
Czech Technical University in Prague

Faculty of Electrical Engineering

Bachelor Thesis

Modelling languages for optimization

Prague, 2010 Author: Michal Podhradský

Supervisor: Petr Havel

i

Acknowledgement

I would like to thank my supervisor Petr Havel for guidance and useful comments

and also the people from the Centre for Applied Cybernetics in Prague for consultations

kindly provided. And last but not least, I would like to show my appreciation to my

family for the support they have given me during my studies and say many thanks to Jo

for lending her proofreading skills.

And very, very special thanks belongs to Monika for her support and endless patience.

ii

Abstrakt

Ćılem této bakalářské práce je porovnáńı v současnosti dostupných modelovaćıch jazyk̊u

pro formulaci celoč́ıslených lineárńıch optimalizačńıch problémů a doporučeńı jazyka,

který je nejvhodněǰśı použ́ıt pro modelováńı a plánováńı optimálńıho provozu tepláren

a kogeneračńıch jednotek. Takový jazyk muśı být schopen rychlého převodu modelu do

formátu čitelného zvoleným solverem, muśı být snadno propojitelný s Java aplikacemi a

muśı být schopen načteńı a ukládáńı dat z a do MS Excel tabulek.

Dostupné (komerčńı i open-source) jazyky a jejich základńı funkce jsou nejprve porov-

nány v přehledné tabulce. Následně je devět jazyk̊u (Yalmip, GAMS, OptimJ, Gurobi

Java API, LINGO, AIMMS, AMPL, MPL a Zimpl) vybráno pro daľśı testováńı, sestávaj́ıćı

se z implementace zjednodušeného modelu teplárny. Během této implementace je sle-

dována zejména snadnost formulace problému, propojitelnost s Java aplikacemi, přehled-

nost kódu a možnosti manipulace s MS Excel tabulkami. Na závěr jsou vybrány tři

jazyky (Yalmip, OptimJ, Zimpl) a je na nich testována rychlost formulace problému

pomoćı rozš́ı̌reného modelu teplárny.

Jako nejrychleǰśı se ukázal být jazyk Zimpl, nicméně jako nejvhodněǰśı pro reálné

nasazeńı se jev́ı jazyk OptimJ (d́ıky svému propojeńı s Javou a dostačuj́ıćı rychlost́ı).

Jako vhodné se dále jev́ı jazyky použ́ıvaj́ıćı algebraickou notaci, např́ıklad AMPL, GAMS

nebo LINGO. Yalmip se ukázal pro praktické nasazeńı nevhodný zejména kv̊uli pomalé

formulaci problému.

iii

Abstract

The aim of this work is to thoroughly compare various currently available modelling

languages for Mixed-Integer Linear Programming (MILP), both commercial and open-

source, and eventually choose and recommend the one which is the most suitable for the

task of modelling and optimal scheduling of cogeneration systems. A desired modelling

language has to have a good performance while extracting the model into a solver-readable

format, has to integrate well with a Java environment and has to be capable of reading

and writing to MS Excel spreadsheets. However, the comparison is useful for anybody

facing similar optimization and scheduling problems.

First, an overall comparison of available languages and their basic features is created.

According to this comparison the 9 most promising languages are chosen for further test-

ing (Yalmip, GAMS, OptimJ, Gurobi Java API, LINGO, AIMMS, AMPL, MPL and

Zimpl). The second part of testing consists of implementing a model of a simple CHP

system and investigating languages model formulating features, possibilities of Java inter-

acting and facilities for MS Excel spreadsheets manipulation. Regarding the results of the

second part, three languages (Yalmip, OptimJ, Zimpl) are selected for implementation of

a more complicated model and benchmarking.

The fastest language is Zimpl, however the most suitable language for commercial use

is OptimJ (thanks to its Java integration and reasonable speed). Algebraic languages

such as AMPL, GAMS and LINGO are worth considering. Yalmip is not recommended

for commercial use due its slow performance.

iv

Contents

Nomenclature vii

1 Introduction 1

1.1 Basic model of a cogeneration system 4

1.2 Mathematical formulation of the model 6

1.3 Piecewise linear functions . 8

2 Modelling languages survey 10

2.1 The initial survey and other resources 10

2.2 Features investigated . 11

2.3 Modeling languages for further evaluation 13

3 Basic model implementation 16

3.1 Features investigated . 16

3.2 Yalmip . 19

3.3 GAMS . 24

3.4 OptimJ . 31

3.5 Gurobi API . 37

3.6 LINGO . 41

3.7 AIMMS . 48

3.8 AMPL . 54

3.9 MPL . 59

3.10 Zimpl . 62

3.11 Modelling languages for the final testing 66

4 Extended model implementation 68

4.1 Extended model of a cogeneration system 68

4.2 Benchmarking methods . 69

v

4.3 Results and recommendations . 71

5 Conclusion 75

References 77

A Results of modelling languages survey I

B Basic model parameters and power characteristics V

B.1 Parameters . V

B.2 Power characteristics of boilers . VI

C Contents of the enclosed CD VII

D Source codes of basic model implementation VIII

D.1 Yalmip . VIII

D.2 GAMS . XI

D.3 OptimJ . XV

D.4 AIMMS . XVIII

D.5 AMPL . XXIII

D.6 LINGO . XXVI

D.7 MPL . XXVIII

D.8 ZIMPL . XXXI

E Source codes of extended model implementation XXXIV

E.1 Yalmip . XXXIV

E.2 OptimJ . XXXVII

E.3 Zimpl . XLI

vi

Nomenclature

Variable Description

PKstate Binary vector representing status of boilers (on/off)

TGstate Binary vector representing status of turbines (on/off)

MpPK Vector corresponding to the steam outflow from boilers [t/h]

MpTG Vector corresponding to the steam flow through turbines [t/h]

MpV K Steam flow to the condenser [t/h]

MpZO Steam flow to the water heater [t/h]

dev Electric power deviation from the desired value [MW]

PTG Vector corresponding to the electric power produced by generators [MW]

QPK
in Vector corresponding to the power input of boilers [MW]

QPK
out Vector corresponding to the power output of boilers [MW]

Parameter Description

m Number of boilers

n Number of steam turbines

Qdemand Desired heat production [MW]

Pdemand Desired electric power production [MW]

MpTGmin Vector representing the minimal allowed steam flow through turbines [t/h]

MpTGmax Vector representing the maximal allowed steam flow through turbines [t/h]

iPK
in Enthalpy of feeding water at the input of boilers [kJ/kg]

iPK
out Enthalpy of steam at the input of turbines [kJ/kg]

iTG
out Enthalpy of steam at the output of turbines [kJ/kg]

cfuel fuel cost [CZK/MW]

cdev contracting penalty for each MWh

vii

Chapter 1

Introduction

The aim of this work is to thoroughly compare various currently available modelling

languages for Mixed-Integer Linear Programming (MILP), both commercial and open-

source ones, and eventually choose and recommend the one which is the most suitable

for the task of modelling and optimal scheduling of cogeneration systems. The cogener-

ation system is a system that simultaneously generates both electricity and useful heat.

Scheduling means both determining the optimal on/off states (unit commitment) of the

system units and their output (their economic dispatch) for each time interval of the

planning horizon [27].

Modelling and scheduling of such systems using MILP requires the following steps:

1. Describing a real cogeneration system with a set of mathematical equations. Sim-

plification of the system is often needed.

2. Using a modelling language to create an optimizaion model and formulate the equa-

tions of the system from step 1 (i.e. an objective function and a set of constraints).

3. Seting the parameters of the model, such as the desired heat and electric power

production, the planning horizon and other restrictions.

4. Using features of the modelling language to transfer the model into an MILP prob-

lem format and let this problem be solved by appropriate MILP solver.

5. Showing the results of optimization and the final schedule in a user-friendly way.

The first objective of this bachelor thesis is to create a basic overview of available

modelling languages and their features. This overview is to give us a transparent com-

parison of the modelling languages and to show their advantages and drawbacks, which

1

CHAPTER 1. INTRODUCTION 2

can be useful for any researcher facing a similar optimizing problem. The second objec-

tive is to recommend one modelling language that best suits all requirements that bring

optimal scheduling of cogeneration systems. This modelling language will be used in

further projects held in the Department of Control Engineering that are aimed at op-

timal scheduling of real cogeneration plants in the Czech Republic and Slovakia. One

of the requirements is an easy implementation of a large scale model (e.g. hundreds of

equations) and fast transformation of such a model into an instance of MILP problem

solvable by common MILP solvers. A model of a real cogeneration plant usually contains

a large number of variables and equations, thus slow transformation of the model into

MILP problem can dramatically increase the computing time of the scheduling.

Another important requirement is the ability to operate with MS Excel spreadsheets.

MS Excel is one of the most common file formats used for data storage in business

applications, thus it is expected that in a real application the data for the scheduling will

be stored in this format. Hence it is desirable that the modelling language is capable of

both reading and writing to spreadsheets.

The third considerable feature of such a language is a good connectivity with Java

programming language. Currently a similar project aimed at scheduling cogeneration

systems was held at the Brno University of Technology. This project’s graphical front-

end was created in Java and possible integration or extension of this project is under

consideration. It is expected that the final application for scheduling is to be writen in

Java (using its libraries), and Java will link all necessary components. For example, an

operator creates a model of a cogeneration plant using user-friendly GUI, the application

automatically formulates equations, loads necessary data, creates a MILP problem, then

call an appropriate MILP solver and shows/writes the results of scheduling.

The comparison of the modelling languages is divided as follows:

1. Creating a survey of available languages.

(a) The first step is to create a synoptical overview of modelling languages and its

basic features. This overview is divided into four sections:

General information – platform availability, type of application etc.

Inputs/Outputs – supported file formats, connectivity with solvers etc.

Price and licensing – price and licence information.

Problem formulation – support of non-linear functions and manual setting

of branching priorities etc.

CHAPTER 1. INTRODUCTION 3

(b) This overview mainly consists of literature and Internet research. Previous

articles of similar topics are used, as well as modelling languages’ manuals.

Vendors’ homepages are also being searched for additional information. Re-

sults of this overview is shown using a lucid spreadsheet. Finally, a list of the

most promising modelling languages is created.

(c) The survey is thoroughly described in chapter 2 and the results of this survey

can be found in appendix A.

2. Implementation of a basic model.

(a) The second step of the testing consists of the implementation of a basic model

of a cogeneration system. The description of this model can be found in

section 1.1. Various features of the languages, such as input/output file formats

are further inspected. This part of testing is aimed at the following aspects:

Inputs/Outputs – input format of user-defined data, exporting the model

into MPS or LP file formats (standard format of MILP problems, for more

details see [32, 10]) and connectivity with Java applications.

Declaration of equations – user’s experience with model formulation, defin-

ing variables, constraints and objective function.

MS Excel connectivity – ability to read and/or write data from/to MS

Excel spreadsheets.

Code clarity and debugging – debugging tools, legibility of the final code.

Solver options and branching priorities – changing various solver settings,

setting up branching priorities on binary variables etc.

Non-linear functions – formulation and usage of non-linear functions and

its limitations.

Price and licensing – discussing various licence and price options.

(b) According to the recommendation of the survey from chapter 2 the most

promising languages are used for modelling a basic model. As a result of

this section, two of the most suitable languages are chosen for the third part

of testing. Source codes of basic model implementation in various modelling

languages can be found in appendix D.

(c) A description of each tested language as well as summary of this part of testing

can be found in chapter 3, the source codes of the basic model implementation

in tested languages can be found in appendix D.

CHAPTER 1. INTRODUCTION 4

3. Implementation of an extended model.

• The last step of testing consists of implementing an extended model of a cogen-

eration system and benchmarking the most promising languages. The choice

of languages is based on results from the previous section (e.g. basic model

implementation). A detailed description and summary of this part can be

found in chapter 4.

4. Summary of retrieved results and a final recommendation are being discussed in chap-

ter 5

1.1 Basic model of a cogeneration system

A cogeneration system has already been mentioned in chapter 1. A more precise definition

of cogeneration is the following [25]: Cogeneration is the combined production of electrical

(or mechanical) and useful thermal energy from a single primary energy source. The

mechanical energy produced can be used to drive a turbine or auxiliary equipment such

as compressors or pumps while the thermal energy can be used either for heating or

cooling. In case of heating, the thermal energy heats water in a district heating system

or for industrial applications. Cogeneration systems are also referred to as combined heat

and power (CHP) systems [27]. More information about CHP systems can be found for

example in [19]. In the rest of this text only CHP systems that generate electrical and

thermal energy are considered.

For the purposes of the second part of modelling languages testing a simplified model

of a CHP system was used (also refered to as the basic model). This model was inspired

by a type of CHP plant that is common both in the Czech and Slovak Republics. The

model consists of a set of gas-fuelled boilers, a set of steam turbines, a condenser and a

water heater. A scheme of this model is in figure 1.1. Gas-fuelled boilers heat water and

turn it into hot and high-pressured steam. Hot steam flows to turbines, where part of the

thermal energy of steam is turned into the mechanical energy of turbines. The turbines

rotate connected generators, that produce electric power. Cooler low-pressure steam (a

part of its thermal energy was turned into mechanical and then electrical energy) outflows

from turbines and can be used for heating water in the heating system, or directly cooled

in a condenser. No energy loss (apart from the intentional energy loss at the condenser)

CHAPTER 1. INTRODUCTION 5

is considered and general power and mass balance laws have to be satisfied in the system.

Our aim is to minimize the production cost of the desired amount of electric power

[MW] and heat [MW] used for heating households. As satisfying production of both

commodities might be unfeasible in certain cases (e.g. large heat demand but low electric

power demand) the problem is relaxed allowing certain deviation in el. power production.

Every MW of difference between demanded el. power production and total production

increases the cost of such production (contracting penalty). Positive deviation means

that production of el. energy is lower than was planned. Objective function consists of

fuel costs of fuel burned by boilers and of a contracting penalty for deviation in electric

energy production.

This model has certain features that make it suitable for the testing undertaken, such

as:

Absolute value – introduction of the contracting penalty forces us to use deviation in

absolute value, otherwise the contracting penalty would make no sense (negative

deviation cannot decrease the production cost). Absolute value (further also noted

as abs()) is a simple non-linear function that is often used during modeling CHP

systems. Using absolute value of deviation shows whether a modelling language

can handle abs() function with variable as its argument. If not it is necessary to

reformulate the function using the following scheme (so as to keep the model linear):

instead of max |c| we introduce a new variable z such as: (1.1)

c ≤ z

c ≤ −z

Modelling languages that can handle abs() automatically replace it in the same way

as mentioned above or use more sophisticated methods.

Non-linear power characteristics of boilers – the gas-fueled boilers used in the model

have certain power characteristics (e.g. the relation between power input and out-

put) that are non-linear and have to be linearized using piecewise linear function

(PWL). A more detailed description about PWL and its formulation in modelling

languages can be found in section 1.3. PWL is important for modelling the lin-

earized characteristics of various pieces of equipment of a CHP system.

The power characteristics of the used boilers with other parameters of the basic

model can be found in appendix B.

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Scheme of a simple cogeneration plant

1.2 Mathematical formulation of the model

In this section mathematical equations are introduced describing the basic model of a

CHP system from section 1.1.The scheme of the whole model is in figure 1.1 and all

parameters and power characteristics of this model can be found in appendix B.

The model contains three gas-fueled boilers and two turbines. The status of boilers

(on/off) is described by binary vector PKstate. The power input of boilers is represented

by vector QPK
in , power output by QPK

out . Parameter m represents the number of boilers

(in this case m = 3), parameter n represents the number of steam turbines (here n = 2).

Binary vector TGstate describes the status of turbines. A steam turbine can operate

only in limited operation range defined by minimal and maximal possible steam flow.

In certain cases it might be more convenient to keep only one turbine operational with

higher steam inflow, rather than using both turbines with lower inflow – this would lead

to savings on starting costs and to less wear of turbines in a real system, however this

effect isn’t modelled in this basic model. Energy transformation from thermal energy

of hot steam to electrical energy is described by enthalpy. Enthalpy [kJ/kg] describes

thermal energy of unitary mass [30].

The model contains the following constraints:

1. Boilers heat feeding water to high-pressure steam. The mass of water at the inflow

CHAPTER 1. INTRODUCTION 7

of boilers is equal to the mass at the outflow of boilers so as to satisfy mass balance.

n
∑

i=1

MpPK
i =

m
∑

j=1

MpTG
j [t/h]

2. Steam outflow from turbines is equal to steam inflow to condenser plus steam inflow

to water heater. An unlimited maximal flow in the condenser and in the water

heater is assumed (minimal flow is zero).

m
∑

j=1

MpTG
j = MpV K + MpZO [t/h]

3. Each turbine has its minimal and maximal allowed mass flow rate.

MpTGmin
j TGstate

j ≤ MpTG
j ≤ MpTGmax

j TGstate
j [t/h]

4. The el. energy produced by each turbine is equal to the difference in enthalpy of

steam between at the inflow and outflow of turbines. It is a simplified formulation as

in fact in turbines thermal energy from inflowing high-pressure steam is turned into

mechanical energy (rotary movement of turbines) and then into rotary movement

of the generators that produce el. power. Cooler outflowing low-pressure steam is

used for heating water in a water heater. In order to keep the same units (MW) on

both sides of the equation, division by time (hours) is needed.

m
∑

j=1

P TG
j =

(

iPK
out − iTG

out

3600

) m
∑

j=1

MpTG
j [MW]

5. Heat produced at water heater has to satisfy the production demanded. It means

the difference in enthalpy of steam at the inflow and outflow of the water heater

multiplied by the amount of steam is equal to the heat production demanded.

Qdemand = MpZO

(

iTG
out − iPK

in

3600

)

[MW]

6. The el. power production demanded minus deviation in production is equal to

produced el. power. Apart from the positive deviation (lower production) discussed

in chapter 1.1 even negative deviation (higher production) can occur. In certain

cases using a more powerful (but more effective) boiler leads to lower production

cost (even with higher deviation) than satisfying the production requirements with

no deviation.

Pdemand = dev +

m
∑

j=1

P TG
j [MW]

CHAPTER 1. INTRODUCTION 8

7. The Power output of the boiler has to be sufficient for turning feeding water into

steam, which is again described using the enthalpy difference of water/steam at the

inflow and outflow of boilers.

n
∑

k=1

QPK
outk

= MpPK

(

iPK
out − iPK

in

3600

)

[MW]

All variables except from possible deviation have to be non-negative and continuous

(apart from state variables that are binary). Our aim is to minimize the production cost

of the desired amount of electric power and heat, hence the objective function consists of

fuel costs of fuel burned by boilers and of a contracting penalty for deviation in electric

energy production as follows (QPK
in is deducted from the boilers power characteristics) :

min : cdev|dev| + cfuel

n
∑

k=1

QPK
ink

1.3 Piecewise linear functions

As was mentioned in the previous chapter, piecewise linear functions (PWL) are often

used for substituting non-linear functions. In modelling and scheduling of CHP systems it

is usually necessary to substitute the non-linear power characteristics of boilers, turbines

and other parts of the system in order to keep the model linear. A sample linearized

power characteristic of a boiler is shown in figure 1.2. Function P stands for power input,

P1 . . . P5 are called breakpoints of the function. Function F is the power output of the

boiler.

Although it is possible to implement PWL using auxiliary binary variables and func-

tion’s angular coefficients (as can be seen in basic model implementation in Yalmip mod-

elling language in chapter 3, the source code of the model is in appendix D.1) the more

convenient method involves using Special-ordered sets type 2 (SOS2). SOS2 is a set of

consecutive variables in which no more than two adjacent members may be non-zero in

a feasible solution [13]. Implementation of PWL using SOS2 is as follows. Firstly, we

define functions F and P as (l stays for number of breakpoints):

λk ∈ R
+

P =
l

∑

k=1

λkPk

CHAPTER 1. INTRODUCTION 9

Figure 1.2: Linearized power characteristic of a boiler [26]

F =
l

∑

k=1

λkFk

Secondly, the power output of the boiler is relevant only if the boiler is switched on,

thus an additional constraint is introduced (PKstate is a binary variable that holds 1 if

the boiler is turned on):

l
∑

k=1

λk − PKstate = 0

The last necessary equation is λk ∈ SOS 2. It means that at most two adjacent

variables λk may be non-zero. This formulation can be used for formulating any piecewise

linear function no matter whether it is convex or concave [26].

It is important to mention that Special Ordered Sets type 1 (SOS1) also exist. SOS1

is a set of variables in which no more than one member from the set may be non-zero in

a feasible solution. SOS1 are typically used for representing non-linear functions or for

modelling cases where it is necessary to choose ”one of many values” (e.g. choosing in

which month production should start etc.) [13]. In the basic model no SOS1 is used.

Chapter 2

Modelling languages survey

This chapter introduces the modelling languages survey which represents the first and the

most general part of the testing. The aim of this survey is to provide a basic overview of

available modelling languages and their features. This overview helps us to determine the

most promising languages for further testing. References and sources of this survey are

mentioned in chapter 2.1. In chapter 2.2 the investigated features of modelling languages

are described. Finally, the results of the survey and the languages suitable for further

evaluation are discussed in chapter 2.3. The full overview of tested languages can be

found in appendix A.

2.1 The initial survey and other resources

Firstly, a literature and Internet research of articles comparing modelling languages was

done. Similar comparisons of modelling languages available at that time (such as [22, 28])

were generally out of date, thus irrelevant for this survey. However, a survey of software

for linear programming from Robert Fourer from June 2009 provided a good foundation

for our work [21]. Although the information in that survey was provided by software

vendors responding to a questionnaire and hence had to be verified, it served as a general

overview of available modelling languages. In some cases user manuals of the languages

and vendor’s web pages were used as sources of additional information. Features of

the tested modelling languages on which the survey is focused on are described in the

following section.

10

CHAPTER 2. MODELLING LANGUAGES SURVEY 11

2.2 Features investigated

The survey was divided into four parts and in each one a different set of features is inves-

tigated (these parts are called: General information, Inputs/Outputs, Price and

licensing, Problem formulation). A description of each part of the survey as well as

the modelling language features important for further use in a real business environment

(as was mentioned in chapter 1) is provided in the next sections. If certain features aren’t

mentioned in the final overview (which can be found in appendix A), it is either because

they were no longer relevant (e.g. if a modelling language is open-source, it makes no

sense talking about the possibility of obtaining a floating licence – see following sections

for details) or it wasn’t possible to find the appropriate information.

General information

In this part a modelling language platform availability and type of application is in-

vestigated. Only availability for MS Windows and Linux/Unix operating systems (OS)

were considered, as these OS are the most common environments for solving optimiza-

tion problems. Mac OS X wasn’t taken into account. For performance reasons even the

availability for 64-bit systems is considered.

A modelling language that is available as a stand-alone application is distributed as

an Integrated Development Environment (IDE) or as a command line application. On

the other hand a callable library provides an Application Interface (API) which allows

the language to be used in an external program.

A modelling language suitable for an application capable of modelling and optimal

scheduling of CHP systems has to be available for MS Windows OS as in real operation

mostly this OS is used. A stand-alone IDE isn’t necessary as the selected modelling

language will be a part of the larger scheduling application (preferably writen in Java).

For the same reason a callable library is required (as it provides an easy connectivity of

the modelling language and other environments).

Inputs/Outputs

The second part of the survey is focused on data import and data exchange abilities of

tested languages. This part investigates three different criteria:

CHAPTER 2. MODELLING LANGUAGES SURVEY 12

1. Data input/output related to MILP problem formulation – whether the

modelling language is able to read/save models stored in MPS or LP file format.

2. Loading model parameters from an external file – such as a spreadsheet,

database, or plain text file.

3. Connectivity with solvers – some modelling languages offers their unique solvers

(if the modelling language contains modelling environment and a solver), whereas

others directly link by embedded application interface (API) with certain solvers

only (and can usually access other solvers using MPS/LP files).

A preferred modelling language has to be able to load data from spreadsheets (the

reasons for it were explained in chapter 1), and has to be directly linked with two common

commercial solvers (CPLEX [15], Gurobi [5]), as these solvers are most likely to be used

for scheduling a real system thanks to their performance.

Price and licensing information

The third part of the survey provides information about price and licences of modelling

languages. Three different types of licence are usually offered by vendors: commercial (for

commercial use, the most expensive one), academic (for academic and testing purposes

only, it offers full functionality) and demo licence (usually free but with a limited maximal

number of variables). Sometimes also floating licences (which permit a certain number of

copies to be used anywhere in a large network – e.g a university) and site licences (they

are unrestricted by the number of copies in a specific location – e.g. a part of a company)

are offered.

In some cases the price list is published online, in other cases a request at the vendor’s

sales department is required, then the price is set on an individual basis. The price of

the licence also depends on solvers shipped with the modelling language, the number of

CPU’s at the licensed machine and other factors.

NEOS Server for Optimization is a free web page where MILP problems can be solved

with no size restrictions [12]. Users can choose amongst various solvers and upload their

problem using an appropriate file format (usually MPS/LP file is supported). NEOS

Server availability means that it is possible to solve a MILP problem stored in a native

file format of the modelling language (e.g. no export to MPS file is needed). This ability

can be useful for testing, as it is free and with no size restriction.

CHAPTER 2. MODELLING LANGUAGES SURVEY 13

Problem formulation

The features described in this part are helpful for easier model implementation (a user

can use simpler formulations in the process of the model creation). The features are as

follows:

Special Ordered Sets type 1 (SOS1) – the modelling language is capable of formu-

lating SOS1 (more information about SOS1 can be found in chapter 1.3.

Special Ordered Sets type 2 (SOS2) – the modelling language is capable of formu-

lating SOS2 (more information about SOS2 can be found in chapter 1.3.

Branching priorities of binary variables – if branching priorities of binary variables

(which for example are representing boiler status) are set manually (using our cat-

egorical knowledge of the system) the computation time can be significantly de-

creased. Setting up these priorities usually depends on the solver.

Non-linear functions handling – the modelling language can reformulate an absolute

value of a variable, minimum and maximum functions with decision variables as

their argument, that are used in objective function (or in constraints) and keep the

model linear, as these functions are often used in modelling of CHP systems.

The preferred features of the desired modelling language are the formulating of special

ordered sets type 2 (which are typically used for representing piecewise linear functions as

was mentioned in chapter 1.1), and setting up branching priorities of binary variables (as

it might accelerate the computation time). Absolute value can be manually reformulated

into a linear form if necessary.

2.3 Modeling languages for further evaluation

In the previous sections of this chapter the modelling languages survey, which serves

as the first part of the testing procces, was presented. The sources of the survey were

described and each part of the survey was explained, as well as preferred features which a

suitable modelling language fulfills. An overview of all compared languages can be found

in appendix A. Finally a list of modelling languages recommended for further evaluation,

held in the next section, is created.

CHAPTER 2. MODELLING LANGUAGES SURVEY 14

A suitable modelling language should fulfill the following criteria (a detailed descripton

of these features is given in the previous section). The criteria are sorted according to

their significance (the more important one goes first):

1. Available for MS Windows.

2. A callable library/API that adds connectivity with other languages/environments.

3. Reading/Saving data from/to spreadsheets.

4. Direct link to Gurobi and CPLEX solvers.

5. Special Ordered Sets type 2 that make formulating piecewise linear functions easier.

6. Branching priorities of binary variables can be manually set.

Modelling
MS Windows

Callable
Spreadsheets

Gurobi/
SOS2

Branching

language library CPLEX priorities

AIMMS X X X X X X

AMPL X – X X X X

GAMS X X X X X X

Gurobi API X X – / X /

LINGO X X X – X /

MPL X X X – X X

OptimJ X X – X X /

Yalmip X X X X – –

Zimpl X X – – X /

Table 2.1: A comparison of the modelling languages recommended for the

basic model implementation

A basic comparison of the most suitable languages and their features can be found

in table 2.1 (”X” – means that the language supports the feature, ”/” – means that the

language supports the feature with certain limits, ”–” – means no support). As only

two languages (AIMMS and GAMS) provides all required features, the requirements

were relaxed and all of the languages shown in table 2.1 are recommended for further

evaluation. A short comment about additional features that conviced us to recommend

the language for further testing is given below:

CHAPTER 2. MODELLING LANGUAGES SURVEY 15

AIMMS – a modelling language with a sophisticated IDE with a well-developed user-

friendly interface. Also fulfils all criteria.

AMPL – well-known and widely-used language that meets almost all requirements.

GAMS – another widely-used and well-known language with an IDE, fulfils all criteria.

Gurobi API – an application interface of a solver, chosen to demonstrate whether it is

possible to avoid usage of a modelling language and model the CHP system directly

using solver API.

LINGO – a language with an IDE with its own solvers. However, apart from the direct

link with CPLEX/Gurobi it meets all requirements.

MPL – a language similar to AMPL, but with its own IDE.

OptimJ – a Java-based modelling language shipped as an extension to Eclipse IDE,

promising a very good interaction with Java applications.

Yalmip – a toolbox for Matlab, meets almost all requirements (apart from SOS2 for-

mulation). Currently used for modelling CHP systems in ongoing projects at the

Department of Control Engineering.

Zimpl – an open-source solution, included in order to compare commercial and open-

source languages.

In the next section each of these selected languages is further evaluated by imple-

menting a basic model of a CHP system.

Chapter 3

Basic model implementation

The aim of this section is to implement a basic model in each of the selected modelling

languages, evaluate the models and recommend the most suitable modelling languages for

the final part of the testing, which consists of the implementation of an extended model

and execution time benchmarking. This final part of testing is described in chapter 4.

Particular features of the languages were closely investigated during the model im-

plementation and are presented in following paragraphs. Each language is described

separately with important snippets of code included in the text. The source code of the

implemented models can be found in appendix D, and an evaluation of tested languages

is provided at the end of this chapter.

3.1 Features investigated

The abilities and features tested are as follows:

Model export and Java connectivity

In this section supported file formats for exporting a model are mentioned. The most

common is the MPS/LP file format. The possible linking of the language with Java

applications is also questioned here.

16

CHAPTER 3. BASIC MODEL IMPLEMENTATION 17

Data import/export and MS Excel connectivity

An ability to read model parameters from an external file (especially MS Excel spread-

sheets) is important for a real application, as was discussed in chapter 1. Possible ways

of importing and exporting model parameters are presented in this section.

Exporting the solution

The process of modelling and optimizing the scheduling of CHP systems requires showing

the result of optimization in a user-friendly way (as was presented in chapter 1). Hence

if the modelling language is capable of calling an appropriate solver to solve the MILP

model, it is logical to investigate its ability to show and export the solution.

Declaration of variables

The languages tested usually provide two ways of declaration. Firstly, variables can be

declared anywhere in the code of the model (in the following text just code is used) or

secondly, they have to be put into the appropriate part of the model. Declaration of

parameters is also mentioned in this section.

Declaration of constraints

In a large scale model a way of declaring variables and equations significantly affects the

code clarity. An example of declaration of the same constraints in different language

is provided. The tested languages offer three different techniques of declaration (both

variables and constraints):

• Programming style – syntax of the modelling language is similar to any of the

programming languages available (e.g. Java). Firstly, a type of the variable has

to be set, then the name and optionally a range of the variable. Vectors and

matrices are represented using one, two or more dimensional arrays. In case we

need to sequentially access elements of an array it is necessary to use for cycles.

A language that represents this style of declaration is OptimJ (see chapter 3.4 for

examples and more information).

CHAPTER 3. BASIC MODEL IMPLEMENTATION 18

• Matrix-oriented style – or more familiarly the Matlab style. Variables can be

declared anywhere in the code, and their type has to be specified. However, matrix

multiplication and other operations can be applied, which leads to a very economic

code. A typical representation of this style is Yalmip (examples and additional

information can be found in chapter 3.2).

• Set-oriented style – the last style of declaration is the most common amongst the

tested languages. It usually requires variables to be declared in a specific part of the

model, their type and a range has to be specified. The basic data structure is a set

with its elements. Apart from the matrix-oriented style where sets are represented

as vectors, here sets are closer to their mathematical definition. It means a set

is a bunch of objects (either ordered or unordered) on which a certain operation

can be executed. Although at first sight the set-oriented style looks similar to the

matrix-oriented style, it is more suitable for formulating optimization problems, as

the set-oriented style allows more intuitive transcription of mathematical equations

into the model. This declaration style is used for example by GAMS (which is

described in chapter 3.3 with examples).

Debugging and code clarity

An integral part of the model implementation is code debugging, as both syntax and

functional errors can occur. Various debugging features of the languages are described

in this section. Clarity of the final code is also discussed. Evaluation of these features is

strongly subjective and depends on the user’s experience, hence all implemented models

are shown in appendix D for those with deeper interest.

Setting up solver options

In order to push down the computation time of the solution, a change in default solver

settings can speed up the computation. For example, setting up an optimality gap,

branching priorities of variables or only the solver verbosity is in the aim of this section.

Previously mentioned branching priorities of binary variables (chapter 2.2) usually depend

on the chosen solver, but the modelling language can help to set these priorities.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 19

Non-linear functions and special ordered sets

In this section we will describe a language ability for formulating and linearizing absolute

value and other simple non-linear functions (such as min and max). Also formulation of a

piecewise linear function using special ordered sets type 2 (as was explained in chapter 1.3)

is questioned.

Price and licensing

The vendor’s licensing options have been already mentioned in chapter 2. For a real

application of the language only a commercial license is relevant. The price of the license

varies on the used solver and other parameters, and the up-to-date price list might be

different. Usually the price of the basic licence is mentioned for easier comparison.

Summary

In previous paragraphs a description of features investigated during implementation of

the basic model was given. At the end of each of the following sections a brief evaluation

of results is made. Advantages and disadvantages of the selected language are mentioned,

as well as possible recommendations. The sections are sorted in the same order as the

languages were tested.

3.2 Yalmip

Yalmip is a modelling language for advanced modelling and solution of convex and non-

convex optimization problems [23]. Yalmip is an open-source toolbox for Matlab, which

uses all advantages of the Matlab environment.

Model import/export and Java connectivity

Yalmip by default doesn’t provide export of the model into MPS/LP file format. A

model created in Yalmip can be exported to AMPL model file using saveampl function.

However, this function works for simple models only [23].

CHAPTER 3. BASIC MODEL IMPLEMENTATION 20

Although Matlab is based on Java and using Java classes in Maltab environment is pos-

sible, calling Matlab commands from Java applications is not supported. A workaround

currently exists (for details see [7]), but it is a commercial solution that increases the

cost of the final modelling application.

Data import/export and MS Excel connectivity

Yalmip variables are accessible in the same way as any other Matlab variable, so it is

possible to implement a user’s function that handles loading and/or saving parameters of

the model or use a suitable Matlab function. Spreadsheets can easily be accessed using

Matlab’s XLS handler. Data from the spreadsheet can be loaded as simply as follows:

% Loading parameters from MS Excel spreadsheet

num = xlsread(’model_params.xls’);

Exporting the solution

Exporting and showing the solution is similar to the data export mentioned before. Mat-

lab or user-defined functions can be used. An example of such showing a solution is here

(J stands for the objective function):

%%---- SHOW RESULTS ----%%

res.dev = double(dev); % planned deviation [MW]

res.costs = double(J); % total costs of production [CZK/h])

res % showing the results

It is possible to change solver verbosity (e.g. how much information is to be printed

to the console) using a sdpsettings function that can update solver settings. Yalmip is

directly linked to a large number of solvers; however both for CPLEX and GUROBI solver

require a MEX-interface (MATLAB executable). MEX-files (interfaces) are dynamically

linked subroutines produced from C, C++ or Fortran source codes that, when compiled,

can be run from within MATLAB in the same way as MATLAB M-files or built-in

functions [16]. MEX-interfaces have to be compiled individually for each combination of

the Matlab version and an operating system.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 21

Declaration of variables

Yalmip syntax (identical to Matlab syntax, thus anyone familiar with Matlab can start

modelling with Yalmip straight away) allows the user to declare variables and parame-

ters anywhere in the code. Yalmip uses a ”matrix-oriented style” of declaration as was

mentioned in the introduction of this chapter. In the following example a binary vector

TGstate is declared:

% Turbine status

TG_state = binvar(2,1,’full’);

Default bounds of variables are set according to their type (e.g. binary, integer,

continuous). Bounds can be reduced using additional constraints, such as:

% Seting non-negative variables:

% Steam generated by boilers [t/h] has to be greater than zero.

Mp_PK>=0;

Declaration of constraints

As is natural for the Matlab environment, matrix and vector manipulation is very easy

and allows the user to write an economic code. A short example from the basic model

becomes handy: when we need to formulate a constraint for each element of a vector

(e.g. the third equation – set minimal allowed flow through turbines, see chapter 1.2 for

details) no for loop is needed, only to naturally write the equation (F stands for a set of

constraints, in which all constraints are grouped):

% Steam flow in turbines [t/h]

Mp_TG = sdpvar(2,1,’full’);

% 3. Minimal allowed flow through turbines

F = F+ [Mp_TG_min.*TG_state <= Mp_TG <= Mp_TG_max.*TG_state];

Yalmip can handle double inequality in one constraint, so the equation above doesn’t

have to be split in two (e.g. MpTGmin
j TGstate

j ≤ MpTG
j and MpTG

j ≤ MpTGmax
j TGstate

j).

This feature allows the user to write a very economical code. However, if the code isn’t

well commented it might become harder to understand as there is no index of variables.

As a short example compare the previous equations with an equivalent formulation:

CHAPTER 3. BASIC MODEL IMPLEMENTATION 22

% 3. Minimal flow allowed through turbines

for i=1:size(TG_state,2)

F=F+[Mp_TG_min(i)*TG_state(i) <= Mp_TG(i) <= Mp_TG_max(i)*TG_state(i)];

end

The objective function is as follows. As can be seen, the sum function can be used

with no additional parameters.

%%---- OBJECTIVE FUNCTION ----%%

J = fuel_cost*sum(sum(Qin_PK)) + deviation_cost*abs(dev);

Debugging and code clarity

A complex set of Matlab debugging tools can be used, such as profiler for viewing code

execution time of code and debugger where breakpoints can be set, and the code can

be examined ”step-by-step.” Yalmip itself provides a good documentation and tutorials,

which can help to fix errors. Debugging of the Yalmip model is the same as the debugging

of any other Matlab script.

Code clarity is at a high rate thanks to the Matlab matrix-oriented syntax. However,

the code needs to be well commented.

Setting up solver options

Solver options can be set using function sdpsettings and then using the options structure

while calling a solver (solvesdp function). A sample use of sdpsettings follows. Parameters

that can be modified depend on the solver used.

% Changing solver settings

options = sdpsettings(’field’,value,’field’,value,...)

solvesdp(Constraints, Objective, options)

Non-linear functions and special ordered sets

Yalmip can linearize absolute value, minimum and maximum functions. The linearization

is done through the big-M reformulation and increases the number of variables in the

model [23].

CHAPTER 3. BASIC MODEL IMPLEMENTATION 23

On the other hand Yalmip doesn’t support special ordered sets type 2 (SOS2), thus

a piecewise linear function has to be implemented using auxiliary binary variables and

angular coefficients as is shown in this example, where the power characteristics of boil-

ers are formulated. Implemented PWLs have three breakpoints and are presented in

appendix B.

%%-- Boiler constraints --%%

% an auxiliary variable

PK_regions = binvar(3,3,’full’); % row = boiler, column = section

% Input and ouput connection

% 1. Power output has to be in one section only

Qin_PK_char(:,1:end-1).*PK_regions<=Qin_PK;

Qin_PK<=Qin_PK_char(:,2:end).*PK_regions;

% 2. Power output is set by lines with angular coeficients

coeff = diff(Qout_PK_char,1,2)./diff(Qin_PK_char,1,2);

ofset = Qout_PK_char(:,1:end-1) - coeff.*Qin_PK_char(:,1:end-1);

Qout_PK == coeff.*Qin_PK + ofset.*PK_regions;

Price and licensing

Although Yalmip is an open-source product it may not be re-distributed as part of a com-

mercial product [23]. Apart from that it requires the Matlab environment for running.

The Matlab commercial licence is being sold for e 1,750,- for one licenced computer or

user. An appropriate solver has to be bought separately. MathWorks (Matlab vendor)

offers both individual and floating licenses. However due to Yalmip licence limitation its

commercial use is cumbersome.

Summary

Yalmip is a versatile modelling language that gains many benefits from its connection with

Matlab, such as effective work with vectors and matrices, spreadsheets connectivity and

an outstanding IDE. However its inseparable bond with Matlab, complicated connection

CHAPTER 3. BASIC MODEL IMPLEMENTATION 24

with Java and restricted commercial use don’t make this language the most suitable for

the real modelling application.

3.3 GAMS

The acronym GAMS stands for The General Algebraic Modelling System. It is a high-

level modelling system for mathematical programming and optimization. It consists of a

language compiler and a set of integrated high-performance solvers [14].

Model export and Java connectivity

The GAMS model can be exported in various formats (e.g. MPS, LP, LINGO, AMPL)

using the convert utility. It is run like any other GAMS solver from the command line

using the following command (the type of exported file has to be specified within the

model file):

>> gams modelname modeltype=convert

GAMS commands can be called from Java applications using Runtime class and

Exec() method, however the model has to be created separately in that case. When

calling GAMS, a working and a scratch directory (for temporary files) has to be set:

// call gams

String[] cmdArray = new String[5];

cmdArray[0] = "C:\\Program Files\\GAMS\\20.5\\gams.exe";

cmdArray[1] = "D:\\TMP\\gams_model.gms";

cmdArray[2] = "WDIR=D:\\TMP";

cmdArray[3] = "SCRDIR=D:\\TMP";

cmdArray[4] = "LO=2";

Process p = Runtime.getRuntime().exec(cmdArray);

p.waitFor();

CHAPTER 3. BASIC MODEL IMPLEMENTATION 25

Data import/export and MS Excel connectivity

Exchange of data files is provided through GAMS Data Exchange (GDX) facilities and

files. GDX files are binary files that are portable between different platforms. For example

loading data from an MS Excel spreadsheet can be done as follows (it is more complicated

than in Yalmip):

$CALL GDXXRW.EXE model_params.xls par=TG_min rng=A1:C3

The parameter loaded is called TGmin, the argument ”A1:C3” specifies the range of cells.

However, the parameter has to be declared before the load statement:

Parameter TG_min(i);

$GDXIN results.gdx

$LOAD TG_min

$GDXIN

GAMS is also capable of reading CSV (comma-separated values) files. However, in

all cases the GDX facilities have to used for data import/export.

Exporting the solution

When the model is executed, a log file and a solution file are created. The solution

file containts model statistics, details about execution time, solver output and the final

solution. However, the contents of the solution file can be specified within the model.

The solution can be exported using GDX facilities. A sample solution file viewed from

the GAMS IDE is shown in figure 3.1

GAMS offers links with various solvers (such as Gurobi and CPLEX), the selection

of the solvers actually linked depends on the licence obtained.

Declaration of variables

Unlike Yalmip, GAMS uses ”set-oriented” notation (as was mentioned in chapter 3.1). It

means that the most important are sets of elements (for example a set of turbines) and

the declaration of variables and constraints strongly depends on these sets (e.g. if a new

element is added in the set, there is no need to write additional equations). The work

with sets is similar to the work with indexes, but allows us to name the elements, which

CHAPTER 3. BASIC MODEL IMPLEMENTATION 26

Figure 3.1: Solution file of a GAMS model

makes the problem formulation more natural. For an explanation look at the following

example:

* The set has to be declared first

* Turbine status

Sets

TG turbines /TG1, TG2/;

* Then a binary variable representing

* turbine status is introduced:

Binary variables

TG_state(TG) turbine status;

At first sight we see that the set of turbines contains two elements, a turbine called

TG1 and a turbine TG2. Further use of sets in constraints is discussed in the next

paragraph. Variables and parameters have to be declared in a specific part of the model,

initiated by Variables and Parameters keyword. GAMS also makes a difference between

scalar parameters and matrix parameters (such as a table). Bounds of variables depends

on their type (binary, integer, positive, continuous), but can be specified manually in the

Equations section of the model.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 27

* Seting up a non-negative variable

* Steam generated by boilers [t/h]

* has to be greater than zero

Positive variables

Mp_PK Steam generated by boilers [t per h]

Mp_TG(TG) Steam flow through turbines [t per h];

* If an upper limit is needed we write:

* MAXLIMIT is a parameter.

Mp_PK.up = MAXLIMIT;

Declaration of constraints

The constraints and the objective function have to be declared in the Equations section.

Each constraint has its name and can be briefly described in the beginning of the section,

increasing code clarity. In GAMS no for loops are needed, the user only has to specify

which set is related to the constraint and GAMS automatically do the rest. See the

following example (TG refers to a set of turbines and symbols =l=, =g=, =e= refer to

≤, ≥, = operators):

* 3. Minimal and maximal flow through turbines allowed

constraint3(TG).. Mp_TG_min(TG)*TG_state(TG) =l= Mp_TG(TG);

constraint4(TG).. Mp_TG(Tg) =l= Mp_TG_max(TG)*TG_state(TG);

As we can see, GAMS doesn’t support double inequalities, thus the original equation

had to be split in two. When summing up variables, a set has to be specified so as to

declare which elements are summed up. For example, in the objective function from the

basic model a sum of boilers input is required:

***** Objective function ****

costs.. J =e= deviation_cost*v_dev + fuel_cost*sum(PK,Qin_PK(PK));

Debugging and code clarity

GAMS is shipped with a simple IDE, which is satisfying for the model implementation

and debugging, as can be seen in the following figures. Debugging can be made using

CHAPTER 3. BASIC MODEL IMPLEMENTATION 28

Figure 3.2: A syntax error reported by GAMS IDE

the log file in which all errors are reported. In the GAMS IDE the line of the code

where the error occured is marked. A syntax error is shown in figure 3.2. GAMS is a

well-documented modelling language, even the IDE contains well organized help topics

(as can be seen in figure 3.3).

Due to the ”set-oriented” syntax and strict sectioning of the model (e.g. parameters,

sets, variables and equations are declared separately) the code is clear and easy to read,

as can be seen in appendix D.2.

Setting up solver options

GAMS IDE provides an integrated Option Editor (shown in figure 3.4) where options

for different solvers can be set. At the end the option file can be saved and then loaded

during the model execution. Another possibility is to specify the options using the option

command:

* create an instance of the problem

Model problem /all/;

* Specify CPLEX as the desired solver

Option MIP = Cplex;

* Copy CPLEX messages to the solution file

CHAPTER 3. BASIC MODEL IMPLEMENTATION 29

Figure 3.3: GAMS IDE Help topics

Option SysOut = On;

* Cplex will read an option file called cplex.opt

problem.OptFile = 1;

Non-linear functions and special ordered sets

GAMS doesn’t reformulate the non-linear functions, so absolute value and other desired

functions need to be linearized by the user. The abs() function had to be reformulated in

the way mentioned inchapter 1.1. On the other hand, GAMS supports a declaration of

SOS1 and SOS2 variables, thus formulation of PWL is very simple, as can be seen in the

following example (the parameter regions represents number of breakpoints in boilers

power characteristics):

** Boiler constraints - using SOS2 **

* first declare the auxiliary variable which belongs to SOS2

SOS2 Variable w;

* Power input definition

constraint8(PK)..Qin_PK(PK)=e=

CHAPTER 3. BASIC MODEL IMPLEMENTATION 30

Figure 3.4: GAMS Option Editor editing Gurobi option file

sum(regions,(w(PK,regions)*Qin_PK_char(PK,regions)));

* Power output definition

constraint9(PK)..Qout_PK(PK)=e=

sum(regions,(w(PK,regions)*Qout_PK_char(PK,regions)));

* Output and input is non-zero only if the boiler is turned on

constraint10(PK)..PK_state(PK) =e= sum(regions, w(PK,regions));

Price and licensing

Basic GAMS module for commercial use costs e 2,500,- and solver links (e.g. no license

for solvers included, require an appropriate callable library license) is being sold for

additional e 2,500,- (CPLEX or Gurobi link), according to the price list from November

2009 [14]. Floating and site licenses are also available.

Summary

In comparison with Yalmip, GAMS offers a simple IDE with basic functionality only and

limited debugging options. Also GDX facilities for importing/exporting data and Java

connectivity are limiting. On the other hand, a ”set-oriented” syntax, clear and legible

code and easy setting of solver parameters make GAMS a promising modelling language.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 31

3.4 OptimJ

OptimJ is a modelling language developed by Ateji and combines the advantages of

mathematical language and object-oriented programming. It extends Java language and

allows users to create models directly in a Java application. An OptimJ model interacts

directly with any Java-based application, without the need for any interface code. All Java

APIs, whether standard or home-grown, can be used directly in an OptimJ model [18].

OptimJ is distributed as a plug-in into Eclipse IDE [3].

Model export and Java connectivity

OptimJ works as code compiler, which translates OptimJ model file into pure Java source

code. As a result, OptimJ models and Java classes can coexist in the same project, thus

the Java connectivity couldn’t be better as OptimJ is ”part of” Java. However, an export

of the OptimJ model to an LP/MPS format can be done. An example of outputting the

model into MPS file is the following (mps solver is an integrated OptimJ solver capable

of exporting model files) [18]:

model MPSModel solver mps

{

// decision variables and constraints go here

/* This method outputs the model into

* a standard text format. The FileWriter

* must be opened and closed by the caller.

*/

static void writeModel(FileWriter out) throws IOException

{

// instanciate the model

MPSModel myModel = new MPSModel();

// extract it

myModel.extract();

// output it

out.write(myModel.solver().toString());

}

}

CHAPTER 3. BASIC MODEL IMPLEMENTATION 32

Should the user prefer the LP file to be exported, only a change from ”solver mps”

to ”solver lp” is needed.

Data import/export and MS Excel connectivity

OptimJ doesn’t provide any special tools for importing or exporting data. On the contrary

if the user implements his own Java method (or use any of the available Java libraries)

various file formats can be accessed. For example for connecting OptimJ models and

Java applications with MS Excel files it is possible to use the HSSF-API library, which

provides a set of functions for manipulating spreadsheets [6]. The final application looks

as follows (low-level methods are not shown, but the whole Eclipse project can be found

on the enclosed CD):

/*---- MAIN METHOD ----*/

public static void main (String []args) {

// create an instance of the model

optimj_model problem = new optimj_model();

// a class for data handling

Data d = new Data();

LoadData ld = new LoadData();

// loads data from the selected spreadsheet

ld.init("params.xls", d);

...

Exporting the solution

The solver output can be printed to console (using problem.solver().setOut(System.Out);

command) or saved into a log file using standard Java functions. A solution can be

accessed as any other Java variable; OptimJ provides two functions for obtaining the

solution information:

• value(var variable) – returns a value of the selected variable.

• objValue() – returns the value of the objective function.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 33

A convenient way of displaying results is, for example to override the toString()

function of the model. OptimJ provides links to the following solvers: CPLEX, Gurobi,

glpk, lpsolve and Mosek.

Declaration of variables

As OptimJ is part of Java programming language, it uses the ”programming” style of

declaring variables and equations. Parameters are declared like any other Java variable;

however variables for MILP are introduced by the keyword var. Unfortunately, even

model formulation is affected by the used solver, which makes the formulation of a solver-

independent model troublesome. For example a comparison in declaration of binary

variables in a model with two different solvers:

// CPLEX solver

// Turbine status

final var boolean[] TG_state[2];

// Gurobi solver

// Turbine status

final var int[] TG_state[2] in 0 .. 1;

The bounds of variables can be specified when the variables are declared. If not

specified, the default bounds (according to the type of variable – double, int, boolean...)

are used. Declaration of non-negative continuous variables is as follows:

// Steam generated by boilers [t/h]

final var double Mp_PK in 0 .. Double.MAX_VALUE;

// Steam flow through turbines [t/h]

final var double[] Mp_TG[2] in 0 .. Double.MAX_VALUE;

Declaration of constraints

Constraints have to be declared in the constraints section of the model. During con-

straints declaration any Java or user-defined function can be used, as long as it keeps the

model linear. Non-linear functions and SOS2 are discussed later. Another limitation is

that in for loops a keyword forall needs to be used, as is shown in this example (OptimJ

doesn’t support double inequalities in the equations):

CHAPTER 3. BASIC MODEL IMPLEMENTATION 34

// 3. Minimal allowed flow through turbines

forall(int i : 0 .. Mp_TG.length-1) {

Mp_TG_min[i]*?TG_state[i] <= Mp_TG[i];

Mp_TG[i] <= Mp_TG_max[i]*?TG_state[i];

}

It is obvious that for accessing each element of the array we have to use the parameter

array length in for loop. For summing elements of an array, OptimJ provides sum function

with similar use as forall cycle. The objective function is introduced by a minimize or

maximize keyword.

/*---- OBJECTIVE FUNCTION ----*/

minimize

java.lang.Math.abs(dev)*deviation_cost +

sum{int i : 0 .. Qin_PK.length-1}{Qin_PK[i]*fuel_cost};

Debugging and code clarity

Being incorporated into the Eclipse IDE, OptimJ can use sophisticated the Eclipse de-

bugger and the code can be examined ”step-by-step.” OptimJ doesn’t generate byte-code,

but a standard Java source code, thus using JUnit (a framework for writing a repeatable

tests [31]) or Javadoc (a tool from Sun Microsystems for generating API documentation

in HTML [8]) is possible. An overview of the IDE is in figure 3.5. On the left is a project

explorer window which makes maintaining even a larger project relatively simple. At the

bottom is the command line output, and the biggest part of the environment is taken by

the code editor.

On the contrary, OptimJ offers only one brief language manual and four sample

projects for each supported solver. Javadoc documentation of OptimJ classes and meth-

ods is missing. As a result, the language documentation is rather poor.

As Java is object-oriented language, the model can be composed from different objects

(e.g. boilers, turbines) which have their unique characteristics and as a result the code

is developed faster (especially when we talk about large-scale models) and the code is

even simpler. The code of the model is Java-like, thus easy to read for anybody who

has experience of Java programming. Javadoc (if properly used) can make the code even

clearer.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 35

Figure 3.5: An OptimJ model developed in the Eclipse IDE

Setting up solver options

For setting up solver parameters an instance of the solve is needed. It can be obtained

using solver() function. All functions of the solver API are then available. These

functions are different for each solver; see solver documentation for further details. A

simple example of changing CPLEX options is provided:

// get an instance of the solver

ilog.cplex.IloCplex m = problem.solver();

// print solver output into the command line

m.setOut(Syste.Out);

Non-linear functions and special ordered sets

Any non-linear function from the java.lang.Math package can be used, as well as any

user-defined function. However OptimJ doesn’t provide any linearizing. As a result,

non-linear function that can be used in the model depends on the type of the solver. For

example, CPLEX can extract the following functions: abs, min, max and PWL. Gurobi

can handle only PWL (using SOS2).

CHAPTER 3. BASIC MODEL IMPLEMENTATION 36

A similar situation occurs with the formulation of PWL. OptimJ supports PWL only

in connection with CPLEX or Gurobi solvers. The syntax depends on the solver, as can

be seen in the following example (this part is identical for both solvers):

// Auxiliary variable for SOS2 (w substitutes lambda)

final var double[][] w[3][4] in 0 .. Double.MAX_VALUE;

/*** Boiler constraints - using SOS2 ***/

/* Power input definition */

forall(int i : 0 .. Qin_PK.length-1) {

Qin_PK[i] ==

sum{int j : 0 .. Qin_PK_char[i].length-1}{w[i][j]*Qin_PK_char[i][j]};

}

/* Power output definition */

forall(int i : 0 .. Qout_PK.length-1) {

Qout_PK[i] ==

sum {int j : 0 .. Qout_PK_char[i].length-1}{w[i][j]*Qout_PK_char[i][j]};

}

/* Output and input is non-zero only if the boiler is turned on */

forall(int i : 0 .. PK_state.length-1) {

sum {int k : 0 .. w[i].length-1} {w[i][k]} == ?PK_state[i];

}

A declaration of SOS2 for each boiler follows; a different function is used in each case:

/*** A - CPLEX ***/

forall(int i : 0 .. w.length-1) {

cplex11.SOS2(w[i], Qin_PK_char[i]);

}

/*** B - Gurobi ***/

forall(int i : 0 .. w.length-1) {

gurobi.addSOS(w[i], Qin_PK_char[i],2);

}

CHAPTER 3. BASIC MODEL IMPLEMENTATION 37

Price and licensing

A commercial licence for OptimJ starts at e 3,000,- for a basic package with linkers to

solvers (solver licences have to be bought separately). OptimJ is licenced per developer

seat, e.g. only a licence for code compilation is necessary, but no licence is needed for

deploymend [18], thus no floating or site licences are available. For more information

about licencing and price options the Ateji sales department has to be contacted.

Summary

The great advantage of OptimJ is its integration into Java language, which allows the user

to create a model using an object-oriented environment. Another advantage is OptimJ’s

integration into Eclipse IDE, which provides a sophisticated platform for development.

However, the solver-specific syntax requires models to be developed for one solver only

and coupled poor documentation, these are the biggest drawbacks.

3.5 Gurobi API

The Gurobi Optimizer is a state-of-the-art linear programming and mixed-integer pro-

gramming solver [5]. The Gurobi Optimizer provides APIs for C, C++, Python and Java

programming languages. In this case Java API was chosen as interaction with Java is

an important feature of the modelling language sought. In order to use Gurobi API the

Gurobi library has to be imported into the Java project and then referenced in Java class

using the command import gurobi.*.

Model export and Java connectivity

A Gurobi model can be exported into MPS/LP files using the GRBModel.write() method.

Gurobi API is a library imported into Java project, thus the Java connectivity is perfect

and out of question in this case.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 38

Data import/export and MS Excel connectivity

Similarly to OptimJ (described in chapter 3.4) various file formats can be accessed, but

user-defined methods are required. For connecting MS Excel files the HSSF-API library

can also be used. However, Gurobi API provides its own function for loading data files.

A function GRBModel.read() can read start file for MIP models (MST file), or Gurobi

parameter files. A function GRBModel.write() writes the solution file.

Exporting the solution

The solver messages can be saved in a log file and further or printed on command line

output. Solution can be accessed like any other Java variable (identical to OptimJ) using

GRBModel.get() function. A sample use is as follows:

// Retrieving an objective value

double objval = model.get(GRB.DoubleAttr.ObjVal);

Declaration of variables

Gurobi API syntax is identical to Java syntax and doesn’t resemble any modelling lan-

guage. Variables are always associated with a particular model and are created using the

GRBModel.addVar() method. For example:

// Turbine status

GRBVar TG_state_1 = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "TG_state_1");

GRBVar TG_state_2 = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "TG_state_2");

Bounds of the variables are set during their declaration. The first argument of the

addVar() function is the lower bound, the second argument is the upper bound of the

variable.

// Steam generated by boilers [t/h]

GRBVar Mp_PK=model.addVar(0.0,Double.MAX_VALUE,0.0,GRB.CONTINUOUS,"Mp_PK");

Declaration of constraints

Constraints are added to the model using the GRBModel.addConstr() function. Firstly,

terms (variables) on both sides of the equation have to be added (using the function

CHAPTER 3. BASIC MODEL IMPLEMENTATION 39

GRBLinExpr.addTerm()), then the function addConstr() called. Only linear expres-

sions can be added. A sample example is as follows (the original equation stands as

MpTGmin
j TGstate

j ≤ MpTG
j):

// 3. Minimal and maximal flow through turbines allowed

// left side of the equation

exprLeft = new GRBLinExpr();

exprLeft.addTerm(Mp_TG_min[0], TG_state_1);

// Right side of the equation

exprRight = new GRBLinExpr();

exprRight.addTerm(1.0, Mp_TG);

model.addConstr(exprLeft, GRB.LESS_EQUAL, exprRight, "c3");

Obviously such a declaration isn’t very practical. However user-defined methods

can simplify this declaration (e.g. functions like addVariables(int numberOfVars,

String[] typeOfVars, String[] names)). The objective function is defined by ob-

jective coefficient of each variable, e.g. how many times the particular variable appears

in the objective function. An important detail is that the objective function is always

minimized, thus if we are solving a problem of ”maximization” the objective coefficients

have to be negative. Previously declared variables had their objective coefficients zero,

as they don’t appear in the objective function (min : cdev|dev| + cfuel

∑n

k=1
QPK

ink
). As

we can see in the following example, the declaration of constraints is cumbersome):

/***** OBJECTIVE FUNCTION ****/

// the third argument is the objective coefficient

GRBVar v_dev = model.addVar(Double.MIN_VALUE,Double.MAX_VALUE,

deviation_cost,GRB.CONTINUOUS,"v_dev");

GRBVar[] Qin_PK = new GRBVar[PK];

for(int i = 0; i < Qin_PK.length; i++) {

Qin_PK[i] = model.addVar(0, Double.MAX_VALUE,

fuel_cost, GRB.CONTINUOUS, "Qin_PK" + i);

}

Debugging and code clarity

Debugging is done in the same way as it was with OptimJ and relies on the used envi-

ronment (for example Eclipse IDE). On the contrary, Gurobi is well-documented, with

CHAPTER 3. BASIC MODEL IMPLEMENTATION 40

a satisfying number of examples (around 20 sample files). However, Javadoc is also not

included.

As can be seen in previous examples, the model development is based on ”low-level”

programming (in comparison with high-level modelling as was presented by other mod-

elling languages) and leads to a longer and more complicated code.

Setting up solver options

Setting up and chancing solver options can be done using the function GRBEnv.set()

which belongs to GRBEnv class. For example:

// create the Gurobi environment first

GRBEnv env = new GRBEnv();

// Switch off the presolve feature

env.set(GRB.IntParam.Presolve, 0);

Non-linear functions and special ordered sets

Gurobi doesn’t offer any kind of non-linear function reformulation, so the user is forced

to declare only linear functions. However, PWL can be formulated using SOS2, as can

be seen in this example (only a part of the formulation is shown, the original function is

P =
∑l

k=1
λkPk, at the end of the example λk ∈ SOS 2 is set):

/*** Boiler constraints - using SOS2 ***/

/* Power input definition - w is an auxiliary variable for SOS2 */

GRBVar[][] w = new GRBVar[3][4];

for(int i=0; i<w.length; i++ {

w[i] = model.addVars(4, GRB.CONTINOUS);

}

/* Create left and right-hand sides of the equation */

GRBLinExpr[] exprLeft = new GRBLinExpr[PK];

GRBLinExpr[] exprRight = new GRBLinExpr[PK];

for(int i = 0; i < expr1.length; i++) {

exprLeft[i] = new GRBLinExpr();

exprRight[i] = new GRBLinExpr();

// on the left-hand side is a variable Qin

CHAPTER 3. BASIC MODEL IMPLEMENTATION 41

exprLeft[i].addTerm(1.0, Qin_PK[i]);

for (int j = 0; j < w[i].length; j++) {

// on the right-hand side is lambda_k * Qin_k

exprRight[i].addTerm(Qin_PK_char[i][j],w[i][j]);

}

model.addConstr(exprLeft[i], GRB.EQUAL, exprRight[i], "cSOS2_" + i);

// set w as SOS2 variable

model.addSOS(w[i], Qin_PK_char[i],2);}

Price and licensing

A commercial licence for the Gurobi solver costs e 7,000,- and both floating and site

licences are available.

Summary

Gurobi is primarily a solver and not a modelling language, and the difference in variables

and constraints declaration is obvious. However, Gurobi API can easily be embedded

into any Java application and developed in a suitable IDE (such as Eclipse). Good

documentation is another advantage. If the user implements his own methods for easier

variable and constraint declaration, model development might be faster. Nonetheless, the

model implementation using the standard solver API is extremely complicated and leads

to a long code which is hard to read, as can be seen from the previous examples. For this

reason an implemented model isn’t included in the appendix.

3.6 LINGO

LINGO is a comprehensive tool designed for building and solving linear, nonlinear and

integer optimization models faster, easier and more efficiently [9]. LINGO provides its

own set of solvers, LINGO modelling language, a stand-alone IDE, LINDO API for

accessing the LINGO solvers from other applications and an MS Excel plug-in called

”What’s Best!” which allows users to formulate and solve models within the MS Excel

application.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 42

Figure 3.6: LINDO API Array representation of an LP model

Model export and Java connectivity

LINGO is capable of exporting models into MPS file format. Connectivity with Java

applications can be done by LINDO API. LINDO API is a library imported into a Java

project, and allows easy connection between a Java application and LINGO solvers and

models. LINDO API provides functions for loading (MPS or LINGO native format),

creating and solving a model. However, similar to Gurobi API for creating a model it

provides only ”low-level” functions. An LP or MILP model has to be characterised by 5

arrays (as is shown in figure 3.6) and by linear expressions only as constraints. Obviously

it is not as comfortable as formulating the model in LINGO modelling language (which

is described in later paragraphs).

The sample model from figure 3.6 is translated into the vector representation as follows

(the constraints have to be defined separately):

A = [1 1 1 1].

B = [E G E G].

C = [20 20 40 10].

D = [2 1 -LS_INFINITY -LS_INFINITY].

E = [5 LS_INFINITY 10 LS_INFINITY].

CHAPTER 3. BASIC MODEL IMPLEMENTATION 43

Data import/export and MS Excel connectivity

LINGO can load/save data from/to an MS Excel spreadsheet using its Object Linking

and Embedding (OLE) interface. An example of a spreadsheet linking is following (the

@OLE() function is calling the OLE interface with an address of the file as its parameter):

DATA:

! Load enthalpy values from MS Excel file

i_in_PK,i_out_PK,i_out_TG = @OLE(’params.xls’);

ENDDATA

Exporting the solution

LINGO generates a solution report file, with an objective value and values of variables.

Using LINDO API the objective solution can be retrieved using the following function

(ls stands for a Lingo environment):

// Copy an objective value from solved model into obj variable

ls.LSgetInfo(model, LS_DINFO_POBJ, obj);

Declaration of variables

LINGO, similar to GAMS, uses ”set-oriented” notation. However, it extends this notation

into an upper level, as each element of the set can have multiple attributes. These

attributes can be both parameters and variables. For example, elements of the set TG

are turbines used in the model. Attributes of the set TG then describe all features of

these turbines (its status, minimal and maximal steam flow allowed and the el. power

generated).

SETS:

! Turbine parameters, states, el.power output and steam flow;

TG:Mp_TG_min, Mp_TG_max, TG_state, Mp_TG, P_TG;

ENDSETS

Sets have to be declared in the SETS section, parameters appear in the DATA section.

At the point of declaration, it isn’t known which attributes are variables and which are

parameters. It is declared in the DATA section, where all parameters have to be set,

CHAPTER 3. BASIC MODEL IMPLEMENTATION 44

for example loaded from an MS Excel file. The number of elements of the set depends

on the number of parameters in the spreadsheet. For example, in our sample file two

MpTGmin and MpTGmax values are used, thus set TG contains two elements (turbine one

and turbine two).

Attributes that aren’t specified in the DATA section are treated as variables. The

variables are by default treated as continuous or non-negative (depends on the global

settings). Their bounds can be changed using the @BND command or by changing their

type (for example to binary using @BINARY() command or to unbounded continuous using

@FREE() command):

! Steam generated by boilers [t per h]

* UpperBound is a parameter;

@BND(0, Mp_PK, UpperBound);

Variables can be declared at the point of their first use (e.g. a constraint), however,

then their type is specified according to global model settings. An example is given in

the next paragraph.

Declaration of constraints

Constraints can be declared anywhere in the model after the SETS and DATA section.

The @FOR() command accesses each element of the specified set (this set is given as an

argument of the command). Summation of set attributes is done by @SUM() command,

it has two arguments - a set and a parameter of the set that has to be summed up. As

was mentioned above, variables can be declared straight in the equation (e.g. no bounds

or type has to be specified, LINGO provides it automatically). See the following example

(TG is a set of turbines, other variables are attributes of the set):

Declaring binary variables;

@FOR(TG:

@BIN(TG_state);

);

! 3. Minimal and maximal flow through turbines allowed;

@FOR(TG:

Mp_TG_min*TG_state <= Mp_TG;

CHAPTER 3. BASIC MODEL IMPLEMENTATION 45

Figure 3.7: LINGO IDE with the error message pop-up

Mp_TG <= Mp_TG_max*TG_state;

);

LINGO doesn’t support double inequalities in the equations. Keywords MIN and MAX

denote the objective function, which can be set as follows:

!**** OBJECTIVE FUNCTION ****;

MIN = deviation_cost*@ABS(dev) + fuel_cost*@SUM(PK:Qin_PK);

Debugging and code clarity

LINGO provides good documentation and tens of sample models as an example. Its IDE

is simple, it is basically a text editor that provides syntax highlighting and a graphical

user interface (GUI) for various solver and model settings. Unfortunately simultaneous

work with more models is not very comfortable, as LINGO IDE doesn’t show tabs for

opened files thus the user doesn’t see all opened files. For debugging, comprehensive help

is incorporated into IDE, and in case of an error, a message with a short explanation and

a link to help topics appears, as shown in figure 3.7

LINGO syntax, which allows the user to declare sets with attributes makes the dec-

laration of variables and parameters especially simple (for example, all variables and

parameters of the basic model from chapter 1.1 were declared in 4 rows only). Also

CHAPTER 3. BASIC MODEL IMPLEMENTATION 46

Figure 3.8: LINGO IDE and the solver options tab

constraints can easily be declared and as a result the code is economical and easy to

read.

Setting up solver options

LINGO allows the user to specify the solver options using LINGO IDE, which provides

interface to all LINGO solvers (integer, linear, non-linear and other). The solver options

tab is shown in the figure 3.8. The solver can also be accessed through LINDO API

functions.

Non-linear functions and special ordered sets

Unlike the other languages, LINGO provides its own linearization tool, which is done

through a big-M operator (the same method Yalmip uses) and can linearize absolute

value, minimum and maximum functions. Two levels of linearization are offered, the low

level linearizes the functions mentioned above, on the high level even logical operators

are linearized (e.g. a ≤ b, a ≥ b, a 6= b). However, linearization can substantially increase

CHAPTER 3. BASIC MODEL IMPLEMENTATION 47

the number of variables and constraints of the model [9].

As SOS2 are supported, a PWL can be formulated using the @SOS2() function as is

shown in the following example:

!--- Boiler constraints - using SOS2 ----!;

@FOR(PK(I):

! Declaration of SOS2 for each boiler;

@FOR(Q_PK_Char(I,J):

@SOS2(’W_’ + PK(I), W(I, J))

);

! Power input definition;

Qin_PK(I) = @SUM(Q_PK_Char(I,J) : value_in(I,J)*W(I,J));

! Power output definition;

Qout_PK(I) = @SUM(Q_PK_Char(I,J) : value_out(I,J)*W(I,J));

! Output and input is non-zero only if the boiler is turned on;

@SUM(Q_PK_Char(I,J):W(I,J)) = PK_state(I);

);

Price and licensing

LINGO offers various prices for licences according to the maximum number of variables

and constraints that the model can contain. For scheduling a real CHP system only the

most expensive (so called Extended) licence is applicable (i.e. unlimited number of vari-

ables and constraints). The cheaper licences are too restrictive and don’t allow the user

to formulate a sufficiently large model.. A single commercial licence for LINGO Extended

costs e 4,000,- and a commercial licence for LINDO API Extended (also the unlimited

model size) costs e 3,300,- according to [9]. Both LINGO and LINDO API contain

LINGO solvers, the aforementioned price is for the basic package only (e.g. LP/MILP

solver). Floating and site licences are also offered.

Summary

The advantages of LINGO is its good connectivity with spreadsheets, a comprehensive

documentation and its own linearizing tool. LINGO solvers might be an interesting alter-

native to other commercial solvers, although their performance is questionable. LINGO

CHAPTER 3. BASIC MODEL IMPLEMENTATION 48

IDE provides only basic functions and isn’t as sophisticated as other modelling environ-

ments.

3.7 AIMMS

AIMMS is an advanced development environment for building optimization based oper-

ations research applications and advanced planning systems. It is a complex modelling

environment offering linkage to many solvers, visualisation of results and MS Excel plug-

in [1].

Although AIMMS can be run from command line (through AimmsCmd.exe), it is

strongly connected with AIMMS IDE which provides full functionality and sophisticated

visualisation abilities. AIMMS is available in two versions – ASCII and Unicode, the

difference is the charset type used. Unfortunately AIMMS projects created in the Unicode

version cannot be imported into the ASCII version of AIMMS and vice versa.

Model export and Java connectivity

AIMMS doesn’t support export to MPS/LP files, only a special flat model option is

offered which stores the model in a text file with specific formatting (it can be found in

appendix D.4 and might be useful for debugging purposes). Import of MPS/LP files is

not supported.

AIMMS is accessible from other applications using Component Object Model (COM)

objects. COM is a binary-interface standard for communication between various software

components [29]. Java by default doesn’t communicate with COM objects, however

various commercial and freeware Java toolkits are available (such as [20]).

Data import/export and MS Excel connectivity

AIMMS offers both MS Excel add-in, which allows users to change and load the model

data directly from MS Excel (a configuration wizard is shown in figure 3.9) and an Excel

function library, that provides functions for data import/export from spreadsheets.

Unlike other modelling languages data for the model are stored in so-called ”cases” –

e.g. a special file that stores all parameter and sets values. This feature is useful when we

CHAPTER 3. BASIC MODEL IMPLEMENTATION 49

Figure 3.9: MS Excel configuration wizard for importing data into an

AIMMS model

need to quickly change or update data of the whole model (for example, if new turbines

with different characteristics were installed). The data set wizard is shown in figure 3.10.

These cases can be exported or imported from a different project, using AIMMS native

format.

Exporting the solution

By default the solution and solver messages are printed on command line output of the

AIMMS IDE. The first possibility is to create a graphical user interface (GUI) within

AIMMS IDE. This user-made GUI can provide visualisation of results as can be seen in

figure 3.11. However, an AIMMS IDE is necessary for running such applications.

The second possibility is to access the AIMMS model and the solution from other

applications using AIMMS COM functions.

Declaration of variables

The AIMMS syntax is ”set-oriented” and similar to GAMS’s notation. AIMMS IDE

doesn’t allow the user to ”program” the model, all variables, parameters and constraints

CHAPTER 3. BASIC MODEL IMPLEMENTATION 50

Figure 3.10: AIMMS IDE Data set wizard

Figure 3.11: A simple GUI created in AIMMS IDE

CHAPTER 3. BASIC MODEL IMPLEMENTATION 51

have to be declared ”clicking.” For example if we want to declare a new binary variable

TGstate, instead of typing:

* GAMS declaration *;

Binary variables

TG_state(TG) turbine states;

the user has to click on the ”new variable” button, then set the variable name, then

click on the ”range” button and choose ”binary”, then set variable domain (TG) and

then click to the ”commit and close” button, which is much more time demanding. A

similar procedure applies for parameter and constraints declaration. The whole process

is shown in figure 3.12. The main page of the AIMMS IDE is shown, on the left side is

the model explorer, where all parameters, variables and constraints can be seen. Fields

where the name, index and range of a variable are, are also shown. Finally the ”commit

and close” button is in the top right corner. A white box called ”Definition” suits for

constraint (we write equations) or data (we write data values) declaration.

Bounds of variables are set in the tab shown in figure 3.13 - it is possible to use default

bounds (e.g. binary, non-negative) or define a specific bounds.

Declaration of constraints

Constraints are declared in a similar way to variables, only their definition has to be

provided. The syntax is similar to GAMS syntax and AIMMS also doesn’t support more

inequalities in one equation. An example is as follows:

3. Minimal steam flow through turbines [t/h]

Mp_TG(TG) >= Mp_TG_min(TG)*TG_state(TG);

The objective function is declared as:

Sum[PK, Qin_PK(PK)] * fuel_cost + v_dev * deviation_cost

Debugging and code clarity

Thanks to the project explorer utility (shown in figure 3.12) all variables, parameters and

constraints of the model can easily be viewed. The project is divided into sections, one

for variables, one for parameters etc. Sections for data loading and additional options

CHAPTER 3. BASIC MODEL IMPLEMENTATION 52

Figure 3.12: AIMMS IDE - declaration of variables/constraints

Figure 3.13: Defining the type of variable and its bounds

CHAPTER 3. BASIC MODEL IMPLEMENTATION 53

Figure 3.14: Setting up an optimality gap using the property editor

are also included. However, as the source code of the model cannot be directly edited,

working with a large scale model might be complicated (as a large number of variables

and equations will be introduced).

Error messages are printed to the command line output, and good documentation and

integrated IDE help is provided, thus debugging options are satisfying.

Setting up solver options

AIMMS offers links to various solvers (Gurobi, CPLEX and many others) and both gen-

eral options and options for a specific solver can be edited using the integrated property

editor (shown in figure 3.14). Customized options can be both imported and exported

into an option file.

Non-linear functions and special ordered sets

AIMMS doesn’t handle the non-linear functions of a decision variable, thus the user has to

reformulate absolute value and similar functions by himself. PWL can be implemented

using SOS2. In AIMMS it is needed to specify sos2 in the property attribute of the

constraint in which the λ’s are added up to 1. It is the third constraint, where the sum

of λ variables is equal to PKstate. The equation is as follows:

PK_state(PK) == sum[regions, w(PK,regions)];

CHAPTER 3. BASIC MODEL IMPLEMENTATION 54

Price and licensing

AIMMS offers an enduser licence which applies for AIMMS IDE on one machine, or a

component licence which applies for applications that uses AIMMS COM library (e.g.

a deployed Java scheduling application without AIMMS IDE). The commercial enduser

licence for unlimited size of the model costs e 6,000,- and the same but component licence

is being sold for e 5,000,- (solvers or solver linkers have to be bought separately). More

information about licences, pricing and offered site and float licenses can be found at [1].

Summary

AIMMS provides a sophisticated IDE with wide visualisation options, data-set man-

agement and a property editor which allows easy modification of solver settings. Al-

though various Java-to-COM linkers are available, connectivity with Java applications

using AIMMS COM objects is questionable. Another disadvantage are limited model

exporting options.

3.8 AMPL

The acronym AMPL stands for A Mathematical Programming Language. AMPL is a

comprehensive and powerful algebraic modeling language for linear and nonlinear opti-

mization problems, in discrete or continuous variables [2]. By default AMPL package

offer a command line application only, for developing the model it is necessary to find

suitable IDE or use an arbitrary text editor, as is discussed below.

Model export and Java connectivity

AMPL strictly separates model and data files and works as a linker between the solvers

and the model file. A functional diagram can be seen in figure 3.15 – at the beginning

a model file and data files are sent to AMPL and at the end a solution file is obtained.

Another option is to write an executable AMPL script that automates this process.

AMPL can export the model into an MPS file. The Java application can call AMPL

commands (e.g. load model, load data, solve, etc.) using the Runtime() class (in the

same way as GAMS, in chapter 3.3). No AMPL Java API is provided.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 55

Figure 3.15: AMPL functional diagram

Data import/export and MS Excel connectivity

AMPL can load and save data from a special data file or from an MS Excel spreadsheet.

The data file is a text file with declared sets, parameters and their values (in the model

file the parameters and sets can only be referenced). To access spreadsheets AMPL uses

the Open Database Connectivity (ODBC) standard library. The data loading procedure

is as follows: Firstly a source file, ODBC handler and the name of the table has to be

set. Then set which parameters have to be loaded (in this case turbine parameters are be

loaded from the table params.xls). Finally the command read table table name loads

specified data from the table. Writing data into spreadsheets works on a similar basis

(”ODBC” command is used without the keyword IN and write table table name is

used).

table TG_params IN "ODBC" "C:\temporary\params.xls" "TG_params":

TG <- [TG], Mp_TG_min, Mp_TG_max;

read table TG_params;

CHAPTER 3. BASIC MODEL IMPLEMENTATION 56

Exporting the solution

By default the solution and solver message are printed to the command line output,

however it is possible to write solution into a data file or spreadsheet. A command

display print variable values into the default output (a command line or a file).

Declaration of variables

AMPL is another ”set-oriented” language, similar for example, to GAMS. Sets, parame-

ters and variables can be declared anywhere in the code; the only limitation is that they

have to be declared before their first reference. Declaration of a variable or parameter for

each element of a set can be done by adding the set name into the variable declaration,

as is shown below:

turbines

set TG;

Turbine states

var TG_state {i in TG} binary;

Equivalent notation:

var TG_state {TG} binary;

More dimensional parameters and variables can be formulated using additional index,

for example:

Power input and output boiler characteristics

param Qin_PK_char{i in PK, j in regions};

Default bounds of variables are set according to their type (e.g. binary, continuous),

however user-defined bounds can be used:

Steam generated on boilers [t / h]

MaxValue is a parameter

var Mp_PK >= 0 <= MaxValue;

Declaration of constraints

The AMPL syntax is similar to the GAMS syntax; the only difference is that each con-

straint has to be introduced by subject to keywords. An example is given below:

CHAPTER 3. BASIC MODEL IMPLEMENTATION 57

Steam flow in turbines [t / h]

var Mp_TG {i in TG} >= 0;

3. Minimal and maximal flow through turbines allowed

subject to c3Min{j in TG}: Mp_TG[j] >= Mp_TG_min[j]*TG_state[j];

subject to c3Maxk{j in TG}: Mp_TG[j] <= Mp_TG_max[j]*TG_state[j];

The objective function can be introduced either by the minimize or maximize key-

word:

##-- OBJECTIVE FUNCTION --#

minimize Cost: deviation_cost*v_dev + fuel_cost * sum{i in PK} Qin_PK[i];

Debugging and code clarity

Thanks to the ”set-oriented” syntax and strict division between the model file and the

data file, the code (as can be seen in appendix D.5) is economical and easy to read.

However, there are two major concerns about AMPL language.

The first is a lack of an appropriate IDE. Debugging and developing a model using

a text editor and a command line is possible, however for obvious reasons it is not very

convenient for large models. Another option is to use a commercial IDE (such as OptiRisk

AMPL Studio [24]), but choosing this option means additional costs. The third option

is to develop a simple IDE from scratch (sample projects of AMPL GUI already exist),

but this option leads to increased time costs.

The second concern is about AMPL documentation. The language is poorly docu-

mented and all available manuals refer to the AMPL Book from Robert Fourer, offered

at the vendor’s homepage [2]. This book contains a detailed description of AMPL mod-

elling language and many examples. However, no free documentation in a similar quality

is offered.

Setting up solver options

Solver settings can be set by option command, for example option solver cplex set

CPLEX as an actual solver. Other options can be stored in the option file (different for

each solver) which has to be loaded before solving the model.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 58

Non-linear functions and special ordered sets

AMPL doesn’t handle non-linear functions of decision variables. PWL has to be declared

using special AMPL commands without introducing SOS2 variables (AMPL handles it

automatically). The boiler power characteristics can be set as follows (coeff stands for

angular coefficients of each part of the function):

##-- BOILER CONSTRAINT - PIECEWISE LINEAR FUNCTION --##

the syntax is: << breakpoints, slope_list >> variable;

subject to Sos2 {i in PK}:

<<{j in regions}Qin_PK_char[i,j];0,{j in PK}coef[i,j],0>> Qout_PK[i]*PK_state[i]>=0;

Price and licensing

According to [21] a single user commercial licence for AMPL costs e 3,200,- for a basic

AMPL package. In order to find out the price of AMPL linked with a specific solver,

a request at an AMPL sales department is necessary. Apart from single user licenses,

floating licences are also available. The additional cost is the above-mentioned AMPL

Book (around e 60,-). The OptiRisk AMPL Studio licence price is available upon request

at an OptiRisk sales department.

Another possibility is to use the NEOS Server [12] for solving large scale AMPL

problems for free. Nonetheless this option is good only for testing, as server availability

at all times cannot be ensured, further more it is not desirable to send private data (e.g.

CHP plant parameters) to the third side.

Summary

AIMMS offers a subtle modelling language capable of rapid model development, comple-

mented by an ODBC handler for simple MS Excel data exchange. On the contrary, a

lack of suitable IDE and poor documentation are serious disadvantages.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 59

3.9 MPL

MPL (Mathematical Programming Language) is an advanced modeling system that al-

lows the model developer to formulate complicated optimization models in a clear, concise,

and efficient way [11].

Model export and Java connectivity

MPL offers export of models into an MPS/LP file format. MPL can be accessed from

Java using the OptiMax library, the functionality offered is then similar to Gurobi API

or LINDO API.

Data import/export and MS Excel connectivity

MPL can load data from a CSV text file or an MS Excel spreadsheet, using the ODBC

handler and EXCELRANGE command. A sample use is as follows (reading turbine parame-

ters):

! minimal allowed steam flow through turbines

Mp_TG_min[TG] = EXCELRANGE("params.xls", "MP_TG_min");

Exporting the solution

MPL by default creates a solution file and prints the solution and solver messages to

command line output. In the case of accessing MPL from Java using the OptiMax

library, the solution can be retrieved and manipulated in the same way as any other Java

variable. For example the command:

model.getSolution().getObjectValue());

returns the objective value of the solved problem.

Declaration of variables

As is obvious even from the name, the MPL syntax is similar to AMPL language and

also ”set-oriented.” In MPL sets are called indexes, because they serve as indexes for

CHAPTER 3. BASIC MODEL IMPLEMENTATION 60

parameters and variables. Sets have to declared in the INDEX section, parameters in the

DATA section. A sample declaration:

INDEX

TG = (TG1,TG2);

! Turbine states;

TG_state[TG];

! it is a binary variable!

BINARY

TG_state[TG];

The bounds of variable are set according to their type, and can be narrowed intro-

ducing additional constraints.

! Steam generated by boilers [t/h]

Mp_PK;

! Add a new constraint

Mp_PK >= 0;

Declaration of constraints

The declaration of constraints is similar as that used in AMPL language; the constraints

section has to be introduced by a SUBJECT TO keyword. A short example follows:

! Steam flow in turbines [t/h]

Mp_TG[TG];

SUBJECT TO

! Mp_TG is non-negative!

bounds_Mp_TG[TG]: Mp_TG[TG] >= 0;

! 3. Minimal and maximal flow through turbines allowed

min_tg[TG] : Mp_TG_min[TG]*TG_state[TG] <= Mp_TG[TG];

max_tg[TG] : Mp_TG_max[TG]*TG_state[TG] >= Mp_TG[TG];

The objective function is almost identical to the AMPL model:

!--- OBJECTIVE FUNCTION ---!

MIN Cost = deviation_cost*v_dev+ fuel_cost*sum(PK : Qin_PK);

CHAPTER 3. BASIC MODEL IMPLEMENTATION 61

Figure 3.16: MPL IDE solver options tab (CPLEX)

Debugging and code clarity

Because MPL uses almost identical syntax to AMPL, the code is economical and easy

to read. Error messages are printed into the command line; an interesting feature is the

”check syntax” button, which checks whether the current model is syntactically correct.

MPL documentation is available online and is satisfactory.

Setting up solver options

Solvers can be set using the solver option tab in the MPL IDE (figure 3.16 shows a tab

with available CPLEX settings). General settings and settings for each separate solver

can be used.

Non-linear functions and special ordered sets

MPL doesn’t handle non-linear equations. PWL can be set using SOS2, the following

(the implementation of boiler characteristics) is an example:

!--- Boiler constraints - using SOS2 ----!

! Power input definition

sos_1[PK] :

Qin_PK(PK)=sum(regions : (w[PK, regions]*Qin_PK_char[PK, regions]));

CHAPTER 3. BASIC MODEL IMPLEMENTATION 62

! Power output definition

sos_2[PK] :

Qout_PK(PK)=sum(regions : (w[PK, regions]*Qout_PK_char[PK, regions]));

! Output and input is non-zero only if the boiler is turned on

sos_3[PK] : PK_state(PK) = sum(regions : w[PK,regions]);

! Specify the SOS2 variables

SOS2

s[PK]: SET(regions : w[PK,regions]);

Price and licensing

MPL offers a subscription licence and its price is based on the length of the subscripted

period. During this period there are no restrictions on the software. MPL also offers both

floating and site licences. However, to find out the price of a commercial MPL licence a

request to an MPL sales department has to be made.

Summary

MPL is a language similar to AMPL, offering its own IDE, OptiMax library for accessing

MPL from external applications and good connectivity with spreadsheets. However, it

doesn’t excel in any of these attributes,

3.10 Zimpl

Zimpl is an open-source modelling language created for academic purposes and offers only

a command line application [17].

CHAPTER 3. BASIC MODEL IMPLEMENTATION 63

Model export and Java connectivity

Zimpl can export a model into MPS/LP file format. From a Java application it is only

possible to call Zimpl commands using Runtime() class, in a similar ways as GAMS

commands (see chapter 3.3).

Data import/export and MS Excel connectivity

Zimpl doesn’t provide any kind of MS Excel connectivity or data import/export features.

The only possible way is to import data from a text file with a specific format or from a

CSV file.

Exporting the solution

Zimpl works as a modelling language only, its function is to export a Zimpl model into

a standard MPS/LP file format. The rest, such as solving the model etc. has to be done

by an external application.

Declaration of variables

Zimpl uses ”set-oriented” notation, which strongly resembles AMPL syntax (described

in chapter 3.8). For example a binary variable TGstate is declared as follows:

A set of turbines

set TG := {"TG1", "TG2"};

Turbine states

var TG_state[TG] binary;

Bounds of variables can be set during their declaration, otherwise the default bounds

are used:

Steam generated by boilers [t / h]

var Mp_PK >= 0 <= infinity;

CHAPTER 3. BASIC MODEL IMPLEMENTATION 64

Declaration of constraints

The syntax is similar to AMPL language, each constraint has to be introduced by the

keyword subto. Zimpl doesn’t support double inequalities in equations. An example of

syntax follows:

3. Minimal and maximal flow through turbines allowed

subto c3min:

forall <j> in TG do Mp_TG[j] >= Mp_TG_min[j]*TG_state[j];

subto c3max:

forall <j> in TG do Mp_TG[j] <= Mp_TG_max[j]*TG_state[j];

The objective function can be introduced by the keywords minimize or maximize:

##-- OBJECTIVE FUNCTION --##

minimize cost: deviation_cost*v_dev + fuel_cost * sum <i> in PK: Qin_PK[i];

Debugging and code clarity

In case of a syntax or any other error an error message is printed into the command line

output, pointing to a line where the error occured. A simple user manual is offered; how-

ever for such a simple language as Zimpl certainly is, the documentation is satisfactory.

Due to syntax similar to AMPL language, the code is economical and easy to read.

Setting up solver options

As Zimpl doesn’t link with any solvers, setting up solver options is out of question.

Non-linear functions and special ordered sets

Non-linear functions of decision variables aren’t supported and thus these functions have

to be linearized by the user. However, Zimpl allows PWL functions to be formulated

using SOS2. An example of boiler constraints is as follows:

##-- Boiler constraints - using SOS2 --##

Power input definition

subto total_cost_x:

CHAPTER 3. BASIC MODEL IMPLEMENTATION 65

forall <i> in PK:

Qin_PK[i] == sum <j> in regions: (Qin_PK_char[i,j]*w[i,j]);

Power output definition

subto weights_of_fx:

forall <i> in PK:

Qout_PK[i] == sum <j> in regions: (Qout_PK_char[i,j]*w[i,j]);

Output and input

subto weights_must_sum_to_PK_state:

forall <i> in PK:

PK_state[i] == sum <j> in regions: w[i,j];

Declaration of SOS2 for each boiler

sos s1: forall <j> in regions: type2: w["PK1",j];

sos s2: forall <j> in regions: type2: w["PK2",j];

sos s3: forall <j> in regions: type2: w["PK3",j];

Price and licensing

Zimpl is an open-source program released under GNU/GPL licence [4].

Summary

Zimpl might be a suitable language for educational purposes and an academic envi-

ronment. However, due to its very limited functionality Zimpl can be hardly used for

commercial purposes (no MS Excel connectivity nor utilities for data import/export). As

source-codes are provided, Zimpl can become useful for deploying a modelling language

for a special hardware architecture or if a specific customization is needed. The basic

model implemented in Zimpl can be found in appendix D.8.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 66

3.11 Modelling languages for the final testing

On the previous pages the basic model of a CHP system was implemented into the

languages recommended in chapter 2. A detailed description of each language was given

and the investigated language features were described at the beginning of this chapter.

Finally, source codes of the implemented models can be found in appendix D.

The most important features (a good Java and MS Excel connectivity and links to

Gurobi or CPLEX solvers, as described in chapters 1 and 2.3) which a suitable language

should fulfill were met by a couple of languages. However, only three languages were

selected for benchmarking, performed in the next chapter. Each of these three languages

has a different syntax and thus a different style of formulating problems, which can affect

the speed of the model formulating process.

The selected languages are the following:

Yalmip – currently used for modelling CHP systems in ongoing projects at the Depart-

ment of Control Engineering. Despite its obvious disadvantages (such as licencing

options) which exclude Yalmip from commercial use, Yalmip has been selected for

further testing for comparison with other promising languages.

OptimJ – a promising Java-based language. Its biggest advantage is a direct integration

with Java, which makes developing Java-based applications for scheduling very

easy and makes OptimJ worth further testing. The second Java-related product,

the Gurobi API doesn’t provide such high-level programming functions as OptimJ,

thus making Gurobi API unsuitable for formulating a large scale model. OptimJ

uses the syntax of a programming language, hence making it easy for anyone with

programming experience to learn.

GAMS, LINDO, Zimpl – the third tested languages have to use ”set-oriented” syntax

so as to compare all three types of languages (i.e. programming, set-oriented and

matrix-oriented, as described in chapter 3.1). LINGO and GAMS are languages

with similar abilities (apart from the fact that LINGO provides its own solvers

and GAMS does not integrate well with Java). However, both languages offer only

limited free licences (demo versions) unsuitable for benchmark testing (due to low

maximal number of variables and constraints implementing a long-term scheduling

model was not possible). In view of this fact an open-source solution was chosen –

Zimpl, even though it offers only limited functionality.

CHAPTER 3. BASIC MODEL IMPLEMENTATION 67

Modelling Java MS Excel Code clarity/ Syntax

language connectivity connectivity debugging options style

GAMS low good good set-oriented

LINGO good good good set-oriented

OptimJ excellent good good programming

Yalmip poor excellent good matrix-oriented

Zimpl low none low set-oriented

Table 3.1: A comparison of the modelling languages selected for bench-

marking

Regarding the other languages, AMPL does not offer a suitable IDE, MPL does not

excel in any of the investigated areas and AIMMS does not provide a satisfying Java

connectivity. The languages recommended for benchmarking are briefly compared in

table 3.1. As each feature of the language is described by one word only, it might be

subjective and the reader should look up the details provided in chapters 3.2 and further.

An attribute Java connectivity describes how easy it is to interact the language

with Java applications. In the MS Excel connectivity column,the ability of languages

to read/write to spreadsheets is described, and the Code clarity / debugging options col-

umn summarizes the same named features of the languages. Finally, the Syntax style

column describes the aforementioned language syntax. GAMS and LINGO languages are

also included in the comparison, even though they were not benchmarked (due to the

licence limitation).

In the next section the model extraction speed of the selected languages is evaluated,

using an extended model for a longer planning horizon.

Chapter 4

Extended model implementation

The aim of this section is to implement an extended model of a CHP system, benchmark

the extraction time of the selected modelling languages and evaluate the results obtained.

The extended model and benchmarking methods are described in sections 4.1 and 4.2, the

source code of the implemented models is enclosed in appendix E. Summarized results

as well as the recommended and the most suitable modelling language are discussed in

section 4.3.

4.1 Extended model of a cogeneration system

The extended model enhances the basic model from chapter 1.1 so the planning horizon

can be extended to an arbitrary number of hours (i.e. the scheduling of the model can be

made not only for one hour but for a significantly longer time) and an arbitrary number

of boilers and turbines can be added. It was done by adding a time dimension to each

variable (e.g. the deviation in el.power produced is no longer a scalar variable, but a vector

which contains the deviation for each hour of the planning horizon). As for constraints,

a for loop was added, in which the constraints for each hour were formulated (OptimJ

and Yalmip models). In the Zimpl model the for loop was added to each constraint

separately.

The number of boilers and turbines used in the system, as well as the planning horizon

is set by appropriate model parameters (m for the number of boilers, n for the number of

turbines, t for the number of hours). In the OptimJ model the command line arguments

set these parameters, in the Yalmip model it is necessary to modify benchmark.m file (or

68

CHAPTER 4. EXTENDED MODEL IMPLEMENTATION 69

the values can be loaded from Matlab workspace). The Zimpl model reads the parameters

from the file data.dat.

Each piece of system equipment (i.e. turbines and boilers) can have its specific power

characteristics (this situation is likely in a real CHP system), however as a necessary

simplification only one characteristic was used during benchmarking for the whole model.

4.2 Benchmarking methods

The aim of the benchmarking was to measure the extraction time of the model. An

extraction time is a time that the language needs for formulating the problem itself into

a solver-readable format, before the solver is called. This can be done internally (using

an embedded solver API of the language) or externally, generating an MPS or LP file.

The extraction time can be indispensable for large and complicated problems (i.e. tens

thousands of variables and hundreds of constraints) and can dramatically increase the

computation time of the optimal schedule. After the language formulates the model a

solver is not called as the solution of the problem is not important in this case.

Benchmarking was proceeded for planning horizon from 1 up to 4,500 hours and for

three models. The first one contains 3 boilers and 2 turbines (i.e. it is the basic model

with a longer planning horizon) and its performance is shown in figure 4.1, the second

model consists of 14 boilers and 8 turbines (figure 4.2) and the third model consists of 20

boilers and 14 turbines (figures 4.3 and 4.4). In the following section the details of each

tested language are given. Results of the testing are discussed in section 4.3.

Yalmip

As was mentioned in the previous chapter, Yalmip is included in the benchmarking be-

cause it is used in certain optimization projects held at the Department of Control En-

gineering and is desirable to have a comparison of Yalmip and other languages. The

processor time (also CPU time) necessary for declaring the model variables and con-

straints was measured. At the beginning of the model formulation is called the function

yalmip(’clear’), which clears the internal yalmip cache and should provide a better

performance of Yalmip [23]. For measuring the Matlab functions tic and toc were used.

CHAPTER 4. EXTENDED MODEL IMPLEMENTATION 70

The function solvesdp() is not called, as the solution of the model isn’t needed.

The additional time spend by the solvesdp() function before it calls the solver itself

(necessary operations before the solver can be called, also referred as ”yalmiptime”) is

negligible in comparison to the extraction time, thus it wasn’t measured.

The Yalmip performance can be seen in the following figures and is further discussed

in section 4.3.

OptimJ

OptimJ extends the Java language and can easily be incorporated into any Java ap-

plication. In OptimJ, the model is transformed into solver-readable format using the

extract() function (this function has to be called before the model can be solved). Both

CPU and the system time needed by this function was measured. CPU or processor time

says how much processor time was spent on running an application (or function) code,

system time says how much time was spent on associated I/O operations (e.g. writing

auxiliary files on disk, reading data from disk).

In this case the system time took around 1/10 of the CPU time, thus wasn’t counted

in the extraction time.

Zimpl

Zimpl is an open-source set-oriented modelling language. It was chosen because Zimpl has

no licence restrictions, unlike GAMS or LINGO, as was discussed in chapter 3.11. Zimpl

extracts the model file into an MPS/LP file, which can be read by an appropriate solver.

As was described in chapter 3.10, Zimpl cannot load data from spreadsheets and does

not integrate well with Java. On the contrary, Zimpl can read text and CSV files and the

parameter values of the extended model (t, m, n) are read from such a file (data.dat).

An MPS file format was chosen for output file, however it is interchangeable with LP file

format and Zimpl provides identical extraction time for both file types.

Turbine parameters and boiler characteristics are ”hard-wired” into the code in order

to simplify the data-loading process. The benchmarking is done from the Matlab envi-

ronment using the tic and toc functions and run.m script. The Zimpl performance is

CHAPTER 4. EXTENDED MODEL IMPLEMENTATION 71

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100

planning horizon [h]

ex
tr

ac
tio

n
tim

e
[s

]

Yalmip
OptimJ
Zimpl

Figure 4.1: An extraction time of the model with 3 boilers and 2 turbines

discussed in the next section.

4.3 Results and recommendations

In this section results of performed benchmarking are discussed and a final evaluation of

the tested languages is made.

Yalmip

As can be seen in the following figures, Yalmip provides significantly worse performance

even on a relatively small problem (figure 4.1). The Yalmip model formulation complexity

is exponential and will cause a significantly longer computation time of large scale models

(as can be seen in figure 4.3 the extraction time reaches 10 minutes for 1000 hours of

planing horizon). A smart formulation of the constraints (e.g. avoiding using for loops)

might slightly improve the performance, but the model formulation complexity will still

stay exponential. Yalmip is suitable for educational or academic purposes, but definitely

not convenient for commercial use.

CHAPTER 4. EXTENDED MODEL IMPLEMENTATION 72

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400

500

600

planning horizon [h]

ex
tr

ac
tio

n
tim

e
[s

]

Yalmip
OptimJ
Zimpl

Figure 4.2: An extraction time of the model with 14 boilers and 8 turbines

OptimJ

The performance of OptimJ is significantly better. For example the extraction time of

the largest tested problem (i.e. a model with 20 boilers, 14 turbines scheduled for 4,500

hours) is made within 3 minutes, which is a reasonable time. As can be seen in figure 4.4

the OptimJ model formulation complexity is polynomial and thus provides good results

even for large scale problems and makes OptimJ a good candidate for operational use.

Zimpl

Zimpl surprisingly provides the best extraction time and linear model formulation com-

plexity for all tested models, as can be seen in the following figures. In figure 4.4 a

comparison between OptimJ’s and Zimpl’s extraction time shows that Zimpl is around

two times faster than OptimJ for the larger models and longer planning horizon which

keeps the extraction time below two minutes even for the largest tested models (i.e. a

model with 20 boilers, 14 turbines and planning horizon 4,500 hours).

CHAPTER 4. EXTENDED MODEL IMPLEMENTATION 73

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400

500

600

700

800

900

1000

1100

planning horizon [h]

ex
tr

ac
tio

n
tim

e
[s

]

Yalmip
OptimJ
Zimpl

Figure 4.3: An extraction time of the model with 20 boilers and 14 tur-

bines

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

140

160

180

200

planning horizon [h]

ex
tr

ac
tio

n
tim

e
[s

]

Yalmip
OptimJ
Zimpl

Figure 4.4: A close-up view of the model with 20 boilers and 14 turbines

CHAPTER 4. EXTENDED MODEL IMPLEMENTATION 74

Summary

During this benchmark the fastest model extraction time provided Zimpl with linear

model formulation complexity. The second fastest was OptimJ providing a polynomial

model formulation complexity and around twofold extraction time compared to Zimpl.

The worst performance was provided by Yalmip, excluding this language from modelling

large-scale problems. The extraction time raised linearly with the model size for all three

languages (i.e. a model containing four times more turbines and boilers has a four-times-

longer extraction time).

Zimpl represents languages which use ”set-oriented” syntax and although Zimpl can-

not be recommended due to its limited functionality and poor Java connectivity, its results

make other set-oriented languages worth considering (as it is reasonable to assume that

languages with similar syntax – such as AMPL or GAMS – have a similar performance).

On the contrary, the time that a solver needs to load the MPS/LP model file is ques-

tionable. For example the extended model exported to an MPS file can be found on the

enclosed CD.

OptimJ provides a satisfactory extraction time performance and thanks to its nature

its very easy to incorporate OptimJ models into any Java application. This feature

definitely makes OptimJ worth considering as a modelling language suitable for modelling

and scheduling CHP systems, such as the projects currently being undertaken in the

Department of Control Engineering.

Chapter 5

Conclusion

A thorough comparison of available modelling languages for Mixed-Integer Linear Pro-

graming has been addressed in this thesis. The overall aim of this work was to test,

evaluate and recommend a modelling language that is the most suitable for the task of

modelling and optimal scheduling of CHP systems. A desired modelling language has to

give a good performance while extracting the model into a solver-readable format, has

to integrate well with a Java environment and has to be capable of reading and writing

to MS Excel spreadsheets. However, the comparison is useful for anybody facing similar

optimization and scheduling problems.

The three levels of testing were set in this thesis. At the first level, a survey of

available languages and their basic features was created. According to this survey the

most promising languages were chosen for further testing. The second level of testing

consisted of implementing a model of a simple CHP system and closely investigating the

model formulating features of each language. Regarding the results of the second level,

three languages were selected for the final part of testing – implementation of a more

complicated model and benchmarking.

The modelling languages survey provides a basic overview and a quick comparison

of available languages. The basic model implementation brings a closer look at the

languages and shows their biggest advantages and drawbacks. Finally, the extended

model implementation compares the performance and model extraction times of selected

languages.

The modelling languages survey helped to determine 9 promising languages for fur-

ther testing. During the basic model implementation three general categories of languages

were found, based on the syntax they use – programming language style, set-oriented and

matrix-oriented style. One language from each category was recommended for bench-

75

CHAPTER 5. CONCLUSION 76

marking. Due to strict licence options the languages originally chosen cannot be bench-

marked (GAMS and LINDO), thus Zimpl as an open-source alternative was used.

The best performance was provided by Zimpl, which extracts models with linear

complexity. OptimJ took second place with reasonable polynomial model formulation

complexity. The worst results came from Yalmip as it extracts models with exponential

complexity and is thus unsuitable for formulating large-scale models. According to these

results there are two recommended languages. The first one is OptimJ, which is especially

interesting for its easy integration with Java applications and a reasonable performance.

The second one is not Zimpl, because of its limited functionality, but a similar ”set-

oriented” language, such as AMPL or GAMS – but under certain conditions. As the best

performance was made by Zimpl, a set-oriented modelling language, it is reasonable to

expect that other set-oriented languages give a similar performance. Nonetheless, this

assumption was not proved.

Zimpl generates MPS/LP files whereas the other two languages call solvers using an

embedded API. Loading large models stored in MPS/LP files by appropriate solvers might

be time-consuming and not as fast as using a solver API embedded into the modelling

language. Another interesting question is the speed of OptimJ extraction time for MPS

or LP files (for Zimpl the performance for both file formats is identical). It is also

questionable whether there is a possible difference in solver computation time if different

MILP problem formats are used (e.g. an MPS or LP file format). A recommended step

is to extend the model by adding additional constraints (such as setting up time and

starting costs of boilers) and benchmark this more complex model.

References

[1] AIMMS Website, 2010, [online].

〈http://www.aimms.com/〉.

[2] AMPL , A Modeling Language for Mathematical Programming, 2010, [online].

〈http://www.ampl.com/〉.

[3] Eclipse Website, 2010, [online].

〈http://www.ateji.com/optimj.html〉.

[4] GNU General Public Licence, 2007, [online].

〈http://www.gnu.org/licenses/gpl.html〉.

[5] Gurobi Optimization Website, 2010, [online].

〈http://www.gurobi.com/〉.

[6] HSSF - Java API To Access MS Excel Format Files, 2010, [online].

〈http://poi.apache.org/spreadsheet/index.html〉.

[7] J-Integra for COM, 2010, [online].

〈http://j-integra.intrinsyc.com/support/com/doc/other examples/Matlab.htm〉.

[8] Javadoc Tool Home Page, 2010, [online].

〈http://java.sun.com/j2se/javadoc/〉.

[9] LINDO Systems Website, 2010, [online].

〈http://www.lindo.com/〉.

[10] LP file format, 2010, [online].

〈http://www.gurobi.com/html/doc/refman/node386.html〉.

[11] MPL Modeling System Website, 2010, [online].

〈http://www.maximal-usa.com/mpl/〉.

77

http://www.aimms.com/
http://www.ampl.com/
http://www.ateji.com/optimj.html
http://www.gnu.org/licenses/gpl.html
http://www.gurobi.com/
http://poi.apache.org/spreadsheet/index.html
http://j-integra.intrinsyc.com/support/com/doc/other_examples/Matlab.htm
http://java.sun.com/j2se/javadoc/
http://www.lindo.com/
http://www.gurobi.com/html/doc/refman/node386.html
http://www.maximal-usa.com/mpl/

REFERENCES 78

[12] NEOS Server for Optimization, 2010, [online].

〈http://www-neos.mcs.anl.gov/〉.

[13] Special Ordered Sets, 2010, [online].

〈http://lpsolve.sourceforge.net/5.5/SOS.htm〉.

[14] The General Algebraic Modeling System (GAMS) Website, 2010, [online].

〈http://www.gams.com/〉.

[15] The ILOG CPLEX Website, 2010, [online].

〈http://ilog.com/products/cplex/〉.

[16] The MathWorks MATLAB Website, 2010, [online].

〈http://www.mathworks.com/products/matlab/〉.

[17] ZIMPL Website, 2009, [online].

〈http://zimpl.zib.de/〉.

[18] ATEJI. OptimJ: A Java-based Modeling Language, 2010, [online].

〈http://www.ateji.com/optimj.html〉.

[19] Boyce, M. P. Handbook for cogeneration and combined cycle power plants. The

American Society of Mechanical Engineers, 2002.

[20] EZJCom. Easy Java COM Connectivity, 2009, [online].

〈http://www.ezjcom.com/〉.

[21] Fourer, R. Linear programming software survey. OR/MS Today, June 2009.

[22] Linderoth, J. Integer programming: theory and practice, chapter Noncommercial

Software for Mixed-Integer Linear Programming. CRC Press, 2006.

[23] Löfberg, J. Yalmip : A toolbox for modeling and optimization in MATLAB. In

Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[24] Optirisk Systems. AMPL Studio, 2010, [online].

〈http://www.optirisk-systems.com/products amplstudio.asp〉.

[25] Ramsay, B. et al. EDUCOGEN: The European Educational Tool for cogeneration.

In COGEN Europe, The European Association for the Promotion of Cogeneration,

Brussels, 2003.

http://www-neos.mcs.anl.gov/
http://lpsolve.sourceforge.net/5.5/SOS.htm
http://www.gams.com/
http://ilog.com/products/cplex/
http://www.mathworks.com/products/matlab/
http://zimpl.zib.de/
http://www.ateji.com/optimj.html
http://www.ezjcom.com/
http://www.optirisk-systems.com/products_ amplstudio.asp

REFERENCES 79

[26] Seeger, T. and Verstege, J. Short term scheduling in cogenerative systems. In

Power Industry Application Conference, Baltimore, Maryland, USA, 1991.

[27] Simovic, T. Optimal production planning of a cogeneration system. Master’s thesis,

Czech Technical University Faculty of Electrotechnical Engineering, 2008.

[28] Steiger, D. and Sharda, R. Lp modeling languages for personal computers: A

comparison. Annals of Operations Research, March 1993.

[29] Wikipedia: The Free Encyclopedia. Component Object Model, 2010, [online].

〈http://en.wikipedia.org/wiki/Component Object Model〉.

[30] Wikipedia: The Free Encyclopedia. Enthalpy, 2010, [online].

〈http://en.wikipedia.org/wiki/Enthalpy〉.

[31] Wikipedia: The Free Encyclopedia. JUnit, 2010, [online].

〈http://en.wikipedia.org/wiki/JUnit〉.

[32] Wikipedia: The Free Encyclopedia. Mathematical Programming System file for-

mat, 2010, [online].

〈http://en.wikipedia.org/wiki/MPS (format)〉.

http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Enthalpy
http://en.wikipedia.org/wiki/JUnit
http://en.wikipedia.org/wiki/MPS_(format)

Appendix A

Results of modelling languages

survey

Figure A.1: General information

I

APPENDIX A. RESULTS OF MODELLING LANGUAGES SURVEY II

Figure A.2: Inputs/Outputs

APPENDIX A. RESULTS OF MODELLING LANGUAGES SURVEY III

Figure A.3: Price and lincensing

APPENDIX A. RESULTS OF MODELLING LANGUAGES SURVEY IV

Figure A.4: Problem formulation

Appendix B

Basic model parameters and power

characteristics

B.1 Parameters

TG MpTG
min [t/h] MpTG

max [t/h]

TG1 60 320

TG2 60 420

Table B.1: Minimal and maximal steam flow in turbines

Enthalpy [kJ/kg]

iPK
in 750

iPK
out 3400

iTG
out 2500

Table B.2: Steam enthalpy values

V

APPENDIX B. BASIC MODEL PARAMETERS AND POWER CHARACTERISTICS VI

B.2 Power characteristics of boilers

40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Power input [MW]

P
ow

er
 o

ut
pu

t [
M

W
]

PK1

Figure B.1: Power characteristic of boiler PK1

40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Power input [MW]

P
ow

er
 o

ut
pu

t [
M

W
]

PK2

Figure B.2: Power characteristic of boiler PK2

40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Power input [MW]

P
ow

er
 o

ut
pu

t [
M

W
]

PK3

Figure B.3: Power characteristic of boiler PK3

Appendix C

Contents of the enclosed CD

The enclosed CD contains the following:

• The text of this report (podhrm 2010 modelling languages for optimization.pdf).

• The text of this report – print version.

• A copy of the official requirements for this work (podhrm 2010 requirements.pdf).

• Source codes of the implemented basic models.

• Source codes of the implemented extended models.

• MS Excel spreadsheet containing parameters of the basic model (power character-

istics of boilers, steam enthalpy and turbine parameters).

• Other sample files such as log files, Eclipse projects and used Java classes (to be

found in the appropriate folders).

VII

Appendix D

Source codes of basic model

implementation

D.1 Yalmip

1 %% BASIC MODEL IMPLEMENTATION %%

% Simplified cogeneration system:

% - Three gas-fueled boilers with non-linear characteristics.

% - Two turbines with linear characteristics.

5 % - Condenser.

% - Minimizing production cost of desired power and heat production.

clear;

%%---- PARAMETERS ----%%

10 % Production demanded

Q_demand = 200; % Heat/hot-water production [MW]

P_demand = 250; % Electric power pruduction [MW]

fuel_cost = 600; % [CZK/MWh]

deviation_cost = 3000; % [CZK/MWh]

15

% Loading parameters from MS Excel spreadsheet

num = xlsread(’model_params.xls’);

% Mininal and maximal steam flow through turbines allowed

20 Mp_TG_min = num(1,2:3)’;

Mp_TG_max = num(2,2:3)’;

% Enthalpy

i_in_PK = num(6,2);

VIII

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION IX

25 i_out_PK = num(7,2);

i_out_TG = num(8,2);

% Power input and output boiler characteristics

Qin_PK_char = [num(14:17,1) num(21:24,1) num(28:31,1)]’;

30 Qout_PK_char = [num(14:17,2) num(21:24,2) num(28:31,2)]’;

%%----VARIABLES ----%%

% Boiler status (3 boilers, on/off)

PK_state = binvar(3,1,’full’);

35

% Power output of boilers [MW]

% row = boiler, column = output in a given section

Qout_PK = sdpvar(3,3,’full’);

40 % Power input of boilers [MW]

% row = boiler, column = input in a given section

Qin_PK = sdpvar(3,3,’full’);

% Steam generated by boilers [t/h]

45 Mp_PK = sdpvar(1);

% Turbine status

TG_state = binvar(2,1,’full’);

50 % Steam flow in turbines [t/h]

Mp_TG = sdpvar(2,1,’full’);

% Electric power generated by turbines [MW]

P_TG = sdpvar(2,1,’full’);

55

% Possible difference in the electric power supplied

% (positive = production is lower than planned)

dev = sdpvar(1);

60 % Steam flow to condenser [t/h]

Mp_VK = sdpvar(1);

% Steam flow to water heater [t/h]

Mp_ZO = sdpvar(1);

65

% Auxiliary variables for boiler’s non-linear characteristics

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION X

% It is not a very efective formulation and it is desirable to

% reformulate it using SOS2

% Currently each boiler’s power characteristic

70 % is altered using three linear sections

PK_regions = binvar(3,3,’full’); % row = boiler, column = section

%%---- CONSTRAINTS ---%%

% Set of constraints

75 F = [];

% Non-negative variables

F = F + [Mp_PK>=0; Mp_TG>=0; Mp_VK>=0; Mp_ZO>=0;];

80 % 1. Steam generated by boilers is equal to the steam flow to turbines

F = F + [sum(Mp_PK) == sum(Mp_TG)];

% 2. Steam flow through turbines is equal to the flow to the condenser plus

% flow to the water heater

85 F = F + [sum(Mp_TG) == Mp_VK + Mp_ZO];

% 3. Minimal and maximal flow through turbines allowed

F = F + [Mp_TG_min.*TG_state <= Mp_TG <= Mp_TG_max.*TG_state];

90 % 4. The amount of electric energy produced is equal to the entalpy difference in

% the steam (eg. before and after the steam leaves turbines)

F = F + [P_TG == Mp_TG*(i_out_PK - i_out_TG)/3600]; % [MW]

% 5. Power of heating unit (heating water for further use in buildings)

95 F = F + [Q_demand == Mp_ZO*(i_out_TG - i_in_PK)/3600]; % [MW]

% 6. Desired power and possible deviation

F = F + [sum(P_TG) + dev == P_demand]; % [MW]

100 %% Boiler constraints %%

% Relation between power input and output of boiler

% non-linear characteristics

% (desirable to reformulate using SOS2)

105 % 7.Total power of boilers must be sufficient to boil desired amount of

% steam

F = F + [sum(sum(Qout_PK)) == Mp_PK*(i_out_PK - i_in_PK)/3600]; % [MW]

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XI

% If a boiler is in operation its power could vary only in one power section

110 F = F + [sum(PK_regions,2) == PK_state];

% Input and ouput connection

% 1. Power output has to be in one section only

F=F+[Qin_PK_char(:,1:end-1).*PK_regions<=Qin_PK<=Qin_PK_char(:,2:end).*PK_regions];

115

% 2. Power output is set by lines with angular coeficients

coeff = diff(Qout_PK_char,1,2)./diff(Qin_PK_char,1,2);

ofset = Qout_PK_char(:,1:end-1) - coeff.*Qin_PK_char(:,1:end-1);

F = F + [Qout_PK == coeff.*Qin_PK + ofset.*PK_regions];

120

%%---- OBJECTIVE FUNCTION ----%%

% J = fuel costs + electric power production costs

J = fuel_cost*sum(sum(Qin_PK)) + deviation_cost*abs(dev);

125 %%---- SOLVE PROBLEM ----%%

diag = solvesdp(F,J,sdpsettings(’solver’,’cplex’))

%%---- SHOW RESULTS ----%%

res.P_demand = P_demand;

130 res.Q_demand = Q_demand;

res.P_TG1 = double(P_TG(1));

res.P_TG2 = double(P_TG(2));

res.Mp_ZO = double(Mp_ZO);

res.Mp_VK = double(Mp_VK);

135 res.Mp_PK = double(Mp_PK);

res.Q_VK = double(Mp_VK)*(i_out_TG-i_in_PK)/3600; %power loss on condensator[MW]

res.Qout_PK1 = sum(double(Qout_PK(1,:))); % power of boiler one [MW]

res.Qout_PK2 = sum(double(Qout_PK(2,:))); % power of boiler two [MW]

res.Qout_PK3 = sum(double(Qout_PK(3,:))); % power of boiler three [MW]

140 res.Qout_PK_sum = sum(sum(double(Qout_PK))); % total power of boilers [MW]

res.dev = double(dev); % planned deviation [MW]

res.costs = double(J); % total costs of production [Kc/h])

res % showing the results

D.2 GAMS

1 $Ontext

***** BASIC MODEL IMPLEMENTATION *****

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XII

Simplified cogeneration system:

- Three gas-fueled boilers with non-linear characteristics.

5 - Two turbines with linear characteristics.

- Condenser.

- Minimizing production cost of desired power and heat production.

$Offtext

10 **** SETS *****

Sets

PK boilers /PK1,PK2,PK3/

TG turbines /TG1, TG2/

regions breakpoints at boiler’s power characteristics /r1,r2,r3,r4/

15 ;

**** SCALAR PARAMETERS ****

Scalar

i_in_PK enthalpy /750/

20 i_out_PK enthalpy /3400/

i_out_TG enthalpy /2500/

Q_demand Heat/hot-water production [MW] /120/

P_demand Electric power pruduction [MW] /120/

fuel_cost cost of fuel [CZK/MWh] /600/

25 deviation_cost cost of deviation [CZK/MWh] /3000/

;

**** PARAMETERS ****

* data are "hard-wired" into the code so as to show

30 * how to define data array in GAMS

Parameter

Mp_TG_min(TG) minimal steam flow on turbines

/ TG1 60

TG2 60/

35 Mp_TG_max(TG) maximalni steam flow on turbines

/ TG1 320

TG2 420/

;

Table Qin_PK_char(PK, regions) input of boilers

40 r1 r2 r3 r4

PK1 46.92 60 90 115.48

PK2 60.73 70 100 121.97

PK3 89.5 120 143 175

;

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XIII

45 Table Qout_PK_char(PK, regions) outputs of boilers

r1 r2 r3 r4

PK1 44.11 40 70 108.56

PK2 54.05 67 99 108.56

PK3 80 100 140 160

50 ;

**** VARIABLES ****

Variables

dev possible difference in the electric power supplies

55 v_dev auxiliary variable for linearizing abs() function

w(PK,regions) variable for SOS2

J total cost

;

Binary variables

60 PK_state(PK) boiler states

TG_state(TG) turbine states

;

* Declaring non-negative variables

Positive variables

65 Mp_VK Steam flow to condenser [t per h]

Mp_ZO Steam flow to water heater [t per h]

Mp_PK Steam generated by boilers [t per h]

Mp_TG(TG) Steam flow in turbines [t per h]

P_TG(TG) Electric power generated by turbines [MW]

70 Qin_PK(PK) Power input of boilers [MW]

Qout_PK(PK) Power output of boilers [MW]

;

SOS2 Variable w;

75

**** CONSTRAINTS ****

Equations

costs production cost

constraint1 steam generation

80 constraint2 mass balance

constraint3(TG) minimal steam flow on turbines

constraint4(TG) maximal steam flow on turbines

constraint5(TG) el.power production

constraint6 water heater power

85 constraint7 desired el.power production

constraint8(PK) boiler constraint

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XIV

constraint9(PK) boiler constraint

constraint10(PK) boiler constraint

constraint11 steam generation by boilers

90 abs1 linearizing abs

abs2 linearizing abs

;

* Objective function = min: fuel costs + electric power production costs

95 costs.. J =e= deviation_cost*v_dev + fuel_cost*sum(PK,Qin_PK(PK));

* 1. Steam generated on boilers is equal to the steam flow to turbines

constraint1.. Mp_PK =e= sum(TG, Mp_TG(TG));

100 * 2. Steam flow through turbines is equal to flow to condensation plus

* flow to water heater

constraint2.. Mp_VK + Mp_ZO =e= sum(TG, Mp_TG(TG));

* 3. Minimal and maximal flow through turbines allowed

105 constraint3(TG).. Mp_TG_min(TG)*TG_state(TG) =l= Mp_TG(TG);

constraint4(TG).. Mp_TG(Tg) =l= Mp_TG_max(TG)*TG_state(TG);

* 4. The amount of electric energy produced is equal to the entalpy difference

* in the steam (eg. before and after the steam leaves turbines) [MW]

110 constraint5(TG).. P_TG(TG) =e= Mp_TG(TG)*(i_out_PK - i_out_TG)/3600;

* 5. Power of heating unit (heating water for further use in buildings) [MW]

constraint6.. Q_demand =e= Mp_ZO*(i_out_TG - i_in_PK)/3600;

115 * 6. Desired power and possible deviation [MW]

constraint7.. P_demand =e= dev + sum(TG,P_TG(TG));

** Boiler constraints - using SOS2

* Power input definition Qin = \sum_k \lambda_k QinPK_k

120 constraint8(PK)..Qin_PK(PK)=e=sum(regions,(w(PK,regions)*Qin_PK_char(PK,regions)));

* Power output definition Qout = \sum_k \lambda_k QoutPK_k

constraint9(PK)..Qout_PK(PK)=e=sum(regions,(w(PK,regions)*Qout_PK_char(PK,regions)));

125 * Output and input is non-zero only if the boiler is turned on

constraint10(PK)..PK_state(PK) =e= sum(regions, w(PK,regions));

* 7.Total power of boilers must be sufficient to boil desired

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XV

* amount of steam [MW]

130 constraint11.. Mp_PK*(i_out_PK - i_in_PK)/3600 =e= sum(PK, Qout_PK(PK));

* Linearizing abs()

abs1.. v_dev >= dev;

abs_2.. v_dev >= -1*dev;

135

**** SOLVE PROBLEM ****

Model problem /all/;

Option MIP = Cplex;

Solve problem using mip minimizing J;

140

**** SHOW RESULTS ****

Display dev.l, J.l;

D.3 OptimJ

1 /** --- BASIC MODEL IMPLEMENTATION --- **

Simplified cogeneration system:

- Three gas-fueled boilers with non-linear characteristics.

- Two turbines with linear characteristics.

5 - Condenser.

- Minimizing production cost of desired power and heat production.

*/

public model optimj_model solver cplex11 {

/*---- PARAMETERS ----*/

10 // min/max steam flow on turbines

protected double[] Mp_TG_min[2];

protected double[] Mp_TG_max[2];

// Power characteristics of boilers

15 protected double[][] Qin_PK_char[3][4];

protected double[][] Qout_PK_char[3][4];

// Enthalpy

protected double i_in_PK;

20 protected double i_out_PK;

protected double i_out_TG;

// Scalar parameters

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XVI

protected double Q_demand = 40;

25 protected double P_demand = 50;

protected double fuel_cost = 600;

protected double deviation_cost = 3000;

/*---- VARIABLES ----*/

30 // Boiler states (3 boilers, on/off)

final var boolean[] PK_state[3];

// Turbine states

final var boolean[] TG_state[2];

// Steam flow in turbines [t/h]

35 final var double[] Mp_TG[2] in 0 .. Double.MAX_VALUE;

// Electric power generated on turbines [MW]

final var double[] P_TG[2] in 0 .. Double.MAX_VALUE;

// Steam flow to condensator [t/h]

final var double Mp_VK;

40 // Steam flow to water heater [t/h]

final var double Mp_ZO;

// Steam generation on boilers [t/h]

final var double Mp_PK;

/* Possible difference in the electric power supplied

45 (positive = production is lower than planned)*/

final var double dev;

// Power input of boilers [MW]

final var double[] Qin_PK[3] in 0 .. Double.MAX_VALUE;

// Power output of boilers [MW]

50 final var double[] Qout_PK[3] in 0 .. Double.MAX_VALUE;

// Auxiliary variable for SOS2

final var double[][] w[3][4] in 0 .. Double.MAX_VALUE;

/*---- CONSTRAINTS ----*/

55 constraints {

// Non-negative variables

Mp_PK >=0;

Mp_ZO >=0;

Mp_VK >=0;

60

// 1. Steam generated on boilers is equal to the steam flow to turbines

Mp_PK == sum{int i : 0 .. Mp_TG.length-1}{Mp_TG[i]};

/* 2. Steam flow through turbines is equal to flow to condensation plus

65 flow to water heater */

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XVII

Mp_VK + Mp_ZO == sum{int i : 0 .. Mp_TG.length-1}{Mp_TG[i]};

// 3. Minimal and maximal flow through turbines allowed

forall(int i : 0 .. Mp_TG.length-1) {

70 Mp_TG_min[i]*?TG_state[i] <= Mp_TG[i];

Mp_TG[i] <= Mp_TG_max[i]*?TG_state[i];

}

/* 4. The amount of electric energy produced is equal to the entalpy difference in

75 the steam (eg. before and after the steam leaves turbines) [MW] */

sum{int i : 0 .. P_TG.length-1}{P_TG[i]} ==

sum{int i : 0 .. Mp_TG.length-1}{Mp_TG[i]}*(i_out_PK - i_out_TG)/3600;

/* 5. Power of heating unit (heating water for further use in buildings) [MW]*/

80 Q_demand == Mp_ZO*(i_out_TG - i_in_PK)/3600;

/* 6. Desired power and possible deviation [MW] */

P_demand == sum{int i : 0 .. P_TG.length-1}{P_TG[i]} + dev;

85 /*-- Boiler constraints - using SOS2 -*/

/* Power input definition Qin = \sum_k \lambda_k QinPK_k */

forall(int i : 0 .. Qin_PK.length-1) {

Qin_PK[i] ==

sum{int j : 0 .. Qin_PK_char[i].length-1}{w[i][j]*Qin_PK_char[i][j]};

90 }

/* Power output definition Qout = \sum_k \lambda_k QoutPK_k */

forall(int i : 0 .. Qout_PK.length-1) {

Qout_PK[i] ==

sum {int j : 0 .. Qout_PK_char[i].length-1}{w[i][j]*Qout_PK_char[i][j]};

95 }

/* Output and input is non-zero only if the boiler is turned on */

forall(int i : 0 .. PK_state.length-1) {

sum {int k : 0 .. w[i].length-1} {w[i][k]} == ?PK_state[i];

}

100 /* Declaration of SOS2 for each boiler (using special cplex function */

forall(int i : 0 .. w.length-1) {

cplex11.SOS2(w[i], Qin_PK_char[i]);

}

105 /* 7.Total power of boilers must be sufficient to boil desired amount of

steam [MW] */

sum{int i : 0 .. Qout_PK.length-1}{Qout_PK[i]} ==

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XVIII

Mp_PK*(i_out_PK - i_in_PK)/3600;

}

110

/*---- OBJECTIVE FUNCTION ----*/

// min: fuel costs + electric power production costs

minimize

java.lang.Math.abs(dev)*deviation_cost +

115 sum{int i : 0 .. Qin_PK.length-1}{Qin_PK[i]*fuel_cost};

/*---- MAIN METHOD ----*/

public static void main (java . lang . String []args) {

optimj_model problem = new optimj_model();

120 Data d = new Data();

LoadData ld = new LoadData();

ld.init("params.xls", d);

problem.fillData(d);

try {

125 /*---- EXTRACT MODEL ----*/

problem.extract();

/*--- SOLVE MODEL ----*/

if (problem.solve()) {

/*--- SHOW RESULTS ----*/

130 System.out.println(problem.objValue());

}

else {

System.out.println("No solution.");

}

135 }

finally {

problem.dispose();

}

}

140 // other functions, whole java class can be found at the enclosed CD...

//...

}

D.4 AIMMS

1 ******** BASIC MODEL IMPLEMENTATION - EXPORTED TO TXT FILE **********

* Simplified cogeneration system:

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XIX

* - Three gas-fueled boilers with non-linear characteristics.

* - Two turbines with linear characteristics.

5 * - Condenser.

* - Minimizing production cost of desired power and heat production.

MAIN MODEL Main_model

******** SETS ********

10 DECLARATION SECTION SetDeclaration

SET:

identifier : boilers

index : PK ;

SET:

15 identifier : boiler_regions

index : regions ;

SET:

identifier : turbines

index : TG ;

20 ENDSECTION ;

******** PARAMETERS ********

DECLARATION SECTION ParameterDeclaration

* Minimal steam flow through turbines

25 PARAMETER:

identifier : Mp_TG_min

index domain : (TG) ;

* Maximal steam flow through turbines

PARAMETER:

30 identifier : Mp_TG_max

index domain : (TG) ;

* Power output boiler characteristics

PARAMETER:

identifier : Qout_PK_char

35 index domain : (PK,regions) ;

* Power input boiler characteristics

PARAMETER:

identifier : Qin_PK_char

index domain : (PK,regions) ;

40 ENDSECTION ;

***** SCALAR PARAMETERS *****

DECLARATION SECTION ScalarDeclaration

PARAMETER:

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XX

45 identifier : Q_demand ;

PARAMETER:

identifier : P_demand ;

PARAMETER:

identifier : deviation_cost ;

50 PARAMETER:

identifier : fuel_cost ;

* Enthalpy

PARAMETER:

55 identifier : i_in_PK ;

initial data : 750;

* Enthalpy

PARAMETER:

identifier : i_out_PK

60 initial data : 3400 ;

* Enthalpy

PARAMETER:

identifier : i_out_TG

initial data : 2500 ; ;

65 ENDSECTION ;

***** VARIABLES *****

DECLARATION SECTION VariableDeclaration

* Possible difference in the electric power supplied

70 * (positive = production is lower than planned)

VARIABLE:

identifier : dev ;

* Auxiliary variables for SOS2

VARIABLE:

75 identifier : w

index domain : (PK,regions) ;

* Auxiliary variables for SOS2

VARIABLE:

identifier : w_bin

80 index domain : (PK,regions)

range : binary ;

* Boiler states (3 boilers, on/off)

VARIABLE:

identifier : PK_state

85 index domain : (PK)

range : binary ;

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXI

* Turbine states (2 boilers, on/off)

VARIABLE:

identifier : TG_state

90 index domain : (TG)

range : binary ;

* Steam flow to condensator [t/h]

VARIABLE:

identifier : Mp_VK

95 range : nonnegative ;

* Steam flow to water heater [t/h]

VARIABLE:

identifier : Mp_ZO

range : nonnegative ;

100 * Steam generated on boilers [t/h]

VARIABLE:

identifier : Mp_PK

range : nonnegative ;

* Steam flow in turbines [t/h]

105 VARIABLE:

identifier : Mp_TG

index domain : (TG)

range : nonnegative ;

* Electric power generated on turbines [MW]

110 VARIABLE:

identifier : P_TG

index domain : (TG)

range : nonnegative ;

* Power input of boilers [MW]

115 VARIABLE:

identifier : Qin_PK

index domain : (PK)

range : nonnegative ;

* Power output of boilers [MW]

120 VARIABLE:

identifier : Qout_PK

index domain : (PK)

range : nonnegative ;

ENDSECTION ;

125

**** CONSTRAINTS ****

* Constraints are in different order than in Yalmip model

DECLARATION SECTION ConstraintDeclaration

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXII

* 1. Steam generated on boilers is equal to the steam flow to turbines

130 CONSTRAINT:

identifier : constraint2

definition : Mp_PK = sum(TG, Mp_TG(TG)) ;

* 3. Minimal and maximal flow through turbines allowed

CONSTRAINT:

135 identifier : constraint3

index domain : (TG)

definition : Mp_TG_min(TG)*TG_state(TG) <= Mp_TG(TG) ;

* 3. Minimal and maximal flow through turbines allowed

CONSTRAINT:

140 identifier : constraint4

index domain : (TG)

definition : Mp_TG(TG) <= Mp_TG_max(TG)*TG_state(TG) ;

* 4. The amount of electric energy produced is equal to the entalpy difference in

* the steam (eg. before and after the steam leaves turbines)

145 CONSTRAINT:

identifier : constraint5

index domain : (TG)

definition : P_TG(TG) = Mp_TG(TG)*(i_out_PK - i_out_TG)/3600 ;

* 5. Power of heating unit (heating water for further use in buildings)

150 CONSTRAINT:

identifier : constraint6

definition : Q_demand = Mp_ZO*(i_out_TG - i_in_PK)/3600 ;

* 6. Desired power and possible deviation

CONSTRAINT:

155 identifier : constraint7

definition : P_demand = dev + sum(TG,P_TG(TG)) ;

* 2. Steam flow through turbines is equal to flow to condensation plus

* flow to water heater

CONSTRAINT:

160 identifier : constraint13

definition : Mp_VK + Mp_ZO = sum(TG, Mp_TG(TG)) ;

** BOILER CONSTRAINTS

* 7.Total power of boilers must be sufficient to boil desired amount of steam

CONSTRAINT:

165 identifier : constraint12

definition : Mp_PK*(i_out_PK - i_in_PK)/3600 = sum(PK, Qout_PK(PK)) ;

* Power input definition

CONSTRAINT:

identifier : constraint8_SOS2

170 index domain : (PK)

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXIII

definition : Qin_PK(PK)= sum(regions,(w(PK,regions)*Qin_PK_char(PK,regions)));

* Power output definition

CONSTRAINT:

identifier : constraint9_SOS2

175 index domain : (PK)

definition : Qout_PK(PK)=sum(regions,(w(PK,regions)*Qout_PK_char(PK,regions)));

* Output and input is non-zero only if the boiler is turned on

CONSTRAINT:

identifier : constraint10_SOS2

180 index domain : (PK)

property : Sos2

definition : PK_state(PK) = sum(regions, w(PK,regions)) ;

ENDSECTION ;

185 ***** OBJECTIVE FUNCTION *****

DECLARATION SECTION MathematicalProgramDeclaration

MATHEMATICAL PROGRAM:

identifier : costs

objective : ObjectiveFunction

190 direction : minimize

type : MILP ;

VARIABLE:

identifier : ObjectiveFunction

195 definition : deviation_cost*abs(dev) + fuel_cost*sum[PK,Qin_PK(PK)] ;

ENDSECTION ;

D.5 AMPL

1 ### BASIC MODEL IMPLEMENTATION ###

Simplified cogeneration system:

- Three gas-fueled boilers with non-linear characteristics.

- Two turbines with linear characteristics.

5 # - Condenser.

- Minimizing production cost of desired power and heat production.

#

This is a model file, the files ampl_model.dat and ampl_model.run

are needed in order to run this model

10

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXIV

#-- SETS --#

set PK; # boilers

set TG; # turbines

number of regions in boilers’s power characteristic

15 set regions ordered;

##-- PARAMETERS --##

scalar parameters

param deviation_cost;

20 param fuel_cost;

param Q_demand;

param P_demand;

Enthalpy

25 param i_in_PK;

param i_out_PK;

param i_out_TG;

Mininal and maximal flow through turbines allowed

30 # equivalent notation

param Mp_TG_min {TG};

param Mp_TG_max {i in TG};

Power input and output boiler characteristics

35 param Qin_PK_char{i in PK, j in regions};

param Qout_PK_char{i in PK, j in regions};

param coef{i in PK, j in 1..3}; # auxiliary parameter

##-- VARIABLES --##

40 var TG_state {i in TG} binary; # Turbine states

var PK_state {i in PK} binary; # Boiler states (3 boilers, on/off)

Possible difference in the electric power supplied

(positive = production is lower than planned)

var dev;

45 var v_dev; # auxiliary variable for linearizing abs()

var Mp_VK >= 0; # Steam flow to condensator [t / h]

var Mp_ZO >= 0; # Steam flow to water heater [t / h]

var Mp_PK >= 0; # Steam generated on boilers [t / h]

50 var Mp_TG {i in TG} >= 0; # Steam flow in turbines [t / h]

var P_TG {i in TG} >= 0; # El. power generated on turbines [MW]

var Qin_PK {PK} >= 0; # Power input of boilers [MW]

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXV

var Qout_PK {i in PK} >= 0; # Power output of boilers [MW]

55 ##-- OBJECTIVE FUNCTION --#

min: fuel costs + electric power production costs

minimize Cost: deviation_cost*v_dev + fuel_cost * sum{i in PK} Qin_PK[i];

##-- CONSTRAINTS --##

60 subject to abs_1: v_dev >= dev;

subject to abs_2: v_dev >= -1*dev;

1. Steam generated on boilers is equal to the steam flow to turbines

subject to c1: Mp_PK = sum{i in TG} Mp_TG[i];

65

2. Steam flow through turbines is equal to flow to condensation plus

flow to water heater

subject to c2: Mp_VK + Mp_ZO = sum{i in TG} Mp_TG[i];

70 # 3. Minimal and maximal flow through turbines allowed

subject to c3Min{j in TG}: Mp_TG[j] >= Mp_TG_min[j]*TG_state[j];

subject to c3Maxk{j in TG}: Mp_TG[j] <= Mp_TG_max[j]*TG_state[j];

4. The amount of electric energy produced is equal to the entalpy difference in

75 # the steam (eg. before and after the steam leaves turbines) [MW]

subject to c4{g in TG}: P_TG[g] = Mp_TG[g]*(i_out_PK - i_out_TG)/3600;

5. Power of heating unit (heating water for further use in buildings)

subject to c5: Q_demand = Mp_ZO*(i_out_TG - i_in_PK)/3600; # [MW]

80

6. Desired power and possible deviation [MW]

subject to c6: P_demand = dev + sum{g in TG} P_TG[g];

7.Total power of boilers must be sufficient to boil desired amount of

85 # steam [MW]

subject to c7: Mp_PK*(i_out_PK - i_in_PK)/3600 = sum{i in PK} Qout_PK[i];

##-- PIECEWISE LINEAR FUNCTION --##

instead of SOS2

90 # << breakpoints, slope_list >> variable;

subject to Sos2 {i in PK}:

<<{j in regions}Qin_PK_char[i,j];0,{j in 1..3}coef[i,j],0>>Qout_PK[i]*PK_state[i]>=0;

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXVI

D.6 LINGO

1 !!--- BASIC MODEL IMPLEMENTATION ---!!

Simplified cogeneration system:

- Three gas-fueled boilers with non-linear characteristics.

- Two turbines with linear characteristics.

5 - Condenser.

- Minimizing production cost of desired power and heat production.;

!---- SETS ---- !;

SETS:

10 ! Boilers + their power characteristics;

PK/PK1,PK2,PK3/:PK_state, Qin_PK, Qout_PK;

regions/r1,r2,r3,r4/; ! regions - auxiliary set;

! Power input and output of boilers, w is auxiliary variable for SOS2;

Q_PK_char(PK,regions):value_in, value_out, w;

15 ! Turbine parameters, states, el.power output and steam flow;

TG:Mp_TG_min, Mp_TG_max, TG_state, Mp_TG, P_TG;

ENDSETS

!---- PARAMETERS ---!;

20 DATA:

! Load parameters from MS Excel file

Absolute address has to be used

eg. ’C:\Documents and Settings\podhrmic\...file.xls!;

Mp_TG_min, Mp_TG_max,value_in,value_out = @OLE(’params.xls’);

25 i_in_PK,i_out_PK,i_out_TG = @OLE(’params.xls’);

! scalar parameters;

deviation_cost = 3000;

fuel_cost = 600;

30 P_demand = 40;

Q_demand = 50;

ENDDATA

!---- OBJECTIVE FUNCTION ----!

35 min: fuel costs + electric power production costs

abs() needs to be linearized in order to keep the model

as linear. Go to LINGO-Options-Model Generator-Linearization;

MIN = deviation_cost*@ABS(dev) + fuel_cost*@SUM(PK:Qin_PK);

40 !---- VARIABLES ----!

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXVII

! Variables are declared in the equations

(constraints section);

Declaring binary variables;

@FOR(TG:

45 @BIN(TG_state);

);

@FOR(PK:

@BIN(PK_state);

);

50

!---- CONSTRAINTS ----!

! 1. Steam generated on boilers is equal to the steam flow to turbines;

Mp_PK = @SUM(TG:Mp_TG);

55 ! 2. Steam flow through turbines is equal to flow to condensation plus

flow to water heater;

Mp_VK + Mp_ZO = @SUM(TG:Mp_TG);

! 3. Minimal and maximal flow through turbines allowed;

60 @FOR(TG:

Mp_TG_min*TG_state <= Mp_TG;

Mp_TG <= Mp_TG_max*TG_state;

);

65 ! 4. The amount of electric energy produced is equal to the entalpy difference

in the steam (eg. before and after the steam leaves turbines) [MW];

@FOR(TG:

P_TG = Mp_TG*(i_out_PK - i_out_TG)/3600;

);

70

! 5. Power of heating unit (heating water for further use in buildings) [MW];

Q_demand = Mp_ZO*(i_out_TG - i_in_PK)/3600;

! 6. Desired power and possible deviation;

75 P_demand = dev + @SUM(TG:P_TG);

! 7.Total power of boilers must be sufficient to boil desired amount of

steam [MW];

Mp_PK*(i_out_PK - i_in_PK)/3600 = @SUM(PK: Qout_PK);

80

!--- Boiler constraints - using SOS2 ----!;

@FOR(PK(I):

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXVIII

! Power input definition Qin = \sum_k \lambda_k QinPK_k;

Qin_PK(I) = @SUM(Q_PK_Char(I,J) : value_in(I,J)*W(I,J));

85 ! Power output definition Qout = \sum_k \lambda_k QoutPK_k ;

Qout_PK(I) = @SUM(Q_PK_Char(I,J) : value_out(I,J)*W(I,J));

! Output and input is non-zero only if the boiler is turned on;

@SUM(Q_PK_Char(I,J):W(I,J)) = PK_state(I);

! Declaration of SOS2 for each boiler;

90 @FOR(Q_PK_Char(I,J):

@SOS2(’W_’ + PK(I), W(I, J))

);

);

D.7 MPL

1 !!--- BASIC MODEL IMPLEMENTATION ---!!

! Simplified cogeneration system:

! - Three gas-fueled boilers with non-linear characteristics.

! - Two turbines with linear characteristics.

5 ! - Condenser.

! - Minimizing production cost of desired power and heat production.

Title

mpl_model;

10 !---- SETS ----!

INDEX

PK = (PK1,PK2,PK3);

TG = (TG1,TG2);

regions = (r1,r2,r3,r4);

15

!----- PARAMETERS ----!

DATA

! scalar values !

Q_demand := 140;

20 P_demand := 120;

fuel_cost := 600;

deviation_cost := 3000;

!--- LOADING PARAMS FROM EXCEL --- !

25 ! Enthalpy !

i_in_PK = EXCELRANGE("param_MPL.xls", "C9");

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXIX

i_out_PK = EXCELRANGE("param_MPL.xls", "C10");

i_out_TG = EXCELRANGE("param_MPL.xls", "C11");

30 ! Power characteristics of boilers

Qin_PK_char[PK, regions] = EXCELRANGE("param_MPL.xls", "value_in");

Qout_PK_char[PK, regions] = EXCELRANGE("param_MPL.xls", "value_out");

! min/max steam flow on turbines

35 Mp_TG_min[TG] = EXCELRANGE("param_MPL.xls", "MP_TG_min");

Mp_TG_max[TG] = EXCELRANGE("param_MPL.xls", "MP_TG_max");

!--- VARIABLES ---!

DECISION VARIABLES

40 dev; ! Possible difference in the electric power supplied

v_dev; ! auxiliary variable for linearizing abs()

Mp_VK; ! Steam flow to condensator [t / h]

Mp_ZO; ! Steam flow to water heater [t / h]

Mp_PK; ! Steam generated on boilers [t / h]

45 Mp_TG[TG]; ! Steam flow in turbines [t / h]

P_TG[TG]; ! Electric power generated on turbines [MW]

Qin_PK[PK]; ! Power input of boilers [MW]

Qout_PK[PK]; ! Power output of boilers [MW]

PK_state[PK]; ! Boiler states (3 boilers, on/off)

50 TG_state[TG]; ! Turbine states

w[PK,regions]; ! auxiliary variable for SOS2

!-- Special Ordered Set type2 declaration--!

SOS2

55 s[PK]: SET(regions : w[PK,regions]);

!--- OBJECTIVE FUNCTION ---!

MODEL

! min: fuel costs + electric power production costs

60 MIN Cost = deviation_cost*v_dev+ fuel_cost*sum(PK : Qin_PK);

!--- CONSTRAINTS ---- !

SUBJECT TO

! 1. Steam generated on boilers is equal to the steam flow to turbines

65 Mp_PK = sum(TG : Mp_TG);

! 2. Steam flow through turbines is equal to flow to condensation plus

! flow to water heater

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXX

Mp_VK + Mp_ZO = sum(TG : Mp_TG);

70

! 3. Minimal and maximal flow through turbines allowed

min_tg[TG] : Mp_TG_min[TG]*TG_state[TG] <= Mp_TG[TG];

max_tg[TG] : Mp_TG_max[TG]*TG_state[TG] >= Mp_TG[TG];

75 ! 4. The amount of electric energy produced is equal to the entalpy difference in

! the steam (eg. before and after the steam leaves turbines) [MW]

power_tg[TG] : P_TG[TG] = Mp_TG[TG]*(i_out_PK - i_out_TG)/3600;

! 5. Power of heating unit (heating water for further use in buildings) [MW]

80 Q_demand = Mp_ZO*(i_out_TG - i_in_PK)/3600;

! 6. Desired power and possible deviation

P_demand = dev + sum(TG : P_TG);

85 ! 7.Total power of boilers must be sufficient to boil desired amount of

! steam [MW]

Mp_PK*(i_out_PK - i_in_PK)/3600 = sum(PK : Qout_PK);

!--- Boiler constraints - using SOS2 ----!

90 ! Power input definition Qin = \sum_k \lambda_k QinPK_k

sos_1[PK] : Qin_PK(PK)=sum(regions : (w[PK, regions]*Qin_PK_char[PK, regions]));

! Power output definition Qout = \sum_k \lambda_k QoutPK_k

sos_2[PK] : Qout_PK(PK)=sum(regions : (w[PK, regions]*Qout_PK_char[PK, regions]));

95

! Output and input is non-zero only if the boiler is turned on

sos_3[PK] : PK_state(PK) = sum(regions : w[PK,regions]);

! Linearizing abs()

100 v_dev >= dev;

v_dev >= -dev;

!--- BINARY VARIABLES --- !

! Needed to be declared here !

105 BINARY

PK_state[PK];

TG_state[TG];

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXXI

D.8 ZIMPL

1 #### BASIC MODEL IMPLEMENTATION ###

Simplified cogeneration system:

- Three gas-fueled boilers with non-linear characteristics.

- Two turbines with linear characteristics.

5 # - Condenser.

- Minimizing production cost of desired power and heat production.

##-- SETS --##

set PK := { "PK1" , "PK2", "PK3"};

set TG := {"TG1", "TG2"};

10 set regions := {"r1","r2","r3","r4"};

##-- PARAMETERS --##

parameters can be loaded from a text file, but

data are "hard-wired" into the code so as to show

15 # how to define data array in Zimpl

scalar parameters

param Q_demand := 50;

param P_demand := 40;

param deviation_cost := 3000;

20 param fuel_cost := 600;

Enthalpy

param i_in_PK := 750;

param i_out_PK := 3400;

25 param i_out_TG := 2500;

Turbines min/max steam flow

param Mp_TG_min[TG] := <"TG1"> 60, <"TG2"> 60;

param Mp_TG_max[TG] := <"TG1"> 320, <"TG2"> 420;

30

Power characteristics of boilers

param Qin_PK_char[PK*regions] := | "r1", "r2", "r3", "r4" |

|"PK1"|46.92, 60 , 90 ,115.48|

|"PK2"|60.73, 70 , 100 ,121.97|

35 |"PK3"| 89.5, 120 , 143 ,175 |;

param Qout_PK_char[PK*regions] := | "r1", "r2", "r3", "r4" |

|"PK1"|44.11, 40 , 70 ,108.56|

|"PK2"|54.05, 67 , 99 ,108.56|

|"PK3"| 80 , 100 , 140 ,160 |;

40

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXXII

##-- VARIABLES --##

var TG_state[TG] binary; # Turbine states

var PK_state[PK] binary; # Boiler states (3 boilers, on/off)

var dev; # Possible difference in the el.power supplied [MW]

45 var v_dev; # auxiliary variable

var Mp_VK >= 0 <= infinity; # steam flow to condensator [t / h]

var Mp_ZO >= 0; # steam flow to water heater [t / h]

var Mp_PK >= 0; # Steam generated on boilers [t / h]

50 var Mp_TG [TG] >= 0; # Steam flow in turbines [t / h]

var P_TG [TG] >= 0; # El.power generated on turbines[MW]

var Qin_PK [PK] >= 0; # Power input of boilers [MW]

var Qout_PK [PK] >= 0; # Power output of boilers [MW]

55 var w [PK*regions]; # auxiliary variable for SOS2

##-- OBJECTIVE FUNCTION --##

min: fuel costs + electric power production costs

minimize cost: deviation_cost*v_dev + fuel_cost * sum <i> in PK: Qin_PK[i];

60

##-- CONSTRAINTS --##

subto abs_1: v_dev >= dev;

subto abs_2: v_dev >= -1*dev;

65 # 1. Steam generated on boilers is equal to the steam flow to turbines

subto c1: Mp_PK == sum <i> in TG: Mp_TG[i];

2. Steam flow through turbines is equal to flow to condensation plus

flow to water heater

70 subto c2: Mp_VK + Mp_ZO == sum <i> in TG: Mp_TG[i];

3. Minimal and maximal flow through turbines allowed

subto c3min:

forall <j> in TG do Mp_TG[j] >= Mp_TG_min[j]*TG_state[j];

75

3. Minimal and maximal flow through turbines allowed

subto c3max:

forall <j> in TG do Mp_TG[j] <= Mp_TG_max[j]*TG_state[j];

80 # 4. The amount of electric energy produced is equal to

the entalpy difference in the steam

(eg. before and after the steam leaves turbines) [MW]

APPENDIX D. SOURCE CODES OF BASIC MODEL IMPLEMENTATION XXXIII

subto c4:

forall <g> in TG do P_TG[g] == Mp_TG[g]*(i_out_PK - i_out_TG)/3600;

85

5. Power of heating unit (heating water for further use in buildings) [MW]

subto Heat_demand: Q_demand == Mp_ZO*(i_out_TG - i_in_PK)/3600;

6. Desired power and possible deviation [MW]

90 subto Power_demand: P_demand == dev + sum <g> in TG: P_TG[g];

7.Total power of boilers must be sufficient to boil desired amount of

steam [MW]

subto Boiler_power: Mp_PK*(i_out_PK-i_in_PK)/3600==sum <i> in PK: Qout_PK[i];

95

##-- Boiler constraints - using SOS2 --##

Power input definition Qin = \sum_k \lambda_k QinPK_k

subto total_cost_x:

forall <i> in PK:

100 Qin_PK[i] == sum <j> in regions: (Qin_PK_char[i,j]*w[i,j]);

Power output definition Qout = \sum_k \lambda_k QoutPK_k

subto weights_of_fx:

forall <i> in PK:

105 Qout_PK[i] == sum <j> in regions: (Qout_PK_char[i,j]*w[i,j]);

Output and input is non-zero only if the boiler is turned on

subto weights_must_sum_to_PK_state:

forall <i> in PK:

110 PK_state[i] == sum <j> in regions: w[i,j];

Declaration of SOS2 for each boiler

sos s1: forall <j> in regions: type2: w["PK1",j];

sos s2: forall <j> in regions: type2: w["PK2",j];

115 sos s3: forall <j> in regions: type2: w["PK3",j];

Appendix E

Source codes of extended model

implementation

E.1 Yalmip

1 %% --- EXTENDED MODEL IMPLEMENTATION --- **

%* Simplified cogeneration system:

%* @param t - number of hours

%* @param m - number of gas boilers with non-linear characteristic

5 %* @param n - number of turbines with linear characterictic.

%* @param l - number of breakpoints in PWL function

%*

%* Boilers characteristics are described by piecewise linear function,

%* with 4 breakpoints. Deviation and fuel cost are constant, as well as

10 %* Q_demand and P_demand.

%*

%* Parameters are set in benchmark.m script

%*

%*/

15

% Clear internal yalmip cache for better performance

yalmip(’clear’)

%% Start counting

20 tic

% Boiler status

PK_state = binvar(m,t,’full’);

XXXIV

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XXXV

25 % Auxiliary variables for boiler’s non-linear characteristics

% It is not a very efective formulation and it is desirable to

% reformulate it using SOS2

% Currently each boiler is apporximated using three linear sections

PK_regions = binvar(m,l,’full’); %

30

% Turbine status

TG_state = binvar(n,t,’full’);

% Steam generated by boilers [t/h]

35 Mp_PK = sdpvar(t,1,’full’);

% Power output of boilers [MW]

% 1st dimension = time, 2nd dim = boiler, 3rd dim = output in a given section

Qout_PK = sdpvar(m,l,t,’full’);

40

% Power input of boilers [MW]

% 1st dimension = time, 2nd dim = boiler, 3rd dim = input in a given section

Qin_PK = sdpvar(m,l,t,’full’);

45 % Steam flow through turbines [t/h]

Mp_TG = sdpvar(n,t,’full’);

% Electric power generated by turbines [MW]

P_TG = sdpvar(n,t,’full’);

50

% Possible difference in the electric power supplied

% (positive = production is lower than planned)

dev = sdpvar(t,1);

55 % Steam flow to condenser [t/h]

Mp_VK = sdpvar(t,1);

% Steam flow to water heater [t/h]

Mp_ZO = sdpvar(t,1);

60

%% ---- CONSTRAINTS ---%%

% Set of constraints

F = [];

65

% smernice primek

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XXXVI

smernice = diff(Qout_PK_char,1,2)./diff(Qin_PK_char,1,2);

ofset = Qout_PK_char(:,1:end-1) - smernice.*Qin_PK_char(:,1:end-1);

70 % formulate these constraints for each hour

for i=1:t

% do

% Non-negative variables

F = F + [Mp_PK(i)>=0; Mp_TG(:,i)>=0; Mp_VK(i)>=0; Mp_ZO(i)>=0;];

75

% 1. Steam generated on boilers is equal to the steam flow to turbines

F = F + [sum(Mp_PK(i)) == sum(Mp_TG(:,i))];

% 2. Steam flow through turbines is equal to flow to condensation plus

80 % flow to water heater

F = F + [sum(Mp_TG(:,i)) == Mp_VK(i) + Mp_ZO(i)];

% 3. Minimal and maximal flow through turbines allowed

F = F + [Mp_TG_min.*TG_state(:,i) <= Mp_TG(:,i) <= Mp_TG_max.*TG_state(:,i)];

85

% 4. The amount of electric energy produced is equal to the entalpy difference in

% the steam (eg. before and after the steam leaves turbines)

F = F + [P_TG(:,i) == Mp_TG(:,i)*(i_out_PK - i_out_TG)/3600]; % [MW]

90 % 5. Power of heating unit (heating water for further use in buildings)

F = F + [Q_demand(i) == Mp_ZO(i)*(i_out_TG - i_in_PK)/3600]; % [MW]

% 6. Desired power and possible deviation

F = F + [sum(P_TG(:,i)) + dev(i) == P_demand(i)]; % [MW]

95

%% Boiler constraints %%

% Relation between power input and output of boiler

% non-linear characteristics

% (desirable to reformulate using SOS2)

100

% 7.Total power of boilers must be sufficient to boil desired amount of

% steam

F = F + [sum(sum(Qout_PK(:,:,i))) == Mp_PK(i)*(i_out_PK - i_in_PK)/3600]; % [MW]

105 % If a boiler operates only its power could vary only on one power section

F = F + [sum(PK_regions,2) == PK_state(:,t)];

% Input and ouput connection

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XXXVII

% 1. Power output has to be in one section only

110 F = F + [Qin_PK_char(:,1:end-1).*PK_regions

<= Qin_PK(:,:,i) <= Qin_PK_char(:,2:end).*PK_regions];

% 2. Power output is set by lines with angular coeficients

F = F + [Qout_PK(:,:,i) == smernice.*Qin_PK(:,:,i) + ofset.*PK_regions];

115 end

%% ---- OBJECTIVE FUNCTION ----%%

% J = fuel costs + electric power production costs

120 J = fuel_cost*sum(sum(sum(Qin_PK))) + deviation_cost*abs(sum(dev));

%% Stop counting

res.time = toc;

res;

E.2 OptimJ

1 package time.variant;

import data.handling.*;

import data.definition.*;

5

import java.awt.print.Printable;

import java.util.Random;

10 /** --- EXTENDED MODEL IMPLEMENTATION --- **

* Simplified cogeneration system:

* @param t - number of hours

* @param m - number of gas boilers with non-linear characteristic

* @param n - number of turbines with linear characterictic.

15 *

* Boilers characteristics are described by piecewise linear function,

* with 4 breakpoints. Deviation and fuel cost are constant, as well as

* Q_demand and P_demand.

*

20 */

public model extended_model extends ExtendedModelParams solver cplex11 {

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XXXVIII

/**

* Constructor

* @param t - number of hours

25 * @param m - number of gas boilers with non-linear characteristic

* @param n - number of turbines with linear characterictic.

*/

extended_model(int hours, int boilers, int turbines) {

super(hours, boilers, turbines);

30 }

/*---- PARAMETERS ----*/

//min/max steam flow through turbines [t/h]

protected double[] Mp_TG_min[n];

protected double[] Mp_TG_max[n];

35 // Power characteristics of boilers

// row -> boiler, column -> input/output

protected double[][] Qin_PK_char[m][breakpoints];

protected double[][] Qout_PK_char[m][breakpoints];

// Enthalpy

40 protected double i_in_PK;

protected double i_out_PK;

protected double i_out_TG;

// Desired heat and el. power production

protected double[] Q_demand[t]; // Heat production [MW]

45 protected double[] P_demand[t]; // Electric power pruduction [MW]

protected double deviation_cost; // [CZK]

protected double fuel_cost; // [CZK]

50 /*---- VARIABLES ----*/

// Turbine status

final var boolean[][] TG_state[t][n];

// Boiler status

final var boolean[][] PK_state[t][m];

55 // Steam flow through turbines [t/h]

final var double[][] Mp_TG[t][n] in 0 .. Double.MAX_VALUE;

// Electric power produced by generators [MW]

final var double[][] P_TG[t][n] in 0 .. Double.MAX_VALUE;

// Steam flow to condenser [t/h]

60 final var double[] Mp_VK[t];

// Steam flow to the water heater [t/h]

final var double[] Mp_ZO[t];

// Steam flow from boilers [t/h]

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XXXIX

final var double[] Mp_PK[t];

65 // contracting penalty [CZK for each MW]

final var double[] dev[t];

// Power input of boilers [MW]

// row -> hour, column -> boiler

final var double[][] Qin_PK[t][m] in 0 .. Double.MAX_VALUE;

70 // Power output of boilers [MW]

// row -> hour, column -> boiler

final var double[][] Qout_PK[t][m] in 0 .. Double.MAX_VALUE;

// Auxiliary variable for SOS2 (lambda)

// 1st dimension -> hour, 2nd dimension -> boiler, 3rd dimension -> lambda variables

75 final var double[][][] w[t][m][breakpoints] in 0 .. Double.MAX_VALUE;

/*---- CONSTRAINTS ----*/

constraints {

// Formulate the following constraints for each hour:

80 forall(int h : 0 .. t-1) {

// Assume variables to be non-negative

Mp_PK[h] >=0;

Mp_ZO[h] >=0;

Mp_VK[h] >=0;

85

// 1. Steam generated on boilers is equal to the steam flow to turbines

Mp_PK[h] == sum{int i : 0 .. Mp_TG[h].length-1}{Mp_TG[h][i]};

// 2. Steam flow through turbines is equal to flow to condensation plus

90 // flow to water heater

Mp_VK[h] + Mp_ZO[h] == sum{int i : 0 .. Mp_TG[h].length-1}{Mp_TG[h][i]};

// 3. Minimal and maximal steam flow through turbines allowed

forall(int i : 0 .. Mp_TG[h].length-1) {

95 Mp_TG_min[i]*?TG_state[h][i] <= Mp_TG[h][i];

Mp_TG[h][i] <= Mp_TG_max[i]*?TG_state[h][i];

}

// 4. The amount of electric energy produced is equal to the entalpy difference

100 // in the steam (eg. before and after the steam leaves turbines) [MW]

sum{int i : 0 .. P_TG[h].length-1}{P_TG[h][i]} ==

sum{int i : 0 .. Mp_TG[h].length-1}{Mp_TG[h][i]}*(i_out_PK - i_out_TG)/3600;

// 5. Power of heating unit (heating water for further use in buildings) [MW]

105 Q_demand[h] == Mp_ZO[h]*(i_out_TG - i_in_PK)/3600;

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XL

// 6. Desired power and possible deviation [MW]

P_demand[h] == sum{int i : 0 .. P_TG[h].length-1}{P_TG[h][i]} + dev[h];

110 //---- Boiler constraints - using SOS2 ---- //

// Power input definition

forall(int i : 0 .. Qin_PK[h].length-1) {

Qin_PK[h][i] ==

sum{int j : 0 .. Qin_PK_char[i].length-1}{w[h][i][j]*Qin_PK_char[i][j]};

115 }

// Power output definition

forall(int i : 0 .. Qout_PK[h].length-1) {

Qout_PK[h][i] ==

120 sum {int j : 0 .. Qout_PK_char[i].length-1}{w[h][i][j]*Qout_PK_char[i][j]};

}

// Output and input is non-zero only if the boiler is turned on.

forall(int i : 0 .. PK_state[h].length-1) {

125 sum {int k : 0 .. w[h][i].length-1} {w[h][i][k]} == ?PK_state[h][i];

}

// SOS2 declaration

forall(int i : 0 .. w[h].length-1) {

130 cplex11.SOS2(w[h][i], Qin_PK_char[i]);

}

// 7.Total power of boilers must be sufficient to boil desired

// amount of steam [MW]

135 sum{int i : 0 .. Qout_PK[h].length-1}{Qout_PK[h][i]} ==

Mp_PK[h]*(i_out_PK - i_in_PK)/3600;

}

}

140 /*---- OBJECTIVE FUNCTION ----*/

// min: fuel costs + electric power production costs

minimize

sum{int h : 0 .. t-1}{

java.lang.Math.abs(dev[h])*deviation_cost+

145 sum{int i : 0 .. Qin_PK[h].length-1}{Qin_PK[h][i]*fuel_cost}

};

}

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XLI

// Superclass

150 class ExtendedModelParams {

final int t; // number of hours

final int m; // number of boilers

final int n; // number of turbines

final int breakpoints = 4; // number of breakpoints

155

ExtendedModelParams(int time, int boilers, int turbines) {

this.t = time;

this.m = boilers;

this.n = turbines;

160 }

}

E.3 Zimpl

1 #### EXTENDED MODEL IMPLEMENTATION ###

Simplified cogeneration system:

- m gas boilers with non-linear characteristic.

- n turbines with linear characterictic.

5 # - t hour planning horizon

- one Condensator.

- for extraction time benchmark.

10 # -----------

SETS

param hours := read "data.dat" as "1n";

param boilers := read "data.dat" as "2n";

15 param turbines := read "data.dat" as "3n";

set PK := { 1..boilers};

set TG := { 1..turbines};

regions = breakpoints in boilers power char.

20 set regions := {"r1","r2","r3","r4"};

set t := { 1..hours };

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XLII

PARAMETERS

25 # -----------

scalar parameters

param Q_demand := 250;

param P_demand := 240;

param deviation_cost := 3000;

30 param fuel_cost := 600;

Enthalpy

param i_in_PK := 750;

param i_out_PK := 3400;

35 param i_out_TG := 2500;

Turbines min/max steam flow

same params for all turbines

param Mp_TG_min := 60;

40 param Mp_TG_max := 320;

Power characteristics of boilers

same characteristics for all boilers

param Qin_PK_char[regions] := <"r1"> 46.92, <"r2"> 60, <"r3"> 90, <"r4"> 115.48;

45 param Qout_PK_char[regions] := <"r1"> 44.11, <"r2"> 40, <"r3"> 70, <"r4"> 108.56;

VARIABLES

50 var TG_state[t*TG] binary; # Turbine status

var PK_state[t*PK] binary; # Boiler status

var dev[t]; # Possible difference in the el.power supplied [MW]

var v_dev[t]; # auxiliary variable for reformulation abs()

55 var Mp_VK[t] >= 0 <= infinity; # flow to condenser [t per h]

var Mp_ZO[t] >= 0; # flow to water heater [t per h]

var Mp_PK[t] >= 0; # Steam generated on boilers [t per h]

var Mp_TG [t*TG] >= 0; # Steam flow in turbines [t per h]

var P_TG [t*TG] >= 0; # El.power generated on turbines[MW]

60 var Qin_PK [t*PK] >= 0; # Power input of boilers [MW]

var Qout_PK [t*PK] >= 0; # Power output of boilers [MW]

var w [t*PK*regions]; # auxiliary variable for SOS2

65

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XLIII

CONSTRAINTS

min: fuel costs + electric power production costs

70 minimize cost: deviation_cost*sum<j> in t: v_dev[j] +

fuel_cost*sum<j> in t: (sum <i> in PK: Qin_PK[j,i]);

reformulating absolute value

subto abs1:

75 forall <h> in t do

v_dev[h] >= dev[h];

reformulating absolute value

subto abs2:

80 forall <h> in t do

v_dev[h] >= -1*dev[h];

1. Steam generated on boilers is equal to the steam flow to turbines

subto c1:

85 forall <h> in t do

Mp_PK[h] == sum <i> in TG: Mp_TG[h,i];

2. Steam flow through turbines is equal to flow to condensation plus

flow to water heater

90 subto c2:

forall <h> in t do

Mp_VK[h] + Mp_ZO[h] == sum <i> in TG: Mp_TG[h,i];

3. Minimal allowed steam flow through turbines

95 subto c3min:

forall <h> in t do

forall <j> in TG do Mp_TG[h,j] >= Mp_TG_min*TG_state[h,j];

3. Maximal allowed steam flow through turbines

100 subto c3max:

forall <h> in t do

forall <j> in TG do Mp_TG[h,j] <= Mp_TG_max*TG_state[h,j];

4. The amount of electric energy produced is equal to

105 # the entalpy difference in the steam

(eg. before and after the steam leaves turbines) [MW]

subto c4:

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XLIV

forall <h> in t do

forall <g> in TG do P_TG[h,g] == Mp_TG[h,g]*(i_out_PK - i_out_TG)/3600;

110

5. Power of heating unit (heating water for further use in buildings) [MW]

subto c5:

forall <h> in t do

Q_demand == Mp_ZO[h]*(i_out_TG - i_in_PK)/3600;

115

6. Desired power and possible deviation [MW]

subto c6:

forall <h> in t do

P_demand == dev[h] + sum <g> in TG: P_TG[h,g];

120

7.Total power of boilers must be sufficient to boil desired amount of

steam [MW]

subto c7:

forall <h> in t do

125 Mp_PK[h]*(i_out_PK - i_in_PK)/3600 == sum <i> in PK: Qout_PK[h,i];

Boiler constraints - using SOS2

130 # Power input definition

subto total_cost_x:

forall <h> in t do

forall <i> in PK:

Qin_PK[h,i] == sum <j> in regions: (Qin_PK_char[j]*w[h,i,j]);

135

Power output definition

subto weights_of_fx:

forall <h> in t do

forall <i> in PK:

140 Qout_PK[h,i] == sum <j> in regions: (Qout_PK_char[j]*w[h,i,j]);

Output and input is non-zero only if the boiler is turned on

subto weights_must_sum_to_PK_state:

forall <h> in t do

145 forall <i> in PK:

PK_state[h,i] == sum <j> in regions: w[h,i,j];

Declaration of SOS2 for each boiler

sos s1: forall <h> in t:

APPENDIX E. SOURCE CODES OF EXTENDED MODEL IMPLEMENTATION XLV

150 forall <k> in PK:

forall <j> in regions:

type2: w[h,k,j];

	Nomenclature
	Introduction
	Basic model of a cogeneration system
	Mathematical formulation of the model
	Piecewise linear functions

	Modelling languages survey
	The initial survey and other resources
	Features investigated
	Modeling languages for further evaluation

	Basic model implementation
	Features investigated
	Yalmip
	GAMS
	OptimJ
	Gurobi API
	LINGO
	AIMMS
	AMPL
	MPL
	Zimpl
	Modelling languages for the final testing

	Extended model implementation
	Extended model of a cogeneration system
	Benchmarking methods
	Results and recommendations

	Conclusion
	References
	Results of modelling languages survey
	Basic model parameters and power characteristics
	Parameters
	Power characteristics of boilers

	Contents of the enclosed CD
	Source codes of basic model implementation
	Yalmip
	GAMS
	OptimJ
	AIMMS
	AMPL
	LINGO
	MPL
	ZIMPL

	Source codes of extended model implementation
	Yalmip
	OptimJ
	Zimpl

