
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Hybridization of Distance Sensor with
Relative Localization System UVDAR

Dominik Fischer

Supervisor: Ing. Viktor Walter
May 2020

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

475380Personal ID number:Fischer DominikStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Hybridization of Distance Sensor with Relative Localization System UVDAR

Bachelor’s thesis title in Czech:

Hybridizace dálkového senzoru se systémem relativní lokalizace UVDAR

Guidelines:
The student will familiarize himself with the Robot Operating System (ROS), as well as with the software suite used by
the Multi-robot systems group build around ROS.
Some of our platforms use the UVDAR system for mutual relative localization. This system is based on computer vision
in the ultraviolet range, and therefore has limited precision in distance estimation. This drawback can be addressed by
measuring the distance to a target of known relative bearing with a precise distance sensor.
On the hardware side, the student will select an appropriate distance sensor, microcontroller unit and actuator that will
allow a UAV equipped with the UVDAR system to refine the relative pose estimate of a target in terms of distance.
On the software side, the student will develop a driver using ROS, that will allow the distance sensor to reliably aim at
targets of known relative bearing retrieved by UVDAR.

Bibliography / sources:
[1] V Walter, N Staub, A Franchi and M Saska. UVDAR System for Visual Relative Localization With Application to
Leader–Follower Formations of Multirotor UAVs. IEEE Robotics and Automation Letters 4(3):2637-2644, July 2019.
[2] J E Gentle. Matrix transformations and factorizations. Matrix Algebra. Springer, Cham, 2017.
[3] Y Pyo, H Cho, L Jung, D Lim. ROS Robot Programming. Matrix Algebra. ROBOTIS, 2017.

Name and workplace of bachelor’s thesis supervisor:

Ing. Viktor Walter, Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 09.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Viktor Walter
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

First of all, I would like to express my
very sincere thanks towards my supervisor
Ing. Viktor Walter for his patience and
willingness while guiding me throughout
my work regarding this thesis.

My further gratitude belongs to my
father, for his advices and all the help
he gave me during my studies, and the
other members of my family as well, for
their constant, not only school–related,
support.

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, 16. May 2020
signature

v

Abstract

This thesis proposes an extension of an ex-
isting system for mutual relative localiza-
tion of Unmanned Aerial Vehicles (UAVs).
The existing system is vision-based and
thus suffers from lower precision in dis-
tance estimation than in bearing estima-
tion, a challenge that this thesis addresses.
The extension consists of an onboard laser
distance sensor coupled with a positioning
mechanism. The sensor is then used for
retrieving mutual distance between UAVs.
This thesis is mainly focused on the design
and assembly of the positioning mecha-
nism for the sensor and a subsequent de-
velopment of a driver for the positioning
mechanism. Said driver will also allow
processing of the data received from the
sensor. Finally, the developed system is
tested in the Gazebo simulator.

Keywords: relative mutual localization,
UAV, distance measurement, ROS,
simulation, Gazebo

Supervisor: Ing. Viktor Walter
Czech Technical University
Faculty of Electrical Engineering
Department of Cybernetics
Karlovo náměstí 13
121 35 Prague 2
Czech Republic

Abstrakt

V této práci je navrženo rozšíření existu-
jícího systému pro vzájemnou relativní
lokalizaci bezpilotních helikoptér (UAV).
Stávající systém je založen na počítačo-
vém vidění, a proto je méně přesný při
určování vzdálenosti než směru. Předklá-
daná práce se proto věnuje zvýšení přes-
nosti určování vzdálenosti pomocí lasero-
vého senzoru. Ten je umístěn na pohybli-
vém závěsu přímo na palubě helikoptéry a
umožňuje přesné měření vzdálenosti mezi
bezpilotními drony. Náplní práce je ná-
vrh a sestavení závěsného mechanismu pro
laserový senzor a vývoj obslužného pro-
gramu, který mechanismus řídí a zpraco-
vává získaná data. Celý systém je testován
v Gazebo simulátoru.

Klíčová slova: relativní vzájemná
lokalizace, UAV, měření vzdálenosti,
ROS, simulace, Gazebo

Překlad názvu: Hybridizace dálkového
senzoru se systémem relativní lokalizace
UVDAR

vi

Contents

1 Introduction 1

2 State of the Art 5

3 Theoretical Background 7

3.1 Ultraviolet Direction and Ranging
system . 7

3.2 Basic Structure of the Proposed
Extension . 8

3.3 Coordinate Frames 9

3.3.1 Coordinate Transformations . 10

3.4 Obtaining Servo Angles 13

3.5 Distance with Covariance 14

4 Hardware Assembly 17

4.1 Used Hardware Components . . . 17

4.1.1 OpenCM9.04-C
Microcontroller 18

4.1.2 Dynamixel AX-12A Servo
Actuator . 19

4.1.3 Garmin LIDAR-Lite v3 20

4.2 Complete Assembled Distance
Measuring Mechanism 22

4.2.1 Mechanism Parameters 22

5 Software Driver Development 25

5.1 Robot Operating System 25

5.2 Main Control Node 26

5.3 OpenCM9.04-C Program 28

5.4 Arduino Mega 2560 Program . . . 30

6 Simulation 31

6.1 Gazebo Simulator 31

6.2 3D Visualization Tool (RViz) . . . 32

6.3 UVDAR Extension Model for
Gazebo . 33

6.3.1 The Xacro File 33

6.3.2 Transmission Elements and the
Control Plugin 35

6.3.3 Garmin Sensor Model 36

6.4 Experiments in Simulator 37

6.4.1 Experiment 1 38

vii

6.4.2 Experiment 2 38

6.4.3 Experiment 3 38

6.4.4 Experiment 4 39

6.4.5 Discussion 39

7 Conclusion 45

Bibliography 47

A List of Abbreviations 51

B CD Content 53

viii

Figures

1.1 The DJI F450 quadrotor. 2

3.1 A side view of the individual
coordinate systems connected to the
UAV together with their positions. 10

3.2 Graphical expression of individual
actuator coordinates φ and ψ. Axis
follow the xyz := RGB convention. 13

3.3 Graphical representation of
covariances of position estimated by
the UVDAR (pink) and by the
proposed extension (green). 15

4.1 OpenCM9.04-C board. 18

4.2 Front view of the Dynamixel
AX-12A. 19

4.3 Garmin LIDAR-Lite v3. 21

4.4 Behaviour of laser beams reflecting
off of surfaces with different reflective
characteristics. 22

4.5 Assembled distance measuring
mechanism with the OpenCM9.04-C
microcontroller. 23

5.1 Example ROS communication
diagram between multiple nodes. . 26

5.2 Data flow diagram of the control
node. 27

6.1 Gazebo GUI with running
simulation. 32

6.2 Visualization with RViz. 33

6.3 Complete model of the positioning
mechanism with Garmin distance
sensor in Gazebo. Marked with a
blue ellipse. 36

6.4 Flown trajectories for each
experiment. 37

6.5 Measured data for experiment 1. 41

6.6 Measured data for experiment 2. 42

6.7 Measured data for experiment 3. 43

6.8 Measured data for experiment 4. 44

ix

Tables

1.1 Used matrix and vector notation . 3

3.1 Table of DH parameters with
meaning. 11

3.2 Values of DH parameters 12

4.1 Values of physical properties of the
proposed mechanism. 23

A.1 List of Abbreviations. 51

B.1 CD content. 53

x

Chapter 1

Introduction

The term Unmanned Aerial Vehicle (UAV) denotes an aircraft that does not
have a human pilot onboard and is operated either remotely or autonomously
by onboard computers. Their size varies from large military UAVs such as
the Heron TP designed for the Israeli Air Force, with wingspan of 26 m and
take–off weight of 4 650 kg [1], to so called Micromechanical Flying Insect
(MFI) with less than 2.5 cm wingspan [2]. In this thesis the term UAV refers
to a quadrotor DJI F450, see Fig. 1.1. UAVs, in general, started being system-
atically developed by the U.S. Army in World War I. [3]. However, nowadays
their field of application extends widely beyond the military deployment.
Despite being considered unreliable and inaccurate at first [4], thanks to
technological advancement, UAVs are being used more and more often for a
large number of different tasks and are, therefore, becoming a very promising
field for study and research.

Despite the range of applications of UAVs being relatively wide, certain
limitations to what one drone can accomplish at its own do exist. The payload
can be too heavy to carry or with too much inertia to stabilize. The task
may be too complex for a single unit to accomplish, or this could take an
unreasonable amount of time. Possible solutions to these problems are being
assiduously researched by the robotics community and one of the proposed
approaches is to employ multiple UAVs at once or even UAV swarms in order
to complete the given task. The success of said cooperation is conditional on
the ability of the UAVs to locate each other and thus being able to adjust
their behaviour and actions accordingly.

1

1. Introduction

Figure 1.1: The DJI F450 quadrotor [5].

In light of the above, a reliable system for mutual relative localization of
UAVs is vital in every application, where some form of cooperation between
multiple UAVs is expected. The Multi-robot-Systems (MRS)1 Group from
Czech Technical University (CTU) in Prague are addressing the problem
of mutual relative localization of multiple UAVs by using a system called
UVDAR (Ultraviolet Direction and Ranging) [6]. The UVDAR system is
based on computer vision in the ultraviolet range and consists of ultraviolet
blinking LED markers and two UV cameras per UAV. The importance of
accurate distance estimate in systems for mutual localization of not only flying
machines is self-evident. A more formal proof of this statement can be found
in [7], where two systems for anonymous mutual localization of UAVs were
examined and compared. The first system used bearing-only measurements
and the second one combined the bearing and distance measurement. The
localization system that used both bearing and distance measurements was
shown to perform significantly better.

The main drawback of the UVDAR system at the moment is that a reliable
and precise distance between two or more UAVs is difficult or in some cases
even impossible to retrieve due to a finite resolution of the UV cameras
used in the UVDAR system. This problem can be solved by integrating an
external distance sensor that will reliably measure distance to a target of
known relative bearing retrieved by UVDAR. In this thesis, such onboard
sensor is integrated into the UVDAR system, together with a positioning

1https://mrs.felk.cvut.cz

2

......................................1. Introduction

mechanism that will allow the sensor to be aimed at targets of interest and
retrieve their distance relative to the UAV carrying the sensor. Despite the
fact, that in the majority of multi–UAV applications, more than just two
UAVs are employed, in this thesis the situation is restricted only to a pair of
UAVs. A functional system, that can reliably localize one target UAV can be
seen as a solid stepping stone in order to widen and adjust the system so that
it can track multiple targets at once. Along with the hardware side of the
proposed extension a driver is developed that will move with the designed
positioning system and hence aim the sensor. The driver is implemented
using ROS (Robot Operating System), which is a widely used meta-operating
system that offers a development environment for robot programming, where
multiple hardware and software components can be connected [8].

The outline of this thesis is as follows. In the State of the Art chapter, the
recent findings and research in the field of UAV localization are overviewed,
followed by a chapter where the theoretical analysis of the proposed extension
is provided. Next, the hardware side of the proposed actuator and sensor is
described. A description of the developed software driver is provided in the
Software Driver Development chapter and lastly, the assembled prototype
with distance sensor driven by the developed driver is tested in simulation.

Throughout this thesis, some of the mathematical operations require the
use of matrices and vectors. Overview of the used notation and symbols is in
Table 1.1.

Table 1.1: Used matrix and vector notation

Symbol Meaning
Ti
j Transformation from coordinate frame i to coordinate frame j

vj Vector expressed in coordinate frame j
Σ Covariance matrix

3

4

Chapter 2

State of the Art

Since the problem of mutual localization is vital for any autonomous applica-
tion of UAVs, it has been and is continuing to be the focus for many research
teams all over the world. The most obvious approach is to rely on absolute
measurement as a source of data for position retrieval. Numerous indoor as
well as outdoor examples can be found in literature. The majority of the
laboratory experiments use motion capture system (Optitrack2, VICON3,
etc.) as a source of information. For instance, in [9] the VICON motion
capture system is used for localization of swarms of micro UAVs and com-
mands for each UAV are centrally calculated on a desktop station based on
the received data. Outdoor cooperative flights tend to rely on Global Naviga-
tion Satellite System (GNSS) as in [10] where each UAV is equipped with a
GPS receiver and shares its position with other flock members. The main
disadvantage of the aforementioned approaches is the need to preinstall the
needed infrastructure, and, therefore, the inability to be used in inaccessible
areas.

A decentralized approach addresses this issue by replacing absolute position
measurements with onboard sensors. Solutions presented in literature vary
mostly in used sensors and measured parameters. An example of such
approach, combining a visual sensor with inertial measurements from the
robot inertial measurement unit (IMU), can be found in [11]. The disadvantage
of the presented solution is that the UAVs rely on communication that can
be subject to network congestion and interference or outdoor conditions in
general and that the localization algorithm is computationally expensive.
A purely vision-based absolute localization system that does not rely on

2https://optitrack.com/
3https://www.vicon.com/

5

2. State of the Art
inter-UAV communication is proposed in [12]. The UAV compares captured
pictures of the ground beneath it and compares them to a database of
stored georeferenced frames. To increase robustness of this method, which
is otherwise highly susceptible to errors caused by season changes or light
conditions in general, the Mutual Information method [13] is used. In order
to suppress the otherwise inevitable errors in vision-based absolute position
estimation that occur due to the constant environmental and weather changes,
the measurement of relative position can be employed. A simple method of
mutual relative localization of two UAVs is described in [14] where the only
information used for determining the relative positions of both UAVs are the
measured distances from one another and a desired trajectory of each UAV.
Even though this approach is sufficient for simple trajectories, it can not be
used for more complex applications since the proposed algorithm is described
only for the case where both UAVs are traveling at equal altitudes.

The approach used in this thesis is based on vision in the ultraviolet
spectrum and mitigates the majority of the aforementioned drawbacks. For
a detailed description of the Ultraviolet Direction and Ranging system see
[6, 15, 16]. The main advantages of using the UVDAR system for mutual
relative localization are twofold. First, due to the system working in the
ultraviolet spectrum it is very robust and reliable regardless the light and
environment conditions. Secondly, it uses only light onboard cameras and is
not as demanding in terms of computational power as the system proposed
in [11], making it an easily embeddable system that does not need any
external infrastructure. Furthermore, the UVDAR system was shown to
perform well in complex outdoor conditions and experiments, which can be
found in [17].

6

Chapter 3

Theoretical Background

As mentioned in the introduction, the UVDAR system is not precise in terms
of distance estimation. The proposed onboard extension of the UVDAR
system that addresses and aims to solve this problem is described in this
chapter. First, the UVDAR system itself is briefly introduced with its main
functionalities and working principles. This is followed by a basic description of
the proposed UVDAR extension. After that the coordinate systems connected
to different parts of the developed mechanism are described, together with
transformations between them. Then the coordinates describing the state
of the system, namely the yaw and pitch angles are derived. Last but not
least, the way of using the measured distance in order to make the estimated
positions more precise is presented.

In this chapter the matrix and vector notation introduced in Table 1.1 is
used.

3.1 Ultraviolet Direction and Ranging system

The Ultraviolet Direction and Ranging (UVDAR) system is an onboard
system for mutual relative localization of UAVs. It was developed by the
Multi-robot-Systems Group at CTU in Prague. The system consists of active
ultraviolet LED markers on the UAVs and cameras that can detect ultraviolet
light. Since the system consists only of these easily embeddable parts, one
of its main advantages is evident. The system does not need any external

7

3. Theoretical Background
equipment or special preparation in the operating area. Furthermore, due to
UVDAR working in the UV spectrum, the system is robust with respect to
environmental conditions such as bright sunlight or complex background. One
of the main working principles of UVDAR is based on the observation that the
presence of ultraviolet light in sunlight is significantly lower than the colors in
visible spectrum. Not only that, but additionally not many artificial sources
of light emit ultraviolet light as well. This means that when the camera
captures an UV source, it is most likely a blinking marker attached to a target
UAV. The only other frequently present source of UV light is the sun and
the disturbance that it presents can be easily suppressed with the knowledge
of the size and position of the spots in camera image. These properties
of UVDAR make it a system suitable not only for indoor and laboratory
applications with controlled lighting, which is usually of high importance
for any computer vision-based experiments, but it can be successfully used
outdoors regardless of the weather and lightning conditions [6].

The blinking LED markers are used not only for relative position estimation
but their presence is utilized further. As thoroughly described in [16] the
blinking pattern can be also used to retrieve relative heading of the target
UAV and as a means of identification. The blinking LEDs have a known
layout that ensures that from every viewpoint at least two markers are visible.
Half of the LEDs are mounted on the port side of the UAV and the other
half on the starboard side. LEDs on each side are blinking with a different
frequency making it possible to unequivocally retrieve the relative yaw of
the target UAV with respect to the observer. The relative bearing can be
assessed from the combination of the number of visible markers and their
blinking frequencies.

The above working principle and properties make UVDAR a reliable, robust
and undemanding, in terms of required equipment, system for relative mutual
localization of UAVs that can be used outdoors and even in unknown areas
and areas that are difficult to access. The UAVs using this system are able
to fly in formations, such as leader-follower or classical swarms, for more
information on flying formations see [16] and [18].

3.2 Basic Structure of the Proposed Extension

One of the main tasks of any localization system is to be able to determine
how far the localized object is. It is desirable for the UAV to be able to
measure distance to other objects without the need to adjust or change its

8

.................................. 3.3. Coordinate Frames

planned trajectory. It is therefore necessary for the rangefinder to have a
mechanism that allows it to be aimed independently of the pose of the UAV.

The proposed onboard sensor can be divided into two main parts. One
is the distance sensor itself and the second one is the necessary positioning
mechanism. The positioning mechanism has two degrees of freedom (2-DOF)
and can be unequivocally described using two angles, which will be called
by terms borrowed from aircraft principal axes as yaw and pitch [φ ψ]T .
The 2-DOF allow the sensor to be rotated horizontally as well as vertically,
ensuring that all targets retrieved by UVDAR can be aimed at. The used
distance sensor is an optical laser-based distance measurement sensor of which
a more in depth description is provided in Subsection 4.1.3.

In order to control the above hardware, a software driver was developed
and is discussed in Chapter 5.

3.3 Coordinate Frames

Since the positioning mechanism consists of multiple parts, multiple coordinate
frames are needed for the description of relative position of targets with respect
to different parts of the manipulator. A basic diagram of the complete system,
together with individual coordinate frames and their positions is shown in
Fig. 3.1. The coordinate systems are the following:

. The central coordinate system in which the input coordinates are ex-
pressed is connected to the body of the UAV. It has origin Ou and is
denoted by subscript u.

. The UV camera has a coordinate system denoted by subscript c. In
Fig 3.1 a simplified model is shown with only one camera. In reality,
two UV cameras are mounted onto the UAV in order to widen the field
of view. Each of the cameras has its own coordinate frame and origin.
The origin of the camera frame in the simplified diagram is denoted by
Oc.

. The origin Oh of the coordinate frame connected to the servo rotating in
horizontal plane lies in the center of its rotor and denoted by index h.

9

3. Theoretical Background

d1

a1 d2

a2

UV camera
Oc xc

zc

yc

UAV body
Ou xu

zu

yu

horizontal servo

Oh xh

zh

yh

vertical servo

Ov xv

yv

zv

distance sensor

Figure 3.1: A side view of the individual coordinate systems connected to the
UAV together with their positions.

. The vertical servo coordinate frame is accompanied by subscript v and
its origin Ov is located in the center of the rotor rotating in vertical
plane. Since both the coordinate frame as well as the distance sensor are
fixed to the rotor, the vertical servo coordinates can be used to describe
the sensor as well.

The camera frame from Fig. 3.1 is superfluous to the described application
and is mentioned only for completeness. The target 3D position computed by
the UVDAR is considered as reliable for the purpose of this work. For more
information regarding obtaining the position of the target from the visible
markers, including its filtering and stabilization, the reader is reffered to [15].

3.3.1 Coordinate Transformations

In order to be able to switch between coordinate systems when expressing
coordinates of a point in space, the relations between individual coordinate
frames and their positions need to be described.

10

.................................. 3.3. Coordinate Frames

Let vu = [xu yu zu 1]T ∈ R4 be the input vector of homogeneous co-
ordinates in the UAV body frame. In the interest of future computations
it is desirable to express the coordinates in different coordinate systems as
well. The derivation of transformational relations between individual frames
follows.

Every transformation in space can be broken up into translation and
rotation around its coordinate axes, which are representable by matrices [19].
In this instance the parameters and matrices of each transform were found
using the Denavit-Hartenberg (DH) notation which restricts movements to
only four possible actions described by four DH parameters α, a, θ and d
whose meanings are explained in Table 3.1. Each transformation between
two distinct frames can thus be described using these parameters.

Table 3.1: Table of DH parameters with meaning.

Parameter Meaning
θ rotation around the z axis
d translation along the z axis
α rotation around the x axis
a translation along the x axis

Firstly, in order to get from the UAV body frame to the coordinate frame
connected to the horizontal servo, the origin Ou needs to be shifted by −d1
along the zu axis and then by a1 along the xu axis. The 4× 4 transformation
matrix Th

u that performs said shifts is in (3.1).

Th
u =


1 0 0 a1
0 1 0 0
0 0 1 −d1
0 0 0 1

 (3.1)

In order to get from the horizontal servo frame to the vertical servo frame,
a slightly more complex transformation needs to be performed. First step
is to rotate the coordinate system by φ around the zh axis then shift by d2
along the same axis and finally shift by a2 in direction of the new rotated
axis x′h. For the meaning and definition of angle φ see Section 3.4. Because
according to the DH-notation, the joint should rotate around its z axis, it is
necessary to perform one last rotation around the xv axis by π

2 . The form of
the translation matrix was already introduced in (3.1) and the general form
of a rotation matrices around the x axis is in (3.2) and around the z axis is
in (3.4).

11

3. Theoretical Background

Rx(γ) =


1 0 0 0
0 cos(γ) − sin(γ) 0
0 sin(γ) cos(γ) 0
0 0 0 1

 (3.2)

(3.3)

Rz(γ) =


cos(γ) − sin(γ) 0 0
sin(γ) cos(γ) 0 0

0 0 1 0
0 0 0 1

 (3.4)

To sum up, the matrix Tv
h that performs the transformation between the

horizontal and vertical servo frames is derived in (3.5) as a product of two
rotational matrices and one translational.

Tv
h = Rz(φ)


1 0 0 a2
0 1 0 0
0 0 1 d2
0 0 0 1

Rx

(
π

2

)
. (3.5)

The transformation
Tv
u = Th

uTv
h, (3.6)

takes the coordinates in the vertical servo frame and returns its coordinates
in the UAV body frame and its DH parameters are in Tab. 3.2.

Table 3.2: Values of DH parameters

Final frame θ d α a

Horizontal servo 0 −d1 0 a1

Vertical servo φ d2
π
2 a2

However, what is desired, is the inverse transform, because the input is in
the UAV body frame. Therefore, the position of the target in the vertical
servo frame vv is obtained using relation (3.7).

vv = Tu
vvu = (Tv

u)−1 vu, (3.7)

where vv and vu are homogeneous coordinates in the vertical servo and UAV
body frames. Tv

u and Tu
v are transformation matrices.

12

................................ 3.4. Obtaining Servo Angles

3.4 Obtaining Servo Angles

The success or failure of the developed distance measuring system depends
on how accurately the individual servo angles will be calculated and thus how
precisely will the sensor be aimed.

As mentioned in Section 3.2, the positioning mechanism has two degrees
of freedom and each configuration can be described using the coordinates φ
and ψ. The values of φ and ψ for every input set of cartesian coordinates
vu = [xu yu zu]T can be calculated by solving an inverse kinematic task for
the manipulator, whose structure is in Fig. 3.2. Note that here the values xu,
yu and zu denote the distinct coordinates and not the axes themselves.

d1

a1

d2

a2

Ou

Oh

Ov

xv

yv

φ

ψ

vu

xh

yh

Figure 3.2: Graphical expression of individual actuator coordinates φ and ψ.
Axis follow the xyz := RGB convention.

The angle φ can be calculated by substituting coordinates vh into the
relation (3.8).

φ = atan2(yh, xh), (3.8)

where xh and yh are the target coordinates expressed in the horizontal servo
frame.

13

3. Theoretical Background
The pitch angle ψ is then calculated using the input vector expressed in

the vertical rotor frame. The pitch angle ψ is then

ψ = atan2(yv, xv), (3.9)

where xv and yv are the target coordinates in the vertical rotor frame.

3.5 Distance with Covariance

The main purpose of the developed rangefinder is to enhance the precision
of target position estimation done by the UVDAR. The way the measured
distance is used to achieve that is described in this section.

The UVDAR uses a Kalman filter for estimation of the states that the target
is currently in. However, the Kalman filter can be also used for sensor data
fusion [20], which can be exploited in this instance. For a detailed description
of a Kalman filter and its capabilities, see [20] or [21]. The principle of sensor
fusion is to combine multiple sensor measurements, here namely the UVDAR
estimation and the measured distance, in order to make the estimation more
precise.

The next task is to extract a position estimation of the target from the
measured distance. When the distance sensor makes an acquisition, it means
that the positioning mechanism is in such a configuration that the xv axis
goes directly through the target. This means that the position of the target
in the vertical servo frame is vv = [l 0 0]T , where l is the measured distance.

In order to successfully fuse the measurements with Kalman filter the
uncertainty of the said estimation needs to be provided. Let the measured
distance be a random variable with Gaussian distribution N (µ, σ2) with mean
µ and variance σ2. With the rangefinder having an accuracy of ±2.5 cm the
distribution is N (l, 0.025) [m]. Covariance measures the joint variability of
two random variables and while having multiple random variables a convenient
way of representing these relations is with help of a covariance matrix Σ. The
3× 3 covariance matrix corresponding to the distance measurement is

14

............................... 3.5. Distance with Covariance

Σ =

σ2 0 0
0 r 0
0 0 r

 =

0.025 0 0
0 1 0
0 0 1

 , (3.10)

where r represents an arbitrary variance in heading that allows for seamless
inclusion in the Kalman filter. The value of r is set to 1.

The elements Σij stand for how much the ith a jth elements correlate
together. The fact that here Σ is diagonal means that there is no correlation
between the uncertainty in distinct coordinates. Covariance represented
by matrix (3.10) can be visualized as a flattened disk, see Fig. 3.3, whose
width–a graphical representation of distance uncertainty is much smaller than
its radius. As can be seen in Fig. 3.3, the proposed extension has much lower
variance in terms of how far the estimated position is.

Figure 3.3: Graphical representation of covariances of position estimated by the
UVDAR (pink) and by the proposed extension (green).

15

3. Theoretical Background
Pairing the vector vv together with Σ gives the position estimation that

is more precise in terms of distance than the estimation made by UVDAR
alone. This is then sent to the Kalman filter.

It can occur that the rangefinder misses the target and the measured
distance is incorrect. Then it is desired to discard such measurement and rely
solely on the UVDAR estimation. Such case is detected by calculating the
Mahalonobis distance between the estimated position and the state predicted
by the Kalman filter. Mahalonobis distance is defined by equation (3.11).

dM =
√

(x− y)TΣ−1(x− y). (3.11)

The Mahalonobis distance can be used to measure dissimilarity between two
random vectors x and y of the same distribution. Should such an event occur
that the estimated position provided by the proposed distance measuring
system is too distant in terms of Mahalonobis distance, it is discarded, because
the laser beam most likely did not hit the target at all. Otherwise an update
of the Kalman filter state is done using the estimation.

16

Chapter 4

Hardware Assembly

In this chapter, the hardware side of the designed UVDAR extension is
described. Firstly, a list of used components is provided, followed by a
detailed description of each part. In the last section, the proposed distance
measuring mechanism is assembled and described, together with its properties.

Some of the abbreviations used throughout this chapter are left unexplained
here. Their meaning can be found in Table A.1.

4.1 Used Hardware Components

As mentioned in Chapter 3, the proposed extension of the UVDAR system
consists of a distance laser sensor and a positioning mechanism. The key
hardware parts that make the onboard sensor are the following:

.OpenCM9.04-C microcontroller board

. two Dynamixel AX-12A servo actuators

.Garmin LIDAR-Lite v3 laser distance measurement sensor

17

4. Hardware Assembly
4.1.1 OpenCM9.04-C Microcontroller

OpenCM9.04-C is a microcontroller board from the manufacturer ROBOTIS4

based on 32bit ARM Cortex-M3 mounted namely with a STM32F103CB CPU
with 128K bytes of Flash, 20K bytes of SRAM and a full set of GPIOs. It also
features UART, JTAG/SWD Serial Wire Debug, SPI and I2C interface. The
connection to a computer can be estabilished using a micro B USB (Universal
Serial Bus), and the board can be programmed using an OpenCM IDE5,
which is a development software and download tool created especially for
the OpenCM boards. However, because the OpenCM IDE is not being
maintained anymore, the use of Arduino IDE6 is encouraged. Numerous
libraries and example programs exist and the board can be used to control
different types of hardware and different applications, making the work with
the OpenCM9.04-C similar to Arduino7 boards. The OpenCM9.04-C board
has four TTL bus connectors that can be used for direct connection of the
used Dynamixel servos. The controller operates at 3.3 V but also offers the
option of connecting an external power supply. It has an operating voltage
between 5 V–16 V, making it possible to power said servos through the
board with connected voltage supply [22]. The direct compatibility with the
Dynamixel servos and the variety of supported development platforms with
examples and libraries were the main reasons for using this board as the
controller for the positioning mechanism.

Figure 4.1: OpenCM9.04-C board.

4http://www.robotis.us/
5http://emanual.robotis.com/docs/en/software/opencm_ide/getting _started/
6https://www.arduino.cc/en/main/software
7https://www.arduino.cc/

18

.............................. 4.1. Used Hardware Components

4.1.2 Dynamixel AX-12A Servo Actuator

The aiming mechanism uses two Dynamixel AX-12A8 servos also manufac-
tured by ROBOTIS. The use of these servos is justified by the high resolution
of 0.29 degrees in position and its low weight of 54.6 g. The requirement for
low weight is crucial in designing all parts of the UAV, since only limited
mass can be attached without negatively impacting its flying capabilities.
The AX-12A is currently one of the most advanced servos available. It has
the ability to track its speed, temperature, shaft position, voltage or load. It
uses TTL Half Duplex Asynchronous Serial protocol for communication so it
is possible to send commands to the servo as well as read feedback values.
Each servo can be distinguished by unique ID making it possible to control
multiple servos with a single microcontroller and connect them together. The
AX-12A servo operates on 9 V–12 V with a current flow of 1.5 A at maximum
load. As mentioned in Section 4.1.1 the servos can be controlled using special
libraries and commands or directly by writing values into specific address
in the RAM or EEPROM area. The servo can rotate both directions and
operate in two modes–Joint Mode and Wheel Mode [23]. In the Wheel Mode
the rotation of the servo is not constrained by any limits and thus it can turn
endlessly. Joint Mode means that two limits of rotation are set, each in one
direction, and thus the movement of the servo is restricted. In the application
described in this thesis, the servos were both used in Joint Mode.

Figure 4.2: Front view of the Dynamixel AX-12A.

8http://emanual.robotis.com/ docs/en/dxl/ax/ax-12a/

19

4. Hardware Assembly
4.1.3 Garmin LIDAR-Lite v3

The core of the proposed relative distance measuring mechanism consists
of a distance sensor. For the researched application the optical distance
measurement sensor LIDAR-Lite v3 manufactured by Garmin9 was selected.
This sensor, shown in Fig. 4.3, is based on the time-of-flight principle using a
near-infrared laser. For more detailed description of the operational theory
behind the sensor measurements see the Theory of Operation subsection of
this subsection. The LIDAR-Lite v3 was chosen primarily due to its compact
size and low weight of 22 g. Furthermore its performance is very high. The
most important performance attributes are range up to 40 m with resolution
of ±1 cm and accuracy of ±2.5 cm when measuring distances that are greater
than 5 m. With distances lower than 5 m the accuracy decreases down to
±10 cm. However due to the expected deployment field of the researched
application being outdoors, where the relative distances tend to be higher, the
accuracy and performance of the selected sensor is considered to be more than
sufficient. The sensor operates on 5 V and requires an external power source.
A microcontroller operating the sensor and taking care of the measurements
is also needed. An Arduino Mega 2560 was used in the development and
ground testing stage but after mounting the complete measuring mechanism
aboard the UAV, the LIDAR-Lite v3 will be connected directly to the onboard
computer. There are two basic communication configurations for this sensor,
namely a two-wire I2C-compatible serial interface and PWM. The sensor
also allows the user to configure it and customize its performance in terms of
accuracy, operating range and measurement time depending on the application.
The LIDAR-Lite v3 features an edge-emitting, 905 nm - 1.3 watt single
strip laser transmitter exhibiting a beam divergence of 8 mrad [24]. Beam
divergence is an angular measure of the increased beam diameter/radius with
distance from the source. The very small value of 8 mrad implies that a
precise aiming and positioning mechanism has to be coupled with the sensor.

Theory of Operation

Detailed operational and measurement principles of the LIDAR-Lite v3 are
described in this subsection.

The time-of-flight principle mentioned in 4.1.3 means that the sensor uses
measured time delay between the transmission and reception of the laser
signal and the known speed of the emitted light to determine the distance to
the measured object.

9https://www.garmin.com/en-US/

20

.............................. 4.1. Used Hardware Components

Figure 4.3: Garmin LIDAR-Lite v3.

Before taking a measurement, the device first performs a correction routine,
correcting for different ambient light conditions. After that a calibration
for "zero" distance needs to be done. The sensor sends a reference signal
directly to the receiver and stores the measured time delay as a value for "zero"
distance. This value is repeatedly recalculated after several measurements.

The measurement itself consists of multiple transmissions of the laser signal.
If a matching signal to the transmitted laser is received it is stored to memory
as a correlation record. When an object at certain distance reflects the signal
back to the device, the recorded matching acquisitions are summed together
and cause a peak to emerge at the corresponding distance location at the
correlation record. After such peak is detected, the device calculates the
distance and reports it in cm. If the returned signal is not strong enough
and the device reaches the predetermined amount of acquisitions without
detecting a peak, it stops the measurements and returns a default value of
1 cm. Before the next measurement the device erases all the received and
stored data and starts again [24].

A non negligible aspect that affects the ability to reliably measure distance
is the reflectivity of the surface of the target. Two types of surface with
different reflective characteristics and their effect on measurements with the
LIDAR-Lite v3 are discussed. Diffuse reflective surfaces have a texture that
causes the reflected light to disperse uniformly making them easy to detect
because a portion of the reflected laser energy is nearly guaranteed to find its
way back to the sensor. It is therefore desired that the majority of surface
of the target is diffusely reflecting. The other type of surface if specular.
Specular surfaces are smooth and tend to reflect energy with little to no

21

4. Hardware Assembly
dispersion. Therefore it can be difficult or even impossible to detect objects
with such surface with the discussed sensor. The landing beams tend to reflect
with little dispersion causing them to remain narrow and missing the sensor’s
receiver unless reflected directly back into it. A schematic comparison of
behaviour of the laser beam when reflecting off of different types of surface is
in Fig. 4.4.

(a) : Diffuse reflective surface. (b) : Specular surface.

Figure 4.4: Behaviour of laser beams reflecting off of surfaces with different
reflective characteristics [24].

4.2 Complete Assembled Distance Measuring
Mechanism

In this section, the completed and physically assembled prototype of the
measuring mechanism is described. The prototype can be seen in Fig. 4.5.

4.2.1 Mechanism Parameters

The summary of physical parameters such as weight or size is provided in
this subsection. Due to the fact that the mechanism is to be used in aerial
applications, it places demands on the compact size and low weight also
played a role when selecting each of the aforementioned components.

The mechanism dimensions and its weight are in Table 4.1. With length
being the dimension in an imaginary x-axis, height in z and width in y-axis
whose orientation and directions are the same as the ones of the UAV body
coordinate system in Fig. 3.1.

22

................... 4.2. Complete Assembled Distance Measuring Mechanism

Figure 4.5: Assembled distance measuring mechanism with the OpenCM9.04-C
microcontroller.

Table 4.1: Values of physical properties of the proposed mechanism.

Parameter Value
length 125 mm
width 49 mm
height 80 mm
weight 158 g

The dimensions were measured when [φ ψ]T = [0 0]T , in other words, the
mechanism was fully stretched.

23

24

Chapter 5

Software Driver Development

After having completed the hardware part of the project and thus having
a mechanism that is capable of a distance retrieval, the next step is to
develop a software driver that makes up the core of the proposed UVDAR
extension. This chapter describes such a driver together with the programs
running on the OpenCM9.04-C and Arduino Mega boards. It also gives a
brief introduction into the used software interface of Robot Operating System
(ROS).

5.1 Robot Operating System

Robot Operating System (ROS) is an open-source meta-operating system
running on Unix-based platforms. It provides a widely used framework
for writing robot software. ROS has numerous functionalities implemented,
such as message transfer between running processes, low-level device control,
package management and more [8]. Furthermore, ROS itself offers several
powerful tools such as 3D visualization tool RViz10, or rqt11 which is a
framework implementing various GUI tools that are useful for debugging. For
more information on RViz see Section 6.2.

A crucial term when talking about ROS software is a package. Software in
ROS is organized in packages and every package contains all the necessary

10http://wiki.ros.org/rviz
11http://wiki.ros.org/rqt

25

5. Software Driver Development..............................

Node 1

Topic 1

Node 2

Topic 2

Node 3

Publishing

Subscribing

Publishing

Subscribing

Service

Figure 5.1: Example ROS communication diagram between multiple nodes.

files that are needed for the given program. Basic communication structure
between multiple ROS programs is as follows. A running process is called a
node. Nodes are connected via channels named topics, used for communication.
A node can either publish data to the topic or subscribe the topic and receive
data that way. Publishing is a process of uploading or posting data into the
communication stream–topic. Subscribing is when the node reads the existing
data from a topic. Another means of communication is provided by services.
Services offer only one-to-one communication of type request/reply, but are
also frequently used in a distributed system. One node can be connected to
multiple topics and thus communicate with multiple other nodes. Each topic
has a predefined message type that it transmits. Number of such message
types is already defined, such as for common integers and floating point
numbers, but also for messages representing sensor outputs like distance or
even camera images. ROS also does not lack the option for the user to define
his own message type that is most suitable for his application. A diagram of
the communication between multiple ROS nodes can be seen in Fig. 5.1.

5.2 Main Control Node

In this section, the main control program is described. This program runs on
the control unit of the UAV and its main task is to issue commands to the
OpenCM9.04-C board and to make estimations of target position based on
the measured distance.

26

.................................. 5.2. Main Control Node

static_transform_publisher

poseSubscriber

servoControl

distControl

distEstimator

control node
Input:

coordinates in
UAV base frame

Output:
position with
covariance

Garmin sensor

OpenCM9.04-C

Tu
h

φ, ψ

Ready

vc

Request

l

l

vv, Σ

φ′, ψ′

In position

Figure 5.2: Data flow diagram of the control node.

The aforementioned task can be broken down into four simpler subtasks,
each being taken care of by one C++ program, namely ’poseSubscriber’,
’servoControl’, ’distControl’ and ’distEstimator’. Despite being four different
executables, all are enclosed by one ROS node. A data flow diagram of the
ROS node is in Fig. 5.2 and a further explanation of each program with its
tasks follows.

As mentioned in Section 3.4, the input into the UVDAR extension system
is a 3D position of the target in the UAV base frame, which is subscribed
by ’poseSubscriber’. This program first performs the needed coordinate
transformations of the input position and then calculates φ and ψ using
equations (3.8) and (3.9). The transformations are performed with help of

27

5. Software Driver Development..............................
the ROS tf2 package, for detailed description of the package see [25]. This
package contains useful tools for managing spatial transforms, such as the
static_transform_publisher. The static_transform_publisher can be
used for transforms that do not change over time, and thus is applicable for
transforming the input position into the horizontal rotor frame, since the
position of the horizontal servo is known beforehand. In order to perform
a transform into the vertical rotor frame, the same procedure can not be
followed, since its position is dependent on the angle φ, but an instance
of geometry_msgs::TransformStamped is created. After the coordinate
transformations are performed and the angles are calculated, φ and ψ are
sent to ’servoControl’, and thus another stage of the control program begins.

The ’servoControl’ program takes care of all the communication with the
OpenCM9.04-C board. The received values of φ and ψ are first recalculated
to unitless absolute servo positions φ′ and ψ′, which are then sent to the
OpenCM9.04-C board. After that it waits for an "in position" message from
the microcontroller. Such a message signalls that the positioning mechanism
is in position and the system is ready for distance retrieval. The program
running on the OpenCM9.04-C board is described in 5.3. Upon receiving the
anticipated message, the ’servoControl’ requests distance measurement and
passes control to the third program in order–’distControl’.

The main task of ’distControl’ is to operate the Garmin sensor. After
gaining control, the ’distControl’ transmits message to the Garmin distance
sensor signaling that a value of measured distance is required. The sensor
answers with the measured distance. In the stage of ground testing, this
communication was arranged by the Arduino Mega 2560, as is described
in 5.4, but after mounting the extension onto the UAV, this procedure is
able to run directly. The ’distControl’ reads the value and sends measured
distance to ’distEstimator’ for further processing.

The last program–’distEstimator’ has two main tasks. First, it creates a
pose estimation vv from the measured distance, as was described in Section 3.5.
Then it calculates the covariance matrix Σ for the measurement and publishes
both to the output topic as a geometry_msgs/PoseWithCovariance message.

5.3 OpenCM9.04-C Program

The program running on the OpenCM9.04-C board is described throughout
this section. Its main function is to move with the servos, based on the

28

............................... 5.3. OpenCM9.04-C Program

commands coming from the main control node described in 5.2. The program
described here also processes feedback from the servos.

As was mentioned in 4.1.1 the code was written in C programming language
with the help of the Arduino IDE. For simplified communication with the
AX-12A the DynamixelWorkbench.h12 library was used. It offers an easy
way of communication with different Dynamixel products using predefined
library functions. An example use of the DynamixelWorkbench library for
establishing connection to one servo and setting it to Joint Mode can be seen
in the following Listing 5.1.

DynamixelWorkbench dxl_wb;

dxl_wb.init(DEVICE_NAME, DXL_BAUDRATE, &log);
dxl_wb.ping(first_dxl_id, &model_number_one, &log);
dxl_wb.jointMode(first_dxl_id, 0, 0, &log);

Listing 5.1: Setting up AX-12A communication using DynamixelWorkbench.h.

After having both of the servos set up, the program begins its main control
loop. There, it first waits for new commands to be received. Upon receiving
the new angles, the program checks whether they are within given boundaries
that correspond to angles from the closed interval 〈−π

2 ,
π
2 〉. If it is not

the case, the angles are replaced with the closest boundary and then sent
to the servos, again taking advantage of the DynamixelWorkbench library
and its functions. Otherwise they are sent to the servos directly. This is
demonstrated in the Listing 5.2.

dxl_wb.goalPosition(FIRST_DXL, (int32_t)goal_pos_hor);
dxl_wb.goalPosition(SECOND_DXL, (int32_t)goal_pos_ver);

Listing 5.2: Sending desired positions to both servos.

Then the program waits until both of the servos are in position. That is
done by reading present angles of each servo and comparing them to the set
point. Since it is not always reliable to expect the present position to meet
the set point exactly a small margin of ±1 position is allowed. The code
snippet with this waiting loop is in Listing 5.3.
while((abs(goal_pos_ver−pres_pos_ver)>1) || (abs(goal_pos_hor−pres_pos_hor)>1))
{
dxl_wb.itemRead(FIRST_DXL, "Present_Position", &pres_pos_hor);
dxl_wb.itemRead(SECOND_DXL, "Present_Position", &pres_pos_ver);

}
Listing 5.3: Loop that reads the present positions and compares them to given
set point.

12http://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/

29

5. Software Driver Development..............................
When both servos are in given positions, a message signaling that is sent

back to the control unit running the main ROS node, described in Section 5.2.

5.4 Arduino Mega 2560 Program

Before the whole prototype is mounted onto an UAV and sensor is connected
directly to its control unit, the reading of the data from the rangefinder has
to be done externally. During the testing phase, the sensor was connected to
an Arduino MEGA 2560. That was, with help of a simple program, able to
read the output values and send them via serial line to the computer. The
program used LIDARLite.h13 library that offers a straightforward means for
obtaining measured distance, see Listing 5.4. It first establishes connection
with the sensor and in the second line the reading itself can be seen.

lidarLite.begin(0,true);
int16_t garmin_dist = lidarLite.distance();

Listing 5.4: Demonstration of communication with Garmin sensor using LIDAR-
Lite.h.

13https://www.arduinolibraries.info/ libraries/lidar-lite

30

Chapter 6

Simulation

Before every new device or system can be tested in real outdoor conditions
it is essential to know that it behaves exactly the way it was intended.
Therefore, each development procedure involves a simulation phase, where
the system is tested in artificially created environment without the risk of
the system being damaged or destroyed, should a malfunction occur. This
chapter describes such simulation and debugging phase. Firstly, the used
software tools such as the Gazebo14 simulator and ROS visualization tool RViz
are described, followed by a description of created model of the developed
distance measuring system. Lastly, the performed experiments and tests in
the simulator are introduced together with their results which are discussed
in the last subsection.

6.1 Gazebo Simulator

Gazebo is an open-source 3D realistic robotics simulator. It is widely used
for many robot applications and allows for simulations of robot activity in
complex indoor and outdoor environments. It also offers the user the option
to integrate realistic sensors and actuators that are vital for every robotic
application. Gazebo can use multiple powerful physics engines, offering the
user realistic simulations. Numerous tutorials and example projects exist,
making the beginnings with Gazebo easier and allowing the user to advance to
making his own worlds and simulating his own robots. Several ROS packages

14http://gazebosim.org/

31

6. Simulation......................................
can be used to provide the necessary interfaces to simulate a robot in Gazebo
using ROS messages, making Gazebo a natural choice as a simulator to use
alongside ROS. The Gazebo GUI together with a running simulation can be
seen in Fig. 6.1.

Figure 6.1: Gazebo GUI with running simulation.

6.2 3D Visualization Tool (RViz)

Another software that was used during the debugging phase was the 3D
visualization tool for ROS RViz. Its main purpose is to show robot models
and published data, such as position, camera images, range and many others
in 3D, allowing for them to to be visually validated. Robot models that can
be displayed with RViz need to be described in Unified Description Format15

(URDF) which is then translated and expressed as a 3D model that can later
be used for simulation or control [8]. Due to the fact that RViz can visualize
data from ROS directly, it is a useful tool not only for validation of basic
functions and correctness of the robot design. A view of the RViz GUI with a
visualization of the proposed UVDAR extension consisting of an UAV robot
model, target odometry and a laser cone, representing the measured distance
is in Fig 6.2.

15http://wiki.ros.org/urdf

32

.......................... 6.3. UVDAR Extension Model for Gazebo

Figure 6.2: Visualization with RViz.

6.3 UVDAR Extension Model for Gazebo

In order to test the proposed extension in simulation, a working model needed
to be created. This subsection deals with such model and describes it. The
manipulator and the mounted distance sensor models were created using
Xacro, which is an XML macro language that allows for complex robot models
to be parametrized and, in general, to simplify URDF files. The completed
model file consists of multiple parts which are described in the following
subsections.

6.3.1 The Xacro File

First, the description of the basic kinematic structure of the proposed system
together with its key components is required. In order to do that, a link
element for each part needs to be defined. Link is a structure used for
describing the individual components of the robot model. For the model
to properly work with Gazebo there are three compulsory tags for each
link, namely the visual, collision and inertia tag. The visual tag is used for
describing the appearance of the component. Collision tag defines the area
of physical collision that the part would normally have. Last but not least,
the inertia tag contains the 3× 3 rotational inertia matrix of the component.
The definition of the horizontal servo using XML can be seen in Listing 6.1

33

6. Simulation......................................
<link name="horizontal_servo">
<visual>
<geometry>
<box size="${servo_width} ${servo_length} ${servo_height}">

</geometry>
<origin rpy="0 ${pi/2} 0" xyz="${servo_height/2} 0 0"/>

</visual>
<collision>
<geometry>
<box size="${servo_width} ${servo_length} ${servo_height}">

</geometry>
<origin rpy="0 ${pi/2} 0" xyz="${servo_height/2} 0 0"/>

</collision>
<inertial>
<mass value="${mass}"/>
<inertia
ixx="${(mass/12)∗(servo_length∗servo_length+servo_height∗servo_height)}"
ixy="0"
iyy="${(mass/12)∗(servo_width∗servo_width+servo_height∗servo_height)}"
iyz="0"
izz="${(mass/12)∗(servo_width∗servo_width+servo_length∗servo_length)}"
ixz="0"
/>

</inertial>
</link>

Listing 6.1: Definition of the horizontal servo body in Xacro format.

Multiple features and advantages of the Xacro format are apparent. It
supports not only mathematical operations but also variables, parameters
and conditional blocks.

Individual links are connected by joints. Various joint types are supported,
such as revolute, continuous, prismatic, fixed, floating or planar, however,
only fixed and revolute joints are used in this instance. Each joint is specified
by two connected links and several other parameters according to its type, as
can be seen in Listing 6.2. For the links used in this work they are lower and
upper angle bound, its velocity and effort.

<joint name="horizontal_rotor_servo_joint" type="revolute">
<axis rpy="0 0 0" xyz="0 0 1"/>
<parent link="horizontal_servo"/>
<child link="horizontal_rotor"/>
<origin rpy="0 0 0" xyz="${rotor_x_offset} 0 0"/>
<limit effort="100" velocity="6.28" lower="−${pi/2}" upper="${pi/2}"/>

</joint>

Listing 6.2: Definition of a revolute joint.

34

.......................... 6.3. UVDAR Extension Model for Gazebo

6.3.2 Transmission Elements and the Control Plugin

Another step in creating a functional model for Gazebo is to set up controllers
to actuate the joints. The proper ROS interface for control of the actuators
and joints is created using the ros_control package. This package uses
a feedback mechanism with a PID controller to determine the given reference
values based on the joint state data and a set point. To use the ros_control,
a couple of additional elements need to be added into the model, namely the
transmission elements, see Listing 6.3, and the gazebo_ros_control plugin.
The transmission element is used to link actuators to joints. Specifically, it
transforms effort/flow variables between actuators and joints such that the
power remains constant [26]. Within the transmission tag it can be defined
what hardware interface should the control plugin use, although only the
effort interface is implemented at the time of writing [27]

<transmission name="${prefix}_tran">
<type>transmission_interface/SimpleTransmission</type>
<joint name="${prefix}_rotor_servo_joint">
<hardwareInterface>

hardware_interface/PositionJointInterface
</hardwareInterface>

</joint>
<actuator name="${prefix}_motor">
<hardwareInterface>

hardware_interface/PositionJointInterface
</hardwareInterface>
<mechanicalReduction>1</mechanicalReduction>

</actuator>
</transmission>

Listing 6.3: Code snippet that defines the transmission element.

In addition a Gazebo plugin needs to be added to the Xacro file. The
gazebo_ros_control plugin parses the transmission tags and loads the con-
troller manager and all the hardware interfaces. See Listing 6.4

<gazebo>
<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
<robotNamespace>/uvdar_servo</robotNamespace>
</plugin>

</gazebo>

Listing 6.4: Example code that adds the control plugin.

35

6. Simulation......................................
6.3.3 Garmin Sensor Model

The core of every Gazebo sensor model is a sensor plugin. This plugin defines
the behavior and functions of the sensor. The plugin needs to be included
into the model definition file as well, together with its parameters, as is shown
in the Listing 6.5.

<plugin name="mrs_gazebo_rangefinder"
filename="libmrs_gazebo_rangefinder_plugin.so">
<gaussianNoise>${noise}</gaussianNoise>
<alwaysOn>true</alwaysOn>
<updateRate>${frame_rate}</updateRate>
<topicName>${topic}</topicName>
<frameName>${rangefinder_frame_name}</frameName>
<fov>${fov}</fov>
<radiation>radiation</radiation>
<parentFrameName>${parent_frame_name}</parentFrameName>
<x>${x}</x>
<y>${y}</y>
<z>${z}</z>
<roll>${roll}</roll> <pitch>${pitch}</pitch> <yaw>${yaw}</yaw>

</plugin>

Listing 6.5: Inclusion of Garmin plugin in Xacro file.

Besides the plugin, a sensor link needs to be defined. In the link tag, there
are visual and physical properties of the sensor together with its position in
the model. A functioning Garmin sensor plugin that is in the MRS plugin
database was used and only the visual link was slightly altered so it better
corresponds to reality. A complete Gazebo model of the proposed UVDAR
extension mounted onto a quadrotor, can be seen in Figs. 6.3a and 6.3b.

(a) : Side view. (b) : Front view.

Figure 6.3: Complete model of the positioning mechanism with Garmin distance
sensor in Gazebo. Marked with a blue ellipse.

36

............................... 6.4. Experiments in Simulator

6.4 Experiments in Simulator

In this section, the performed experiments in the Gazebo simulator together
with their results are presented. Four experiments were conducted to examine
the influence of different flight dynamics on the performance of the proposed
extension. In these experiments, only two UAVs were considered, one carrying
the UVDAR extension, named ’uav1’, and the other one–’uav2’, serving as
the observed target. The flight trajectories were chosen from the simplest,
where the UAV carrying the extension does not move at all. Followed by
trajectories where the relative position of the UAVs changes only slightly
or the trajectories are quite simple and smooth. In the last experiment,
both UAVs were traveling along complex, nearly chaotic, trajectories. For
visualisation of each trajectory see Fig. 6.4.

(a) : Trajectories for experiment 1. (b) : Trajectories for experiment 2.

(c) : Trajectories for experiment 3. (d) : Trajectories for experiment 4.

Figure 6.4: Flown trajectories for each experiment.

A working title of the proposed extension is ’uvdar servo’ and that is
also how it is denoted in the legends of each graph. The results of each
experimental flight are presented in the form of a graph for each estimated
relative coordinate. In these graphs, there is a comparison between the
ground truth position, which was obtained from the ’uav2/ground _truth’
topic published by Gazebo and the estimated positions both with and without
employing the proposed extension. The absolute errors, |∆x|, |∆y| and |∆z|,
between the estimated and ground truth values of each coordinate are also

37

6. Simulation......................................
graphically expressed in form of an another graph for each experiment. To
quantify the performance of the localization systems, the average Euclidean
distance between the ground truth and the estimated position is calculated.
This gives another means of evaluation for the proposed extension other than
just graphical intuition. The distance corresponding to estimates using the
’uvdar servo’ is denoted by dus, whereas for the UVDAR system it is just d.

6.4.1 Experiment 1

In the first experiment, both UAVs were flying at equal altitude. The
rangefinder was carried by ’uav1’ and the trajectory of ’uav2’ can be seen
in Fig. 6.4a. The ’uav1’ was stationary in the air and behaving solely as
an observer. The comparison between the ground truth and the estimated
relative positions and the graph of absolute errors for each coordinate are
in Fig. 6.5. For the extended UVDAR, the average distance between the
estimated and real position was dus = 0.451 m, whereas for the system relying
purely on the UVDAR system d = 1.057 m.

6.4.2 Experiment 2

In the second experimental flight, both UAVs were already flying along
trajectories in Fig. 6.4b. The altitudes of both UAVs were not equal any
more, but were changing throughout the flight. Despite, that the trajectories
were designed so that the relative y coordinate of both UAVs does not differ
significantly. The results are summarized in Fig. 6.6 and the calculated
deviations are dus = 0.527 m and d = 1.316 m.

6.4.3 Experiment 3

This experiment tested how precisely can the system track a fairly complex
trajectory, while the ’uav1’, with the distance sensor onboard, was traveling
slowly along a smooth trajectory, see Fig. 6.4c, despite the fact that their
relative altitude was changing. The results are visualized in Fig. 6.7 with
average deviations of dus = 0.857 m and d = 1.228 m.

38

............................... 6.4. Experiments in Simulator

6.4.4 Experiment 4

In the last experiment, both UAVs were traveling along complex trajectories
visualized in Fig. 6.4d. While flying at equal altitudes both trajectories were
rich with numerous turns and sudden changes of direction which showed to
be a bigger challenge for the proposed extension than controlled changes of
relative altitude. The calculated average deviations in terms of distance are
dus = 0.605 m and d = 0.965 m and the graphical representation of the results
is in Fig. 6.8.

6.4.5 Discussion

The conducted experiments presented in the previous subsections have shown
that employing the proposed extension in order to make the estimated posi-
tions more precise is justified. The estimations made by the extended UVDAR
system proved to be not only comparable to the UVDAR system as it is but in
multiple aspects and estimations even more precise, mostly in the estimations
of the x coordinate. This can be seen when comparing the absolute errors of
distinct coordinates for each experiment. For instance, while in Fig. 6.5b the
values of |∆x| are significantly lower for the extended UVDAR, the errors
in estimates of y are comparable for both localization systems. This trend
can be observed throughout all of the performed experiments. The notable
difference in the precision of estimated values of x, compared with other
coordinates, may be caused by the nature of the tested trajectories because it
was the relative x coordinate that was changing the most and thus having the
biggest impact on the relative distance of both UAVs. The extended UVDAR
had the means to precisely measure that distance which made the estimation
in that aspect better.

What further speaks to support the claim of a successful development of
the extension, is the calculated average deviation between the estimated and
real position. The fact, that throughout all of the conducted experiments,
regardless of relative distances between the UAVs, it did not exceed the value
of 1 m, can be considered as a further proof of that. Furthermore, when the
flown trajectories were simple, as in experiments 6.4.1 and 6.4.2, the error of
estimations made with the ’uvdar servo’ extension showed to be less then the
half of the deviation calculated for the system relying only on the unextended
UVDAR.

However, it is safe to say that the performance is quite heavily based
on the flight dynamics. While in experiments 6.4.1 and 6.4.2, where the

39

6. Simulation......................................
flown trajectories of both UAVs were simple, the estimated positions by the
proposed system corresponded with the ground truth closely, in the other two
experiments where the trajectories were more complex, even these estimations
failed to determine the real position with such precision. The takeaway
from the experiments 6.4.3 and 6.4.4 is that the reliability and precision
depends more on the trajectory of the UAV which carries the extension,
than the observed one. This can be seen when comparing the values of
absolute errors |∆y| for both experiments. While with experiment 6.4.3, the
estimations made by the ’uvdar servo’ are slightly better than those made by
the unextended UVDAR, the data provided by experiment 6.4.4 shows, that
the extension did not make the estimations more precise by a larger margin, if
at all. See Figs. 6.7b and 6.8b for a comparison of |∆y| for both experiments.
The apparent errors in estimations of z for both of these experiments were
most likely caused by the tilt of the ’uav1’ while changing direction, which
resulted in shifting the position of ’uav2’ in the camera frame. This analysis
is supported by the fact that said errors are not constant but appear only
at certain points in time that correspond to changes in trajectory. In this
application the tilt of the UAV was not regarded, since it would need some
form of disturbance control mechanism, which is out of the scope of this work.
However it presents a possible motivation for future work.

The experiments have shown that the development of the UVDAR ex-
tension was successful. The aim was to enhance the performance of the
UVDAR system in terms of distance measuring which resulted in making the
target position estimations more precise in general. While being more than
satisfyingly precise in flights along smooth and simple trajectories the system
performed sufficiently even for chaotic and very dynamic trajectories, making
it a system capable of real flight testing and deployment.

40

............................... 6.4. Experiments in Simulator
Comparison of individual estimated relative coordinates

0 5 10 15 20 25

Time [s]

4

6

8

10

x
 [

m
]

with uvdar servo

ground truth

without uvdar servo

0 5 10 15 20 25

Time [s]

-4

-2

0

2

4

y
 [
m

]

with uvdar servo

ground truth

without uvdar servo

0 5 10 15 20 25

Time [s]

-0.2

-0.1

0

0.1

0.2

z
 [
m

]

with uvdar servo

ground truth

without uvdar servo

(a) : Visualization of estimated coordinates for experiment 1.

Absolute errors of estimated relative coordinates

0 5 10 15 20 25

Time [s]

0

0.5

1

1.5

2

|
 x

|
[m

]

with uvdar servo

without uvdar servo

0 5 10 15 20 25

Time [s]

0

0.5

1

1.5

|
 y

|
[m

]

with uvdar servo

without uvdar servo

0 5 10 15 20 25

Time [s]

0

0.1

0.2

0.3

0.4

|
 z

|
[m

]

with uvdar servo

without uvdar servo

(b) : Comparison of absolute errors of each coordinate for experiment 1.

Figure 6.5: Measured data for experiment 1.
41

6. Simulation......................................
Comparison of individual estimated relative coordinates

0 5 10 15 20 25

Time [s]

4

6

8

10

x
 [

m
]

with uvdar servo

ground truth

without uvdar servo

0 5 10 15 20 25

Time [s]

-2

-1

0

1

y
 [

m
]

with uvdar servo

ground truth

without uvdar servo

0 5 10 15 20 25

Time [s]

-2

0

2

4

z
 [

m
]

with uvdar servo

ground truth

without uvdar servo

(a) : Visualization of estimated coordinates for experiment 2.

Absolute errors of estimated relative coordinates

0 5 10 15 20 25

Time [s]

0

1

2

3

4

|
 x

|
[m

]

with uvdar servo

without uvdar servo

0 5 10 15 20 25

Time [s]

0

0.5

1

|
 y

|
[m

]

with uvdar servo

without uvdar servo

0 5 10 15 20 25

Time [s]

0

0.5

1

1.5

2

|
 z

|
[m

]

with uvdar servo

without uvdar servo

(b) : Comparison of absolute errors of each coordinate for experiment 2.

Figure 6.6: Measured data for experiment 2.
42

............................... 6.4. Experiments in Simulator
Comparison of individual estimated relative coordinates

0 2 4 6 8 10 12 14 16 18

Time [s]

5

10

15

x
 [

m
]

with uvdar servo

ground truth

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

-4

-2

0

2

4

y
 [

m
]

with uvdar servo

ground truth

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

-1.5

-1

-0.5

0

0.5

z
 [

m
]

with uvdar servo

ground truth

without uvdar servo

(a) : Visualization of estimated coordinates for experiment 3.

Absolute errors of estimated relative coordinates

0 2 4 6 8 10 12 14 16 18

Time [s]

0

0.5

1

1.5

2

|
 x

|
[m

]

with uvdar servo

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

0

1

2

3

|
 y

|
[m

]

with uvdar servo

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

0

0.5

1

|
 z

|
[m

]

with uvdar servo

without uvdar servo

(b) : Comparison of absolute errors of each coordinate for experiment 3.

Figure 6.7: Measured data for experiment 3.
43

6. Simulation......................................
Comparison of individual estimated relative coordinates

0 2 4 6 8 10 12 14 16 18

Time [s]

4

5

6

7

x
 [
m

]

with uvdar servo

ground truth

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

-2

-1

0

1

y
 [
m

]

with uvdar servo

ground truth

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

-1

-0.5

0

0.5

1

z
 [
m

]

with uvdar servo

ground truth

without uvdar servo

(a) : Visualization of estimated coordinates for experiment 4.

Absolute errors of estimated relative coordinates

0 2 4 6 8 10 12 14 16 18

Time [s]

0

0.5

1

|
 x

|
[m

]

with uvdar servo

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

0

0.5

1

1.5

|
 y

|
[m

]

with uvdar servo

without uvdar servo

0 2 4 6 8 10 12 14 16 18

Time [s]

0

0.5

1

1.5

|
 z

|
[m

]

with uvdar servo

without uvdar servo

(b) : Comparison of absolute errors of each coordinate for experiment 4.

Figure 6.8: Measured data for experiment 4.
44

Chapter 7

Conclusion

The aim of this thesis was to develop an extension of the UVDAR system for
mutual relative localization that would use precise distance measurements in
order to enhance the performance of the UVDAR system in terms of target
position estimation.

In addressing the challenge, common, but high–performance, off–the–shelf
components were used in order to assemble the prototype. The main reasoning
behind the choice of each of the components was their weight, since they
are used in aerial application, and their compatibility, so they could be
easily connected together and controlled. Despite that, some compromises
and improvised solutions had to be found during the development phase,
such as the inclusion of the extra Arduino Mega 2560, which enabled the
communication with the Garmin sensor. In order to test the developed control
programs, the system had to be tested in simulation and therefore a model of
the proposed UVDAR extension was created. Initially it was intended, that
the development would be rounded off by a real flight experiment. This was
unfortunately impossible, due to the current pandemic situation. However
the tests performed in the Gazebo simulator show promising results, leaving
the doors open for proceeding to the real flight experiments as soon as the
situation allows it.

The main contribution of the work presented here lies in developing a
prototype of the proposed UVDAR extension together with all the needed
control software. This provides a solid ground for future work that concerns
mainly real flight experiments and validation of the proposed extension in
real conditions. Furthermore, the system can be easily modified for flights

45

7. Conclusion......................................
with more than just one target. This would provide the UAV with a system
that can precisely estimate position of multiple surrounding targets even at
large distances, on top of being reliable and easily embeddable. All of the
above is vital for any application where some form of UAV cooperation is
required.

46

Bibliography

[1] A. Ben-David. IAI reveals largest Israeli UAV. June 2007.

[2] L. Schenato, X. Deng, and S. Sastry. Flight control system for a microme-
chanical flying insect: architecture and implementation. In Proceedings
of IEEE Conference on Robotics and Automation (ICRA 01), volume 2,
pages 1641–1646, Taipei Taiwan, September 2001.

[3] Corporate Author. U.S. Army Unmanned Aircraft Systems Roadmap
2010-2035: Eyes of the Army. United States. Department of the Army,
April 2010.

[4] A. Yol, B. Delabarre, A. Dame, J. Dartois, and E. Marchand. Vision-
based absolute localization for unmanned aerial vehicles. In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3429–3434, September 2014.

[5] Micro Aerial Vehicles - platforms, 2020. Multi-robot-Systems
Group website, Available at http://mrs.felk.cvut.cz/research/
micro-aerial-vehicles.

[6] V. Walter, M. Saska, and A. Franchi. Fast mutual relative localization
of UAVs using ultraviolet led markers. In 2018 International Conference
of Unmanned Aircraft System (ICUAS 2018), 2018.

[7] Marco Cognetti, Paolo Stegagno, Antonio Franchi, and Giuseppe Oriolo.
Two Measurement Scenarios for Anonymous Mutual Localization in
Multi-UAV systems. IFAC Proceedings Volumes, 45(28):13–18, 2012.
2nd IFAC Workshop on Multivehicle Systems.

[8] Yoonseok Pyo, Hancheol Cho, Leon Jung, and Darby Lim. ROS Robot
Programming (English). ROBOTIS, December 2017.

47

http://mrs.felk.cvut.cz/research/micro-aerial-vehicles
http://mrs.felk.cvut.cz/research/micro-aerial-vehicles

7. Conclusion......................................
[9] Aleksandr Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar.

Towards a swarm of agile micro quadrotors. Auton. Robots, 35(4):287–300,
2013.

[10] Gábor Vásárhelyi, Csaba Virágh, Gergo Somorjai, Norbert Tarcai, Tamás
Szörényi, Tamás Nepusz, and Tamás Vicsek. Outdoor flocking and
formation flight with autonomous aerial robots. CoRR, abs/1402.3588,
August 2014.

[11] M. Cognetti, P. Stegagno, A. Franchi, G. Oriolo, and H. H. Bülthoff.
3-D mutual localization with anonymous bearing measurements. In
2012 IEEE International Conference on Robotics and Automation, pages
791–798, May 2012.

[12] L. Zhang, F. Deng, J. Chen, Y. Bi, S. K. Phang, X. Chen, and B. M.
Chen. Vision-Based Target Three-Dimensional Geolocation Using Un-
manned Aerial Vehicles. IEEE Transactions on Industrial Electronics,
65(10):8052–8061, October 2018.

[13] Paul Viola and William Wells. Alignment by Maximization of Mutual
Information. International Journal of Computer Vision, 24:137–154,
January 1997.

[14] J. Strader, Y. Gu, J. N. Gross, M. De Petrillo, and J. Hardy. Coop-
erative relative localization for moving UAVs with single link range
measurements. In 2016 IEEE/ION Position, Location and Navigation
Symposium (PLANS), pages 336–343, April 2016.

[15] V. Walter, N.Staub, M. Saska, and A. Franchi. Mutual Localization
of UAVs based on Blinking Ultraviolet Markers and 3D Time-Position
Hough Transform. In 14th IEEE International Conference on Automation
Science and Engineering (CASE 2018), 2018.

[16] V. Walter, N. Staub, A. Franchi, and M. Saska. UVDAR System
for Visual Relative Localization With Application to Leader–Follower
Formations of Multirotor UAVs. IEEE Robotics and Automation Letters,
4(3):2637–2644, July 2019.

[17] Pavel Petráček and Martin Saska. Decentralized Aerial Swarms Using
Vision-Based Mutual Localization. November 2018.

[18] Daniel Brandtner and Martin Saska. Coherent swarming of unmanned
micro aerial vehicles with minimum computational and communication
requirements. In ECMR, 2017.

[19] James Eddie Gentle. Matrix Algebra, chapter 5, pages 173 – 200. Springer
International Publishing, June 2007.

[20] J. Z. Sasiadek and P. Hartana. Sensor data fusion using Kalman filter.
In Proceedings of the Third International Conference on Information
Fusion, volume 2, pages WED5/19–WED5/25 vol.2, 2000.

48

...................................... 7. Conclusion

[21] Dan Simon. Kalman filtering. Embedded systems programming, 14(6):72–
79, 2001.

[22] ROBOTIS. OpenCM9.04-C e-manual, 2020. ROBOTIS website, Avail-
able at http://emanual.robotis.com/docs/en/parts/controller/
opencm904/.

[23] ROBOTIS. Dynamixel AX-12A e-manual, 2020. ROBOTIS web-
site, Available at http://emanual.robotis.com/docs/en/dxl/ax/
ax-12a/.

[24] Garmin. LIDAR Lite v3 Operation Manual and Techni-
cal specifications, 2016. Product datasheet, Available at
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_
Manual_and_Technical_Specifications.pdf.

[25] Foote and Tully. tf: The transform library. In Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International Conference on,
Open-Source Software workshop, pages 1–6, April 2013.

[26] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep,
Adolfo Rodríguez Tsouroukdissian, Jonathan Bohren, David Coleman,
Bence Magyar, Gennaro Raiola, Mathias Lüdtke, and Enrique Fernán-
dez Perdomo. ros_control: A generic and simple control framework for
ROS. The Journal of Open Source Software, 2017.

[27] Open Source Robotic Foundation. Tutorial: ROS Control, 2014. Gazebo
tutorial, Available at http://gazebosim.org/tutorials/?tut=ros_
control.

49

http://emanual.robotis.com/docs/en/parts/controller/opencm904/
http://emanual.robotis.com/docs/en/parts/controller/opencm904/
http://emanual.robotis.com/docs/en/dxl/ax/ax-12a/
http://emanual.robotis.com/docs/en/dxl/ax/ax-12a/
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://gazebosim.org/tutorials/?tut=ros_control
http://gazebosim.org/tutorials/?tut=ros_control

50

Appendix A

List of Abbreviations

Table A.1 explains the abbreviations used throughout this thesis.

Table A.1: List of Abbreviations.

Abbreviation Meaning
UAV Unmanned Aerial Vehicle
MFI Micromechanical Flying Insect
UVDAR Ultraviolet Direction and Ranging
ROS Robot Operating System
GNSS Global Navigation Satellite System
DOF degree of freedom
ARM family of RISC architectures for processors
CPU central processing unit
SRAM semiconductor random–access memory
GPIO general–purpose input/output
UART Universal Asynchronous Receiver/Transmitter
JTAG hardware communication interface (Joint TestAccess Group)
SWD Serial Wire Debug
USB Universal Serial Bus
SPI serial communication interface (Serial Peripheral Interface)
I2C serial computer bus
TTL Transistor-transistor logic
IDE Integrated development environment
RAM random–access-memory
EEPROM electrically erasable programmable read–only memory
XML Extensible Markup Language
URDF Unified Robot Description Format

51

52

Appendix B

CD Content

Table B.1 shows all the root directories on the attached CD with their content.

Table B.1: CD content.

Directory Content
thesis Bachelor’s thesis in pdf format
thesis_src LATEX source codes
ROS_src ROS control node source files
model Xacro model of the extension for Gazebo
uc_src OpenCM9.04-C and Arduino MEGA 2560 codes

53

	Introduction
	State of the Art
	Theoretical Background
	Ultraviolet Direction and Ranging system
	Basic Structure of the Proposed Extension
	Coordinate Frames
	Coordinate Transformations

	Obtaining Servo Angles
	Distance with Covariance

	Hardware Assembly
	Used Hardware Components
	OpenCM9.04-C Microcontroller
	Dynamixel AX-12A Servo Actuator
	Garmin LIDAR-Lite v3

	Complete Assembled Distance Measuring Mechanism
	Mechanism Parameters

	Software Driver Development
	Robot Operating System
	Main Control Node
	OpenCM9.04-C Program
	Arduino Mega 2560 Program

	Simulation
	Gazebo Simulator
	3D Visualization Tool (RViz)
	UVDAR Extension Model for Gazebo
	The Xacro File
	Transmission Elements and the Control Plugin
	Garmin Sensor Model

	Experiments in Simulator
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Discussion

	Conclusion
	Bibliography
	List of Abbreviations
	CD Content

