
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Airport Aircraft Movement and
Control at Airport Including
Airport Data Representation

Petr Hrych
Kybernetika a robotika, Systémy a řízení

2018
Supervisor: Mgr. Přemysl Volf Ph.D.

Acknowledgement / Declaration
I would like to thank my supervisior

Mgr. Přemysl Volf, Ph.D., for his advice
and support during the work. I would
also like to express my sincere gratitude
to Ing. Lukáš Koranda for his guidance
and patience during consultations.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague, 25.5.2018

. .

v

Abstrakt / Abstract
Bakalářská práce se zabývá problé-

mem řízení letového provozu na letišti.
V úvodu je představena struktura letiště
a způsob pozemního řízení. Dále je pro-
vedena rešerše možných zdrojů dat pro
reprezentaci letiště a vytvořena datová
struktura repezentující letiště, která
umožňuje plánování trajektorií pro jed-
notlivá letadla. Za účelem plánování
trajektorií je implementován algoritmus
schopný plánovat trajektorie v závislosti
na trajektoriích již naplánovaných. Pro
účely simulace jsou naimplementovány
moduly simulující pozemního řídího
a pilota. Oba tyto moduly obsahují
nástroje pro vyhýbání se kolizím a jsou
spolu schopny komunikovat. Činnost
plánovacího alogoritmu i obou modulů
je testována pomocí různých simulač-
ních scénárů. Celá implementace je
zaintegrována do systému AgentFly.

Klíčová slova: Řízení letového pro-
vozu, simulace pozemního řídícího,
datová reprezentace letiště, plánování
trajektorií, AgentFly

In this Bachelor’s thesis is introduced
a problem with air traffic control at the
airport. At the begging of this thesis
the airport structure together with the
ground contol is described. For the
purposes of this thesis a research about
a possible data sources have been made.
A data structure representing an air-
port is designed. Trajectory planning
is ensured by planning algorithm. This
algorithm is able to find a trajectory,
while avoiding collision with already
planned trajectories. For an air traffic
simulation a controller module and a
pilot module are implemented. Both of
these modules implement mechanisms
for collision avoidance and comunica-
tion. The planning algorithm and both
modules are tested in several simula-
tion scenarios. This whole project is
implemented and integrated into the
AgentFly system.

Keywords: Air traffic control, simula-
tion of the ground control, airport rep-
resentation, trajectory planning, Agent-
Fly

vi

Contents /
1 Introduction .1
2 Airport Definition2
2.1 Runway .2
2.2 Guidance Line.3
2.3 Taxiway .3
2.4 Apron. .4
2.5 Ground Controller5

2.5.1 Tower Control5
2.5.2 Ground Control5
2.5.3 Apron Control5

2.6 Pilot .5
3 Data Structures .6
3.1 Information Sources6
3.2 Data Format .7

3.2.1 AIXM Format.7
3.3 Airport Elements Used in

Simulation .8
3.3.1 AixmAirportElement8
3.3.2 AixmRunway.9
3.3.3 AixmTaxiway9
3.3.4 AixmApron9
3.3.5 AixmVerticalStructure9
3.3.6 AixmGuidanceLine9
3.3.7 GraphSegment 10
3.3.8 GraphSegment-

Occupancy 10
3.3.9 AixmAirport 10

3.4 Algorithm to Create the
Structure . 12
3.4.1 mergeRunways() 13
3.4.2 findRunwaysShorter-

Sides() . 16
3.4.3 createConnections(). 16
3.4.4 assignGuidanceLines() . . . 18
3.4.5 connectStands() 18
3.4.6 connectRunways() 20

4 Pathfinding algorithm 22
4.1 A* . 22
4.2 Input Data . 23
4.3 Noncollision Planning. 24
4.4 Differences between Plan-

ning Algorithm for Simula-
tion and A* . 25

4.5 Airplane Movement Imple-
mentation . 25
4.5.1 Start of the Airplane 26

4.5.2 Stopping the Airplane . . . 26
5 Ground Controller 27
5.1 Airport Controller 27
5.2 Communication with Pilot 27

5.2.1 Communication in
Simulation. 28

6 Collision Avoidance Mecha-
nisms . 29

6.1 Airplanes on the Same Taxi-
way in the Opposite Direction . 29
6.1.1 Planning Process. 29
6.1.2 Position Checking 29

6.2 Airplanes on the Same Taxi-
way in the Same Direction 30

6.3 Airplanes on Crossings 30
6.3.1 Right-hand Rule Im-

plementation 30
6.4 Airplanes Moving Through

the Active Runway. 31
7 Simulation Tests 32
7.1 Trajectory Planning 32
7.2 Right-hand Rule 32
7.3 Collision Avoidance 34
7.4 Large Scale Simulation 35

8 Conclusion . 37
8.1 Future Work 37
References . 39

A Abbreviations . 41
B List of Attachments 42

vii

Tables / Figures
2.1. WingSpan .4 2.1. Airport structure2

2.2. Guidance lines on airport3
2.3. Apron .4
3.1. AIXM Runway in UML.8
3.2. RunwayStartEnd9
3.3. Airport from AIXM data set . . 11
3.4. Structure-Uml 12
3.5. Pseudoalgorithm 14
3.6. Runways before merging 15
3.7. Runways after merging 15
3.8. GuidanceLines 17
3.9. GraphSegments 18

3.10. connectStands() - Pseudoal-
gorithm . 19

3.11. connectStands() - demon-
stration . 20

4.1. GraphSegment expansion 24
5.1. Alphabet. 27
5.2. Ground controllers display 28
6.1. PilotPolygon. 31
7.1. Simulations - Trajectory

planning . 32
7.2. Simulation - Right-hand rule

1 . 33
7.3. Simulation - Right-hand rule

2 . 33
7.4. Simulation - Right-hand rule

3 . 34
7.5. Simulation - Collision avoid-

ance . 35
7.6. Large scale simulation 36

viii

Chapter 1
Introduction

In 2017 over 3.8 billion people used air transport. The number of flights performed
globally by the airline industry in 2017 was 36.8 million[1]. Both these numbers are
growing each year. As the number of passenger increases, airports need to increase their
capacity and have to deal with problems associated with air traffic. Ground controllers
handle air traffic on the airport. They are responsible for the navigation of all airplanes
to runways, gates or other airport areas. Their work requires quick decision making,
perfect knowledge of the airport and many other things. One wrong decision can lead
to severe problems. In a better case, a problem leads to delay at the airport, which
might be unpleasant and expensive, but it is nothing that can not be solved. In a worse
case, a ground controller’s mistake can lead to a collapse of all traffic at the airport. In
the worst case scenario, one wrong decision can result in a loss of life.

The main task of this thesis is to design and create an airport structure and implement
modules for simulating a ground controller and pilots. An airplane movement simulation
and a pathfinding algorithm with a collision avoidance mechanism are necessary for a
simulation. To fulfill these tasks, following problems must be solved:

1. Find a data format containing necessary information about airport
The basis of all of the simulations is an appropriate source of information. A data

set must contain some specific information such as GPS positions of runways and other
elements. Last but not least data must be in a format that can be easily loaded and
processed.

2. Apropriate airport data representation
An airport can be represented in many forms. For planning algorithm, it is necessary

to have a robust data structure representing airport.

3. Pathfinding algorithm
Implementation of pathfinding algorithm is crucial for this thesis. Appropriate plan-

ning of airport routes is the main task of ground controller. Moreover, pathfinding
algorithm must be able to calculate noncollision ways. With this extension, the prob-
lem with pathfinding is no longer trivial, and a more sophisticated algorithm must be
implemented.

4. Ground controller and pilot implementation
Pathfinding algorithm serves as a tool for the implemented ground controller. Ground

controller is responsible for planning routes and must be able to respond to unexpected
events. In case of problems, the ground controller must be able to replan routes.

Implementation of pilot modules includes movement at the airport and communica-
tion with the ground controller. Finally, pilots must be able to solve possible conflict
situation on the airport.

5. Testing simulation on different scenarios
To verify the correct functionality of all modules, it is necessary to implement testing

scenarios.

1

Chapter 2
Airport Definition

An airport is a place from which aircraft operate that usually has paved runways and
maintenance facilities and often serves as a terminal[2].

The airport is composed of several elements. Main elements which appear in the
simulation are runways, taxiways, guidance lines and aprons. All these elements can
be seen at the figure 2.1.

Figure 2.1. Václav Havel Airport Prague1, runways - orange, taxiways - red, aprons -
yellow

2.1 Runway
International Civil Aviation Organization (ICAO) defines runway as:

A defined rectangular area on a land aerodrome prepared for the landing and takeoff
of aircraft.

Every runway must have a unique identification number. These numbers must meet
following requirements [3]. Runways are identified by the number ranging from 01 to 36.
This number stands for the magnetic azimuth of the runway’s heading in dec degrees
multiplied by 10. Numbers from 1 to 9 usually have 0 before them to avoid crosstalks.
Because the runway can be used in both directions, it has to have a number for the
opposite direction. The difference between these numbers must be 18 (∼ 180◦). These

1 https://mapy.cz/letecka?x=14.2609674&y=50.1092952&z=16

2

https://mapy.cz/letecka?x=14.2609674&y=50.1092952&z=16

. 2.2 Guidance Line

numbers may be followed by a letter. This letter (L - left, R - right, C - center) is used
on larger airports with more parallel runways (e.q., runway named 05L in one direction
is named 23R in the other direction). In a case of more than three parallel runways
on one airport, the closest highest number is used as the identification number. For
example, the airport in Los Angeles has 4 parallel runways named 6L-24R, 6R-24L,
7L-25R, 7R-25L.

The runway surface is often asphalt or concrete, but some runways have a natural
surface such as dirt or gravel.

2.2 Guidance Line
A guidance line is a line drawn directly on the surface. Guidance lines help pilots with
orientation at the airport. As can be seen at the figure 2.2, guidance lines are usually
drawn in yellow. Guidance lines are on the lighter part of the figure. Lines on the
darker part are called taxiway shoulder markings, and they are painted on areas which
cannot take the weight of an airplane.

Figure 2.2. Guidance lines on airport 1

2.3 Taxiway
Taxiways [4] are paths at an airport, which connect other elements such as runways,
aprons, gates, hangars, terminals, and others. A movement on taxiways is restricted
only to guidance lines.

Similarly to runways, also taxiways have conventions for names[5]. Taxiway’s name
is usually one letter. The letters I, O and Z are not used, to avoid confusion with the
numbers 1, 0 and 2. The letter X is not used, because it indicates closure of portions
of taxiway or runway. One taxiway can be divided into several parts. Every part has
1 https://www.google.com/maps/@41.9742094,-87.9111392,90m/data=!3m1!1e3

3

https://www.google.com/maps/@41.9742094,-87.9111392,90m/data=!3m1!1e3

2. Airport Definition .
its unique number which follows taxiway letter (e.q., A3). The naming of the taxiways
begins on one side of the airport and carries on to the other extremity (e.g., from the
east to the west or from the north to the south).

A typical speed on a taxiway is 20-30 knots (37-56 km/h).

Some taxiways have restrictions on maximum wingspan, that airplane driving
through this taxiway can have. ICAO (International Civil Aviation Organisation)
splits aircrafts into 6 categories [6]. These categories are presented in the table 2.1.

Code letter Wingspan Outer main gear wheel span Typical aeroplane
A < 15 m < 4.5 m PIPER PA-31
B 15 m but < 24 m 4.5 m but < 6 m ATR42
C 24 m but < 36 m 6 m but < 9 m BOEING 737-700
D 36 m but < 52 m 9 m but < 14 m AIRBUS A-310
E 52 m but < 65 m 9 m but < 14 m BOEING 777
F 65 m but < 80 m 14 m but < 16 m BOEING 747-8

Table 2.1. Wingspan cathegories

2.4 Apron
The apron is an area at the airport and serves as a parking place for airplanes. The
apron can be entered via taxiways, and as well as on them, a movement is limited
only by guidance lines. On the apron, airplanes can be loaded, unloaded, boarded or
refueled. Some airports have de-iced zones on aprons. A movement on the apron is
directed by the ground controller. Larger airports (e.q., Charles de Gaulle Airport)
have a unique controller for and apron area (Apron controller 2.5.3). Main elements
located on aprons are stands and gates.

Stand is a designated, usually numbered, piece of prepared & marked ground where
an aircraft parks.

Gate is the point at the terminal where a passenger commences boarding from. It
does not matter, whether it is via the airbridge, walk up or bus transfer.

Figure 2.3. Apron on an airport 1

1 https://www.airplane-pictures.net

4

https://www.airplane-pictures.net

. 2.5 Ground Controller

2.5 Ground Controller
The main job of the ground controller is guiding the airplane to the gate (in case
of arrival) or the runway (in case of departure) [8]. When airplane approaches the
airport, it is directed to the runway. The ground controller then guides the airplane
from runway via taxiways to the gate. Because there are several airplanes moving to
gates (or runways) at the same time, the ground controller must plan accordingly to
avoid a collision or a “deadlock” situation (for example when the aircraft are on the
same taxiway but in the opposite direction). On larger airports (e.g., John F. Kennedy
International Airport) this is a complicated problem and can not be handled by a single
person.

Large airports are divided into smaller parts. The ground controller is then respon-
sible for this smaller part. An airport can be divided into three main parts (runways,
taxiways, aprons). Each of these parts can have its controller or even more controllers.

2.5.1 Tower Control
The tower control main task is planning a runway traffic. That means timing depar-
tures, arrivals and communication with pilots, which need to cross an active runway.
In most cases, departures and arrivals are alternating one at a time usually with the
minimum period of two minutes.

Sometimes pilots must cross an active runway. In this case, the tower controller
must be contacted, and the active runway cannot be crossed without permission. An
airplane entering an active runway without a permission can lead to a collision with
another departing or arriving airplane.

2.5.2 Ground Control
The ground control is responsible for navigating airplanes through the airport via taxi-
ways. Ground control is usually located on the highest tower at the airport to have a
good look at the whole airport.

2.5.3 Apron Control
Apron controllers are responsible for guiding an airplane from an apron entry points
to their parking positions. Simultaneously when an airplane is ready for a departure,
they guide it through the apron area to ground controllers.

On small airports (e.q., Václav Havel Airport Prague) the apron and the ground
control can be handled by a single person. Bigger airport (e.q., Heathrow Airport) can
have multiple apron controllers for a single apron.

2.6 Pilot
The main work of the pilots before or after landing is to drive through the airport on the
desired point, where he can take off, pick up passengers, etc. Pilots communicate only
with ground controllers. Pilots can communicate with each other only in emergency
situations.

5

Chapter 3
Data Structures

The basis for creating a system that can simulate an airport traffic is an appropriate
data structure. Unfortunately, there is no convention or a uniform format. For a
simulation, several requirements for a data set are necessary. A data set must contain
information about:

Runways - shape, ID, constraints, length, width
Taxiways - shape, ID, centerline coordinates, information about crossings with other

taxiways, information about priorities at crossroads, crossings with runways or aprons,
constraints

Aprons and Stands - position, constraints

3.1 Information Sources
For this thesis, several possible data sources have been searched.

http://lis.rlp.cz [9]
This is a website used by ATC (air traffic control) in the Czech Republic. It contains

GPS coordinates of runways in the Czech Republic, and it lacks information about
taxiways or other airport structures.

https://openflights.org/data.html [10]
OpenFlight is a tool for searching and calculating flights. It contains data about a

majority of airports, but only basic information such as coordinates, name, state are
provided.

https://ext.eurocontrol.int/airport_corner_public/ [11]
The excellent source of information about airports in Europe. It contains a lot

of information about airports, such as Airport Capacity, Traffic Forecast, Ongoing a
Planned Activities, General Information, Weather Management, etc. However, this
source does not contain information about structures.

https://aeronavdata.com/what-we-do/aeronautical-navigation-database-
andb/ [12]

Website of a navigation database creating company Aeronavdata. It offers data from
more than 700 airports in the United States and the UK mostly in AIXM format.
Except for a few examples, all data is paid.

https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/ [13]
This website contains basic information about airports mainly in the USA. Informa-

tion can be downloaded as HTML.

https://ext.eurocontrol.int/aixmwiki_public/bin/view/Main/ [14]
This site contains a few examples of data in AIXM format, which have only limited

amount of data.

https://www.ead.eurocontrol.int/cms-eadbasic/opencms/en/home/ [15]

6

http://lis.rlp.cz
https://openflights.org/data.html
https://ext.eurocontrol.int/airport_corner_public/
https://aeronavdata.com/what-we-do/aeronautical-navigation-database-andb/
https://aeronavdata.com/what-we-do/aeronautical-navigation-database-andb/
https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/
https://ext.eurocontrol.int/aixmwiki_public/bin/view/Main/
https://www.ead.eurocontrol.int/cms-eadbasic/opencms/en/home/

. 3.2 Data Format

This website is a database of Eurocontrol. It contains different types of data sets.
There are two types of data sets. Free data (only free account is needed - EAD Basic)
or non-free data (EAD Pro). Access to this data is only for “Professional users”. Prior
to connection, an EAD Data User Agreement needs to be signed between organization
and EUROCONTROL.

http://aixm.aero [16]
This is a website with information about the AIXM format. This site also contains

demo data from Chicago O’Hare airport. AIXM format meets the requirements, so this
data was selected for future work.

3.2 Data Format
Most data are available in HTML or pdf format. These formats are not suitable for
this application, because they cannot be easily loaded and compiled.

Individual airports usually have their internal structures in XML, JSON or other
formats. For example, Václav Havel Airport Prague has detailed construction plans
of runways, taxiway, etc. in AutoCAD. The primary task of this project is creating a
structure, that can handle all possible formats.

Main reasons why AIXM format is used in this simulation and its specifications are
described in section 3.2.1.

3.2.1 AIXM Format
AIXM (Aeronautical Information Exchange Model) is a project of EUROCONTROL
(European Organisation for the Safety of Air Navigation) and FAA (Federal Aviation
Administration). The main objective of this project is creating a data structure de-
scribing a whole airport and relations between individual elements. There is a wiki
with a detailed description of every single element on the following website.

https://ext.eurocontrol.int/aixmwiki public/bin/view/Main/

The main advantage of AIXM format is a detailed description of a relationship be-
tween elements. For example, every guidance line has a list of other guidance lines
connected with this one. The guidance line is in relation with another element, on
which this guidance line is “locatedOn”.

The AIXM format as it is known today was published in 2005 in version 4.5. Previous
versions were used only for the needs of the European AIS Database. The big upgrade
came in 2008 with version 5.0. Nowadays the most common version is AIXM 5.1 which
was published in 2010. In mid-2018 the newest version - 5.2 should be released.

Since version 5.0 version AIXM format has three main components:

1. Data Model expressed in UML (Unified Modeling Language)
Unified Modeling Language is a modeling language used in a software engineering,

that is intended to provide a standard way to visualize a design of a system. A system
is usually interpreted as a diagram with relations between individual elements. The
AIXM format has a documentation and related specifications for all main elements
such as Runway, Taxiway, Apron, GuidanceLine.

7

http://aixm.aero
�am �ffam 	enbf https://ext.eurocontrol.int/aixmwikiunhbox voidb@x kern .06em vbox {hrule width.3em}public/bin/view/Main/

3. Data Structures .

Figure 3.1. Runway described in UML 1

2. GML-compliant XML Schema (Geography Markup Language)
All information about elements is saved in XML files. The structure of these files is

defined by XSD (XML Schema Definition). XSD files can be found in attached files.
Structure of XSD responds with the UML structure.

3. Temporality Concept that enables the encoding of both static and dynamic
AIS data.

3.3 Airport Elements Used in Simulation
One of the main tasks of this thesis is to design a structure, which would be appropriate
for trajectory planning, pathfinding algorithms, and a graphics visualization. Variables
with ? are loaded directly from the data set. Other variables are either parameters, or
they have to be calculated in the process of creating the structure.

3.3.1 AixmAirportElement
This class is used for representing elements, whose coordinates form a plane, such as a
runway, taxiway or apron. Each AixmAirportElement has following parameters:
1 http://aixm.aero/sites/aixm.aero/files/imce/AIXM51HTML/AIXM/Diagram_Runway.html

8

http://aixm.aero/sites/aixm.aero/files/imce/AIXM51HTML/AIXM/Diagram_Runway.html

. 3.3 Airport Elements Used in Simulation

id? - Unique ID of this element.
coordinates? - List of coordinates defining this element.
polygon - The unique element used in the AgentFly project for representing polygons

(created from coordinates).
wingSpan? - Airplanes are divided into classes based on their wingspan. Only air-

planes with same or lower wingspan can enter this AixmAirportElement.

3.3.2 AixmRunway
This class is used for representing runways. The AixmRunway extends the AixmAir-
portElement, but it has some methods and parameters that are unique.

shorterSideCenter - A GpsPosition, that is in the middle of one of the shorter sides
length - Length of runway.
RUNWAY START - A parameter defining the maximum relative distance from short-

erSideCenter that point on runway needs to have to be considered as the start of the
runway. In default settings, it is set on 0.2.

RUNWAY END - A parameter defining the minimum relative distance from short-
erSideCenter that point on runway needs to have to be considered as the end of the
runway. In default settings, it is set on 0.8.

Figure 3.2. Runway divided into three parts

3.3.3 AixmTaxiway
Class representing taxiways. This class extends the AixmAirportElement class.

3.3.4 AixmApron
This class represents an apron. It extends the AixmAirportElement class and it has no
unique parameters nor functions.

3.3.5 AixmVerticalStructure
This class represents vertical structures at the airport (e.q., terminals). As well as the
AixmApron class, this class extends the AixmAirportElement class, but it adds neither
parameters nor functions.

3.3.6 AixmGuidanceLine
Class representing guidance lines. They are crucial for creating a structure for naviga-
tion. Main parameters for AixmGuidanceLine are:

id? - Unique ID of this AixmGuidanceLine.
coordinates? - List of coordinates creating this AixmGuidanceLine.
owner1 - An AixmAirportElement on which this AixmGuidanceLine is located.
connectedRunway - If an AixmGuidanceLine starts or ends on the runway this run-

way is saved in this variable.

1 Data in AIXM format should provide this information. The data set from Chicago O’Haare lacked this
information, and it had to be computed.

9

3. Data Structures .
3.3.7 GraphSegment

Elements of this class are created from AixmGuidanceLines. The GraphSegment rep-
resents the part of the AixmGuidanceLine, which starts or ends in a point, where
AixmGuidanceLine is connected to another AixmGuidanceLine. GraphSegments are
cornerstones for a pathfinding algorithm. Their parameters are:

id - Unique ID of this GraphSegment.
segmentsTowardsStart - List of GraphSegments connected to this GraphSegment at

its start.
segmentsTowardsEnd - List of GraphSegments connected to this GraphSegment at

its end.
coordinates - List of coordinates creating this GraphSegment.
owner - An AixmGuidanceLine on which this GraphSegment is located.
length - Length of this GraphSegment in meters.

3.3.8 GraphSegmentOccupancy
Ground controller is responsible for proper use of GraphSegments. In no case, Graph-
Segment can be used by two airplanes in the same time and in the opposite direction.
GraphSegmentOccupancy is used to avoid these situations. Parameters in this class
are:

segment - Occupied GraphSegment.
direction - A direction in which is this GraphSegment used (0 if towards Start, 1 if

towards End).
enterTime - The time when an airplane should enter this GraphSegment.
leaveTime - The time when an airplane should leave this GraphSegment.
entityID - ID of entity that uses this GraphSegment.

3.3.9 AixmAirport
The AixmAirport class represents the whole airport. This class contains information
about all elements at the airport. Main parameters are:

taxiways - List of AixmTaxiways located at this airport.
runways - List of AixmRunways located at this airport.
aprons - List of AixmAprons located at this airport.
verticalStructures - List of AixmVerticalStructures located on this airport.
guidanceLines - List of AixmGuidanceLines located at this airport.
graphSegments - List of GraphSegments located on this airport (created from

AixmGuidanceLines by the function createConnections() see section 3.4.3).
graphSegmentOccupancy - List of GraphSegmentOccupancies located on this Aix-

mAirport (dynamically added and removed by the ground controller).
TOLERANCE - A parameter used to compensate inaccuracies in a data set. If a

distance between two points is lower than this parameter, these points are considered
as the same point.

ANGLE TOLERANCE - A parameter used to compensate inaccuracies in a data set.
If three points form an angle, this parameter determines the variance that this angle
can have. For example, if three points should form 180◦ and ANGLE TOLERANCE
is 5, then the final angle can be between 175◦ - 185◦.

RUNWAY PATTERN - A string which contains a regular expression for runway
name (used in the function mergeRunways()3.4.1).

TURNING ANGLE - The maximum angle that airplanes can rotate on crossings.

10

. 3.3 Airport Elements Used in Simulation

At the figure 3.3 is a part of Chicago O’Hare International Airport created from the
AIXM data set.

Figure 3.3. Chicago O’Hare International Airport created from the AIXM data set

Relations between elements can be seen at the figure 3.4. To make the figure more
transparent, all constant parameters in the class AixmAirport are not shown.

11

3. Data Structures .

Figure 3.4. Relations between elements in a structure

3.4 Algorithm to Create the Structure
A raw data from a data set must be processed to create a structure suitable for a
pathfinding algorithm. While following the pseudoalgorithm bellow, the data from the

12

. 3.4 Algorithm to Create the Structure

AIXM format are processed, and the result is a structure formed by elements described
in the section 3.3.

Pseudoalgorithm

1. load data from XML files

2. parse the XML file and create objects

3. create runways from runway elements (mergeRunways())

4. find starts of all runways (findRunwaysShorterSides())

5. create structure of GraphSegments for navigation (createConnections())

6. assign Guidance lines to Taxiways, Runway or Aprons (assignGuidanceLines())

7. make GraphSegments representing Stands available from all sides (connect-
Stands())

8. find which AixmGuidanceLines start or end at runways (connectRunways())

3.4.1 mergeRunways()

The data in AIXM format contains information about runway elements (smaller parts
of a runway, which are not overlapped by another runway element). Because of this,
one runway can be made out of more runway elements. For easier work with runways,
they have to be interpreted as one piece, with information about crossings with another
runway.

In the AIXM data runway elements, that are attached directly to a runway have
identification number identical to concerned runway followed by a number of the element
(e.q., 9R-27L RE0). If an element is attached to more than one runway, his identification
number is only a number of an element (e.q., RE30). This attribute of AIXM data
is used in runway merging algorithm. All angles on the runway are expected to be
approximately 90◦.

The main goal of this algorithm is to find a list of coordinates that form runway.

13

3. Data Structures .

Figure 3.5. Pseudoalgorithm for merging runways

14

. 3.4 Algorithm to Create the Structure

Figure 3.6. Runways before merging

Figure 3.7. Runways after merging

15

3. Data Structures .
3.4.2 findRunwaysShorterSides()

The developed algorithm requires an information about runway’s start and end. At first,
a runway must be merged to one piece by function mergeRunways(). This complete
runway has a rectangular shape and is represented by a list of GPS coordinates. The
function “findRunwaysShorterSides” searches for a point in the center of one of the
shorter sides. With this information, measurements on this runway can be made.

Psudoalgorithm:

1. find the first corner
2. find the second corner
3. find the third corner
4. firstDistance = distance between the first and the second corner
5. secondDistance = distance between the second and the third corner
6. if firstDistance > secondDistance

shorterSideCenter = point between the second and third corner
else
shorterSideCenter = point between the first and second corner

end
7. return shorterSideCenter

3.4.3 createConnections()
In most situations, a movement on an airport takes place only on guidance lines. Be-
cause of that, the decision to create a structure for navigation and pathfinding from
guidance lines was straightforward.

Guidance lines as are represented in the AIXM format are not directly suitable for
trajectory planning algorithms for several reasons. The AIXM data contains only infor-
mation about a guidance line, but no information about connections to other guidance
lines. Inappropriate connections between AixmGuidanceLines are another reason why
a new structure is created. Some AixmGuidanceLines have connections in the middle,
which is not appropriate. It is easier to work with a structure, which has connections
only at the beginning or at the end. If AixmGuidanceLines have a common point,
it can be turned from one to the other one in this point, if and only if one of these
AixmGuidanceLines begins or ends at this point (at the figure 3.8 is not possible to
turn from yellow to purple guidance line). These reasons resulted in a decision to create
a new structure based on AixmGuidanceLines.

A main element of a structure is a GraphSegment. Its main parameters are described
in section 3.3. The GraphSegment is created directly from an AixmGuidanceLine,
but its connections are only at the beginning or at the end. For this feature, the
AixmGuidanceLine have to be split into more GraphSegments. GraphSegments need
to fulfill two main conditions to be connected. They must have a common point, and
they have to form an angle, that allows an airplane to move from one GraphSegment
to the second one (an airplane can turn to a maximum angle TURNIG ANGLE - in
the default setting it is 90◦). Sometimes data about GPS positions of guidance lines
are not accurate. For these cases, there is a parameter TOLERANCE, which is used
for finding points that are close enough to be considered to be the same point.

Algorithm for creating GraphSegments is quite complicated, and the whole code can
be found in attached files.

16

. 3.4 Algorithm to Create the Structure

To sum up, AixmGuidanceLines are searched and if any connected AixmGuidance-
Line is found algorithm current GraphSegment ends, a new GraphSegment on founded
AixmGuidanceLine is created, this new GraphSegment is added to the list of Open-
GraphSegments and searching continues in this GraphSegment. When all AixmGuid-
anceLines are split, the algorithm ends.

Example of AixmGuidanceLines can be seen at figure 3.8. In can be seen, that some
guidance lines have connections in the middle (for example blue and purple guidance
lines)

Figure 3.8. Guidance lines

At the figure 3.9 it can be seen that AixmGuidanceLines from the figure 3.8 are split
into smaller parts with connections only at the begging or at the end. Crossing between
the turquoise and the yellow guidance line is not considered, because it is in the middle
of both guidance lines. The red separators were added for clarification. They separate
individual GraphSegments.

17

3. Data Structures .

Figure 3.9. GraphSegments

3.4.4 assignGuidanceLines()
Data in AIXM format should contain an information about the owner of a AixmGuid-
anceLine. However, in some data sets, this essential information is missing. It is
essential to know AixmGuidanceLine’s owner for several reasons. In a real air traffic
control, the pilot receives names of taxiways or runways from the ground controller.
Another reason is that some guidance lines cross runways. This information is crucial
for safe operation. The pilot must be aware when entering an active runway. Before
entering, the permission (mainly from tower control) must be granted and only then,
the airplane can enter a runway.

Individual AixmAirportElements are represented as a Poly (a class that AgentFly
project uses for polygon representation). Class Poly implements the function isIn-
side(GpsPosition), which returns true when the point is inside this polygon. Other-
wise, it returns false. Function assignGuidanceLines() check all points that form the
guidance line and set owner to the element, which has most points from this guidance
line (because of inaccuracy some points may be located on the wrong AixmAirportEle-
ment). In case of a match, owner of this guidance line is then decided by a point created
between the first and the second coordinate.

3.4.5 connectStands()
A stand is a place on an apron, which also serves as a parking place for airplanes.
In the AIXM format, stands are represented as an AixmGuidanceLine with following
properties:

1. Stand’s owner is AixmApron.
2. Stands can be entered only from one side (segmentsTowardsStart or segmentsTo-

wardsEnd is an empty list).
An airplane on its own is not able to turn from one guidance line to another if an

angle between them is lower then TURNING ANGLE (in default settings 90◦). This

18

. 3.4 Algorithm to Create the Structure

rule does not apply to stands. Airplanes can be towed to stands, so the condition about
angle does not need to be met.

Pseudoalgorithm:

Figure 3.10. Pseudoalgorithm of function connectStands()

Demonstration of the algorithm
Initial state:

GraphSegment1
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment2

GraphSegment2
segmentsTowardsEnd: GraphSegment1, GraphSegment3
segmentsTowardsStart: GraphSegment4

GraphSegment3
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment2

GraphSegment4
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment2

Let’s assume, that the GraphSegment1 is a stand.

The algorithm then proceeds as follows:
1. stand - GraphSegment1
2. connections - GraphSegment2
3. newConnections - GraphSegment3

19

3. Data Structures .
4. GraphSegment1.connect(GraphSegment3),

GraphSegment3.connect(GraphSegment1)

Final state:

GraphSegment1
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment2, GraphSegment3

GraphSegment2
segmentsTowardsEnd: GraphSegment1, GraphSegment3
segmentsTowardsStart: GraphSegment4

GraphSegment3
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment1, GraphSegment2

GraphSegment4
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment2

Figure 3.11. Because the angle between GraphSegment 1 and 3 is lower then 90◦, they are
not connected. However, GraphSegment1 is a stand, and because of that the connection

between them is created.

3.4.6 connectRunways()
The majority of airports have more than one runway. These runways are rotated from
each other usually by 45◦ or 90◦. This layout provides flexibility to the airport. Wind
conditions can be partly eliminated by using a runway that is rotated correctly. When
an airport has more runways, route a finding algorithm needs to know, which guidance
line leads to which runway.

Each AixmGuidanceLine has a parameter RunwayConnection. An AixmGuidance-
Line is considered as an appropriate way to the runway when it starts or ends at runway
and runway is not an owner of this guidance line. Another important parameter is a
point where guidance line leads on the runway. For this need enum ConnectionDistance
was created. This enum has three values (START, MIDDLE, END). A point found in
function findRunwaysShorterSides() is considered to be a beginning of runway. The
default setting of thresholds START or END is:

0 - 20% - START
20 - 80% - MIDDLE
80 - 100% - END

20

. 3.4 Algorithm to Create the Structure

These thresholds can be changed in AixmAirport. Values are saved in RUN-
WAY START and RUNWAY END.

With the connected runway, the ground controller can easily find a way from or to
that runway.

21

Chapter 4
Pathfinding algorithm

For planning airplane’s trajectories through the airport, a pathfinding algorithm has
to be implemented. The structure created from GraphSegments 3.3.7 allows usage
of algorithms designed for working with graph composed of nodes and edges such as
A*. Use the A* algorithm as a starting point turned out to be the best option. A
GraphSegment is not a point but a line. Due to this fact, several changes compensating
this difference are implemented 4.2.

Another restriction for pathfinding algorithm is that the newly planned routes must
not collide with already planned routes 4.3.

4.1 A*
A* algorithm was described by Peter Hart, Nils Nilsson and Bertram Raphael of Stan-
ford Research Institute in 1968. It is a heuristic algorithm mainly used for pathfinding
in graphs. A* is an extension of Dijkstra’s algorithm.

A* uses function f(n) (n is the last node on the path) to determine the cost of the
current path. Function f(n) consists of two parts.

f(n) = g(n) + h(n) (1)

Function g(n) is the real cost of path from start to last node. Function h(n) (heuristic
function) is the estimated cost from last node to end. For finding optimal solution
function h(n) must be admissible. Mathematically it means:

∀n : 0 ≤ h(n) ≤ h?(n), (2)

where h?(n) is the actual cost for reaching the end[17].

In this project, the shortest trajectory is considered as the optimal one. This is not
the only possible solution. Other possibilities could be for example the path which takes
shorter time, the most fuel economic path or the path with least changes of direction.

Following function is used as heuristic function:

h(n) =
√

((x(n))− x(end))2 + (y(n)− y(end))2. (3)

This function is a two-dimensional Euclidian distance. This heuristic function is
admissible because in best case scenario the shortest trajectory to the end is a straight
line, which is the same as the estimate. In other cases, the estimation is always lower
than the actual distance and obviously is higher than zero.

22

. 4.2 Input Data

4.2 Input Data

A* is designed for finding best trajectory between two nodes in a graph. For finding the
best trajectory between two GraphSegments, the planning algorithm must be able to
find the best possible trajectory between two lines. This problem is solved by dividing
GraphSegment’s references to other GraphSegments into two groups (segmentsToward-
sEnd and segmentsTowardsStart). When GraphSegment is expanded, algorithm checks
which of these two groups contain the parent of this GraphSegment. If the parent is
in the list segmentsTowardsEnd, an airplane is at the start of this GraphSegment, and
expanded GraphSegments are GraphSegments from the list segmentsTowardsStart. If
the parent is in the list segmentsTowardsStart, an airplane is at the end of the Graph-
Segment, and expanded GraphSegments are only from the list segmentsTowardsEnd.
In input parameters it can be specificated, whether trajectory should be planned from
the start or the end of a GraphSegment and in which direction should an airplane enter
the final GraphSegment.

Demonstration of a GraphSegment expansion
Let’s consider following situation (4.1):
The airplane is on the GraphSegment3. Previous GraphSegment was GraphSeg-

ment1.
Connections between GraphSegments:
GraphSegment1

segmentsTowardsEnd: GraphSegment3
segmentsTowardsStart: null

GraphSegment2
segmentsTowardsEnd: GraphSegment3
segmentsTowardsStart: null

GraphSegment3
segmentsTowardsEnd: GraphSegment5, GraphSegment6
segmentsTowardsStart: GraphSegment1, GraphSegment2

GraphSegment4
segmentsTowardsEnd: GraphSegment5, GraphSegment6
segmentsTowardsStart: null

GraphSegment5
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment3, GraphSegment4

GraphSegment6
segmentsTowardsEnd: null
segmentsTowardsStart: GraphSegment3, GraphSegment4

The parent of the GraphSegment3 is GraphSegment1, which is in the list seg-
mentsTowardsStart. Because of that, expanded GraphSegments are GraphSegment5
and GraphSegment6 (all GraphSegments from the list segmentsTowardsEnd). The
GraphSegment4 is not connected with the GraphSegment3, because the angle be-
tween them is lower then a TURNING ANGLE (90◦).

23

4. Pathfinding algorithm .

Figure 4.1. The airplane can continue only to the GraphSegments 5 or 6. The GraphSeg-
ment4 is no available becase the angle between the GraphSegments 3 and 4 is lower then

90◦.

A* algorithm is designed to work in the Cartesian coordinate system, but the input
data are GPS positions. Even though that airports are on the sphere, counting with
GPS position is possible, because the size of airports is small, differences between alti-
tude are negligible, and distances from poles are big enough. The inaccuracy resulting
from these factors is negligible.

4.3 Noncollision Planning
The algorithm is designed to calculate the best possible trajectory between two lines.
The possibility to plan a trajectory that would have some restriction from the previously
planned trajectory is a new feature, which extends the pathfinding algorithm. In this
task, airplanes cannot be on the same GraphSegment at the same time and in the
opposite direction.

To resolve this problem, a new object is defined. GraphSegmentOccupancy de-
scribed in section 3.3.8 is designed specifically for this problem. GraphSegmentOccu-
pancy contains information about occupied GraphSegment, the time interval in which
is this GraphSegment used (enterTime, leaveTime), which entity uses this Graph-
Segment entityID and in a which direction. One GraphSegment can be occupied by
multiple airplanes, which means more GraphSegmentOccupancies. Information about
an entityID is necessary for replaning route described in section 6.1.2. Input parameters
must include a list of GraphSegmentOccupancies and the current time is milliseconds.

To determine whether there is a risk of collision, every GraphSegment must know
when it will be occupied and in which direction. All nodes from A* algorithm contains
the information about the cost (in this case is equal to distance) from start node to
current node. With this information and with an assumption that airplane is moving
with a constant velocity, the algorithm can estimate, when the airplane will be occuping
this GraphSegment using the formula

t = s

v
, (4)

24

. 4.4 Differences between Planning Algorithm for Simulation and A*

where s is the length of GraphSegment and v is the velocity of the airplane.

A direction can be determined thanks to the knowledge of this GraphSegment’s
parent. If the parent is in the list segmentsTowardsStart, the direction is 1 (airplane is
driving through this GraphSegment from the start to the end). Conversely, if the parent
is in the list segmentsTowardsEnd, the direction is 0 (airplane is driving through this
GraphSegment from the end to the start).

After finding these two parameters (time and direction), the algorithm can determine,
whether there is a risk of a collision. A collision is detected, just when the following
conditions are met:

1. The GraphSegment in GraphSegmentOccupancies is equal to the current
GraphSegment.

2. The direction of this GraphSegmentOccupancies must be different (airplanes
can be on the same GraphSegment in the same direction).

3. The calculated time is in the interval (enterTime,leaveTime).

When a collision is detected, this GraphSegment is put in the closed list. Due to
this operation it can no longer be claimed, that found trajectory is the shortest one.
However, simulations show, that found trajectories are not too much different from the
optimal ones.

4.4 Differences between Planning Algorithm for
Simulation and A*

The planning algorithm works with GraphSegments (lines), while A* works with nodes.
This feature requires changes in function which expands GraphSegment. The planning
algorithm must consider the direction of an airplane. The direction of an airplane
decides whether GraphSegments from list segmentsTowardsEnd or list segmentsTo-
wardsStart are available for next movement.

A* algorithm can not plan trajectories, which would depend on previously planned
trajectories. The planning algorithm can work with GraphSegmentOccupancies and
can calculate trajectories without collisions. However, due to this feature, it can no
longer be guaranteed, that found trajectory is the shortest one.

The planning algorithm allows determining starting and final heading of an airplane.

4.5 Airplane Movement Implementation
For a movement of an airplane, a class PlanWrapper is used in the AgentFly project.
For this simulations a new class GpsFlightPlanWrapperAixmAirports which inherits
from the PlanWrapper is created. This class is responsible for creating PlanWrapper
suitable for movement on an airport.

The whole plan is created from smaller elements - GpsTaxiElements. These elements
are created between two points and contain information about initial state, final state,
velocity, heading, etc. A final plan is a linked list of GpsTaxiElements.

25

4. Pathfinding algorithm .
4.5.1 Start of the Airplane

A main parameter for creating GpsFlightPlanWrapperAixmAirports is a list of Graph-
Segments which determines the trajectory. These GraphSegments are used in function
createTrajectory(). This function creates GpsTaxiElements from GraphSegments.

The function createTrajectory() iterates through all GraphSegments and all their
coordinates. It creates GpsTaxiElements between adjacent coordinates and set its pa-
rameters such as heading, velocity, etc.

4.5.2 Stopping the Airplane
For situations where an airplane needs to be stopped is used GpsStopElement. A
function stop() is used when an airplane is on a collision course or should stop for other
reasons. This function removes all GpsTaxiElements from the plan and replaces them
with GpsStopElement. Before it happens, the old trajectory is saved, and when the
path is clear, this trajectory is loaded, and airplane continues in its previous trajectory.

26

Chapter 5
Ground Controller

The ground controller is a person responsible for an airplane movement. When an
airplane arrives at the airport, a pilot must tune his radio frequency to be able to
communicate with the ground controller. The ground controller then must navigate a
pilot through the airport to a stand. Similarly, when an airplane is ready to depart,
the ground controller must navigate pilot on a runway.

5.1 Airport Controller
In a simulation, all controllers described in section 2.5 are replaced by one called Air-
port controller. This controller is responsible for all sectors at ones. In a future work,
simulation can be extended, and more controllers that are communicating with them-
selves can be added. The airport controller is mainly responsible for planning routes,
while avoiding possible conflicts or collisions. The planning algorithm is described in
section 4.

5.2 Communication with Pilot
The ground controller communicates directly to pilots. Because a slip of the tongue or
mishearing can lead to serious problems, a communication between pilot and a ground
controller must be safe. For this reason is in aviation used “pilot alphabet”.

The oficial name of this spelling alphabet is ICAO Spelling Alphabet, and it uses
words for representing letters. Because of this, the risk of being misunderstood is
minimal. Moreover, some words have unique pronunciation which also reduces the risk.
All letters and their representations can be seen at the figure 5.1.

Figure 5.1. Alphabet 1

Another thing to ensure maximum security of communication is repeating received
message. The ground controller and pilots repeat any received message, or at least they
repeat the most valuable information [7].
1 http://2.bp.blogspot.com/-jGaFgK9QGUU/TZdBDiWqxpI/AAAAAAAAAG8/gz31iCmhBE0/s1600/nato.

jpg

27

http://2.bp.blogspot.com/-jGaFgK9QGUU/TZdBDiWqxpI/AAAAAAAAAG8/gz31iCmhBE0/s1600/nato.jpg
http://2.bp.blogspot.com/-jGaFgK9QGUU/TZdBDiWqxpI/AAAAAAAAAG8/gz31iCmhBE0/s1600/nato.jpg

5. Ground Controller .
Communication can look like this:
Ground controller: Delta 443, right Alpha, right Bravo, then Papa.
Pilot: Roger, right Alpha, right Bravo, then Papa, Delta 443.

5.2.1 Communication in Simulation
In the simulation, individual agents (pilots and the airport controller) communicate over
the radio. At first, pilot sends a message with current position and desired position.
Airport controller then finds a way (list of GraphSegments) and sends it back to the
pilot. The pilot then repeats this message to the controller and creates PlanWrapper
(for more information see section 4.5).

Airport controller can send a message to pilot with the requirement to change his
current path.

Pilots do not communicate with each other.

In a real situations, the controller sends to pilots only information about taxiways,
which should be used. In simulations, the whole way (list of GraphSegments) is sent.
Main reasons for this solutions are following:

1. The ground controller knows where the airplane will be at a certain time and can
use this information to planning ways for other airplanes.

2. Pilots do not need to use pathfinding algorithm for finding a way through taxiways.
This saves a calculation time.

In the simulation, a communication between the pilot and the ground controller could
be handled by sending simple events. However, communication over the radio is one of
the activities that have an impact on a ground controller’s cognitive load. Despite the
fact that message sent by the ground controller is a list of GraphSegments, the radio
displays only names of taxiways. This makes the simulation more realistic.

At the figure 5.2 is shown the cut out of the ground controllers display. On display
can be seen guidance lines, runways, and airplanes.

Figure 5.2. Ground controllers display

28

Chapter 6
Collision Avoidance Mechanisms

Collisions at the airport can occur for many different reasons. The majority of them
can be sorted into following groups.

1. Airplanes on the same taxiway in the opposite direction

2. Airplanes on the same taxiway in the same direction

3. Airplanes on crossings

4. Airplanes moving through the active runway

Some problems can be solved by pilots directly in a traffic, but some problems must
be solved by the ground controller in advance.

6.1 Airplanes on the Same Taxiway in the Opposite
Direction

The ground controller is responsible for solving this problem. To handle this problem,
the ground controller uses pathfinding algorithm described in section 4. With this
algorithm, noncollision trajectory can be calculated.

6.1.1 Planning Process
There are two possible ways for trajectory planning.

1.Plan all trajectories at the same time
This solution is based on the idea of planning trajectories for all airplanes at the same

time. Results of this solution would be probably better concerning the total length of all
trajectories, but it requires recompute the plan of all airplanes whenever a new airplane
arrives or when an unexpected situation occurs. Also, it would require an unreasonable
amount of messages between ground controller and pilots.

2.Plan trajectory only for a new airplane
The main advantage of planning a trajectory for one airplane is a fast calculation.

Even though that found trajectory does not have to be optimal, simulations show, that
in most cases this trajectory is a realistic and reasonable. Another advantage of this
solution is the similarity with a real situations.

6.1.2 Position Checking
A GraphSegmentOccupancy contains the estimation when an airplane should be on
particular GraphSegment. However, in real situations, movement on the airport is
influenced by many aspects, and an airplane is sometimes forced to slow down or even
stop. Because of that, the ground controller regularly makes sure, that all airplanes are
on expected GraphSegments. If any airplane is on the GraphSegment in the unexpected
time, the ground controller must recompute a new way for this airplane.

29

6. Collision Avoidance Mechanisms .
Using known GpsPosition of an airplane, the ground controller can find on which

GraphSegment the airplane currently is. This GraphSegment is compared with Graph-
SegmentOccupancies, and if the airplane should not be on this GraphSegment, then
the ground controller deletes all GraphSegmentOccupancies for this airplane (while us-
ing entityID from GraphSegmentOccupancy)and recomputes a new trajectory for this
airplane. This is necessary because other airplanes trajectories were computed with the
assumption that this airplane will follow its plan.

6.2 Airplanes on the Same Taxiway in the Same
Direction

This type of collisions can be solved by a pilot. The pilot can check all airplanes before
him, and he can slow down or stop. The detailed description of other airplane detection
is in section 6.3.

6.3 Airplanes on Crossings
In a situation when two airplanes are on a crossing, one airplane must give a right of
way to the other airplane. This situation can be handled by the ground controllers,
but sometimes they are handled by pilot themselves. In this simulation, pilots are
responsible for solving this situation. Possible heuristics for solving this problem are
for example:

First in first out
The most intuitive solution. However, in some situations, it is not certain who came

first. In this situations, some other method must be used.

Heavier airplane priority
The main advantage of this solution is fuel saving. A smaller airplane can be slowed

down much easier than a big airplane. The disadvantage is a requirement for another
heuristic when two airplanes with the same size meet each other.

Right-hand rule
Right-hand rule is a system, in which the pilot of an airplane is required to give

way to airplanes approaching from the right at crossings. The main advantage of this
rule is that almost every common situation can be handled by this rule (situations
when airplanes are on all entries from crossing, but this situation cannot happen at the
airport). This was the main reason, why it was selected as a heuristic to determine
which airplane has right of way.

6.3.1 Right-hand Rule Implementation
For following the Right-hand rule, pilots need to know where other airplanes are, and
they must find out if any of them is on a collision course. If the pilot finds an airplane
that is coming from right side, he must stop or slow down, let that airplane go, and
then he can continue in his previous plan.

In a simulation, every pilot receives an event when any entity on the airport moves.
The content of this event is the information about all other airplanes, their positionw,
and headings. The controlled area is represented by a polygon (a section bounded by
a red line at Figure 6.1), which is calculated from the airport position and from the
heading. If any of other airplanes is heading into this polygon and is moving, the pilot

30

. 6.4 Airplanes Moving Through the Active Runway

stops and waits, until no one is heading into this polygon. Then he can start moving. A
size and an angle of this polygon can be set in the pilot module by following parameters:

POLYGON SIZE - the size of the polygon
POLYGON ANGLE - the angle of the controlled area

Figure 6.1. Polygon with controlled area

6.4 Airplanes Moving Through the Active Runway
In some situations, it is necessary for the airplane to cross the active runway. When the
airport has more controllers, pilot switches on the frequency of responsible controller
and asks for permission to cross runway. This simulation contains only one controller,
because of that this problem can be solved in route planning process.

31

Chapter 7
Simulation Tests

To verify that all modules work as intended, several tests are implemented. Each module
is tested individually in smaller tests, and then their ability to cooperate is tested on
large-scale simulations.

7.1 Trajectory Planning
Trajectory planning algorithm evaluation also served as evaluation for an algorithm
that creates the structure of GraphSegments from AixmGuidanceLines.

At the figure 7.1 is shown a way from runway 9R to the stand. The airplane can be
seen at the starting point (right bottom part of the figure), and the calculated route
to the stand is the red line. Green lines are other guidance lines, and yellow lines are
runways.

Already at first glance can be seen, that computed trajectory follows the rules de-
scribed in sections 3.4.3 and 4. The trajectory is the shortest one and angles, in turn,
are lower then 90◦.

Figure 7.1. Trajectory planned from the runway to the stand

7.2 Right-hand Rule
Right-hand rule is a heuristic used to determine which airplane has the right of way
when two airplanes meet on a crossing. The detailed description is in the section 6.3.

32

. 7.2 Right-hand Rule

In this simulation, two airplanes are on the crossing. Airplane arriving from the west
is supposed to stop and let airplane from southeast drive through the crossing. Then
airplane should continue in its way.

At the figure 7.2 both airplanes are approaching towards the crossing.

Figure 7.2. Right-hand rule - airplanes are approaching towards the crossing.

At the figure 7.3 the airplane from west stopped (signalized by the blue bubble) and
the other one drives through.

Figure 7.3. Right-hand rule - the airplane with the blue bubble stoped

At the last figure 7.4 both airplanes are moving and have sufficient distance between
them.

33

7. Simulation Tests .

Figure 7.4. Right-hand rule - both airplanes are moving again

7.3 Collision Avoidance

The collision avoidance mechanism tested by this simulation is described in section 6.1.

For this simulation, two airplanes are changing their positions (the first one is moving
from the runway to stand, the second one is moving from stand to runway). This
situation is not realistic, because airplanes usually arrive from one runway and departe
from the other one, but for a demonstration of the collision avoidance mechanism is
this situation most transparent.

At the figure 7.5, are highlighted both ways from airplanes. Purple lines are common
to both airplanes. The blue line is for the airplane coming from the south, and the red
one is for the other one. As can be seen, the airplane approaching from the north takes
the longer way to avoid the collision.

34

. 7.4 Large Scale Simulation

Figure 7.5. For airplanes which are changing their positions, are calculated different tra-
jectories.

7.4 Large Scale Simulation

This scenario simulates a real situation with two active runways (9L and 9R). One
runway serves for departures (9L - on the north), and the other one serves for arrivals
(9R - on the south).

Besides this particular simulation, various simulations with different runways or a
traffic density are implemented. They examine the behavior of individual modules and
how they work together. Even though that this simulations are not based on real data,
they are based on real pattern situations.

At the figure 7.6, can be seen a situation from this scenario. It must be noted, that
airplanes are for simulation purposes displayed bigger.

35

7. Simulation Tests .

Figure 7.6. Large scale simulation

36

Chapter 8
Conclusion

Main tasks of this thesis is to simulate an air traffic at the airport, pilots and a ground
controller.

All tasks of this bachelor’s thesis were fulfilled.

1.Study the problem of air traffic control at the airport
The main source of information is a book Fundamentals of Air Traffic Control. A

Youtube channel VASAviation, which is providing records from radio communication
can be really helpful for understanding how pilots and controller communicates.

2.Study the problem of airport data representation.
Several sources of data have been found, but the majority of them lack some sort of

information that was necessary for simulation. The AIXM format is the best option
for the airport representation. This format is expanding around the world and it is the
result of teamwork of the Federal Aviation Administration and Eurocontrol, so it can
be assumed, that airports will start providing information in this format.

3.Design airport data representation suitable for aircraft movement and air traffic
control.

The AIXM data format contains a large amount of information but is not directly
suitable for simulating air traffic at the airport. For this purposes, a new structure is
designed and implemented as well as the algorithm for processing AIXM data into this
structure.

4.Design initial behavior model of airport air traffic controller a pilot.
The appropriate model of air traffic controller requires a pathfinding algorithm for

noncollision planning. This algorithm can find a trajectory while avoiding collisions
and works with the data structure created from the AIXM data set. Another collision
avoiding mechanism is implemented in the pilot module - rule of the right hand. Com-
munication between a pilot and a ground controller is transmited over the radio. Radio
is used as a component for workload model.

5.Implement designed methods into AgentFly system.
All methods are implemented and integrated in AgentFly system while respecting all

principles of this project.

6.Perform experiments using various configurations.
Several simulation scenarios is used to evaluate all models and functions. Simulations

for testing individual components as well as large-scale simulations are implemented.

8.1 Future Work
On following list can be found proposals for upgrading simulation.

Adding more controllers

37

8. Conclusion .
As it is described in section 2.5, air traffic at the airport is handled by more ground

controllers. Adding more controllers and implementing communication between them
would make the simulation more realistic.

Simulate more actions on the airport
Movement on the airport is not only from a runway to stand and vice versa. Airplanes

sometimes must stop at the de-icing area; they need to be refueled etc. Adding these
actions would make the simulation more realistic.

Improve the pathfinding algorithm
Pathfinding algorithm developed for this simulation can find an only direct way to

the designated point. The possible extension would be planning with stop possibility.
In some situations, it could be possible that way with few stops could be faster.

38

References
[1] Airline industry worldwide - number of flights 2017 - Statistic. Statista - The

Statistics Portal for Market Data, Market Research and Market Studies [online].
Statista, 2018. [Acessed 23 May 2018]. Avaible at: https://www.statista.com/
statistics/564769/airline-industry-number-of-flights/

[2] Airport - Definition of Airport by Merriam-Webster. Dictionary by Merriam-
Webster: America’s most-trusted online dictionary [online]. Merriam, 2018.
[Acessed 21 May 2018]. Avaible at: https://www.merriam-webster.com/
dictionary/airport

[3] Runway selection - Airservices. Airservices [online]. Airservices Australia, 22 April
2014. [Acessed 19 May 2018]. Avaible at: http://www.airservicesaustralia.
com/wp-content/uploads/12-139FAC_NCIS-Runway-selection_P2.pdf

[4] Z. K. CHUA, M. COUSY, F. ANDRÉ, and M. CAUSSE. Simulating Air
Traffic Control Ground Operations:Preliminary Results from Project Modern
Taxiing [online]. In: 4th SESAR Innovation Days 2014. Madrid: Universidad
Politécnica de Madrid, 2014. [Acessed 19 May 2018]. HAL ID: hal-01132451.
Avaible at: https://hal-enac.archives-ouvertes.fr/hal-01132451/file/
ChuaCousyAndreCausse2014.pdf

[5] ACI WORLD SAFETY, and TECHNICAL STANDING COMMITTEE (SUB-
GROUP). Runway Safety Handbook. 1st ed. Montreal: ACI World, Montreal,
Canada, 2014. ISBN 978-1-927907-31-3.

[6] ICAO Aerodrome Reference Code - SKYbrary Aviation Safety. SKYbrary Aviation
Safety [online]. SKYbrary, 2 August 2017. [Accessed 19 May 2018]. Avaible at:
https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code

[7] VASAviation. YouTube [online]. [Accessed 19 May 2018]. Avaible at: https://
www.youtube.com/channel/UCuedf_fJVrOppky5gl3U6QQ

[8] M. S. NOLAN. Fundamentals of air traffic control. 5th ed. Clifton Park, N.Y.:
Delmar Cengage Learning, c2011. ISBN 14-354-8272-7.

[9] Letecká informační služba. Letecká informační služba [online]. Letecká informační
služba, Řízení letového provozu ČR, s.p., 2018. [Accessed 24 May 2018]. Avaible
at: http://lis.rlp.cz

[10] OpenFlights: Airport and airline data. OpenFlights.org: Flight logging, map-
ping, stats and sharing [online]. [Accessed 24 May 2018]. Avaible at: https://
openflights.org/data.html

[11] Public Airport Corner. Moved Temporarily [online]. EUROCONTROL,
2018. [Accessed 24 May 2018]. Avaible at: https://ext.eurocontrol.
int/airport_corner_public/

[12] Aeronautical Navigation Database (ANDB) - AeroNavData. Home - AeroNavData
[online]. AeroNavData, 2018. [Accessed 24 May 2018]. Avaible at: https://
aeronavdata.com/what-we-do/aeronautical-navigation-database-andb/

39

https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
https://www.merriam-webster.com/dictionary/airport
https://www.merriam-webster.com/dictionary/airport
http://www.airservicesaustralia.com/wp-content/uploads/12-139FAC_NCIS-Runway-selection_P2.pdf
http://www.airservicesaustralia.com/wp-content/uploads/12-139FAC_NCIS-Runway-selection_P2.pdf
https://hal-enac.archives-ouvertes.fr/hal-01132451/file/ChuaCousyAndreCausse2014.pdf
https://hal-enac.archives-ouvertes.fr/hal-01132451/file/ChuaCousyAndreCausse2014.pdf
https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code
https://www.youtube.com/channel/UCuedf_fJVrOppky5gl3U6QQ
https://www.youtube.com/channel/UCuedf_fJVrOppky5gl3U6QQ
https://openflights.org/data.html
https://openflights.org/data.html
https://ext.eurocontrol.int/airport_corner_public/
https://ext.eurocontrol.int/airport_corner_public/
https://aeronavdata.com/what-we-do/aeronautical-navigation-database-andb/
https://aeronavdata.com/what-we-do/aeronautical-navigation-database-andb/

References .
[13] Aeronautical Data, National Flight Data Center (NFDC).Federal Aviation Admin-

istration [online]. Federal Aviation Administration, 3 May 2018. [Accessed 24 May
2018]. Avaible at: https://www.faa.gov/air_traffic/flight_info/aeronav/
aero_data/

[14] AIXM Wiki - Home (Main.WebHome) - XWiki. Moved Temporarily [online]. EU-
ROCONTROL, 9 September 2009. [Accessed 24 May 2018]. Avaible at: https://
ext.eurocontrol.int/aixmwiki_public/bin/view/Main/

[15] EUROCONTROL - The European Organisation for the Safety of Air Navigation
- Home. EUROCONTROL - The European AIS Database: Introduction to EAD
Basic - Home [online]. EUROCONTROL, 2001. [Accessed 24 May 2018]. Avaible
at: https://www.ead.eurocontrol.int/cms-eadbasic/opencms/en/home/

[16] AIXM. AIXM [online]. EUROCONTROL, 2018 [Acessed 19 May 2018]. Avaible
at: http://aixm.aero

[17] W. ZENG and R. L. CHURCH. Finding shortest paths on real road networks: the
case for A*. International Journal of Geographical Information Science [online].
2009, 23(4), 531-543 [Acessed 2018-05-19]. DOI: 10.1080/13658810801949850.
ISSN 1365-8816. Avaible at: http://www.tandfonline.com/doi/abs/10.1080/
13658810801949850

40

https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/
https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/
https://ext.eurocontrol.int/aixmwiki_public/bin/view/Main/
https://ext.eurocontrol.int/aixmwiki_public/bin/view/Main/
https://www.ead.eurocontrol.int/cms-eadbasic/opencms/en/home/
http://aixm.aero
http://www.tandfonline.com/doi/abs/10.1080/13658810801949850
http://www.tandfonline.com/doi/abs/10.1080/13658810801949850

Appendix A
Abbreviations

GPS Global Positioning System
AIXM Aeronautical Information Exchange Model

FAA Federal Aviation Administration
ICAO International Civil Aviation Organization
EAD European AIS Database

HTML HyperText Markup Language
XML eXtensible Markup Language
XSD XML Schema Definition

JSON JavaScript Object Notation
UML Unified Modeling Language

41

Appendix B
List of Attachments

Replays from simulations:
CollisionAvoidance.mp4
LargeScaleAirport.mp4
LargeScaleController.mp4
Right-hand rule.mp4

AIXM XSD files:
AIXM AbstractGML ObjectTypes.xsd
AIXM DataTypes.xsd
AIXM Features.xsd

AIXM data
Chicago Aprons.xml
Chicago Runways
Chicago Taxiways.xml
Chicago VerticalStructures.xml

Source codes
JavaClasses.zip

42

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Airport Definition
	Runway
	Guidance Line
	Taxiway
	Apron
	Ground Controller
	Tower Control
	Ground Control
	Apron Control

	Pilot

	Data Structures
	Information Sources
	Data Format
	AIXM Format

	Airport Elements Used in Simulation
	AixmAirportElement
	AixmRunway
	AixmTaxiway
	AixmApron
	AixmVerticalStructure
	AixmGuidanceLine
	GraphSegment
	GraphSegment-Occupancy
	AixmAirport

	Algorithm to Create the Structure
	mergeRunways()
	findRunwaysShorter-Sides()
	createConnections()
	assignGuidanceLines()
	connectStands()
	connectRunways()

	Pathfinding algorithm
	A*
	Input Data
	Noncollision Planning
	Differences between Planning Algorithm for Simulation and A*
	Airplane Movement Implementation
	Start of the Airplane
	Stopping the Airplane

	Ground Controller
	Airport Controller
	Communication with Pilot
	Communication in Simulation

	Collision Avoidance Mechanisms
	Airplanes on the Same Taxiway in the Opposite Direction
	Planning Process
	Position Checking

	Airplanes on the Same Taxiway in the Same Direction
	Airplanes on Crossings
	Right-hand Rule Implementation

	Airplanes Moving Through the Active Runway

	Simulation Tests
	Trajectory Planning
	Right-hand Rule
	Collision Avoidance
	Large Scale Simulation

	Conclusion
	Future Work

	References
	Abbreviations
	List of Attachments

