	Experiments in R3 space environment
	Experiments in R2 space dynamic environment

	Conclusion
	Attachment A: CD Content

