
Master’s Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Kalman filter application for localization
improvement of multi-copter UAV

Tomáš Trafina

Supervisor: Dipl. Ing. Tomáš Meiser
Field of study: Cybernetics and Robotics
Subfield: Robotics
May 2018

ii

Acknowledgements
I would like to express my gratitude to
my supervisor Tomáš Meiser for the use-
ful comments, remarks, and engagement
through the learning process of this mas-
ter thesis. Furthermore, I would like to
thank Milan Rollo for giving me the op-
portunity to participate in such project.
I would like to thank my loved ones, who
have supported me throughout the entire
process, both by keeping me harmonious
and helping me putting pieces together.

Declaration
Author statement for undergraduate
thesis: I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

In Prague,

..
Signature

iii

Abstract
The purpose of this work is to develop

mathematical apparatus for a coaxial
hexacopter, equipped with IMU (inertial
measurement unit) and GNSS (global
navigation satellite system) sensors,
which will improve the accuracy of the
aircraft’s localization based on its mathe-
matical model involving Kalman filtering
approach. The main goal is to improve
data from GNSS sensor as the data from
IMU already satisfy the required qualities.

Two methods were chosen to verify
the expected improvement. The primary
one is a mathematical analysis of the
aircraft’s trajectories constructed using
raw data from GNSS sensor for one
model and processed data from Kalman
filter for the other one. The secondary
method involves usage of another sensor
in the system, a lidar (light detection
and ranging). Raw data of all three
sensors is acquired during a flight of the
aircraft. Then two point cloud models
are constructed using the two trajectories
data described above. Visual comparison
is used to determine if the point cloud
from processed data has better accuracy
than the one from raw data.

Primary results of this work are a
mathematical model of the real aircraft
and filtering apparatus which increases
localization data accuracy. Moreover,
algorithms for raw data acquisition and
its fusion into 3D models were developed.

Keywords: UAV, IMU, GNSS, Kalman
filter, loacalization, mathematical model,
coaxial hexacopter

Supervisor: Dipl. Ing. Tomáš Meiser
Dept. of Computer Science, FEE,
CTU in Prague
Technická 2
16627 Praha 6

Abstrakt
Cílem této práce je vyvinout matem-

atický aparát pro koaxiální hexakoptéru,
vybavenou IMU (intertial measurement
unit) a GNSS (global navigation satellite
system) senzory, který zvýší přesnost
lokalizace tohoto letounu pomocí jeho
matematického modelu s využitím
přístupu Kalmanova filtrování. Důraz
je kladen především na vylepšení dat z
GNSS senzoru, neboť přesnost dat z IMU
již splňuje požadované nároky.

Pro ověření očekávaného zlepšení
byly zvoleny dvě metody. Hlavní z nich
je matematická analýza dvou trajektorií
zkonstruovaných jednak ze surových dat
samotného GNSS senzoru a druhak ze
zpracovaných dat, která jsou výstupem
z Kalmanova filtru. Pro druhou metodu
je do systému zaveden třetí senzor, lidar
(light detection and ranging). Při letu
UAV jsou zaznamenána data ze všech
tří senzorů, následně jsou zkonstruovány
dva modely mračen bodů pomocí dvou
trajektorií popsaných výše. Pohledovým
porovnáním lze určit zda mračno bodů
ze zpracovaných dat dosahuje vyšší
přesnosti.

Výstupem této práce je především
matematický model fyzického letounu
a filtrační aparát pro zvýšení přesnosti
lokalizačních dat. Dále byly vyvinuty
algoritmy pro záznam surových dat
jednotlivých senzorů a jejich následné
využití pro konstrukci 3D modelu.

Klíčová slova: UAV, IMU, GNSS,
Kalmanův filtr, lokalizace, matematický
model, koaxiální hexakoptéra

Překlad názvu: Aplikace Kalmanova
filtru pro vylepšení lokalizace
multi-rotorového UAV

iv

Contents
1 Introduction 1
1.1 Goal description 2
1.2 Knowledge assumption 3

Part I
Problem overview

2 Robot Localization 7
2.1 Localization approaches 7
2.1.1 Dead reckoning 8
2.1.2 Visual odometry 9
2.1.3 Triangulation 10
2.1.4 Measurements fusion 12

2.2 Common data filtering 13
2.2.1 Discrete Bayes filter 13
2.2.2 Particle filter 14
2.2.3 Kalman filter 14

Part II
Data processing

3 Data acquisition 19
3.1 Used sensors 20
3.1.1 Lidar . 20
3.1.2 RTK GNSS sensor 21
3.1.3 IMU . 22

3.2 System improvements 22
3.2.1 Non-uniform heading 23
3.2.2 Sensors time synchronization 24
3.2.3 UDP packets timing 24

3.3 New features 25
3.3.1 Single GNSS device 25
3.3.2 Data handling 27
3.3.3 In-field GUI 29
3.3.4 In-field statistics 29

4 Mathematical model 35
4.1 Coordinate systems 35
4.1.1 Gimbal lock 36

4.2 Used vehicle 37
4.2.1 Preliminar notions 37
4.2.2 Behavior 37
4.2.3 Degrees of freedom 39
4.2.4 Physical parameters 39

4.3 Non-linear model 40
4.3.1 Euler angles 40
4.3.2 Kinematic model 41
4.3.3 Dynamic model 42
4.3.4 Summary 46

4.4 Linear model 47
4.4.1 Linearization 47
4.4.2 Regulator 49

5 Kalman filtering 53
5.1 Theoretical introduction 53
5.1.1 Univariate Gaussian 53
5.1.2 Multivariate Gaussian 54
5.1.3 Kalman filter algorithm 54
5.1.4 Filling measurements gaps . . 56
5.1.5 Measurements of various
frequency . 57

5.2 Simulation 57
5.2.1 Gravitational pull 57
5.2.2 Air friction 58
5.2.3 Diagnostics 59
5.2.4 Virtual sensors 60
5.2.5 Improved mathematical model 61

5.3 Real system application 63
5.3.1 Differences from simulation . . 63
5.3.2 Measurements variance
identification 65

5.3.3 Filter tuning 65

Part III
Evaluation

6 Experiments 69
6.1 Trajectory filtering 69
6.2 Point cloud improvement 70

Part IV
Conclusions

7 Conclusions 81
7.1 Summary . 81
7.2 Project applications 82
7.3 Open issues 83
7.4 Future work 83

Appendices
A Abbreviations 87
B Bibliography 89

v

Figures
3.1 Round buffer implementation . . 26
3.2 Files conversions flow diagram . . 28
3.3 The application’s folder structure 31
3.4 Models creation flow diagram . . 32
3.5 GUI for point cloud construction 33

4.1 Used coordinate systems: VCS and
ICS . 36

4.2 BRUS - view from the top, the
front of the drone is up 38

4.3 BRUS - Elementary attitude
changes . 39

4.4 System with state feedback
regulator . 50

4.5 Regulated system reference
tracking . 52

4.6 Regulated system motors
responses . 52

5.1 Simulink implementation of
gravitational external force 58

5.2 Simulink implementation of wind
effects . 59

5.3 Regulated system reference
tracking with ext. influence 60

5.4 Regulated system motors responses
with ext. influence 61

5.5 Sensors noise simulation 62
5.6 Simulated measurement 63
5.7 Test flight trajectory pattern . . . 64

6.1 Simulated measurement of ang.
acc. 71

6.2 Real measurement of ang. acc. . 71
6.3 Simulated measurement of lin.
acc. 72

6.4 Real measurement of lin. acc. . . 72
6.5 RPY values difference of 12-state
system . 73

6.6 RPY values difference of 18-state
system . 73

6.7 NED values difference of 12-state
system . 74

6.8 NED values difference of 18-state
system . 74

6.9 Filtered/measured roll values of
12-state system 75

6.10 Filtered/measured roll values of
18-state system 75

6.11 Filtered/measured down values of
12-state system 76

6.12 Filtered/measured down values of
18-state system 76

6.13 Exemplary point cloud - Operator
sitting on a bench. 77

vi

Chapter 1
Introduction

Nowadays unmanned aerial vehicles (UAVs) development is an important
topic in the field of robotics. More and more applications are taking ad-
vantages common to all UAV types to achieve specific goals. The main
reason is that no pilot is seated inside a UAV, therefore not threatened by
possible dangers of a mission. UAVs are smaller and lighter than manned
aerial vehicles. Thanks to that the aircraft drains less energy from its power
source, and is also able to access much smaller spaces. Not only they can
access spaces tighter than a human can move through but also are capable
of automated data acquisition, processing, and even running AI (artificial
intelligence) algorithms to navigate itself autonomously for example.

First known applications were military missions in danger zones, mainly
surveillance. As times goes, parts and sensors for construction of these vehi-
cles get less on price, and other industries are getting hands-on development
for their custom applications. These days, UAVs are used for agriculture
(terrain mapping), scientific (collecting statistics data), commercial (package
delivery) and also for recreational purposes such as filming or drone racing.
Applications similar to the military ones take place in commercial sector too.
Private companies often use UAVs to guard their storages, office buildings,
and other holdings.

A proper UAV application requires the involvement of various technology
fields and brings a lot of challenging issues with itself. Even development of
a simple recreational drone requires a good knowledge of physics to deal with
the aerial vehicle’s behavior, system control theory to be able to command
the drone and radio-electronics for communication between an operator and
the vehicle. Moreover, more advanced applications may require a certain
level of AI implemented, because it may be instructed to follow waypoints in
a map by its own for example. With „self-flying“ aircraft comes a problem
of localization, because when a UAV needs to go somewhere, firstly, it must
know where it is and if it is not already there. Moreover, with swarm missions
(more UAVs cooperating on a task), we are in need of team mapping and
communication features as we want each UAV to provide information to the
others. In the end, there are the most advanced (scientific) applications,

1

1. Introduction
where developers must be able to incorporate custom modules with particular
and often highly accurate sensing capabilities, for example, chemical sensors.

1.1 Goal description

One of the most important things for self-flied UAVs is localization. It is used
for an aircraft’s autonomous control and also as a source of information for
an application managing the UAV’s mission goal (localizing certain object,
constructing a map, etc.). Localization starts with the integration of sensors
into the system. The sensors can provide measurements of various physical
quantities with various accuracies depending on the type of such sensor.

There are two types of problem which may come up during the development
of the localization process. In the first place, we might need information about
a physical quantity which is not directly measurable by any sensor present
in the system. On the other hand, while having a sensor which can directly
measure desired quantity, the sensor may provide noisy or low-frequency
measurements which cannot be used for precise localization. In some cases,
a developer can merely interchange the inappropriate sensor for a different
one. However, in most cases, the precision is still not satisfied with the given
application. That is the time where software solutions come in. There are
post-processing methods which can achieve good estimates of real values of
the physical quantities which are previously measured with low accuracy/fre-
quency or are not measured at all. It is possible to acquire the non-measured
quantities using a fusion of the data based on known physical principles.
Low accuracy/frequency data problem is solved by use of filtration processes.
General processes of fusion and filtration of data can be vastly improved
when fitted right onto a specific application. Each of them has its pros and
cons for the desired usage so their way of implementation should be picked
and tuned wisely to achieve the optimal fit considering required specifics.
Some of the methods can be used together to deliver even more precise results.

Nowadays many industrial applications call for objects inspections or
mapping of an environment related to their business. Among others, the
fields of usage may include agriculture, industrial and security. Agriculture
field calls for construction of 3D models of structures or natural domains, crop
monitoring, wildlife observation and others. Industrial applications make use
of power lines inspection, storage containers maintenance, product pipeline
monitoring, etc. Security involves holdings guarding, intruder tracking and
so on. In all these cases, sense of the surroundings is essential. It can be
achieved by use of various sensors as radar, lidar, or a camera. The process
of identifying features in the environment and reacting to them correctly is
inevitably dependent on self-localization.

2

.................................. 1.2. Knowledge assumption

The primary goal of the project is to develop a mapping system which
will be capable of creating precise 3D maps of agricultural areas. Currently
the system utilizes aerial vehicle with a lidar (light detection and ranging)
sensor, which is capable of providing relative positions of scanned surfaces,
an IMU (inertial measurement unit), which gives high rate information about
the vehicle’s orientation (three angles deviations relative to a given reference
frame), and RTK GNSS (real-time kinematic global navigation satellite
system) sensor, which provides the vehicle’s position (translation relative to a
reference point). The localization is crucial for the maps precision. As found
in previous experiments, the accuracy of position and attitude sensors, mainly
the GNSS one, is not sufficient enough for our target application. The goal
of this work is to develop a solution which improves the accuracy of position
and attitude information from data provided by IMU and GNSS sensor to be
able to construct more precise 3D maps.

1.2 Knowledge assumption

To correctly understand the presented work, the reader is supposed to have at
least basic knowledge in the fields of the differential calculus, kinematics and
dynamics of a rigid body, linear algebra, system analysis/control theory (state
space description, linearization, discretization) and statistics (probability of a
random variable).

3

4

Part I

Problem overview

5

6

Chapter 2
Robot Localization

Robot localization is a process of determining robot’s position and pose
(orientation/attitude) respectively to the surrounding environment (or to
the initial position and pose in case of odometry). Localization is one of
the most fundamental competencies required by an autonomous system as
the knowledge of its position and pose is necessary for real-time decisions
about future actions and potential mapping process (creating a map of such
environment). In this chapter, we will introduce some of the widely used
localization approaches.[SG16] We will structure the description of them
such that final selection for our application is justified and presented along
with other similar methods in the same field. Only brief insight into the
problematics will be given focusing mainly on advantages and disadvantages
which are crucial for the final selection. Further on we will use abbreviation
PP for "position and pose."

2.1 Localization approaches

In this section, we will compare representative existing localization methods
to choose an approach which fits our application the most. We can split
them into two major categories. The first one called odometry (or some-
times inertial localization) covers methods which utilize sensors onboard
the vehicle and does not require any external support. They use motion
sensing to estimate a robot’s PP relatively to its previously known PP. That
involves sensors such as revolution counters, angle sensors (synchro, resolver,
rotary encoder), accelerometers, gyroscopes, magnetometers, pressure sensor,
radar/lidar, camera from which a robot can acquire its linear and angular ve-
locity vectors and update its PP over time based on these. It may also be able
to determine a vehicle’s pose based on measurements of known environmental
properties (magnetic field, gravity). The second category, which can be called
supportive, is any localization method which utilizes developed infrastructure
of supportive devices in the environment. It can localize a vehicle in local
(user-defined) coordinate frame or in standardized global coordinate system
(WGS-84, PZ-90, ...)[ees14]. Such localization is called global localization
or geolocation. This category of methods mostly uses the following sensors:
GNSS sensors, radios, set of cameras, etc.

7

2. Robot Localization
Besides the used sensors, we can identify some other major parameters for

each approach. Mostly we are interested in the UAV application’s properties
such as operational area (is it outside/inside, how wide is it, is there weather
influence, etc.) and knowledge of the environment. Its structure may be
known prior to the localization process in the form of some map representing
various features of the surroundings which can be used as a localization
medium. Types of the representation vary depending on the corresponding
application by important features like dimensionality of the coordinate space,
required accuracy, detail and density, data volume limitations, etc. Further
description is not within the scope of this work. Examples can be found in
[YJC12], [Fai09] and [FZY+14]. The knowledge may also be acquired during
the process of localization (SLAM)[KTH15]. Sometimes the environmental
knowledge is not utilized at all.

The following sections present four representatives of methods widely used
for UAV localization. Note that not all existing approaches are presented as
other individual cases may exist. We chose those related to UAV localization
problem. Each section is structured such that: the first paragraph introduces
the fundamental principle of the method, the second one lists sensors which
are (should be) utilized in it, and the third one presents an example of an
application in which the method is often used. Finally, advantages and
disadvantages of it are covered to point out relevant specification used for
the selection decision making.

2.1.1 Dead reckoning

One of the inertial localization method, dead reckoning, is a process of cal-
culating the evolution of PP in time t + ∆t from known PP at time t and
states changes (derivatives) measured during the time interval ∆t. A wheeled
ground vehicle going straight forward may use a sensor to read its wheel’s
velocity (angular, calculating peripheral) and therefore can determine its
following position from known previous one. However, the wheel can slip on
the surface. In every system, there is present such error caused by similar
unpredictable and unobservable effects. That is why dead reckoning is subject
to cumulative errors and tends to diverge over time from the real states of
the system. The accuracy depends mainly on the presence of unobservable
events which adds the errors.

This approach utilizes sensors which are either able to record difference
of the desired quantity (angle sensors, revolution counters, etc.) or can de-
termine the rate of change of particular physical quantity during the time
interval (accelerometers, gyroscopes) and derive the difference using integra-
tion process.

Dead reckoning is often used together with a global localization module.
Every-day example of its usage is navigation systems in cars. When used

8

.................................. 2.1. Localization approaches

GNSS sensor loses the ability to localize itself (car in a tunnel), the dead
reckoning subsystem may temporarily take over to provide estimates of the
current location until the global localization ability is restored. More ad-
vanced applications utilizing UAVs uses this method to get the information
about PP with high rate required by auto-piloting systems. Because GNSS
systems give position readings with low frequency (in order of units or tens of
Hertz) the time gaps between the readings are filled by computed estimates to
provide the information to control feedback of the auto-pilot. Nowadays, this
approach is also subject of interest to pedestrians localization for personal us-
age [SF17] or used as a part of localization system of drive-less cars [AMY+17].

This approach alone needs initial PP for the calculation of the others
in time. The benefit of this approach is simpler hardware and software
implementation. It is usable indoors and outdoors with sensors mounted
onboard a vehicle. It is mainly used for real-time localization and is mostly
used without the knowledge of an environment. However, in some cases, it
also utilizes a map of the environment.[O’K06] The most crucial property of
this approach is the cumulation of error over time.

2.1.2 Visual odometry

Let’s introduce a second inertial method. This one is widely used in many
variations utilizing various types of sensors and algorithms. Visual odometry
is a process of determining PP change of a robot by analyzing captured images
over time. In one moment a robot captures an image of the surroundings and
compares it to the image captured one timestep ago. By finding so-called fea-
tures (well distinctive points/contours/areas) in the images, it can determine a
PP transformation of the camera which took those images, therefore, deriving
the change of the robot’s PP relatively to the surroundings. There are plenty
of approaches for the features detection which are not within the scope of this
work; examples may be found in [HKM13]. Moreover, when the environment
is known (we have a geo-referenced model of it) global localization may be
performed based on a comparison of captured images with the model.

This principle may utilize common RGB camera or other imaging sensors.
We can assume cameras capture images in a different spectrum than the
visible light. Usage of IR (infra-red) is the same except there is only one
intensity value measured for each pixel (as opposed to colored image where
three RGB values are recorded). Moreover, depth sensors or lidars[SZC+17]
can be utilized by creating different, 3D images of the environment. Finding
features in these is a little bit different, but the principle remains the same.
Review of visual odometry approaches can be found in [AMSI16].

A general example of an application using this approach is an application
utilizing SLAM algorithm mentioned earlier. Specific example: A UAV uses
a camera on-board to capture images of the surroundings and can construct
a 3D model of it and localize itself inside it simultaneously. It uses the model

9

2. Robot Localization
to avoid obstacle and plan trajectory to be able to map the whole desired
area. Distinguishable points in the area may be geo-referenced to make the
localization and mapping processes referenced in a global coordinate system.

This method is usable both indoors and outdoors, used sensors and algo-
rithm implementation should be adjusted to that. It utilizes only onboard
sensors without any need for environmental interference (assuming sufficiently
heterogeneous properties of the environment for proper feature detection
meaning no large areas without distinct features). Another assumption is
a sufficient features correlation between each two consecutive images. It
is mostly implemented for real-time localization as for off-line trajectory
reconstruction it would require storage of a significant amount of data. The
knowledge of a map of the surroundings can greatly improve the performance
but this method can be, and it is, used mainly for simultaneous localization
and mapping (SLAM)[TUI17] which can localize without prior knowledge
of the environment while effectively creating a map of it. The significant
advantage of this method is that it does not have to be combined with any
other and yet it is usable for various applications. The disadvantage is the
high-performance requirement for extensive calculations done to retrieve the
PP.

2.1.3 Triangulation

In localization, triangulation is a process of localizing a robot by forming
triangles to it from known points (beacons) in the environment. It is the
main representative for supportive localization category. Various sensors can
be used to detect the beacons and measure either distance to them or angles
under which they are perceived relative to the robot. With basic rules of
trigonometry, the algorithm can determine a location of the robot relative to
the beacon grid. There is an assumption that the robot can distinguish the
beacons from each other (using image processing to detect signs, receiving
identification radio signal from the beacons, etc.). When the global positions
of the beacons are known, we can call this method a global localization (the
robot indirectly localizes itself in a global coordinate system). Otherwise, it
is called a localization in a local coordinate frame.

GNSS localization
GNSS is an acronym for “Global Navigation Satellite System.” A GNSS

sensor can determine its position in a global coordinate system. The prin-
ciple of triangulation is used to determine the position. The technique uses
pseudo-random codes received from four or more satellites in Earth’s orbit to
determine the sensor’s distance from each of them. Along with information
about the satellites positions, the device can determine its position usually
within a few meters. The more satellites are involved in this process, the
more precise the localization is.[Nov18] A satellite is included in such solution
if its signal to noise ratio and position over the horizon are both satisfying
defined minimal values.

10

.................................. 2.1. Localization approaches

The sensor used for this is dedicated GNSS sensor. It consists of a board
and an antenna. It may have various parameters including number of fre-
quencies on which a signal can be received, what satellite systems it can use,
if it records raw data or some processed solution, etc.

With the sensor’s necessity of clear view at the sky (the satellites in orbit),
this is an outdoor solution for localization. Besides real-time localization, it
can be used for post-processing trajectory reconstruction because of the small
volume of the data needed to be stored. The post-processing is widely used
with the type of sensors which can record raw measurements. It is supposed
that the satellite network itself is handling localization of the beacons (satel-
lites). Therefore we assume this method to be the type which does not need
any prior knowledge (all information about satellites is retrieved from the
incoming radio messages). This method is not able to provide information
about the attitude.

Wi-fi positioning system
Wi-fi positioning is a localization method which uses infrastructure of radio

transceivers (beacons) statically placed in the operational area. A device on
a vehicle communicates with all reachable beacons by radio messages. The
mostly used localization approach is taking measurements of the received
signals intensity (RSSI) and using the method of "fingerprinting"[YDCPC17].
As a vehicle can only localize itself relatively to the grid of beacons (hotspots),
we call this a localization in a local coordinate frame. To perform global
localization, the device onboard the vehicle must first acquire the informa-
tion about the hotspots positions in the global coordinate system. However,
in many robotic applications, there is no need for localization in a global
coordinate frame, so only defined local frame is used. Some applications as
personal localization with the help of mobile devices can use the developed
infrastructure of wi-fi hotspots in urban areas to perform global localiza-
tion. The hotspots are being geo-localized by correlation with GNSS system
used by the mobile device. The accuracy of this localization method depends
on the number of reachable beacons along with used signal processing method.

"Sensors" used for this method are radio transceivers. Some of them are
placed in the environment, and usually, one is mounted on a vehicle which we
want to localize. When the mobile device is combined with GNSS sensor, it
can assist in geolocation process of the beacons in range. When creating own
infrastructure of beacons grid, the beacons my be able to localize themselves
relatively to each other and automatically create a 3D arrangement in which
they are set.

This approach can be considered as an indoor analogy for GNSS local-
ization (can also be used outdoors near the beacons) as it uses the same
principle of triangulation. It is mostly being used as a real-time localization,

11

2. Robot Localization
and if used for global localization, it requires knowledge of the environment
(locations of the beacons). When using the developed infrastructure, such
knowledge is acquired via the radio communication (similar as with satellites
in GNSS localization). The disadvantage is that the analysis of incoming
signals often does not provide a very accurate estimate of position. This
is caused mainly by the phenomenon of signals reflection in the environ-
ment. Moreover, it is not able to determine attitude at all. As it was said,
the main advantage is the possibility of utilization of developed infrastructure.

Others
The principle of triangulation can be used with wide variety of sensors.

If a robot can discover the beacons (camera) and acquire distances (depth
sensor) or relative angles (image processing) it can localize itself relatively
to the beacons grid.[YM05] The same goes for cameras or ultrasonic sensors
grid established in the environment which can determine the position of the
vehicle.

2.1.4 Measurements fusion

All of the previously stated methods were only elementary approaches en-
suring derivation of ’position OR pose’ or both with accuracy not sufficient
enough for most of the advanced applications. Localization of a robot is
commonly a subject of implementing more of the elementary methods to-
gether into a localization system. For example, a widely used outdoor solution
is a fusion of position readings from a GNSS sensor and orientation mea-
surements from accelerometers (measuring the vector of the gravitational
pull) or magnetometers (using knowledge about the local magnetic field).
There are plenty of combinations which can be done, each method brings
in some new features (increasing the precision when correctly implemented)
but also some limitations (heavier robot, costly sensors, more power drain,
etc.). Mostly used approach for a UAV operating outdoors is dead reckoning
based on linear and angular acceleration values continuously being corrected
by position measurements from GNSS sensor and records from IMU (inertial
measurements unit) detecting the UAV’s attitude.

To further improve the process of localization, data processing can be used.
Many of the physical quantities being measured by the localization sensors
are not independent. Physical relations form a correlation between the mea-
surements. For example, a robot’s acceleration measured by accelerometers
is highly correlated with velocity measurements which might originate from
visual odometry and position readings from GNSS sensor. Software-aided
processing (data filtering) of datasets consisting of readings from various
sensors may vastly improve the estimate of the real PP.

These techniques may adjust a robot to be suitable for an outdoor and
indoor application and may permit real-time as well as post-processing usage
(depending on computing power and data storage available). There are

12

...................................2.2. Common data filtering

applications which might utilize some prior knowledge if it is available and
also incorporate sensors mounted in the environment. This approach is highly
adjustable to fit the needs of a particular application.

2.2 Common data filtering

As it was stated in the goal description, we want to improve the localization
of the UAV without any new hardware added. That is the reason why we
have chosen a software solution for the improvement. We had already used
primitive measurements fusion based on linear time interpolation of position
information from GNSS sensor and attitude readings from IMU. Moreover,
we used data filter built-in into the IMU which was providing attitude values
based on measurements from multiple sensors. However, we want to develop
similar but more precise filtering process by implementing filter fusing the in-
formation from both localization sensors on board (more sensors in the future).

There are plenty of filters already known which can somehow get more
accurate information from noisy measurements, from systems of sensors, by
integration of prior knowledge, etc. Note that we are not speaking about
digital filters which apply to an individual signal’s values and are analogies
to analog filters just in discrete time samples. We talk about data filters
which understand and can interpret the input values as physical quantities
knowing relations between them. In the following subsections, we will cover
three related types of such data filters which are widely used in the field of
robotics.

2.2.1 Discrete Bayes filter

Recursive Bayesian estimation also known as Bayes filter is a discrete time
filter which utilizes probabilistic approach for estimating an unknown prob-
ability density function of a desired phenomenon. It is recursive and uses
incoming measurements as well as a mathematical process model for its esti-
mates. In robotics, it is used as an algorithm for calculating the probabilities
of multiple beliefs to allow a robot to get partial knowledge of its PP. The
filter outputs probabilities of a robot being in various states (PPs) based
on previously estimated states probabilities and incoming measurement. It
does so by utilizing probability density functions of the sensors (probability
that they will report certain value while in a certain state) and the system
(robot) itself (probability of getting into the certain state while knowing
the previous state).[Rub18] An example utilizing localization in topological
domain is stated in [CHL14].

It comes out that the filter requires a lot of prior knowledge to be fully
operational. Also, it can operate only over discretized intervals of values and
states and uses a significant volume of data storage for all this information.
This filter is mostly utilized in small domains of operation which have to

13

2. Robot Localization
be interpreted as discrete (for example grid maps), mainly used for 2D
localization indoors in a known environment. Regarding these facts, this filter
is not applicable to our application. But it sets a whole family of filters which
are derived from this one.

2.2.2 Particle filter

Particle filter is a set of genetic algorithms based on Bayesian filtering. The
process consists of estimating the internal states of a system while partial
observations are available and random unobservable perturbations are present
in the system as well as the sensors measurements. Particle filtering uses
a genetic selection sampling approach with a set of particles to represent
the posterior distribution of some stochastic process. The process model
can be non-linear and initial state along with noise distributions may be
arbitrary. This filter is even able to perform estimation without knowledge of
a state-space model or state distributions. However, a map of the surround-
ings must be available. This approach covers the localization problem of
unknown position in a known environment. It is based on assigning weights
to individual particles in a set according to the incoming measurements and
re-sampling them with respect to those weights to acquire an estimate from
high particle density areas. More detailed description can be found in [Thr02].

This approach is not suitable for our application as it requires a limited
area of operation and prior knowledge of the environment.

2.2.3 Kalman filter

Kalman filter (KF) can be marked as the continuous version of the previously
described general Bayes filter and the special case of the particle filtering
(sometimes referred in reverse). It has one crucial assumption that all proba-
bility functions utilized in the process are Gaussian (normal distribution). It
is recursive and operates in discrete time moments as the general Bayes filter.
Its difference is the possibility for continuous domain application as well as the
simple definition of the probability functions resulting in lower data storage
occupied. Because of our application in continuous domain representing a
wide and unknown area of operation and possibility to accept the Gaussian
assumption, we picked this type of filter to improve the localization of our
UAV.

Kalman filter at its basic form is an estimator for linear systems. Its
implementation is done using linear algebraic expressions. It uses series of
noisy measurements along with the virtual evolution of the mathematical
model to estimate state variables of the system for each timestep. It is done
by using joint probability distribution over the variables. The big advantage
of this method is the ability to make estimations of the states at a higher rate
than the sampling frequencies of the sensor included. Moreover, it can also
handle various sampling frequencies among multiple sensors. As said earlier,

14

...................................2.2. Common data filtering

the filter estimates the states of the system. That means that it can estimate
all states of the system, even those directly unobservable (not measured by
any sensor), as long as they are part of the state space model provided. It is
also necessary for the system to be fully observable (regarding system theory).
In some implementations, also unknown input signals or noise signals entering
the system can be estimated. For convenient functionality of the filter, it must
be provided with good estimates of variances and covariances of the process
noise and measurement noise. Practically the filter is reversing the addition of
those noises into the system based on their most accurate description provided.
It is an optimal state estimator in terms of minimizing the expected value
of mean-squared error (MSE) between real value and the estimate. [LKDM17]

Implementation of this method requires the construction of a mathematical
model of the physical system and reasonable estimates of the noise signals
characteristics. Moreover, the system must be assumed to operate around
a chosen working point (each state of the system should not diverge a lot
from its defined working value). A significant advantage is a possible fusion
of all measured physical quantities into one model where they influence each
other, therefore in most cases bringing redundant information into the system
which may improve the precision of the estimates. With the usage of calcu-
lated estimation of covariances in each step, the filter can effectively "switch"
between sensors when some of them is reporting inaccurate measurements
by assigning it lower weight. Kalman filter can smoothen noisy measurements.

There are also more advanced versions of Kalman filter. The first mention-
able is extended Kalman filter (EKF) which is a nonlinear version of the
basic KF and performs linearization about an estimate of the current mean
and covariance. It uses a nonlinear model of a system (the functions must
be differentiable), including state transition model (along with state/input
relations) as well as observation model (relation between states and measure-
ments). The process utilizes the Jacobian (partial derivatives) and evaluates
it at each time step with current predicted states. Essentially it linearizes the
nonlinear functions around the current state (estimate).[Jr.18a] Examples of
usage can be found in [KA06] and [MDA07].

Unlike its linear counterpart, the EKF is generally NOT an optimal esti-
mator. Also, if the initial estimate is wrong or the transition model derived
incorrectly, it is much more prone to quick divergence because of the lin-
earization. Another problem is that EKF tends to underestimate the actual
covariance matrix and therefore risks becoming inconsistent in the statistical
sense without the addition of correction noise. It is also computationally
more demanding than the linear KF.

The unscented Kalman filter (UKF) is another advanced type of KF.
The difference in implementation UKF and EKF is that UKF does not require
the computation of Jacobian. That computation is not trivial, and sometimes

15

2. Robot Localization
the Jacobian is very difficult or even impossible to derive analytically. To
evade this, the UKF only require the provision of functions that describe the
system’s transition model and measurement model. The UKF works on a
principle of generating randomly distributed points and applying the system’s
models to them along with unscented transformation. This generation of
points may, in some cases, be also computationally demanding. EKF and
UKF are hard to compare without a specific case as they each perform very
differently in various applications. The readers are referred to [WM00] and
[CSH17] for further details.

There are many variations among the specific types of KF, among filters
in general or among other data processing approaches. Each possible com-
bination can be discovered to be useful for a specific case of usage, has its
advantages and disadvantages. The stated overview should not and cannot
give complete insight into all currently developed techniques.

We decided to implement the basic linear Kalman filter to improve the
localization ability of our UAV based on the following reasons. It was
experimentally proved that our UAV is moving beyond reasonable values of
attitude angles (maximal deviations of ±15◦) and we plan to incorporate
this algorithm as a real-time solution onto the onboard computer’s platform
which has not sufficient computing performance for EKF or UKF in our case.
Its detailed description and implementation will be stated in chapter 5.

16

Part II

Data processing

17

18

Chapter 3
Data acquisition

This chapter describes software subsystems dedicated to sensors data acqui-
sition and its fusion into a final 3D model. It tightly follows up the work
presented in my bachelor thesis [Tra16]. The previous version of the appli-
cation was vastly rearranged to improve efficiency during development and
ability to detect and solve issues without losing valuable data from testing
flights. Supporting features were added, and imprecise program algorithms
improved. From now on we will use terms "in-field" and "desktop" applica-
tion/process/etc. In-field means it is done by the aircraft’s onboard ARM
computer in the operational area where a mapping takes place, and desktop
stands for post-processing done using higher performance PC in an office.

Let’s briefly sum up the state of the system after the work submitted
in [Tra16]. In-field system acquires data from three sensors (lidar, IMU,
differential RTK GPS) and uses the onboard computer’s time along with
estimated hardware line delays to pin timestamps to the incoming packets.
It also vastly parses the incoming data and saves them into binary forms
defined by our group’s standard. Because of that, a significant amount of
original information is dropped. IMU settings are statically set beforehand,
using third-party desktop application. The error caused by wrong heading
reported by IMU must be manually corrected by visual evaluation of a model
which is time demanding and requires a skilled observer. Lidar’s datagram
packets using UDP (user datagram protocol) are assumed to be in correct
order (regarding time of creation) as they arrive at the computer’s input port,
and no check for this is applied. All of these stated facts are considered issues
to be resolved to improve the system’s correctness and reliability.

Along with core features of the system, there is a parser for lidar’s data
packets and interpolation modules for lase points timestamp and laser firings
azimuth reading. Moreover, developed mathematical algorithm used for the
construction of a point cloud model (coordinate systems transformations), a
module for correction of the points positions offsets caused by the mounting
position of the GPS antenna, and LAS output module are present.

19

3. Data acquisition
3.1 Used sensors

3.1.1 Lidar

Lidar stands for „Light Detection And Ranging“ or „Laser Imaging, Detection,
And Ranging.“ The term was introduced as a portmanteau of words „light“
and „radar“ which was previously treated as an acronym for „Radio Detection
And Ranging.“ However, no particular consensus on capitalization of the
word „lidar“ exists. Used cases include many variations like „LIDAR“[Geo15],
„LiDAR“[JHM18], „Lidar“[LZM17] or „lidar“[Met18]. In this thesis, the vari-
ant „lidar“ is used.

The sensor itself is based on a similar principle as a radar except it uses
light beams instead of radio signals. The primary function is to measure
distance in various directions. General lidar fires laser beams into its field of
view (FOV) and once a laser pulse is fired, it travels through space until it
hits solid object where it reflects. The corresponding sensor in the emitter/re-
ceiver pair detects an energy peak of the pulse reflected by the target object.
The unit can determine the object’s distance based on the measured time
between firing and detection and the known speed of light in the environment
(time-of-flight principle). Additionally, the amount of energy contained in the
returned pulse can be measured to determine the reflectivity of the object,
hereafter identify some of its surface’s parameters.

A significant advantage of lidars against cameras used along with pho-
togrammetry approach is that lidar can measure more energy peaks returned
from one single laser pulse fired. That allows it to detect more surfaces
covering up each other as long as all nearer surfaces than the farthest one
are at least partially translucent (better be transparent)[Tra16]. Examples of
utilizing this feature can be mapping terrain beneath treetops or riverbeds
through a water mass. However, a lidar sensor is only capable of providing
distance, and intensity measurements with position reported relatively to the
sensor’s body frame. For an absolute localization of a scanned point, other
sensor’s must be utilized. For this reason, the following two sensors are also
utilized.

The lidar we use is VLP-16 from Velodyne company. It has FOV of 360◦
horizontally (it rotates around) and ±15◦ vertically and fires 300 000 laser
beams per second. Rotation frequency can be set between 5 Hz and 20 Hz
and the effective range of measurement is from 0, 5 m to 130 m. Moreover,
it is capable of retrieving two returns of a laser beam, the strongest one
(according to energy) and the last one. The lidar is using UDP through
Ethernet network to communicate with the computer. Laser measurements
are being sent in data packets using reserved network port. The device has
an option to connect external GNSS sensor directly to the lidar’s processor.
With the provision of supported NMEA messages and PPS (pulse per second),

20

....................................... 3.1. Used sensors

the lidar also sends position packets on another port. The packet includes
original NMEA message and parsed information from it. More importantly,
when NMEA message and PPS are valid according to [Vel18] the internal
clock of the device is synchronized with the UTC and states microseconds
passed after the beginning of an hour.

3.1.2 RTK GNSS sensor

This sensor is responsible for localization in a global coordinate system (prin-
ciple stated in 2.1.3). The system may either use spherical coordinates with
the origin somewhere near the middle of Earth (various standards put it in
slightly different places) or Cartesian coordinates with origin at any place
(commonly Earth center or some GNSS ground station’s position in a local
area).

There are four global satellite systems currently operational. GPS (United
State’s Global Positioning System), GLONASS (from Russian abbreviation,
managed by Russia), BDS (BeiDou Navigation Satellite System from China)
and Galileo (created by European Union). Each has its own set of satellites.
As the GPS is the oldest systems, every GNSS sensor is capable of localizing
itself using the GPS. Because the need for the most satellites visible, more and
more sensors start to incorporate the other systems too. Also, the satellites
broadcast the code messages on more than a single frequency. Some of the
sensors are capable of receiving multiple frequencies, therefore, increasing the
chance to receive a message.

Moreover, special types of GNSS sensors exist. They were developed for
applications requiring centimeter-level precision (land survey, hydrographic
survey, UAV navigation, etc.). One such type is RTK GNSS sensor. RTK
stands for Real-Time Kinematic and is a technology which uses carrier-based
ranging instead of the code-based one. The device determines the number
of carrier cycles between a satellite and the sensor and phase of the carrier
wave at the signal’s reception time. Cycle and phase measurements ensure
more accurate estimation of the distance to satellite contrary to the code-
based method. The calculated ranges still include errors (satellite clock and
ephemerides shift, and errors caused by ionosphere and troposphere). To
eliminate these errors, we use another device designated as a base station
(BS) with a well-known position. It can provide corrections for the mobile
device on a vehicle, also called rover in this case, in real time by radio or in
post-processing via correction files.[Nov18] Another significant advantage of
using the pair rover station and BS is that positions can be easily referenced
in local coordinate system (Cartesian) which is used for more effective calcu-
lations in mapping systems.

Description of specific sensor used in the current setup will be covered in
3.3.1 further down in this chapter.

21

3. Data acquisition
3.1.3 IMU

IMU stands for “Inertial Measurement Unit.” Basic IMU uses accelerometers
and gyroscopes which can measure linear and angular accelerations corre-
spondingly. Other physical quantities such as speeds and positions (both
linear and angular) are most often determined by integration. The IMU is
often capable of acquiring the initial attitude by measuring the direction
of gravitational pull (acceleration). Moreover, units can be equipped with
magnetometers which are helping to determine the unit’s attitude and an am-
bient pressure sensor which enhances the altitude measurements. Advanced
units often incorporate GNSS sensor to provide direct position measurement
(without integration). IMU can use software-aided improvements to provide
more accurate information by fusing and filtering data from multiple sensors.
Almost all IMUs available do not allow to configure their built-in filters, so
a developer is unable to make custom adjustments. Luckily raw data from
each sensor individually can be retrieved and own processing software can be
applied which is the final goal of this work.

The IMU integrated into our system is 3DM-GX4-45 manufactured by
Lord Microstrain company. Its components are enclosed in a durable and
compact box equipped with mounting holes along with precision alignment
holes. Moreover, its cable connector has a screw terminal for safe operation
in a system with frequent vibrations. The whole device consists of three
significant subsystems inside. The IMU subsystem itself (equipped with
accelerometers, gyroscopes, magnetometers and ambient pressure sensor),
GPS subsystem (provides position based on signals received from satellites
by externally connected GPS antenna) and Kalman filter. The filter can
provide all previously mentioned quantities with higher frequency and also
can derive quantities such as velocities, absolute Euler angles and precision
estimations (covariance matrices) for each measurement. The IMU subsystem
is supported by a complementary filter so it can also provide absolute Euler
angles. (Absolute is meant to be relative to the calibration state.)

3.2 System improvements

The following paragraphs cover robustness improvement of the module en-
suring the measurements acquisition. The first topic covers correction of
imprecise heading records provided by IMU. The second one presents rear-
rangement in sensors records handling and aligning with respect to time.
Finally, we will introduce the implementation of sorting algorithm for lidar
packets further improving the records alignment. The first two issues are
tightly connected to the localization process involving IMU and GNSS sensor.
The third one is related to the point cloud construction process.

22

................................... 3.2. System improvements

3.2.1 Non-uniform heading

One of the most significant problems in the system was the fact that the IMU
was reporting incorrect heading readings. The Euler angles taken from the
Kalman filter was nearly correct but had a constant offset from the real values.
The filter itself integrates the quantities very precisely but is dependent on
initial vector given during its initialization. That was previously read from
the IMU subsystem which reported an incorrect attitude. As seen in [Tra16],
the problem caused the constructed point clouds to be unusable. A manual
correction had to be done to at least somehow correct the model. This solution
was unacceptable because it required the model to be constructed several
times and simple trajectory reconstruction (post-processing localization) was
not possible (not usable for Kalman filtering).

One idea was to use GPS readings to estimate the heading, assuming
the vector of speed has the same direction as the heading of the aircraft.
However, with the usage of a multi-copter, there is a problem with the fact
that the aircraft can move itself to all sides independently of current head-
ing direction. A possible solution would be adding acceleration (velocity)
readings to get the correlation between those two sensors and estimate the
axes misalignment. Another idea was to utilize second GPS antenna. With
two measured positions of the antennas and knowledge of their mounting
configuration on the aircraft, we would be able to get the heading vector.
Those two solutions are demanding either on complex software solution or
costly hardware adjustment, so we were looking for a simpler one.

After rigorous research, it was found that the IMU can initiate itself au-
tomatically without the need of a user to mediate the transfer of the initial
vector. The process is not simple and requires the onboard system to send
specific commands in specific order to the IMU. Previously, only simple in-
line implementation of hexadecimally represented commands was used in the
source code to set up the IMU. This new initialization process strictly requires
the communication to be reliable (acknowledged), ordered and error-checked.
Therefore implementation of service library for the IMU was needed.

Because the whole project had utilized Java programming language for its
implementation and such library was not provided in this language, I had
to implement it by myself. The implementation was done as much general
as it could be to make the future development easier in case of additional
changes (addition of commands for example). Present stable version includes
automated insertion of magic word bytes, calculation of payload length,
fields lengths and checksums and setting correct fields structure based on
provided descriptors. Moreover, it can recognize acknowledge messages for
corresponding sent packets and therefore can arrange re-sends to ensure
specific commands were executed with positive acknowledgments before
continuing with a procedure. The programmer is informed during the whole
application run about the status of the communication channel.

23

3. Data acquisition
3.2.2 Sensors time synchronization

In the system, there are three sensors from which the data has to be merged
to form final point cloud model (or two sensors in case of localization). For
this process, we need to tell which measurements from different sensors belong
to each other with respect to time alignment. We cannot use together mea-
surements which arrived at the onboard computer at the same time as each
link between a sensor, and the computer has different parameters, and the
latency varies. To precisely align the data we want to work with timestamps
recorded right in the moment of a measurement acquisition. That has to be
done by the sensors devices. In our case the GNSS sensor links UTC with its
measurements, IMU uses GPS time (GPST), and the lidar has its indepen-
dent internal clock which starts from zero at the device’s startup and counts
microseconds in the format of unsigned long until it overflows and then repeats.

Previously, the computer’s time of a packet’s arrival was used along with
estimated time of data transfer throughout the corresponding link. This
approach was inaccurate and had tens of milliseconds errors. To be able to
merge the measurements precisely we had to develop a solution such that
we get the same time system to each sensor used. Regarding GNSS sensor,
and IMU there is not a big problem as they both are capable of requiring
GPST along with leap seconds from the satellites, therefore, can use both
UTC or GPST as timestamps. For the lidar, the best and easiest solution is
to utilize hardware connection with external GNSS sensor to achieve exact
time synchronization to UTC.

The newly integrated GNSS sensor (described in 3.3.1) allows us to use its
output serial port to provide NMEA messages of the desired type and PPS
with defined duty cycle. We have set the configuration of the sensor according
to [Vel18] and made a hardware serial connection between the lidar and the
sensor. The internal clock of the lidar is synchronized when NMEA message
with positive validity flag and valid PPS arrives. However, the system will
switch back to the internal clock whenever the PPS lock is lost. For this
reason, we implemented a subsystem which can parse the lidar’s position
packets and keep track of whether the timestamp is currently usable or not.
An operator is also notified about the state in real time to know accurately in
what time intervals the dataset will be usable for model construction. Details
of this problematics are covered in the following section.

3.2.3 UDP packets timing

Because of the specification UDP has, it is not ensured that the packets
incoming from the Ethernet link arrive in the order in which they have been
captured. This disorder is also supported by usage of Ethernet switch in our
rig. For a precise point cloud construction, we need to ensure that we only
process valid lidar data with a correct timestamp. Therefore we assume a
data packet to be valid only if it lies between two adjacent position packets

24

.......................................3.3. New features

(according to time) which both has valid NMEA message and PPS lock.
Otherwise somewhere between them, the lock was lost, and the whole group
of data packets must be considered unusable and dropped. To be able to
evaluate each interval between two adjacent position packets we must first
sort all received packets (data and position ones) onto one timeline.

Let’s assume packets of both types are arriving at an input to the onboard
computer. We need to implement a round-buffer which will fill itself with the
incoming packets. An incoming packet will be inserted such that the buffer
is ordered (according to the timestamp in headers of the UDP packets). We
define time interval tu after which we can be sure that no incoming packets
can be inserted before the packet with timestamp t− tu, where t is the current
time. Packets with timestamp which satisfies tp < t − tu are considered
"confirmed". For such packets filtering process can now be applied. If we
already have position packets for both ends of a data packets group we can
classify the group as stated above. Algorithm illustration can be found in
figure 3.1. Green position packets have valid NMEA massage and PPS lock,
red ones not. Once a data packet is accepted or discarded it is removed from
the buffer to make space for new packets, so the colored packets are displayed
only for the sake of understanding.

3.3 New features

3.3.1 Single GNSS device

The previously used GNSS module was a differential RTK GPS system (Piksi
RTK). Differential means it operates with a pair of devices and is giving a
relative position of each one to another. That had utilized a second device
marked as a ground station (GS) placed somewhere in operational area and
radio transceivers to make the two devices communicate in real time. This
particular devices provided only final processed data and did not allow many
configurations.

Currently used GNSS sensor is RTK OEM-6 from NovAtel company. As
opposed to the previously used device it is capable of working with all existing
satellite systems (GPS, GLONASS, ...). The system is widely configurable
and provides an open solution allowing modifications to fit into the localiza-
tion system. It outputs data with raw measurements which can be processed
in various ways depending on specific application. The sensor (along with
appropriate antenna) is capable of acquisition of signals on two different
frequencies which raises the number of reachable satellites (if a satellite’s
signal is weak on one frequency it can be sufficiently strong on the other one).
It also improves the accuracy of measurement (if signals on both frequencies
are strong enough, their distance measurements can be combined). To keep
the advantages of RTK device while using just a single device we separately

25

3. Data acquisition

Tim
e flow

Confirmed and
accepted packetsConfirmed and

discarded packets

Unconfirmed packets

Missing packet
(not received yet)

Currently incoming
packet

Position packet Data packet

Co
nfi

rm
ed

 b
ut

 n
ot

an
al

yz
ed

 p
ac

ke
ts

Figure 3.1: Round buffer implementation

acquire measurements from a static ground stations net around the globe.
Such ground station has precisely targeted geodetic position and also con-
tinuously measures it using its GNSS sensor. From the differences between
known and measured position, it can calculate climate and ionosphere errors
corrections which are then used to correct the measurements done by the
GNSS sensor onboard the mapping vehicle.

The correction process can be done in real time when there is some radio
connection (GSM mostly) between the rover’s sensor and the GS. This ap-
proach is stated to be less precise[Tů16]. On the other hand with some time
delay (a couple of hours) a ground station can provide its processed measure-
ments which generates more accurate position estimates when merged with
the rover’s measurements. Because of this, we acquire only raw data recorded
by the rover’s sensor and process them later in the desktop application.

26

.......................................3.3. New features

3.3.2 Data handling

Mainly for the reason of the program modularity, we decided to redesign
the system such that it has two main modules. The first module encloses only
the very raw data acquisition, while the second part (consisting of smaller
modules) handles the data processing. It is now possible to decide which data
processing modules are used in-field and which in the desktop application.
Usefulness of this fact is an independent recording of the measurements and
preserving the recorded information in a raw and unchanged form. That
allows executing multiple data processing algorithms over the same data set
introducing various parameters and using various information from the data.

Lidar’s UDP packets incoming through the Ethernet line are now directly
dumped into a file, IMU’s and GNSS sensor’s packets on the serial lines
are saved to files as binary streams. As mentioned earlier, the data also
goes to parsers and information processors to provide the operator with real
time status updates during the acquisition. The leading indicators include
counters of packets recorded in past second and validity flags indicators to
see if lidar data are being correctly timestamped. The GNSS sensor uses
dedicated software library along with a CUI (character user interface) where
a lot of status indicators are continuously updated (number of satellites, etc.).
Moreover, all of the system’s messages are logged into a file for future analysis.

Because most of the data processing modules were moved to the desktop
application, configuration file for the rover was shortened. It includes
IP addresses declarations, true/false switches for some utilities, baud rates,
communication ports, etc. All these types of information are mainly used to
establish working communication lines and data storage. They are constant
for one rig setup. However, there is one set of parameters which affects the
data itself. It is the mounting orientation of the IMU. Because of IMU’s
internal measurement process, this transformation cannot be done in post-
processing, and the IMU has to know its changed reference frame before an
acquisition. The service library described in 3.2.1 can set the parameters from
the file automatically just before the actual mapping. Any other parameters
influencing a model’s construction were moved to the desktop configuration
file.

As pointed out above, the parsing, processing, and calculation algorithms
(point cloud creation and trajectory reconstruction) are fully configurable
and can be repeatedly used over the same data without the data being
lost. Variable parameters such as mounting position and orientation of the
lidar, minimal and maximal range of the laser beams, various validity checks,
etc. are included in configuration file dedicated for the desktop application
as mentioned earlier. Moreover, the program implementation itself can be
changed when a bug is found. The correction is then checked using the same
input data again. This major rearrangement had conclusively split the actions
of data acquisition and data processing, so they are fully independent as long

27

3. Data acquisition
as the format of files which mediate the exchange of raw data is standardized
and preserved. Files conversion chain is illustrated in figure 3.2.

RINEX data
zip file

Raw GNSS
data file

Raw lidar
data file

Raw IMU
data file

Observation
data of GS

Navigation
data of GS

Rover's
observation

data

Compensated
trajectory file

Rover's
navigation

data

Noncompensated
trajectory file

Standardized binary
file with trajectory

Smoothed trajectory
binary file

Binary file with
constructed model

Fully parsed
laser points

Parsed
IMU records

Viewable
point cloud

Viewable
trajectory file

LidarOutput
FileConverter

ImuOutput
FileConverter

Standardized
binary file

with trajectory

Data analysis
text file

RtkConv
Unzip

NovatelOutput
FileConverter

NovatelOutput
FileConverter

TrajectoryFixer

BinaryTo
LasConverter

BinaryTo
LasConverterIn-field application

Desktop application

Lo
gg

ed
 c

on
so

le
 m

es
sa

ge
s

RtkPost

RtkPost

DataAnalyser

DesktopConverter

RtkLib files

Figure 3.2: Files conversions flow diagram

The process of point cloud’s construction was revised, and the desktop
application’s code refactored to be straightforward and transparent for
newcomers to the project. Moreover, the executable parts of the program
were implemented as general as possible to be able to operate over files in
arbitrary file tree structure. All types of data had its core file name and file
suffix assigned. At this point, the Java implementation consists of multiple
executable modules which each is responsible for converting one file type
into another by doing required actions over the data inside. This modular
approach helps all desktop processes including the filtering to be done effec-
tively and not to involve unnecessary parts of the program.

Above the Java executable parts there is a developed Python application
which controls the flow of the data from the very beginning to the end of a
model’s creation. It creates predefined folder structure and constructs model
requested by a user. During the model creation, it checks whether some
needed files already exist and if they were created using the same configuration

28

.......................................3.3. New features

as provided. If so, they are not recreated again to save time and the already
existing files are used instead. The application is also capable of executing
group conversion to create all available models from data of one whole day
for example. The user is kept informed during the whole process knowing in
which phase it is and approximately how long it would take to finish. The
folder structure is shown in 3.3 and the Python application’s state machine
in 3.4.

To make the creation of a model available to a common user. A graphical
user interface (GUI) was developed and implemented into the Python
application. A user can now create, store and load configuration files and
make conversions without knowing the inner folder structure or whole file
names. Matching of files stated in figure 3.4 works on a principle of date
and timestamp included in the files names. To support this methodology,
also in-field data acquisition and analysis (described further down in 3.3.4)
programs follow the same files structure/names standard. The GUI window
is shown in 3.5.

3.3.3 In-field GUI

As with the desktop conversions, we also wanted the data acquisition process
to be usable by a common user. For this reason, another GUI application
was developed (by the author’s colleague). It involved automated command
sequences executed via buttons, console messages view and the aircraft’s
position and attitude. Remote console operation was already done previously,
and this application only enclosed it in a user-friendly environment. However,
until this moment we hadn’t had remote access to the aircraft’s position/at-
titude measurements. Because there is no need for high precision and the
GNSS sensor on-board is operated by third-party software, we decided to get
all of the information just from the IMU. That involved real-time reading
of its serial port along with its dumping into a file. The newly developed
features include partial parsing of needed data onboard the aircraft and send-
ing them to remote computing machine using server/client communication
architecture. Data-buffering and reconnection after connection interruption
were implemented too. In short, this feature bridges the serial communication
line over a TCP connection and parses the data.

3.3.4 In-field statistics

When we want to create a map of some certain area or reconstruct the
trajectory of a flight, we need to be sure we acquired enough usable data to
do so. Otherwise, we would need to repeat the flight. Therefore we need an
analysis utility to be able to tell that in the field. For this reason, part of the
data parsing is done right after the flight, and another part of the application
was developed. The new program part goes through each sensor’s raw data file
separately and counts number of records, number of valid records, minimal,

29

3. Data acquisition
maximal and average value, and so on. The most important feature is valid
data intervals matching which can tell during what percentage of the flight
time the data from all three sensors (two in case of trajectory reconstruction)
was valid. Only in those fully overlapping intervals, a point cloud (trajectory)
can be constructed in the post-processing calculations. The raw data remains
intact during this process.

30

.......................................3.3. New features

Figure 3.3: The application’s folder structure

31

3. Data acquisition

START
INPUT:

Rinex ZIP file, RTK .obs and
.nav files, lidar and IMU
binary files (.lid, .imu)

END

Search for corr.
IMU .imu file

File
exists

ERROR:
IMU file N/A

NO

Search for corr.
FIX trajectory .trj file

YES

File
exists

Run TrajectoryFixer

Run merging
algorithm

Convert .pc to .las

Search for corr.
trajectory .pos file

File
exists

Run Novatel output
file converter

YESSearch for corr.
RTK data .obs file NO

Corr.
files
exist

Scan for single
.zip file

Found one
and only one

.zip file

Run RtkPost
conversion

Unzip .zip file

ERROR:
Folder does
not contain
ONE ZIP

NO

ERROR:
RTK file N/A

NO

Take next Lidar
.lid file

NO

YES

Convert
one

Search Lidar
.lid file

YES NO

File
exists YES

ERROR:
Lidar file N/A

NO

Files
exist

Check .YYn
and .YYo files

YES

NO

Uncorr.
files
exist

YES

Delete uncorr.
files

Search for corr.
RTK data .oem file

YES

Search for corr.
RAW trajectory .trj file

File
exists

YES

Search for corr.
trajectory .las file

File
exists

Convert
trajectory .trj

file to .las NO

Has
nextYES

NO

YES
NO

NO

Files
exist

YES

Run RtkConv
conversion

YES

NO

Figure 3.4: Models creation flow diagram

32

.......................................3.3. New features

Figure 3.5: GUI for point cloud construction

33

34

Chapter 4
Mathematical model

In this chapter, we introduce detailed derivation of a mathematical model of
the hexacopter’s dynamics using Newton’s and Euler’s law. In the first place
we propose coordinate systems which are used during the whole filtration
process, then structure, physical parameters and basic behavior of the vehicle
are described. After that derivation of the vehicle’s state space model is
deduced and linearized model constructed. The behavior of the model is
shown on system’s responses during elementary actions performed by the
hexacopter.

4.1 Coordinate systems

There are more options when it comes to the choice of coordinate system in
which we want to operate. There is no strict standard given but there are
some cases which are being widely used and are also implemented in science
community libraries for various platforms and programming languages. In
general, an arbitrary coordinate system can be chosen as it only affects the
inner system’s representation and with use of correct transformations the
input and output formats are intact.

Firstly, we want to stick to right-handed systems which satisfy orientation
of axes such that X ×Y = Z. We need two coordinate systems, one bound to
the frame of the vehicle (mobile) and the other one bound to an environment
(local ground). The fixed coordinate system also called inertial (ICS), is a
system where the first Newton’s law is considered valid. For ICS we are going
to use North-East-Down (NED for short) system with axes marked as P, Q,
R correspondingly. We want the PQ plane to be parallel to the local ground.
Therefore the origin of ICS is supposed to be as near as possible to a site
where the vehicle operates to comply the Earth’s surface approximation by a
plane. The mobile frame will be called VCS (Vehicle’s Coordinate System).
To respect the designation and orientation of RPY (roll, pitch, yaw) angles to
axes (according to used IMU’s documentation) we use X axis pointing to the
front of the vehicle, axis Y pointing to the right and axis Z going downwards
(FRD for short). The illustration can be seen in figure 4.1.

35

4. Mathematical model

Back
Arm

BRUS
X≡FRONT

Y≡RIGHT

Z≡DOWN

X≡NORTH

Y≡EAST

Z≡DOWN

Ground
Station

TOP

Figure 4.1: Used coordinate systems: VCS and ICS

4.1.1 Gimbal lock

When introducing a coordinate system, we must also consider its properties
related to rotational transformations and what calculus are we going to use
to apply them correctly. Considering transformation using RPY angles, we
know that we have to conduct three separate transformations chained one
after another. There are specific cases of an object’s orientation which cause
trouble, and we call them gimbal lock.

A gimbal is a (virtual) ring that is suspended so it can rotate about an axis.
Gimbals are typically nested one within another to accommodate rotation
about multiple axes. They appear in gyroscopes and inertial measurement
units to allow the inner gimbal’s orientation to remain fixed while the outer
gimbal suspension assumes any orientation[Str08]. "Some coordinate systems
in mathematics behave as if there were real gimbals used to measure the
angles, notably Euler angles. For cases of three or fewer nested gimbals,
gimbal lock inevitably occurs at some point in the system due to properties
of covering spaces (described below)."[Wik18]

A gimbal lock is a loss of a degree of freedom (DOF). Not to understand
wrong, there is no physical lock applied onto the object. A gimbal lock
happens when two of the virtual gimbals align, and there are fewer than
n− 1 gimbals left, where n is the dimension of the system. There is a gimbal
lock configuration in each system which uses only n virtual gimbals for its
calculations. A little demonstration of the problem follows. Let’s say we have
a telescope on a tripod and it uses an azimuth-elevation system. We track
flying object which approaches from the east and is moving right above our
position. As it is right above our tracking system, it sharply turns towards
the south. Because we have achieved maximal elevation and aligned the two
gimbals, we are unable to perform smooth tracking, because fast azimuth
change is first needed to acquire the target again[Pop98]. Considering an
aircraft using RPY angles system, the gimbal lock configurations are when

36

....................................... 4.2. Used vehicle

the pitch is either π/2 or −π/2. In this case, roll and yaw gimbals are aligned.

That is a big problem for automated systems as the sensors are unable to
distinguish the correct angles. When the aircrafts body rolls, is it roll change
or yaw change? The same problem applies to regulators which should navigate
the aircraft to some given orientation from a gimbal lock configuration. This
problem is usually solved by the addition of fourth virtual gimbal by using
quaternions during calculations[CPN16]. In our case of multi-rotor UAV,
this situation will never happen. The UAV is not performing any acrobatic
maneuvers and therefore keeps its roll and pitch angles within low values.
Moreover, it is equipped with parachute system which triggers when one of
the two angles goes out of range ±π/4.

4.2 Used vehicle

4.2.1 Preliminar notions

Before deriving the mathematical model initial assumptions and neglection of
some present physical rules must be introduced to simplify the process. We
assume the vehicle to be rigid body therefore no deformation of it is taken into
consideration. Center of the VCS is placed into the geometrical center of the
body where also barycenter (center of mass) is assumed to be located. Axes
of VCS are identical with the principal ones, therefore we suppose the inertia
matrix to be symmetric and diagonal[Fit11] (the vehicle is also assumed to
be inertia-symmetrical around axis Y)

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (4.1)

4.2.2 Behavior

BRUS is a coaxial hexacopter with Y-architecture. One arm points straight
backward and two arms point forwards and sideways (front-left, front-right).
Angles between each pair of arms are the same, 2π/3. Upper rotors rotate
clockwise, the lower ones counter-clockwise (when looking from the top). The
blades are always shaped in a way in which they cause negative thrust along
axis Z (upwards). Therefore blades on odd and even rotors are diametrically
opposite. From now on we will use motors numbering according to figure 4.2.

The architecture preserves the main principle of multi-copters that all pro-
pellers are mounted horizontally and being equipped with fixed-pitch blades.
It differs from widely known quadcopter mainly in thrust actions needed by
individual motors to perform the desired angular change. The reason is the
arm located along an axis of the vehicle. Let’s assume the UAV is hovering in

37

4. Mathematical model

1
2

3

5

4

6

A B
C

Figure 4.2: BRUS - view from the top, the front of the drone is up

mid-air: each propeller causes the same amount of angular momentum to the
aircraft, the UAV is oriented horizontally, and the lift is fully compensating
gravitational force. Few examples of elementary attitude changes follow.

To achieve roll right, we want propellers on arm A to accelerate (preserving
same speed within the pair) and propellers on arm B to decelerate by the
same value. To perform heading (yaw) change clockwise (looking from the
top) we make the even propellers to spin faster and the odd ones to go slower,
therefore maintaining the same lift. The moment of inertia of the rotors
will cause non-zero angular momentum along the UAV’s vertical axis. For
pitch down, we want to accelerate the rotors pair on arm C and/or decelerate
propellers on arms A and B (all four by the same value). The examples are
illustrated in figure 4.3.

Another minor difference of this frame type is that each motor does not
have the same torque effect on each axis of the aircraft. While changing
yaw it only matters the difference of sums of thrusts between even and odd
propellers, during roll arm propellers on arm C are not getting involved and
the pairs on arms A and B have equal influence. With pitch, however, we
must consider the projections of motors distances from the aircraft’s center
onto the axis Y. A single propeller on arm A or B causes less torque around
axis Y than propeller on arm C with the same thrust. The related calculation
will be stated further below.

38

....................................... 4.2. Used vehicle

HOVER ROLL

PITCH YAW

THRUST

MIN MAX

Figure 4.3: BRUS - Elementary attitude changes

4.2.3 Degrees of freedom

This topic needs to be discussed clearly. As we assume rigid body without
deformations, the number of degrees of freedom (DOFs) for the physical object
is 6. 3 for linear movement and 3 for angular movement. No constraints
are given by the surroundings of the aircraft, so there is no loss in DOFs.
However, we can also define controllable DOFs. Those are DOFs which can be
directly controlled by inputs of the system; the others are derived. Without
further proof, let’s state that the number of controllable DOFs is 4, because
of present holonomic constraints between the propellers. A practical proof
was given in 4.2.2.

4.2.4 Physical parameters

The following constants defining the vehicle’s physical parameters were ac-
quired from its technical specifications. The operational weight of the drone
(including battery) is M = 7 kg. Distance between the center of the drone
and an axis of each motor is R = 0, 6 m. Moment of inertia is described
by vector I = [Ixx Iyy Izz] = [0, 65 0, 65 1, 33] kg ·m2, where its values are
the diagonal elements of the inertia matrix (the rest is zero). The UAV’s air
resistant areas for corresponding axes are S = [0, 15 0, 15 0, 21]. Coefficient
k = 0, 0974 represents ratio between motors torque and thrust Ti = k · τi. We

39

4. Mathematical model
assume the gravitational acceleration to be g = 9, 81 ms−2 and air density
ρ0 = 1, 2256 kg ·m−3 at sea level and temperature of 15 ◦C.

4.3 Non-linear model

The motion of the body can be divided into two parts: linear motion (transla-
tion of the barycenter) and angular motion (rotation around the barycenter).
As with all other rigid bodies without any kinematic or dynamic constraints,
the body has 6 degrees of freedom. There are three possible elementary
translations of the barycenter, one along each axis, and three elementary
rotations of the body around the barycenter, one about each axis. The control
of DOFs is implemented by adjusting rotational speeds of individual motors.

We want to provide a mathematical model of the 3D motion of a rigid
body exploiting Newton’s and Euler’s equations. For the simplest model
of a multi-copter, only three states would be enough to describe angular
velocities caused by propellers thrusts. Moreover, we want to be able to
observe linear velocities in the vehicle’s frame. As the forces generated by
propellers cause accelerations (angular and linear), each of position/attitude
state itself forms a second-order system. Therefore we end up with a 12-
dimensional system. Integrated position and attitude cannot be expressed
in the mobile reference system. Because IMU and GPS sensors measures
quantities in ICS, we introduce the final integrated position/attitude in the
ICS. On the other hand, accelerations are caused by force mainly bound
to vehicle’s frame (thrust, friction force). Therefore we want the velocities
(linear and angular) states to be referenced in VCS. Further on we will use
superscript G (as ground) to label vectors referenced in ICS.

4.3.1 Euler angles

The Euler angles are used to describe the orientation of a rigid body in
three-dimensional Euclidean space. They can also be used to perform trans-
formation of vectors from one reference frame into another. In aviation
the angles are typically assigned to roll (φ), pitch (θ) and yaw (ψ) which
are related to axes X, Y and Z of the mobile frame respectively. To avoid
redundancies and preserve unambiguous description of any configuration, the
following ranges are used: φ ∈ [±π], θ ∈ [±π/2], ψ ∈ [0, 2π]. Of course the
gimbal lock problem is still present. During reconstruction of such an orien-
tation or during transformation between reference frames, strict compliance
of order is required. Euler angles represent three elemental rotations. We
are going to use ZYX (yaw, pitch, roll) order[SSVO09]. This means that
rotation from one system to another starts with rotation around Z axis first,
then around new axis Y’ and finally around X”. The elementary rotations are
described by the following matrices:

40

..................................... 4.3. Non-linear model

Rx(φ) =

1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)

 , (4.2)

Ry(θ) =

 c(θ) 0 s(θ)
0 1 0

−s(θ) 0 c(θ)

 , (4.3)

Rz(ψ) =

c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

 , (4.4)

where s(α) and c(α) stands for sin(α) and cos(α) respectively. Assuming the
IMU gives us angles which led to transformation from ICS to VCS, we want
to do reverse transformation, which leads us to the final compact rotation
matrix

Rzyx(φ, θ, ψ) = Rz(ψ) ·Ry(θ) ·Rx(φ)

Rzyx(φ, θ, ψ) =

c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ) + s(φ)s(ψ)
c(θ)s(ψ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)

 .
(4.5)

4.3.2 Kinematic model

Linear state coordinates introduced in 4.1, can be summarized into vectors

v = [vx, vy, vz]T ,

vG = [ṗ, q̇, ṙ]T .

The relation between these two vectors is given by

vG = Rzyx(φ, θ, ψ) · v. (4.6)

Moreover we introduce states related to rotation motion. Euler angles are
referenced in ICS and angular velocities are measured with respect to axes of
VCS:

41

4. Mathematical model

ω = [ωx, ωy, ωz]T ,

ωG = [φ̇, θ̇, ψ̇]T .

According to [LBD+09], the relation between these states is given by the
following equation and matrix for angular transformations:

ωG = Txyz(φ, θ) · ω, (4.7)

Txyz(φ, θ) =

1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(ψ)
0 s(φ)

c(θ)
c(φ)
c(θ)

 , (4.8)

where t(θ) = tan(θ). Finally the kinematic model of the hexacopter is
described as

ṗ = vx[c(θ)c(ψ)] + vy[s(φ)s(θ)c(ψ)− c(φ)s(ψ)] + vz[c(φ)s(θ)c(ψ) + s(φ)s(ψ)]
q̇ = vx[c(θ)s(ψ)] + vy[s(φ)s(θ)s(ψ) + c(φ)c(ψ)] + vz[c(φ)s(θ)s(ψ)− s(φ)c(ψ)]
ṙ = vx[−s(θ)]− vy[s(φ)c(θ)] + vz[c(φ)c(θ)]
φ̇ = ωx + ωy[s(φ)t(θ)] + ωz[c(φ)t(θ)]
θ̇ = ωy[c(φ)] + ωz[−s(φ)]

ψ̇ = ωy[
s(φ)
c(θ)] + ωz[

c(φ)
c(θ)].

(4.9)

4.3.3 Dynamic model

Now its time to exploit the two main laws applied to a rigid body. Newton’s
law for total force acting on a rigid body states

m(ω × v + v̇) = F, (4.10)

where m is the total mass of the body and vector F = [Fx Fy Fz] stands for
sums of forces in direction of corresponding axis. Symbol "×" represents cross
product of two vectors. Euler’s equation introduces total torque applied to a
rigid body

I · ω̇ + ω × (I · ω) = τ , (4.11)

42

..................................... 4.3. Non-linear model

where I is inertia matrix of the body and vector τ = [τx τy τz] stands
for sums of torques applied to corresponding axis. Symbol "·" represents
standard matrix/vector multiplication. Based on assumption 4.1 we will
denote

Ix = Ixx, Iy = Iyy, Iz = Izz.

According to 4.10 and 4.11 we get motion differential equations for the
body

Fx = m(v̇x + ωxvz − ωzvy)
Fy = m(v̇y + ωzvx − ωxvy)
Fz = m(v̇z + ωxvy − ωyvx)
τx = Ixω̇x + Izωzωy − Iyωyωz
τy = Iyω̇y + Ixωxωz − Izωzωx
τz = Izω̇z + Iyωyωx − Ixωxωy

(4.12)

Rewriting 4.12 into state space representation as

v̇x = ωzvy − ωyvz + Fx
m

v̇y = ωxvz − ωzvx + Fy
m

v̇z = ωyvx − ωxvy + Fz
m

ω̇x = [ωyωz(Iy − Iz)]
1
Ix

+ τx
Ix

ω̇y = [ωxωz(Iz − Ix)] 1
Iy

+ τy
Iy

ω̇z = [ωxωy(Ix)− Iy]
1
Iz

+ τz
Iz
.

(4.13)

We almost have the dynamics covered but vectors F and τ consist from
a lot of external effects to be taken care of. Firstly let’s break down the force
vector. To start we assume four types of acting forces

F = Fg ·RT · êr − FT · êz + Fw, (4.14)

43

4. Mathematical model

where Fg is scalar value equal to gravitational pull, êr is unit vector along
axis R (ICS frame), FT stands for total thrust caused by the propellers, êz
for unit vector along axis Z (VCS frame). Fw represents vector of forces
caused by air speed of the aircraft (wind push and air friction). Because all
six rotors are mounted horizontally, total thrust is an easy calculation

FT =
6∑
i=1

Ti, (4.15)

where Ti stands for thrust of the corresponding propeller. The friction
force is given by

Fw =

FwxFwy
Fwz

 =

−ρ · v2
xa · Sx · CDx · sign(vxa)

−ρ · v2
ya · Sy · CDy · sign(vya)

−ρ · v2
za · Sz · CDz · sign(vza)

 , (4.16)

where ρ is the density of air, Si is area of the body the air presses on
along the corresponding axis. CD stands for drag coefficient (unitless) for the
corresponding axis. Vector va represents air speed of the aircraft (aircraft’s
speed relative to the air mass) which is calculated from wind speed and
aircraft’s ground speed as

va = v− vw, (4.17)

where vw is wind speed relative to the ground. Speed vectors must be
referenced in the same coordinate frame. We assume variable air density

ρ = ρ0 · e(−10−4·h), (4.18)

where ρ0 represents air density at sea level with temperature of 15 ◦C.
h stands for height above the sea level, therefore should be defined by sum of
state −r and a constant value of ICS origin’s height above the sea level. Now
we can rewrite first part of 4.13 as

44

..................................... 4.3. Non-linear model

v̇x = ωzvy − ωyvz − g[s(θ)] + Fwx
m

v̇y = ωxvz − ωzvx + g[s(φ)c(θ)] + Fwy
m

v̇z = ωyvx − ωxvy + g[c(φ)c(θ)]− FT
m

+ Fwz
m

.

(4.19)

Total torque applied to the body is composed as

τ = τP − τ g + τw, (4.20)

where τP stands for thrust caused by the propellers, τ g is gyroscopic ef-
fect and τw represent torques done by wind. Gyroscopic action can be
described as

τ g =
6∑
i=1

IPi(ω × êz) · (−1)i · ωPi, (4.21)

where i always represents the corresponding propeller, IPi is moment of
inertia of the rotor and ωi its rotational speed. Small IP along with the fact
that odd and even rotor groups counter themselves out a lot allow us to
fully neglect this effect. Torques caused by the thrust actions of individual
propellers are directly based on the hexacopter’s architecture

τP =

τPxτPy
τPz

 =

 (T1 + T2 − T3 − T4) ·Ry
(T1 + T2 + T3 + T4) ·Rx − (T5 + T6) ·R

(−T1 + T2 − T3 + T4 − T5 + T6) · k

 , (4.22)

where Ti is thrust [N] of the corresponding propeller,

Rx = R · cos(π/3)
Ry = R · sin(π/3)

and R is the distance between a motor’s center and the hexacopter’s body
center (same for each motor). k is constant coefficient representing ratio
between torque and thrust. All that being set the second part of 4.13 has
now the following form

45

4. Mathematical model

ω̇x = 1
Ix
{[ωyωz(Iy − Iz)] + (T1 + T2 − T3 − T4) ·Ry + τwx}

ω̇y = 1
Iy
{[ωxωz(Iz − Ix)] + (T1 + T2 + T3 + T4) ·Rx − (T5 + T6) ·R+ τwy}

ω̇z = 1
Iz
{[ωxωy(Ix)− Iy] + (−T1 + T2 − T3 + T4 − T5 + T6) · k + τwz}.

(4.23)

The dynamic model represented by states x̂ = [vx vy vz ωx ωy ωz]T is
now completed.

4.3.4 Summary

The general form of our non-linear system can be expressed as

ẋ(t) = f(x(t),u(t)), (4.24)

where

x = [ωx ωy ωz vx vy vz φ θ ψ p q r]T

u = [T1 T2 T3 T4 T5 T6 g]T .

Concrete form is given by subsystems 4.9, 4.19 and 4.23 as

46

....................................... 4.4. Linear model

ω̇x = 1
Ix
{[ωyωz(Iy − Iz)] + (T1 + T2 − T3 − T4) ·Ry + τwx}

ω̇y = 1
Iy
{[ωxωz(Iz − Ix)] + (T1 + T2 + T3 + T4) ·Rx − (T5 + T6) ·R+ τwy}

ω̇z = 1
Iz
{[ωxωy(Ix)− Iy] + (−T1 + T2 − T3 + T4 − T5 + T6) · k + τwz}

v̇x = ωzvy − ωyvz − g[s(θ)] + Fwx
m

v̇y = ωxvz − ωzvx + g[s(φ)c(θ)] + Fwy
m

v̇z = ωyvx − ωxvy + g[c(φ)c(θ)]− (T1 + T2 + T3 + T4 + T5 + T6)
m

+ Fwz
m

φ̇ = ωx + ωy[s(φ)t(θ)] + ωz[c(φ)t(θ)]
θ̇ = ωy[c(φ)] + ωz[−s(φ)]

ψ̇ = ωy[
s(φ)
c(θ)] + ωz[

c(φ)
c(θ)]

ṗ = vx[c(θ)c(ψ)] + vy[s(φ)s(θ)c(ψ)− c(φ)s(ψ)] + vz[c(φ)s(θ)c(ψ) + s(φ)s(ψ)]
q̇ = vx[c(θ)s(ψ)] + vy[s(φ)s(θ)s(ψ) + c(φ)c(ψ)] + vz[c(φ)s(θ)s(ψ)− s(φ)c(ψ)]
ṙ = vx[−s(θ)]− vy[s(φ)c(θ)] + vz[c(φ)c(θ)]

(4.25)

and friction force is given by equations 4.16 and 4.18.

4.4 Linear model

Now we want to construct a linearized algebraic model because we are going
to design linear Kalman filter. Also, we would like to test out the filter in
simulation first, and therefore we need a regulator for the system to be able
to acquire characteristic behavior signals of the system. The easiest way to
get it is to provide the linear model to a function in Matlab and get fully
designed state feedback. From now on we will use n for the number of states,
m for the number of inputs and s for the number of outputs (not to confuse
with position states as p, q, r are usually used here).

4.4.1 Linearization

The issue with our transfer function f is the nonlinearity which brings prob-
lems of solution uniqueness and existence. The trigonometric functions are
not related in elementary way and also lead to multiple equilibria present in
the system. From now on we will assume small oscillations system to be sure
it stays in close neighborhood of chosen equilibrium which is

47

4. Mathematical model
xe =

[
0 . . . 0 pe qe re

]T
∈ R12

where vector εe = [pe qe re]T represents NED coordinates of the area of
operation. Inputs

u =
[
T1 T2 T3 T4 T5 T6 Fg

]T
,

are set to equalize the motors thrusts with gravitational pull while caus-
ing no torque to the body.

ue =
[
mgR
2R+1

mgR
2R+1

mgR
2R+1

mgR
2R+1

mg
2R+1

mg
2R+1 mg

]T
,

To approximate the small deviation non-linear system in this equilibrium we
replace sin and tan functions with theirs arguments and function cos with
unity.

ω̇x = 1
Ix
{[ωyωz(Iy − Iz)] + (T1 + T2 − T3 − T4) ·Ry + τwx}

ω̇y = 1
Iy
{[ωxωz(Iz − Ix)] + (T1 + T2 + T3 + T4) ·Rx − (T5 + T6) ·R+ τwy}

ω̇z = 1
Iz
{[ωxωy(Ix)− Iy] + (−T1 + T2 − T3 + T4 − T5 + T6) · k + τwz}

v̇x = ωzvy − ωyvz − gθ + Fwx
m

v̇y = ωxvz − ωzvx + gφ+ Fwy
m

v̇z = ωyvx − ωxvy + g − (T1 + T2 + T3 + T4 + T5 + T6)
m

+ Fwz
m

φ̇ = ωx + ωyφθ + ωzθ

θ̇ = ωy − ωzφ
ψ̇ = ωyφ+ ωz

ṗ = vx + vy[φθ − ψ] + vz[θ + φψ]
q̇ = vxψ + vy[φθψ + 1] + vz[θψ − φ]
ṙ = −vxθ − vyφ+ vz

(4.26)

48

....................................... 4.4. Linear model

Now we realize proper linearization using partial derivations:

A = ∂f(x,u)
∂x

∣∣∣∣
x=xe,u=ue

=


O O O O
O O O A1
E O O O
O E O O

 ∈ Rn×n, (4.27)

where O ∈ R3x3 represents zero matrix, E ∈ R3x3 represents identity matrix
and A1 is

A1 =

0 −g 0
g 0 0
0 0 0

 .

Linearized input matrix B ∈ Rn×m is

Bc = ∂f(x,u)
∂u

∣∣∣∣
x=xe,u=ue

=



Ry

Ix

Ry

Ix
−Ry

Ix
−Ry

Ix
0 0 0

Rx
Ty

Rx
Ty

Rx
Ty

Rx
Ty

− R
Ty
− R
Ty

0
− k
Iz

k
Iz

− k
Iz

k
Iz

− k
Iz

k
Iz

0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
− 1
m − 1

m − 1
m − 1

m − 1
m − 1

m
1
m

0 0 0 0 0 0 0
...

0 0 0 0 0 0 0


,

(4.28)

The continuous time state space model is described as

ẋ(t) = A · x(t) + B · u(t).

4.4.2 Regulator

For testing purposes, we want to experiment with the filter on virtual sim-
ulated data, because we can acquire real values of the states in time. For
reasonable courses of the state signals, we need to feed the system with correct
input values simulating the action of regulator onboard the aircraft which is
trying to compensate unknown external effects onto the system and follow
the desired reference. The regulator’s development is not within the scope of
this thesis, so only a brief description is provided further on.

49

4. Mathematical model
First thing to do is determining if the system is controllable. We inspect

it by constructing the well-known matrix of controllability and checking its
rank.

{ =
[
B AB . . . An−1B

]
∈ Rn×nm

rank({) = n → system fully controllable

We have great advantage of knowing all states at any time therefore the
matrix C representing mapping of state vector onto output vector is arbitrary.
As stated in 4.2.3 we are only able to control 4 states to arbitrary courses,
the others are derived. We are not interested in forcing the velocities and
roll/pitch angles to follow some reference. We only want to tell the aircraft
which position to reach and what heading to maintain which also satisfies
the number of directly controllable states. Let us then choose output matrix

C =


0 . . . 0 0 1 0 0
0 . . . 0 0 0 1 0
0 . . . 0 0 0 0 1
0 . . . 0 1 0 0 0

 ∈ Rn×s (4.29)

for output definition

y(t) = C · x(t).

We need to design state feedback with integrated output feedback to be
able to control states of the system because we are not able to provide reason-
able reference signals for motors which represent direct input to the system.
Therefore we follow the scheme in figure 4.4.

∫ -KI C

-KS

ẋ=Ax+Bu
ẋI xI u x y

+
+ + -

r

Figure 4.4: System with state feedback regulator

50

....................................... 4.4. Linear model

The whole system can be now described by the following equations

[
ẋ
ẋI

]
=
[
A−BKF −BKI

−C O

]
·
[
x
xI

]
+
[
B
O

]
· u +

[
O
E

]
· r

y =
[
C O

]
·
[
x
xI

]
,

(4.30)

where all new vectors and matrices have dimensions to fit the previously
stated ones. There are four new states in the system therefore 16 in total.
We choose 16 positions for the poles of the system. Knowing that we can-
not place more than rank(B) poles in the same place, we experimentally
picked poles such that the system follows the reference correctly but with
non-extreme propellers actions which would not be reachable with the real
aircraft. We cannot insert saturation of input u into the system because the
regulator would not handle it, therefore the only option how to not overload
the propellers is to pick the poles carefully. Finally chosen poles positions are

p = [−1 −1 −1 −1.5 −1.5 −1.5 −2 −2 −2 −2.5 −2.5 −2.5 −3 −3 −3]T

Simple call of Matlab’s function "place(Af ,Bf ,p)" with matrices

Af =
[
A O
−C O

]
∈ R(n+s)×(n+s); Bf =

[
B
O

]
∈ Rn×m

will give use matrix Kf from which we acquire our feedback matrices

Kf =
[
Ks KI

]
.

We could implement this model into Simulink by using the overall matrices
Af , Bf , Kf , but that would result in unstructured state vector including the
states we are not interested in (the ones used for control). Also this approach
is more illustrative and gives an insight into the system and the regulator
separately. We have sent reference signals to the input of the system to see
its behavior, the state response is illustrated in figure 4.5, motors actions can
be seen in figure 4.6.

51

4. Mathematical model

0 2 4 6 8 10 12 14 16 18 20

time [s]

-8

-6

-4

-2

0

2

4

di
st

an
ce

 [m
] /

 a
ng

le
 [r

ad
]

Reference tracking

north reference
east reference
down reference
heading reference
actual north
actual east
actual down
actual heading

Figure 4.5: Regulated system reference tracking

0 2 4 6 8 10 12 14 16 18 20

time [s]

-5

0

5

10

15

th
ru

st
 [N

]

Motors response

upper left motor

lower left motor

upper right motor

lower right motor

upper back motor

lower back motor

Figure 4.6: Regulated system motors responses

52

Chapter 5
Kalman filtering

In this chapter, we introduce the methods used for development of specific
Kalman filter fitted onto the chosen aircraft. Firstly we introduce basic
statistics knowledge needed for understanding the filter; then we describe the
basic algorithm along with improvements fitted to our application. In the
second section, we describe the construction of a virtual system for simulation
of the real one. At last, the filtering algorithms are tuned using knowledge
about the physical system and measurements acquired during experimental
flights.

5.1 Theoretical introduction

In this section, we will briefly introduce basic statistical terms and rela-
tions needed for understanding the Kalman filtering features. More detailed
description of the filter’s algorithm implementation will follow.

5.1.1 Univariate Gaussian

We desire a unimodal, continuous representation of probabilities which model
the real world and is easy to define and calculate. Gaussian probability dis-
tribution (GPD) N(µ, σ2) has these specifications. For one random variable,
there are only two parameter values which fully defines the function. Mean
(µ), which represents the average value of given dataset, and variance (σ2),
which defines the spread of values of the dataset from the mean value. A
more practical term is "standard deviation" (σ) values which can be derived
as a square root of the variance value. We can use the 68-95-99,7 rule to
understand this parameter better. If we take particular set (large enough) of
values of random variable with GPD and acquire its mean, the σ values is
derived such that 68 % of dataset values lies within interval µ± σ, 95 % lies
within µ± 2σ and 99, 7 % lies within µ± 3σ. These facts were covered only
to ensure a clear understanding of the following text, other properties of the
distribution will not be covered as they are subject to an extensive study of
the field of statistics itself.[Jr.18b]

53

5. Kalman filtering
The Kalman filter supposes all random events in the system to be subjects of

GPD. With its usage, we can acquire computationally optimal mathematical
algorithms to implement. However, we must keep in mind that real-world
events do not comply with this distribution. Sometimes a random variable
can be well approximated by GPD but cannot reach negative values for
example (or have limits/saturation on both sides), this fact truncates the
"tails" of the distribution and slightly changes some of its properties. Also,
in the real world, some variable may generate more values µ+ close to the
mean and lower number of values µ− which are farther, this forces the GPD
graph representation to skew to one side of the mean. There are more such
phenomena which we are not able to examine precisely and therefore use the
GPD approximation.

5.1.2 Multivariate Gaussian

The previous two paragraphs described GPD for a single random variable.
While assuming physical quantities/events of the real world, many of them
are somehow correlated and dependent on each other. These relations are
described by correlated variance, also called covariance values. Multivariate
GPD N(µ, σ2) uses, along vector of values µ, a covariance matrix σ2. It
includes variance values for corresponding random variables on its main
diagonal and covariance values between two random variables in the row and
the column corresponding to the two variables. Both combinations of the
row/column indexes have the same value. Therefore the covariance matrix is
symmetrical along the main diagonal. For more detailed description, readers
are referred to [Jr.18b] or any statistics book.

5.1.3 Kalman filter algorithm

As we mentioned earlier, the Kalman filter is a state estimator. Its main
advantage compared to raw measurements only is the knowledge (estimate)
of the physical system’s mathematical model derived in the previous chapter.
We will introduce the basic version of the filter which assumes knowledge of
the inputs to the system (actions of the system’s actuators).

Basically the filtering process is composed of two differentiable steps, predic-
tion and update. Let’s assume we will work with prediction/update frequency
of fs, therefore timestep is Ts = 1/fs. Because the filter is digital (discrete-
time) we need to provide it with discrete version of the system’s matrices.
These are acquired by standard discretization of continuous state space rep-
resentation using the chosen step time. All sensory data are sampled with
the same period, Ts for this example. Let’s call the discretized matrix A a
transition matrix F and new output matrix representing measured states
as H. The other system’s discretized matrices are denoted as Bd, Dd. To
further distinguish new output from the one we used for the regulator earlier,
we denote the measured output z. A general discrete-time state space system
with external effects can be described as:

54

.................................. 5.1. Theoretical introduction

xk+1 = F · xk + Bd · uk + M · dk + wk

zk = H · xk + Dd · uk + N · dk + vk,
(5.1)

where k ∈ Z0+ represents time step number, dk stands for unknown in-
put vector and matrices M, N states influence of it on future state and
current output vector. Process noise wk and measurement noise vk are mu-
tually uncorrelated, unbiased (with zero mean value), white noise (Gaussian)
signals with covariance matrices Q and R respectively.

As we only want to design simple filter, we do not want to have known and
unknown input signals in the system at the same time. Solution for that type
of problem can be found in [YZF13]. We assume only uk as the system’s input
and use it either as known or unknown depending on particular situation.
We also neglect direct relation between input and output, therefore setting
Dd = O. Further on, we will work with a system

xk+1 = F · xk + Bd · uk + wk

zk = H · xk + vk.
(5.2)

Before we can run the iterative estimation algorithm of the filter, we need
to declare some necessary constants and initial values of used variables. The
constants which needs to be set are matrices Q, R, H. In the calculation
there will be matrix P , also denoted as estimate covariance, which will be
transferred over timesteps and needs to be initialized for the first iteration.
The same manner goes with state vector x. For simplicity, let’s assume the
starting step k = 0. After the initialization phase we consider the constants
and xk=0, Pk=0 to be set.

The first step of estimation is simple prediction of the system’s evolution
in time calculated from estimated previous state (initial guess) and current
input according to the state space model:

xk|k−1 = F · xk−1 + Bd · uk Predicted state estimate

Pk|k−1 = F ·Pk−1 · FT + Q Predicted estimate covariance.
(5.3)

The second step is update of the prediction with usage of measured data
at current time step.

55

5. Kalman filtering

yk = zk −H · xk|k−1 Innovation pre− fit residual
Sk = R + H ·Pk|k−1 ·HT Innovation covariance

Kk = Pk|k−1 ·HT · S−1
k Optimal Kalman gain

xk = xk|k−1 + Kk · yk Updated state estimate

Pk = Pk|k−1 −K ·H ·Pk|k−1 Updated estimate covariance

(5.4)

When provided with a correct mathematical model which behavior is similar
to the real system, the filter is always able to converge to the correct estimate
(close to the real state). This can be used as an advantage during initiation
of the variables x, P which can be set to almost any value/s. It is most
convenient to provide the best initial values estimate for quicker convergence.
The filter is tuned by changing the matrices Q and R for best approximation
of the real noises present in the system.[Kal60] We assume the matrices to
be constant over time.

5.1.4 Filling measurements gaps

The previously stated example counted on measurements from all sensors
being available at each time step of the estimation. However, to fully utilize
all advantages of Kalman filtering, we want the filter to provide estimates
with higher frequency (for example ten times faster than the sampling one of
the sensory data). That is achieved by running the first prediction step with
higher frequency so it can execute multiple times before a measurement is
available to make an update step. The following pseudo-code illustrates the
implementation:

measurements=load_array_of_measurements (source) ;
s e t_ i n i t i a l_va l u e s (t , x ,P) ;
mIdx=search (measurements (mIdx) . time>t) ;

while (t<=endTime){
do_predict ion_step () ;

i f (t>=measurements (mIdx) . time){
do_update_step () ;
mIdx=mIdx+1;

}
t=t+Ts

}

56

.. 5.2. Simulation

5.1.5 Measurements of various frequency

Moreover, we have got two sensors which each provide the measurements with
different sampling frequency. GNSS sensor samples much slower (20 Hz with
RTK after post-processing) than the IMU (250 Hz). We want the prediction
to be corrected by all IMU measurements available, therefore develop a way
to use only part of the sensory data at a time. It is important to keep track
of the form of matrices R and H because they are dependent on the relation
between particular measurement and the states (what states are included in
the measurement). Concrete forms of the matrices can be found in attached
materials (kalman_filter.m).

while (t<endTime){
do_predict ion_step () ;

i f (imuMeasAvilable or rtkMeasAvai lable) {
i f (imuMeasAvilable and rtkMeasAvai lable) {

set_zHR_for_both_sensors () ;
} else i f (imuMeasAvilable) {

set_zHR_for_imu_sensor () ;
} else i f (rtkMeasAvai lable) {

set_zHR_for_rtk_sensor () ;
}
do_update_step () ;

}
t=t+Ts ;

}

5.2 Simulation

As we discussed earlier, we want to establish working simulation of the
previously described model to be able to design the desired filter. We want
the simulated environment to be as much similar as the real one. The state
space model was derived as linear only to allow the simple design of the
regulator, for all other simulation parts we can introduce nonlinearities into
the model. Therefore the external effects will be implemented as non-linear
relations of the states. However, we still assume the vehicle’s states to stay
near the working point to satisfy the linear approximation of the model.
Based on this assumption we can put axes P ≡ X, Q ≡ Y, R ≡ Z.

5.2.1 Gravitational pull

To start with the simplest external effect, we introduce the gravitational
pull of Earth represented by the gravitational acceleration in the direction

57

5. Kalman filtering
of axis R. The acceleration is assumed constant with value of 9, 81 ms−2.
According to 4.26, we use the constant only as a coefficient for states relations
in equations for v̇x and v̇y. As an input it is used for v̇z calculation by simple
addition. Simulink implementation can be seen in 5.1. System’s reaction to
the presence of the pull is included in figures 5.3 and 5.4.

Figure 5.1: Simulink implementation of gravitational external force

5.2.2 Air friction

Because of the fairly big surface of the aircraft and significant density of
air along with wind speed and the aircraft’s speed being nonzero, we want
to utilize the effect of air friction into the model. The force relations are
implemented using equations 4.16, 4.17 and 4.18. For the sake of simpler
implementation and easier diagnosis, we assume the height value affecting the
air’s density to be constant (concretely 150 meters above the sea level [ASL]).
We can do that because of minimal changes in density proportionately to the
height ASL.

The wind torque actions cannot be simply described by mathematical
relations based on wind speed only. Because of the symmetrical surface of
the aircraft, simple air mass movement would not cause any torque to the
body. It can be caused by wind flow around the body parts and rotating
propellers. The phenomenon of buoyancy is mainly involved. It can be
estimated by methods involving modeling aerodynamics of the aircraft. That,
however, is not within the scope of this work. Therefore we will force the final
torque quantity into the model directly (without any relation to observable
physical quantity), trying to cover all extremes which may happen in a real
environment. The Simulink diagram is shown in figure 5.2. It takes the
linear velocity of the aircraft in ICS as an input and outputs addition to
system’s states before the integration the same way as the gravitational pull
in 5.1. Airspeed represents the relative speed of the aircraft to the air mass

58

.. 5.2. Simulation

surrounding it.

Figure 5.2: Simulink implementation of wind effects

The noise blocks generate white noise signals. Each of the six signals (vector
of three for each block) is generated using different seed value to ensure not
correlated noises in the system. Kalman filter approach expects the noises in
the system to be unbiased meaning the white noises should have the mean
value of 0. However, we want to simulate real usage outdoors where the
wind might blow the same direction with the same speed for several minutes
(and similarly for hours). Therefore we set the wind speed noise to have
mean values [−5; 3; 0] for axes X, Y, Z respectively. Variances are set to
[1; 1; 1/16] assuming that the wind does not blow as much from the top and
the bottom. The sample time is set to 0, 1 s. The wind torque noise has all
mean values zero, variances 10−4. System’s responses after addition of these
effects can be seen in figures 5.3 and 5.4.

5.2.3 Diagnostics

The whole state vector x can be observed in the simulation. Moreover, we
can acquire also vector ẋ just before the integration process. Thanks to this
we can acquire time courses of the following vectors:..1. Vehicle’s coordinate system..a. Angular acceleration..b. Linear acceleration..c. Angular speed..d. Linear speed

59

5. Kalman filtering

0 2 4 6 8 10 12 14 16 18 20

time [s]

-8

-6

-4

-2

0

2

4

di
st

an
ce

 [m
] /

 a
ng

le
 [r

ad
]

Reference tracking

north reference
east reference
down reference
heading reference
actual north
actual east
actual down
actual heading

Figure 5.3: Regulated system reference tracking with ext. influence..2. Inertial coordinate system..a. Angular speed..b. Linear speed..c. Attitude (Euler angles)..d. Position (North, East, Down)

These can be effectively used for evaluation of the final filter during simulation
because we will try to get as close as possible to these states.

5.2.4 Virtual sensors

In real mapping process, we are unable to reach the previously described states
of the system directly. Sensors must be used to acquire the information. Those
bring one more variance to the signals. Each sensor adds up measurement
noise to quantities which it measures. We simulated this intervention more
accurately than the system’s noises because we were able to derive estimates
of variance values with the help of technical documentation of the sensors.
You can see the implementation in figure 5.5.

Again, the noise generators are all set to different seeds (even from the
system’s noise signals) to satisfy the condition of not correlated noise signals
in the system. All of them have their value set to 0 and variances of 1/22500

60

.. 5.2. Simulation

0 2 4 6 8 10 12 14 16 18 20

time [s]

0

5

10

15

20

25

30
th

ru
st

 [N
]

Motors response

upper left motor

lower left motor

upper right motor

lower right motor

upper back motor

lower back motor

Figure 5.4: Regulated system motors responses with ext. influence

for each acceleration measurement (angular and linear) and 1/14400 for Euler
angles measurements. For position values, they were all set to 1/9. Sample
times were also set accordingly to our usage of the particular sensors: 0, 004 s
for IMU and 0, 05 s for GNSS sensor. The difference between the actual
states and measured values is illustrated on position measurement in 5.6.

5.2.5 Improved mathematical model

Because of the form of the mathematical model derived earlier, we were only
able to incorporate position and orientation measurements into the filter.
That had lowered the amount of information inserted into the estimator
and discarded the information about accelerations. Therefore, we wanted to
extend the model such that all available measurements could be used. To do
this, we introduce a new set of states which describe angular (α) and linear
(a) accelerations along all three axes in the VCS. Derivation of acceleration
is called jerk and is the third derivative of a position/orientation. Because
we assume the aircraft to be a rigid body, there are no external influences
which can alter jerk values in time.

61

5. Kalman filtering

Figure 5.5: Sensors noise simulation

α =

αxαy
αz

 , a =

axay
az



Current discrete model in use is described by the following transition matrix:

x =



α
a
ω
v
ϕ
ε


, F =



E O O O O O
O E O O O O
Ts O E O O O
O Ts O E O O

T2
s/2 O Ts O E O
O T2

s/2 O Ts O E


,

where each stated element of matrix F is a matrix of dimensions 3 × 3.
E stands for unity matrix and other stated values represent unity matrix
multiplied by that constant. Matrices H corresponding to various measure-
ments are defined such that they satisfy the correct mapping of states onto
the measurements (see attached script). We excluded the elements related to
gravitational pull, because we expect the motors regulators to compensate its
effect during a flight. We do not need to keep track of matrix B form, because
in our case all inputs are unobservable, therefore the prediction simplifies to

xk+1 = F · xk + wk. (5.5)

62

.................................. 5.3. Real system application

0 2 4 6 8 10 12 14 16 18 20

time [s]

-10

-5

0

5

di
st

an
ce

 [m
]

Real vs Measured values

measured north
measured east
measured down
real state values

Figure 5.6: Simulated measurement

5.3 Real system application

To fit the filter to our real application with physical UAV, we conducted several
test flights with the two sensors onboard the UAV to collect measurements
data. The flights were done above wide airfield grass area. From all flights,
we have chosen the one which characteristics were the closest to those in
future planned mapping missions. You can see the trajectory pattern flown
in figure 5.7. The heading was tried to be preserved the same all the time
because we would like the lidar to maintain a similar orientation relative to
the ground during whole mapping mission in the future. From now on, all
stated data is from the chosen dataset and time axis covers the same time
interval in each graph.

5.3.1 Differences from simulation

After processing the in-field data, we discovered huge differences between
the real and the simulated measurements conducted earlier. This fact had
several reasons to happen and was expected. Comparison of simulated and
real measurements can be seen in figures 6.1 through 6.4 in chapter 6. The
mathematical model serves only as an approximation, it was linearized around
a working point and derived using only basic physical laws while neglecting a

63

5. Kalman filtering

Figure 5.7: Test flight trajectory pattern

lot of others. From the measured vibrations, it is obvious that the assumption
of a rigid body which is not subject to any deformation degrades the model’s
reflection of the real aircraft where the arms bend because the motors cause
thrust at the arms ends. Moreover, incorrect process and measurement noises
might have been used previously. Also, the noises do not have to satisfy the
assumption of a Gaussian probability distribution. The wind actions could
be different too. These were unobservable during the flight.

64

.................................. 5.3. Real system application

5.3.2 Measurements variance identification

There is a more accurate method to acquire matrix R for a sensor than by
derivation from the sensor’s specification. Because such matrix describes the
variances of individual measurements (assuming their noise is Gaussian) it
can be calculated from a static measurement. If we keep the sensor’s state
which is being measured the same during the whole measurement, all that is
recorded is noise (biased). It is then easy to compute the mean value for each
measured quantity, subtract it from the values and identify the variance of
them. We have done 15 minutes static measurements for both sensors using
configurations intended for usage in the final mapping application. Then used
Matlab software to calculate covariance matrix for each sensor.

Because of each sensor measures more physical quantities, we acquired
not only variance value for each quantity but also cross-relations between
the quantities represented by covariance values. Because the measurements
haven’t got infinitely long duration and some quantities such as Euler angles
and corresponding angular accelerations DO correlate with each other, the
calculated covariance values were non-zero. However, even if they are depen-
dent, the device has separate sensors which measure the quantities separately.
Therefore, we assume the covariances to be zero. The sensors noise covariance
matrix R is then constructed by placing variances of measured quantities
onto its main diagonal while leaving all other elements zero.

5.3.3 Filter tuning

Now that we have fixed the matrices R, we have to determine the matrix Q.
It can be derived using the following formula:

Q =
∫ ∆t

0
F ·QC · FT dTs, (5.6)

where QC is a matrix defining variances of particular states noises. It has
non-zero values only on its main diagonal. Because we assume the only
process noise to be caused by forces and torques, it affects only states α, a
representing the accelerations of the aircraft. There is no other physical
quantity present to affect other states directly. We implemented automated
algorithm which is able to calculate matrix Q from six provided variance
values (three for each vector of acceleration). The general form of the matrix
Q is

Q =

 S · Ts S · T 2
s /2 S · T 3

s /6
S · T 2

s /2 S · T 3
s /3 S · T 4

s /8
S · T 3

s /6 S · T 4
s /8 S · T 5

s /20

 , S = E ·

s1
...
s6

 ∈ R6×6. (5.7)

65

5. Kalman filtering

We iteratively changed the input si values, firstly each value in a trinity
(s1, s2, s3 and s4, s5, s6) having the same value, then fine tuned some of them.
The goal was to acquire as much similar output from the virtual sensors
assigned to the simulation as the real data measured in-field. This approach
ensured the best approximation which could be acquired with all the knowl-
edge we had. As said before, real process and measurement noises are for
sure not exactly Gaussian, therefore we can never get the simulated datasets
the same as the measured ones. As an outcome of this fact, the filter using
matrices Q,R for estimation with Gaussian noises involved will always pro-
vide only an approximation of the model and estimation of the model’s
states.

66

Part III

Evaluation

67

68

Chapter 6
Experiments

6.1 Trajectory filtering

Several experiments were done to derive the filter’s parameters. Some of
them were already covered in the previous chapter. To compare the two
implementations with 12-state and 18-state mathematical models, we used
the same dataset of measured values from the testing flight as an input to
each filter. A filter was always initialized with the first available measurement.
Therefore the initial state estimate was fairly accurate. The parameters
needed for the Kalman filter were tuned for the 18-state filter and applied to
both (considering truncated matrices, etc.).

We acquired filtered values from a particular filter and calculated differ-
ences between them and the values measured by the sensors. Absolute values
of those differences are illustrated in figures 6.5 through 6.8. These values
cannot be used directly for a filter’s evaluation. For that, we would have
to compare the filtered values against real values which we do not know.
However, it is obvious that very low values indicate over-fitted tracking of
the measured values by the filtered values (which we do not want). Moreover,
these diagrams can be used to detect the most critical time intervals, where
attention should be focused on.

Figures 6.9 through 6.12 shows two different quantities in two different
times filtered by both filters. As we can see in the first example, not only
that the 12-state filter did not filter out the noise, it also added up more of it.
The filter was also tuned individually (to acquire parameters optimal for this
filter) to provide a more convenient output, but it still had worse performance
than the 18-state filter, because it could not predict the future orientation
well without knowing the angular acceleration (it often overshot). In this
configuration, it practically just implements dead reckoning approach as it
predicts the velocities from past measurements and once a new measurement
is available, it corrects itself. No redundant information is introduced into
the system.

69

6. Experiments
On the other side, the 18-state filter can perform better position and

attitude prediction as it acquires information about their second derivations
(angular and linear acceleration). The filtered curve is smoother than the
original one and does not incorporate the system’s noise as much as the
12-state filter. The filter seems to overshoot sometimes, but this cannot
be proofed without knowledge of the real values (also sensor can measure
incorrectly). Another advantage of the 18-state filter is that it can partially
eliminate outlying values which were recorded incorrectly and did not reflect
the real state. The second example illustrates this. The filter does not let
the values to diverge as much when incorrect measurements arrive. However,
we can see that because there were five outlying records, the filter was not
able to eliminate their negative effect completely. This situation might be a
subject for other filtering approach taking care of outlying values.

6.2 Point cloud improvement

In the goal description, we stated that we would use one more method for
evaluation of the accuracy of filtered values, comparison of point clouds con-
structed using the original data from sensors and the filtered data. However,
we experienced major dysfunction of the used lidar. Luckily we were able to
record some data after successful development of all the algorithms related
to the point cloud construction (data acquisition) process, and therefore we
can propose at least sample of a model created with our mapping system
with the hardware mounted on an experimental ground vehicle, see 6.13.
Unfortunately, the lidar malfunctioned before we could perform a flight with
the mapping rig mounted to UAV. Therefore we are not able to provide a
comparison using the second proposed evaluation method. No spare identical
lidar was available in our institution.

70

................................. 6.2. Point cloud improvement

100 120 140 160 180 200 220 240 260 280

time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

an
gu

la
r

ac
ce

le
ra

tio
n

[r
ad

/s
2
]

Simulated measurements of ang. acc.

roll
pitch
yaw

Figure 6.1: Simulated measurement of ang. acc.

100 120 140 160 180 200 220 240 260 280

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

an
gu

la
r

ac
ce

le
ra

tio
n

[r
ad

/s
2
]

Real measurements of ang. acc.

pitch
roll
yaw

Figure 6.2: Real measurement of ang. acc.

71

6. Experiments

100 120 140 160 180 200 220 240 260 280

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

lin
ea

r
ac

ce
le

ra
tio

n
[m

/s
2
]

Simulated measurements of lin. acc.

X axis
Y axis
Z axis

Figure 6.3: Simulated measurement of lin. acc.

100 120 140 160 180 200 220 240 260 280

time [s]

-50

-40

-30

-20

-10

0

10

20

30

40

50

lin
ea

r
ac

ce
le

ra
tio

n
[m

/s
2
]

Real measurements of lin. acc.

X axis
Y axis
Z axis

Figure 6.4: Real measurement of lin. acc.

72

................................. 6.2. Point cloud improvement

100 120 140 160 180 200 220 240 260 280

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

an
gl

e
[r

ad
]

Filtered/measured values diff. (absolute)

yaw
pitch
roll

Figure 6.5: RPY values difference of 12-state system

100 120 140 160 180 200 220 240 260 280

time [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

an
gl

e
[r

ad
]

Filtered/measured values diff. (absolute)

yaw
pitch
roll

Figure 6.6: RPY values difference of 18-state system

73

6. Experiments

100 120 140 160 180 200 220 240 260 280

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

di
st

an
ce

 [m
]

Filtered/measured values diff. (absolute)

down
east
north

Figure 6.7: NED values difference of 12-state system

100 120 140 160 180 200 220 240 260 280

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

di
st

an
ce

 [m
]

Filtered/measured values diff. (absolute)

down
east
north

Figure 6.8: NED values difference of 18-state system

74

................................. 6.2. Point cloud improvement

170 170.5 171 171.5 172

time [s]

-0.28

-0.275

-0.27

-0.265

-0.26

-0.255
an

gl
e

[r
ad

]

Measured and filtered values

filtered roll
measured roll

Figure 6.9: Filtered/measured roll values of 12-state system

170 170.5 171 171.5 172

time [s]

-0.28

-0.275

-0.27

-0.265

-0.26

-0.255

an
gl

e
[r

ad
]

Measured and filtered values

measured roll
filtered roll

Figure 6.10: Filtered/measured roll values of 18-state system

75

6. Experiments

244.6 244.7 244.8 244.9 245 245.1 245.2 245.3 245.4

time [s]

10.5

11

11.5

12

12.5

13

13.5

14

di
st

an
ce

 [m
]

Measured and filtered values

filtered down
measured down

Figure 6.11: Filtered/measured down values of 12-state system

244.6 244.7 244.8 244.9 245 245.1 245.2 245.3 245.4

time [s]

10.5

11

11.5

12

12.5

13

13.5

14

di
st

an
ce

 [m
]

Measured and filtered values

filtered down
measured down

Figure 6.12: Filtered/measured down values of 18-state system

76

................................. 6.2. Point cloud improvement

Figure 6.13: Exemplary point cloud - Operator sitting on a bench

77

78

Part IV

Conclusions

79

80

Chapter 7
Conclusions

7.1 Summary

In this work, we developed a fully operational software interface between the
sensors (IMU, GNSS sensor, lidar) and the ARM computer built-in into the
mapping rig to be able to record and store raw data measurements from the
sensors. Previously used DGPS system involving two devices was swapped
for new, more advanced, GNSS sensor which utilizes a single device. The
whole application enclosing creation of a point cloud 3D model was broken
down into separate modules with various functions which can be applied as
necessary, either in-field or in desktop mode. Raw data analysis module was
created to check the usability of the data right after its acquisition along
with informative indicators provided for the user during each process done
above the data. Network communication protocol for the graphical user
interface added to support the raw data acquisition process was developed
(GUI development itself is not within the scope of this work). GUIs for
raw data analysis module and the module for construction of a point cloud
were designed and implemented. All sensors are being correctly configured
and measurements time synchronized properly to achieve accurate model
construction. Python application was created to enclose and manage the
modules with their subprocesses.

Mathematical apparatus was developed to improve the precision of the
noisy measurements acquired by the sensors. Beginning with the research
on localization methods and their possible improvements, the linear Kalman
filtering was chosen as the best fit for our application. Matlab and Simulink
programs were chosen to implement the algorithm, mainly because of simple
analysis and illustration of the events/signals of the system. Another reason
was the possibility to run simulations involving numerical solvers for differ-
ential equations. Kalman filter was implemented, analyzed, upgraded and
finally tuned to its final form. Descriptive outputs and their evaluation were
introduced to prove the successful accomplishment of the established goal.

81

7. Conclusions
Finally, we proposed illustrative examples to prove the correct functionality

of the filtering algorithm. A presentation was done by comparison of raw
measured data and the filter data in critical sections of the signals. We also
intended to illustrate the localization improvement by comparison of point
cloud models created from the raw data and the filtered data. However, a
problem with the lidar unit appeared shortly after successful implementation
of its raw data acquisition. It was not possible to acquire data from UAV in
flight along with the data from lidar, because it was not working and RMA
took too long for the lidar to not arrive before completion of this work.

There were some unexpected deviations from the originally planned work.
The most significant one, influencing the filtering process, was the derivation
and implementation of the extended mathematical model to ensure usage of
all available measured data. Another mentionable issue was the time-ordering
of packets from the lidar unit.

We have accomplished the desired accuracy improvement of the system’s
measurements. The results of the work meat their requirements to construct
more precise point cloud models than with the usage of unfiltered data. The
improvement lies in the removal of the noise from the measurements and
making values estimates in time moments when there is no measurement
available, effectively interpolating the data and providing the output data
with much higher frequency. That is important because records from the
lidar (acquisition of 300k points per second) should be each matched with
proper position and orientation records assigned to the exact time moment.

7.2 Project applications

The presented solution was designed as a mapping system for outdoor usage.
Moreover, it is limited to use with particular UAV (BRUS), because the
filtering process relies on knowledge of the physical system. However, the
mathematical model is not very hard to modify to fit different UAV. The
system is suitable for instructed users as the proposed interfaces for operators
does not require a deeper knowledge of the system.

This work was primarily dedicated to a project devoted to the mapping of
forestry areas. However, it does not differentiate from other outdoor usages
as long as the GPS antenna has an unobstructed view of the sky. The system
is not usable in urban areas between tall buildings or indoors. To modify the
system for these applications, visual odometry or wi-fi positioning system
would have to be utilized to acquire the aircraft’s position in such places.

82

....................................... 7.3. Open issues

7.3 Open issues

One remaining issue is a problem with post-processed data from the GNSS
sensor. When switching between the two types of solution fixes, the trajectory
curve experiences discontinuities. With a higher number of records outlying
from the original trajectory, the Kalman filter is not able to solve this situation.
Solving this problem requires deeper analysis of the post-processing algorithms
done by the third party software involved. If required, implementation of
another filtering process would help. It should be able to detect such "jumps"
as high derivations of the values courses over time and nullify the effect to
keep the smooth course of the trajectory function.

7.4 Future work

Possible future progress on this project includes:..1. Derivation of a more sophisticated mathematical model, effectively get-
ting a better approximation of the real physical system. Such process
would involve precise measurement of the UAV’s physical parameters
and utilization of until now neglected physical laws related to the system
such as aerodynamics, the propellers dynamics, and deformation of the
body.;..2. Incorporating the control signals being sent from the auto-pilot to the
propellers to improve the step of prediction based on the system’s evo-
lution over time. That requires knowledge of the propellers physical
parameters, to properly extend the mathematical model;..3. Utilization of more sensors (measurements) into the localization system
and using their redundant information to support the estimation process
further. We can utilize more subsystems of the IMU including integrated
GNSS sensor, pressure sensor, and magnetometers. Also, measurements
from autopilot’s sensors can be used;..4. Implementation of variance information provided by some of the sensors
to change the measurements variances matrices in the filtering process
over time to ensure better estimation;..5. Tuning the filter with use of absolute localization station. With it, we
would be able to calculate differences between filtered and real values
and evaluate the filter’s performance;..6. Development and testing of Extended KF and Unscented KF to see
if we can more accurately estimate the states based on a non-linear
mathematical model of the system.

83

84

Appendices

85

86

Appendix A
Abbreviations

All abbreviations used in this thesis in alphabetical order:

ARM - Advanced RISC Machine

ASL - Above the Sea Level

BRUS - Bezpilotní rotorový univerzální systém (Czech abbreviation)
... In English: Unmanned rotor universal system

CUI - Character User Interface

DGPS - Differential Global Positioning System

DOF - Degree Of Freedom

IR - Infra-Red

EKF - Extended Kalman Filter

ENU - East, North, Up

FOV - Field Of View

FRD - Front, Right, Down

GCS - Ground Coordinate System

GPD - Gaussian Probability Distribution

GPS - Global Positioning System

GPST - Global Positioning System’s Time

GSM - Global System for Mobile communications

87

A. Abbreviations
GUI - Graphical User Interface

ICS - Inertial Coordinate System

IMU - Inertial Measurement Unit

KF - Kalman filter

MSE - Mean-Squared Error

NED - North, East, Down

PC - Personal Computer

PP - Position and Pose

PPS - Pulse Per Second

PZ-90 - Parametry Zemli 1990 goda (Russian abbreviation)
... In English: Parameters of Earth in 1990

RGB - Red, Green, Blue

RISC - Reduced Instruction Set Computing

RMA - Return Merchandise Authorization

RPY - Roll, Pitch, Yaw angles

RSSI - Received Signal Strength Indication

RTK - Real Time Kinematic

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

UKF - Unscented Kalman Filter

UTC - Coordinated Universal Time

WSG84 - World Geodetic System 1984

88

Appendix B
Bibliography

[AMSI16] O. A. Aqel, M, H. Marhaban, M., I. Saripan, M., and B. Ismail,
N., Review of visual odometry: types, approaches, challenges,
and applications, October 2016.

[AMY+17] N. Akai, L. Y. Morales, T. Yamaguchi, E. Takeuchi, Y. Yoshi-
hara, H. Okuda, T. Suzuki, and Y. Ninomiya, Autonomous
driving based on accurate localization using multilayer lidar and
dead reckoning, 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), Oct 2017, pp. 1–6.

[CHL14] O. G. Crespillo, O. Heirich, and A. Lehner, Bayesian gnss/imu
tight integration for precise railway navigation on track map,
2014 IEEE/ION Position, Location and Navigation Symposium
- PLANS 2014, May 2014, pp. 999–1007.

[CPN16] Sandhya Rani Chapala, Gangadhara Sai Pirati, and U. R.
Nelakuditi, Determination of coordinate transformations in uavs,
2016 Second International Conference on Cognitive Computing
and Information Processing (CCIP), Aug 2016, pp. 1–5.

[CSH17] J. P. Condomines, C. Seren, and G. Hattenberger, Invariant
unscented kalman filter with application to attitude estimation,
2017 IEEE 56th Annual Conference on Decision and Control
(CDC), Dec 2017, pp. 2783–2788.

[ees14] Navipedia contributors, Reference frames in gnss, April 2014,
http://www.navipedia.net/index.php?title=
Reference_Frames_in_GNSS&oldid=12706.

[Fai09] Nathaniel Fairfield, Localization, mapping, and planning in 3d
environments, Master’s thesis, University of Oxford, January
2009.

[Fit11] Richard Fitzpatrick, Principal axes
of rotation, ONLINE, March 2011,
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node67.html.

89

B. Bibliography.......................................
[FZY+14] Mengyin Fu, Hao Zhu, Yi Yang, Meiling Wang, and Yu Li,

Multiple map representations for vehicle localization and scene
reconstruction, 17th International IEEE Conference on Intelli-
gent Transportation Systems (ITSC), Oct 2014, pp. 2241–2242.

[Geo15] U.S. Deparment of the Interior | U.S. Geological Sur-
vey, Light detection and ranging (lidar), January 2015,
https://lta.cr.usgs.gov/lidar_digitalelevation.

[HKM13] J. Hartmann, J. H. Klüssendorff, and E. Maehle, A comparison
of feature descriptors for visual slam, 2013 European Conference
on Mobile Robots, Sept 2013, pp. 56–61.

[JHM18] N. Jeong, H. Hwang, and E. T. Matson, Evaluation of low-cost
lidar sensor for application in indoor uav navigation, 2018 IEEE
Sensors Applications Symposium (SAS), March 2018, pp. 1–5.

[Jr.18a] Roger R. Labbe Jr., Kalman and bayesian filter in python, vol.
531, ch. The Extended Kalman Filter, pp. 409–434, May 2018.

[Jr.18b] , Kalman and bayesian filter in python, vol. 531, ch. The
Extended Kalman Filter, pp. 87–112, 147–180, May 2018.

[KA06] A. G. Kallapur and S. G. Anavatti, Uav linear and nonlinear
estimation using extended kalman filter, 2006 International Con-
ference on Computational Inteligence for Modelling Control and
Automation and International Conference on Intelligent Agents
Web Technologies and International Commerce (CIMCA’06),
Nov 2006, pp. 250–250.

[Kal60] Rudolph Emil Kalman, A new approach to linear filtering and
prediction problems, Transactions of the ASME–Journal of Basic
Engineering 82 (1960), no. Series D, 35–45.

[KTH15] A. R. Khairuddin, M. S. Talib, and H. Haron, Review on simulta-
neous localization and mapping (slam), 2015 IEEE International
Conference on Control System, Computing and Engineering
(ICCSCE), Nov 2015, pp. 85–90.

[LBD+09] D. Lee, T. C. Burg, D. M. Dawson, D. Shu, B. Xian, and E. Tat-
licioglu, Robust tracking control of an underactuated quadrotor
aerial-robot based on a parametric uncertain model, 2009 IEEE
International Conference on Systems, Man and Cybernetics, Oct
2009, pp. 3187–3192.

[LKDM17] A. Lazarov, C. Kabakchiev, A. Dimitrov, and D. Minchev,
Kalman tracking filter in 3-d space, 2017 18th International
Radar Symposium (IRS), June 2017, pp. 1–10.

90

..B. Bibliography
[LZM17] T. Li, D. Zhu, and M. Q. H. Meng, A hybrid 3dof pose estimation

method based on camera and lidar data, 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Dec 2017,
pp. 361–366.

[MDA07] G. Mao, S. Drake, and B. D. O. Anderson, Design of an extended
kalman filter for uav localization, 2007 Information, Decision
and Control, Feb 2007, pp. 224–229.

[Met18] C. Metz, How driveless cars see the world around them, The
New York Times (2018).

[Nov18] NovAtel Inc., An introduction to gnss, April 2018,
https://www.novatel.com/an-introduction-to-gnss/chapter-5-
resolving-errors/real-time-kinematic-rtk/.

[O’K06] J. M. O’Kane, Global localization using odometry, Proceedings
2006 IEEE International Conference on Robotics and Automa-
tion, 2006. ICRA 2006., May 2006, pp. 37–42.

[Pop98] Adrian Popa, What is meant by the
term gimbal lock?, ONLINE, June 1998,
http://www.madsci.org/posts/archives/aug98/896993617.Eg.r.html.

[Rub18] Michael Rubinstein, Introduction to recur-
sive bayesian filtering, ONLINE, May 2018,
https://people.csail.mit.edu/mrub/talks/filtering.pdf.

[SF17] Y. Sakuma and M. Fujii, A study on direction estimation of
movement by multiple sensors for pedestrian dead-reckoning,
2017 Fifth International Symposium on Computing and Net-
working (CANDAR), Nov 2017, pp. 603–605.

[SG16] Huang Shoudong and Dissanayake Gamini, Robot localization:
An introduction, pp. 1–10, American Cancer Society, 2016.

[SSVO09] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics, 1
ed., vol. 632, Advanced Textbooks in Control and Signal Pro-
cessing, no. 978-1-84628-642-1, Springer-Verlag London, 2009,
pages 48-51.

[Str08] Jonathan Strickland, What is a gimbal – and what
does it have to do with nasa?, ONLINE, May 2008,
https://science.howstuffworks.com/gimbal.htm.

[SZC+17] Z. Su, X. Zhou, T. Cheng, H. Zhang, B. Xu, and W. Chen, Global
localization of a mobile robot using lidar and visual features, 2017
IEEE International Conference on Robotics and Biomimetics
(ROBIO), Dec 2017, pp. 2377–2383.

91

B. Bibliography.......................................
[Thr02] Sebastian Thrun, Particle filters in robotics, Uncertainty in AI

(UAI), 2002.

[Tra16] Tomáš Trafina, Construction of 3d point clouds using lidar
technology, Bachelors thesis, 2016, Czech Technical University
in Prague.

[TUI17] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda, Visual
slam algorithms: a survey from 2010 to 2016, IPSJ Transactions
on Computer Vision and Applications 9 (2017), no. 1, 16.

[Tů16] Zuzana Tůmová, Přesná lokalizace malých bezpilotních
prostředků s využitím gnss, Bachelors thesis, 2016, Czech Tech-
nical University in Prague.

[Vel18] Velodyne Acoustics Inc., Vlp-16 user manual and programming
guide, 63-9243 rev. d ed., 2018.

[Wik18] Wikimedia Foundation Inc., Gimbal lock, January 2018,
https://en.wikipedia.org/wiki/Gimbal lock.

[WM00] E. A. Wan and R. Van Der Merwe, The unscented kalman filter
for nonlinear estimation, Proceedings of the IEEE 2000 Adaptive
Systems for Signal Processing, Communications, and Control
Symposium (Cat. No.00EX373), 2000, pp. 153–158.

[YDCPC17] Simon Yiu, Marzieh Dashti, Holger Claussen, and Fernando
Perez-Cruz, Wireless rssi fingerprinting localization, Signal Pro-
cessing 131 (2017), 235 – 244.

[YJC12] Chuho Yi, S Jeong, and J Cho, Map representation for robots,
18–27.

[YM05] D. C. K. Yuen and B. A. MacDonald, Vision-based localization
algorithm based on landmark matching, triangulation, recon-
struction, and comparison, IEEE Transactions on Robotics 21
(2005), no. 2, 217–226.

[YZF13] S. Z. Yong, M. Zhu, and E. Frazzoli, Simultaneous input and state
estimation for linear discrete-time stochastic systems with direct
feedthrough, 52nd IEEE Conference on Decision and Control,
Dec 2013, pp. 7034–7039.

92

	Introduction
	Goal description
	Knowledge assumption

	Problem overview
	Robot Localization
	Localization approaches
	Dead reckoning
	Visual odometry
	Triangulation
	Measurements fusion

	Common data filtering
	Discrete Bayes filter
	Particle filter
	Kalman filter

	Data processing
	Data acquisition
	Used sensors
	Lidar
	RTK GNSS sensor
	IMU

	System improvements
	Non-uniform heading
	Sensors time synchronization
	UDP packets timing

	New features
	Single GNSS device
	Data handling
	In-field GUI
	In-field statistics

	Mathematical model
	Coordinate systems
	Gimbal lock

	Used vehicle
	Preliminar notions
	Behavior
	Degrees of freedom
	Physical parameters

	Non-linear model
	Euler angles
	Kinematic model
	Dynamic model
	Summary

	Linear model
	Linearization
	Regulator

	Kalman filtering
	Theoretical introduction
	Univariate Gaussian
	Multivariate Gaussian
	Kalman filter algorithm
	Filling measurements gaps
	Measurements of various frequency

	Simulation
	Gravitational pull
	Air friction
	Diagnostics
	Virtual sensors
	Improved mathematical model

	Real system application
	Differences from simulation
	Measurements variance identification
	Filter tuning

	Evaluation
	Experiments
	Trajectory filtering
	Point cloud improvement

	Conclusions
	Conclusions
	Summary
	Project applications
	Open issues
	Future work

	Appendices
	Abbreviations
	Bibliography

