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Abstract

The goal of this thesis is to present the
problem of optimal train control and im-
plement an open-source software package
able to solve it. The solution is a speed
profile which takes train’s traction capa-
bilities, total journey time and the track
gradient into account while minimising
the total required energy.

The optimal control strategy is a switch-
ing strategy between a small number of
modes: Maximum Power, Cruising, Op-
timal Braking, Coasting and Maximum
Braking. On a flat track, the optimal
strategy has the form Maximum Power –
(Cruising) – Coasting – Maximum Brak-
ing. On a general track, more switching
can occur due to the steep uphill and steep
downhill sections of the track.

A solution has been implemented in
the Julia programming language and is
available to the public in a form of a pack-
age accessible on GitHub. The solution is
functional and examples of speed profile
calculation are shown. Some features are
still missing, most notably inclusion of
speed limits. Functionality of the imple-
mented solution can be further developed
thanks to its open-source nature.

Keywords: Optimal train control,
maximum principle, Julia programming
language, algorithm design

Abstrakt

Cílem této práce je představit problém
optimálního řízení vlaku a implementovat
open-source softwarový balíček, pomocí
něhož je jej možno řešit. Řešením je rych-
lostní profil, který bere v úvahu trakční
limity vlaku, celkový čas cesty a výškový
profil tratě a zároveň minimalizuje celko-
vou vynaloženou energii.

Optimální strategie spočívá v přepí-
nání několika jízdních režimů: maximální
trakce, držení rychlosti, optimální brzdění,
výběh a maximální brzdění. Na ploché
trati má optimální strategie podobu ma-
ximální trakce – (držení rychlosti) – vý-
běh – maximální brzdění. Na obecné trati
může docházet k většímu množství pře-
pnutí kvůli příliš strmým úsekům.

Řešení bylo implementováno v jazyce
Julia a je dostupné veřejnosti v podobě
balíčku na GitHub. I přes to, že je pro-
gram obecně funkční a příklady výpočtu
jsou uvedeny. Některé funkcionality stále
chybí (především možnost zahrnout rych-
lostní omezení). Současné řešení je však
možno dále vyvíjet díky jeho open-source
povaze.

Klíčová slova: Optimální řízení vlaku,
princip maxima, programovací jazyk
Julia, návrh algoritmu

Překlad názvu: Energeticky efektivní
řízení kolejových vozidel
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Introduction

Goals

In accordance with the thesis assignment, the goal of this thesis is..1. to document the state of the art in solving the problem of energy-efficient train
control,..2. to implement a numerical method for computing optimal speed profiles in a pro-
gramming language whilst allowing the ability to recalculate the solution online and
considering special challenges in commuter train traffic,..3. and to format the resulting code in the form of a documented open-source package
available to the public.

Motivation

Energy-efficient solutions are sought in each industry. Train transport is not an exception
to this trend. Moreover, the demand for such economical systems grows higher in recent
years, also due to higher fluctuations of the cost of electric energy and fuel.

Implementation of energy-optimal train control systems has also yielded unexpected
benefits. In several instances, adhering to the calculated driving strategy resulted in
better following of the train schedule (G. M. Scheepmaker et al., 2017; Albrecht et al.,
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...............................................
2016b). The reason for such improvements is that the train operator can simply follow
the precomputed speed profile if the planning system is in place, but has to rely on their
experience (or lack thereof) in its absence.

Thesis Structure

The thesis describes implementation of an algorithm to solve the optimal train control
problem in the Julia programming language.

The summary of the relevant references and an introduction to the topic of optimal
train control is presented in chapter 1.

Chapter 2 is dedicated to a brief introduction to the Julia programming language. The
reason for that is to make sure the reader understands Julia code which is shown in the
text further. At first, the reasons why Julia has been selected as the implementation
language along with the basics of the syntax are presented. Several used Julia packages
are described with examples of their use. Subsequent chapters also contain Julia code
snippets which show how some of the ideas are implemented in the presented package.
The snippets are shown directly in the text of the thesis as opposed to the option of
referencing the complete code in the appendix. This has been done to improve text
comprehension, and besides, the complete code is present on a GitHub page.

Chapter 3 states the complete problem of optimal train control and contains theoretical
analysis of its solution. The model of longitudinal train dynamics is presented in its full
detail along with all of the problem’s constraints.

The Optimal control problem for the simplified case of a flat track is discussed in
chapter 4. The optimal sequence of control modes is presented in the form of state
diagrams and the influences of the total available journey time and the regeneration
coefficient are discussed with examples.

The optimal solution to the general problem of optimal control with a flat track is
presented in chapter 5. The description of steep sections of a track is then followed by
introducing the linking procedure (finding individual parts of the optimal speed profile
and then combining them to form the complete solution).

Finally, chapter 6 shows outputs of the implemented algorithm on a selection of example
problems. Comparison with another solution strategy is presented and the important
discussion of possible improvements concludes the thesis.
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Chapter 1

State of the Art

The problem of optimal train control was studied extensively during the second half of
the twentieth century. The historical developments in this field are well summarised in
Albrecht et al. (2016a) and in G. M. Scheepmaker et al. (2017), and short description of
the relevant findings is presented here.

The task is, stated in general terms, minimisation of a criterion via finding a continuous
control subject to a continuous dynamics model, boundary conditions and (possibly)
state path constraints. Such problems are the topic of the optimal control theory (Athans
et al., 2007; Liberzon, 2012). Generally, constrained optimal control problems are difficult
to solve directly as they require very accurate initial guesses of solutions. To avoid this
additional domain-specific insight is often used to solve the problem in efficient manner.
The classical form of the optimal train control problem is to minimise the energy while
driving the train from one station to another within a set time. Moreover, the traction
capabilities of the train are limited and the terrain can make it difficult for the train to
traverse steep sections.

As with other optimal control problems, the optimal train control problem can be
addressed in two ways:

. indirect methods derive conditions of optimality and then attempt to solve them,

. direct methods discretise the problem into a general non-linear programming opti-
misation problem.

3



1. State of the Art ......................................
1.1 Indirect Methods

The indirect methods often rely on the use of Pontryagin’s maximum principle (PMP)
to analyse the structure of the solution, which is in the form of a sequence of switching
control phases. This indirect approach has been dominant since the publication of the
earliest articles Ichikawa (1968) and Asnis et al. (1985). Although the presented results
only considered the case of a flat track, they showed that the control mode sequence
typically had the pattern of Maximum Power – Cruising – Coasting – Maximum Braking∗

as it is discussed in further chapters. It was shown later that under some restrictions on
the form of the motion resistance function and the tractive limits of the train, closed-form
formulas for the optimal speed profile could be obtained (G. M. Scheepmaker et al., 2017;
Albrecht et al., 2016a). The problem involving a general track with variable gradient is
much more difficult to solve and, so far, only numerical algorithms have been proposed
as a solution strategy.

The theory of optimal train control has been extensively developed by the Scheduling
and Control Group at the Centre (SCG) for Industrial and Applied Mathematics of the
University of South Australia. Their findings have been summarised in a two-part article
Albrecht et al. (2016a) and Albrecht et al. (2016b), which is regarded as the current
theoretical state of the art in the field of optimal train control. The key discovery lies
in the fact that it is possible to express the costate determining the current control
mode algebraically. A similar result was presented in Liu et al. (2003) for a less general
form of the problem, in which no braking energy regeneration is considered. Apart from
theoretical results, SCG has developed several driver advisory systems (DAS) which
implement numerical algorithms to solve optimal train control problems on-board to
provide advice to a train operator. These systems are (in the chronological order of
development): Metromiser (Baier et al., 2000), Freightmiser (Coleman et al., 2010) and
Energymiser (MyDAS: Driving Advice Systems and Statistics for Train Drivers | Trapeze
Group, [n.d.]). Figure 1.1 shows the Energymiser DAS on-board of a train. The driver
is notified of the current driving strategy and can inspect the predicted speed profile
(G. M. Scheepmaker et al., 2017; Albrecht et al., 2016a).

Although a train generally consists of multiple carriages and locomotives, it has
been shown (jaekelComparativeAnalysisAlgorithms2014; Albrecht et al., 2016a) that
approximating the whole train with a single point mass yields very similar results, which
are much simpler to obtain than if the train were modelled in a distributed-mass manner.
For this reason, the equations of train motion are usually in the form

ẋ(t) = v, (1.1a)
v̇(t) = u−R(v, x), (1.1b)

where x is the position along the track, v is the speed of the train, u is the control
signal and R(v, x) is the train motion resistance consisting of mechanic and aerodynamic

∗Throughout the text of the thesis, the control modes are typeset with their specific colours. The
corresponding colours are also used in plots and diagrams.
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...................................... 1.1. Indirect Methods

Figure 1.1: A photography of the active Energymiser DAS. The system notifies the train
operator when the control mode should be changed and also shows how long the current
mode should remain active. The image is from Albrecht et al. (2015).

components as well as the influence of the track gradient. The mass of the train does not
appear explicitly because the models are usually shown in mass-specific form (all of the
terms are divided by mass). Despite the common practice of expressing dynamical models
as a set of differential equations where time is the independent variable, in the case of
optimal train control problems, it proved to be more useful to write the system with the
distance x as the independent variable (Albrecht et al., 2016a; G. M. Scheepmaker et al.,
2017). The derivation is straightforward if the informal manipulation with differentials is
allowed†:

v = dx
dt =

( dt
dx

)−1
= 1
t′
, (1.2)

dv
dt = dv

dt
dx
dx = dv

dx
dx
dt = v′v = u−R(v, x). (1.3)

Consequently,

t′ = 1
v
, (1.4a)

v′ = u−R(v, x)
v

. (1.4b)

The system (1.4) is not defined at points where v = 0. To partially circumvent this issue,
different models (although equivalent) have been also developed. Khmelnitsky (2000)
presents a model with total specific energy E = P +K and time t as state variables:

E′ = u−R(v, x), (1.5a)

t′ = 1√
2K

. (1.5b)

Khmelnitsky (2000) also developed an elegant algorithm based on indirect methods
to find the optimal speed profile for the general optimal train control problem with

†In this thesis, the derivative of f with respect to the position x will be denoted as f ′ = df
dx

.
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1. State of the Art ......................................
possible energy regeneration during braking and general speed limit. This algorithm
serves as a basis for implementation of the algorithm presented in this thesis because of
the more unified approach of Khmelnitsky (2000) compared to the exhaustive singular
case handling presented by the SCG (Albrecht et al., 2016a; Albrecht et al., 2016b).

1.2 Direct Methods

The direct methods provide a completely different approach of solving optimal train
control problems. The key idea lies in discretisation of the problem (e.g. the distance
along the track, control signal values, values of the states) and solving it as a general
non-linear program. Such methods have only become more popular during the last two
decades, thanks to rising performance of computer machines.

In Wang; De Schutter; Ning, et al. (2011), the optimal train control problem is solved
as a mixed-integer linear program (MILP). The nonlinear dynamics are approximated
with piece-wise affine (PWA) functions to make the MILP formulation of the problem
possible. The considered state equations have the continuous form (1.5); the discretised
system is obtained by applying the trapezoidal integration rule and by approximating
the right-hand side of (1.5b) with a 3-part PWA function (shown in figure 1.2). The
algorithm implemented in this thesis is compared with the mixed-integer linear program
solution in the final chapter.

Other often-employed direct method of solution of optimal control problems is direct
collocation. This approach also counts with discretisation of the x-axis, but approximates
the state and control trajectories on each subinterval with a function of a fixed form (most
commonly low degree polynomials, Chebyshev polynomials, Legendre polynomials). In
Wang; De Schutter; van den Boom, et al. (2013) the collocation method is compared with
the MILP solution of Wang; De Schutter; Ning, et al. (2011). The collocation method
yielded better results. Both the MILP approach and collocation can suffer from chattering
behaviour, as it is seen in Goverde et al. (2021). This is a general downside of direct
methods since the solution provides no insight into the structure of the solution (outputs
are generally vectors of numbers). This fact is a fundamental difference comparison with
the indirect approach where the structure of the optimal solution is revealed immediately.
On the other hand, implementation of the direct approach (problem transcription and
calling the appropriate solver) is simpler compared to the indirect approach (solving
algebraic and differential equations).

The above-referenced articles are part of train-control-related research in the Nether-
lands and Delft University of Technology, in particular. Recently, their research has been
more oriented towards the problem of optimal train timetabling, which is treated in detail
in G. Scheepmaker (2022). The global research trend is similar: the optimal control
problem of a single train is considered to be a closed topic and now new optimisation
problems, such as timetabling or time-window optimisation, have arisen.

6



.......................................1.2. Direct Methods

Figure 1.2: Piece-wise affine approximation of 1/
√

2E from Wang; De Schutter; Ning, et al.
(2011).
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Chapter 2

Introduction to Julia Programming Language

Julia is an award-winning∗ programming language created with the focus on scientific
programming, numerical computation and reproducible and open software (The Julia
Programming Language, [n.d.]). For these reasons, it is becoming increasingly popular
among scientific community, including the Department of Control Engineering at CTU
FEE.

The main marketed features of Julia include dynamic typing and multiple dispatch.
The former is present in a number of other programming languages, such as Python,
JavaScript or Ruby, while the latter feature of multiple dispatch is central to Julia’s
paradigm. Also, REPL (read – evaluate – print – loop) prompt is natively provided as in
MATLAB or Python. Other highlights of the language are:..1. Performance: Julia is designed to be fast, with performance comparable to that of C

and Fortran. This makes it ideal for solving complex differential equation problems,
where performance is critical...2. Flexibility: Julia provides a flexible syntax and dynamic type system that makes it
easy to express mathematical equations and algorithms. This allows users to create
customised solutions which meet their specific needs...3. Interoperability: Julia has a built-in interface to C and Fortran libraries, which
allows users to leverage existing code and libraries. This makes it easy to integrate
Julia into existing workflows and projects...4. Numerical accuracy: Julia provides advanced numerical tools which ensure high
numerical accuracy in solving differential equations. This is essential for scientific
computing applications where accuracy is critical.

∗“The 2019 James Wilkinson Prize is awarded to Jeff Bezanson, Stefan Karpinski, and Viral B. Shah
for the creation of Julia, an innovative environment for the creation of high-performance tools that enable
the analysis and solution of computational science problems.”(James H. Wilkinson Prize for Numerical
Software | SIAM, [n.d.])

9

https://julialang.org/


2. Introduction to Julia Programming Language............................5. Ease of use: Julia is designed to be easy to use, with a simple and intuitive syntax
which makes solving differential equation problems convenient even for inexperienced
programmers†.

Julia has been chosen as the implementation language for this thesis mainly for its
extensive support of solving differential equations with the use of DifferentialEquations.jl
package (Rackauckas; Nie, 2017). It provides a large variety of solvers for initial value
problems, boundary value problems, stochastic differential equations and many more.
Automatic solver selection is also included (Rackauckas; Nie, 2019). Furthermore, the
package allows extensive support for event handling (changing structure or state of
the ODE problem during simulation) and can achieve C-like computation speed (after
compilation) (Rackauckas, [n.d.]; Julia Micro-Benchmarks, [n.d.]). Besides quantifiable
qualities, another advantage of Julia is its vibrant and active community focused on
numerical and optimisation algorithms.

Apart from its perks, Julia has also some downsides. Creator’s of Julia attempted to
solve the infamous two-language problem (algorithm is first coded in one language as a
proof of concept and then rewritten to another language for production) by making Julia
a compiled language. Their goal is achieved only partially. Julia is just-in-time (JIT)
compiled language, so the compilation is done at run time of a program. The downside is
that the compiler has to infer the types of the present variables to compile type-specific
version of functions at the time of compilation. If these types change during run time,
another function has to be compiled. For this reason, it is difficult for Julia to produce
binary executables since they have to contain a large number of type-specific variants of
functions.

2.1 Syntax and Code Snippets

The code snippets in this thesis will look generally like this:

1 # This function defines sumation of two MyType variables
2 function mySum(a::MyType, b::MyType)
3 a.value + b.value
4 end

In the above example a new function called mySum is defined. Its definition is encompassed
with the function block which is terminated with the end keyword. Such structure
is similar for other usual control flow constructions (for loops, while loops, struct
definitions, if statements). The type of the function arguments can be specified using

†“Introduce the Julia programming language and its perks with the emphasis on solving differential
equation problems.” prompt. ChatGPT, 23 March version, OpenAI, 21 April 2023, link. Edited.
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....................................... 2.2. Used Packages

the :: operator. This can be seen on line 2 of the snippet where the arguments are
specified to have type of MyType. Although Julia has the return keyword, its use is often
unnecessary since the last evaluated expression of the function body is automatically
returned.

Although one can be satisfied with the previous code, the more “Julia way” would be
to overload the + symbol to work even with the MyType variables. This is implemented
in the following snippet:

1 Base.:+(a::MyType, b::MyType) = a.value + b.value

The + function was called from the Base module, which contains the most basic features
of the language (including summation of numbers). Note that the new behaviour of the
+ sign was implemented as a so-called assignment form function definition (omitting the
function block completely and defining the behaviour only on a single line). This is
similar to the standard blackboard notation, e.g. f(x) = x2 would be transcribed directly
to f(x) = x^2.

The code sections in this thesis are typeset with the use of LATEX(as is the rest of the
text), the listings package and the julia-mono-listings style, which utilises
the JuliaMono font (Moss, 2023; The JuliaMono Typeface, [n.d.]).

2.2 Used Packages

In this section, the most notable packages which have been used during implementation
of the package are briefly introduced. Packages can be installed by typing

1 using Pkg; Pkg.add(PackageName)

into the REPL. Then, functions from PackageName.jl can be imported by writing a
using statement to the header of a script:

1 using PackageName # imports functions
2 functionfromPackageName() # calling imported function

2.2.1 DataFrames.jl

The DataFrames.jl package (DataFrames.Jl, 2023) provides a convenient way to store
and manipulate data in a tabular form. Its use is very straightforward as the usage of the

11



2. Introduction to Julia Programming Language..........................
core DataFrame structure is similar to the one of arrays and dictionaries (maps) from
the Julia’s Base module.

The easiest way (and the only way used in this thesis) to create a DataFrame is to
explicitly assign rows of values to the individual column names:

1 using DataFrames
2 df = DataFrame(
3 "first name" => ["Norbert", "Rudolf"],
4 "last name" => ["Wiener", "Kalman"])
5 df[1, :] # "Norbert Wiener"

2.2.2 Plots

Although Julia ecosystem contains multiple packages for data visualisation (Makie, Luxor,
Cairo), the Plots.jl package (Plots, 2023) is the most popular. Its main feature is that
it provides interface to several of the most used visualisation backends, such as GR,
PythonPlot or PGFPlotsX. However, this functionality is not used in the scope of this
thesis and only the default graphics backend, GR, is used for visualisation purposes.

The syntax of the core plot function is almost identical to the one featured in
MATLAB:

1 using Plots
2 x = 0:0.1:2π
3 y = sin.(x) + cos.(x)
4 plot(x, y)

The code above also shows an example of another feature of Julia, broadcasting. Any
function can be called with the . character after its name to broadcast its functionality
to every element of the argument. This also works for functions with multiple arguments.
The result of the above code can be seen in figure 2.1.

2.2.3 Roots.jl

The Roots.jl package (Root Finding Functions for Julia, 2023) contains functions which
search for roots of real-valued functions of a single real variable. A wide variety of different
bracketing, derivative-free and Newton-like methods are implemented and can be used to
solve root-finding problems. The only method used in this thesis is the basic bisection
method, which is used in a similar fashion as in the example below. The problem is to
find a positive root of the function f(x) = cosx− x:

12
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Figure 2.1: Output of the example code showcasing the plot function from the Plots
package.

Figure 2.2: Graphic visualisation of finding root with the Roots package.

1 using Roots
2 root = find_zero(x -> cos(x) - x, (0, 1)) # ≈ 0.739085
3 plot(x -> cos(x), 0, 1)
4 plot!(x -> x, 0, 1)
5 vline!([root])

The find_zero function takes two arguments: the function to be minimised and a pair
of values which define the initial bracket. The function must have different signs when
evaluated at the boundaries of the initial bracket. Above, the syntax form of the function
in the first argument is called anonymous function. In this form, the argument x is placed
before the -> symbol and is followed by the functional expression. Figure 2.2 is created
by the above code.

13



2. Introduction to Julia Programming Language..........................
2.2.4 DifferentialEquations.jl

One of the areas in which Julia excels is solving differential equation problems. Julia
provides a wide range of libraries and tools for working with differential equations,
including the above mentioned DifferentialEquations.jl package, which is widely used.
DifferentialEquations.jl (Rackauckas; Nie, 2017) is a Julia suite of numerical solvers of
ordinary differential equations and other related problems. Its interface is very simple
and allows to modify the original problem (changing the ODE function or even state
dimension) during the solving time. This feature of so-called event handling was used
extensively during implementation of the package.

To provide an example of the solving procedure of a simple ODE initial value problem,
the simple damped planar pendulum has been chosen with

d2ϕ

dt2 + b
dϕ
dt + g

l
sinϕ = 0 (2.1)

or
dϕ
dt = ω, (2.2a)

dω
dt = −g

l
sinϕ− bω, (2.2b)

where l is the length of the massless pendulum rod and g is the magnitude of gravitational
acceleration. The state equations (2.2) are rewritten in the functional form to evaluate
the right-hand side:

1 function pend!(dx, x, p, t)
2 l, g, b = p
3 φ, ω = x
4 dx[1] = ω
5 dx[2] = -g/l ∗ sin(φ) - b ∗ ω
6 end

The ! symbol at the end of the above function’s name indicates that the function mutates
at least one of its arguments, in this case the derivative dx. Although the code would
compile even without this emphasis, it is a recommended naming convention. A careful
reader might have noticed that the above code contains Greek letters. Not only that,
Julia supports the most frequently used Unicode characters. This is particularly useful
when transcribing equations (as the case above) into code without naming variables as
the corresponding Greek letters (phi, omega).

The problem statement is completed with specification of parameter values and initial
state values:

l = 1, g = 9.81, b = 0.5, (2.3a)
ϕ0 = 0, ω0 = 0.5, (2.3b)

which is can be directly transcribed into code to form an ODEProblem structure:

14
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Figure 2.3: Numerical solution of ϕ(t) to the problem given by (2.2) and (2.3).

1 p = [l, g, b]
2 x0 = [0, 1/2]
3 tspan = (0,15)
4 prob = ODEProblem(pend!, x0, tspan, p)

The solution is then just a matter of

1 sol = solve(prob)
2 plot(sol.t, sol[1,:])

The solution contains the time axis and also the state values at the corresponding times.
The result is shown in figure 2.3.

2.2.5 BasicInterpolators.jl

The BasicInterpolators.jl (Baum, 2023) helps with providing functions interpolating a
set of discrete points. Although several different interpolation methods are available
(for instance cubic polynomials, splines or Chebyshev polynomials), only the first-order,
linear interpolation, is used in this thesis. The package contains struct definitions for
each of these interpolation methods; the constructors take the vectors of x-values and
y-values to be interpolated as it is shown in the following code.
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Figure 2.4: A comparison between linear interpolation of sin πx and the original function.

1 using BasicInterpolators
2 xvals = -1:0.5:1
3 yvals = sin.(π ∗ xvals)
4 itp = LinearInterpolator(xvals, yvals)
5 plot(x -> itp(x), -1, 1)
6 plot!(x -> sin(π ∗ x), -1, 1)

The comparison between the above-computed linear interpolation and the original function
is shown in figure 2.4.

16



Chapter 3

Problem Statement and Analysis

This chapter summarises the optimal control task, which is to be solved in this thesis.
The problem is stated in the Lagrange form where the cost function is presented as an
integral of an integrand.

3.1 System Model

The dynamics of a rail vehicle is modelled as a system of two first-order ordinary
differential equations:

t′ = 1
v
, (3.1a)

v′ = u(x, t, v) − r(v) + g(x)
v

, (3.1b)

where the states t and v are time and velocity, respectively, u(x, t, v) is the control input,
r(v) is the net resistant force per unit mass and g(x) is the accelerating component of
the gravitational acceleration. It is important to note that the derivatives of (3.1) are
taken with respect to the position on the track, x, and not with respect to time t (which
is obvious since it is one of the states). This nuance makes it possible to use the track
grade term g(x) directly and, for example, simplifies inclusion of speed limits along the
track.

Glancing at the state equations (3.1) reveals singularities at points (t, v) where v = 0.
This problem can be circumvented by assuming that the speed is always greater than a
small positive value (in the author’s implementation, this value is set to v = 0.01 m s−1).
As it is argued in Khmelnitsky (2000) and Wang; De Schutter; van den Boom, et al.
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3. Problem Statement and Analysis ...............................
(2013) and Albrecht et al. (2016a), this attitude is not restrictive since the optimal speed
profile will never contain a deliberate stop apart from the boundary conditions described
below.

The dynamics of the train and also all of the terms in the numerator of (3.1b) are
expressed in the “per unit mass” form, also called specific form. This way, the influence
of the train’s mass is encapsulated in the individual functions which are obtained from
the measured physical characteristics by dividing by the mass. The SI dimensions of
these quantities are then m s−2. Although the state-space equations (3.1) essentially
describe a train as if it were a point mass, it can be shown that the more general case
of a train with mass distributed among multiple carriages can be reduced to the above
form. The mass density can be integrated along the length of the train and the resulting
effective mass can be used (Howlett; Cheng, et al., 1995).

The resistance term, r(v) in (3.1) is usually given as a quadratic function

r(v) = a+ bv + cv2, (3.2)

where a, b and c are coefficients of SI dimensions [a] = m s−2, [b] = s−1 and [c] = m−1 s−6

(Rochard et al., 2000). For the purpose of convenience in the subsequent chapters, two
auxiliary functions related to the resistance term are (Albrecht et al., 2016a)

ϕ(v) = vr(v), (3.3a)
ψ(v) = v2r′(v). (3.3b)

Although the form of resistance term r(v) remains fixed in the scope of this thesis,
the expression defining r(v) can be arbitrary and all of the theoretical results remain
unchanged as long as the following properties hold (Albrecht et al., 2016a):..1. ϕ(v) is strictly convex (i.e. ϕ(v) > ϕ(V ) + ϕ′(V )(v − V ) for all v 6= V ),..2. ϕ(v) ≥ 0 for all v ≥ 0,..3. lim

v→∞
ϕ(v)
v = ∞.

From these properties, it can be shown that r(v) and ψ(v) are non-negative and strictly
increasing, which are indeed real-life characteristics of the resistance term.

In the implemented package, the resistance function in the Davis form (3.2) is declared
as its own type:

1 struct DavisResistance <: Resistance
2 a::Real
3 b::Real
4 c::Real
5 end
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....................................... 3.2. Cost Function

The value of resistive acceleration can be obtained by calling the function

1 function resistance(r::DavisResistance, v)
2 r.a + r.b ∗ v + r.c ∗ v^2
3 end

A careful reader might have noticed that the DavisResistance type was defined as
a subtype of the abstract type Resistance. This relationship is denoted using the
SubType <: SuperType construction. This is very useful since we can define functions
to work on the abstract types. Should a new kind of the resistance term be needed, one
can simply define a new type NewResistance that will also be subtype of Resistance.
All should work as expected if we also provide the resistance(r::NewResistance, v)

function. This attitude of defining abstract types in hindsight and writing code in the
most general way possible is encouraged in the Julia ecosystem.

3.2 Cost Function

The objective is to minimise the functional∗

J(u(·)) =
X∫

0

(
u+ |u|

2 + ρ
u− |u|

2

)
dx =

X∫
0

l(u(·)) dx , (3.4)

where X is the total length of the track and ρ ∈ [0, 1) is the portion of energy which is
recovered during braking (ρ is called regeneration coefficient; ρ > 0 if the vehicle has the
capability of regenerative braking). Upon inspection, it can be seen that the integrand
l(u(·)) changes behaviour depending on the sign of |u|:

l(u(·)) =


u, u > 0,
0, u = 0,
ρu, u < 0.

(3.5)

3.3 Constraints

In addition to the state equations (3.1), boundary conditions

t(0) = 0, (3.6a)
v(0) = vi, (3.6b)
t(X) = T, (3.6c)
v(X) = vf, (3.6d)

∗The notation f(·) means that f is a function.
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3. Problem Statement and Analysis ...............................
have to be fulfilled for the initial speed vi, final speed vf and the total time T specified

in advance. The control effort is also limited by bounds which usually vary with speed of
the vehicle, i.e.

U−(v) ≤ u(v . . .) ≤ U+(v) (3.7)
has to hold for every v > 0. The control bounds U−(v) and U+(v) are both monotone
(U−(v) is non-decreasing and U+(v) is non-increasing) with

lim
v→∞

U−(v) = 0, (3.8)

lim
v→∞

U+(v) = 0. (3.9)

An example of a U+(v) can be inspected in figure 3.1. It is assumed that it is possible

Figure 3.1: Example of a control bound U+(v) = 3/max(5, v). Traction characteristics of
this shifted-hyperbolic type are often present in practice (although the numerical values can
be different). This example is from Howlett; Pudney, et al. (2009).

for the train to come to a full halt at any point on the track, or

U−(v) < r(v) − g(x), x ∈ [0, X], v > 0. (3.10)

This is an obvious safety assumption although a train usually has multiple braking
systems, which are used depending on the severity of the driver requirement. There is no
need for the emergency situations requiring all available braking power to be modelled
since these occur very rarely and have to be handled by the train operator anyway
(Albrecht et al., 2016a).

The complete statement of the problem is

minimise
X∫

0

(
u+ |u|

2 + ρ
u− |u|

2

)
dx , subject to (3.11a)

t′ = 1
v
, v′ = u− r(v) + g(x)

v
, (3.11b)

t(0) = 0, t(X) = T, (3.11c)
v(0) = vi, v(X) = vf, (3.11d)
U−(v) ≤ u ≤ U+(v). (3.11e)
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3.4 Pontryagin’s Principle and Possible Control Modes

This section describes the Hamiltonian treatise of the problem as described in Albrecht
et al. (2016a). The control Hamiltonian can be written as

H(x, v, λt, λv, u) = λt
1
v

+ λv
u− r(v) + g(x)

v
− l(u(·))

= λt
1
v

+ λv
u− r(v) + g(x)

v
− u+ |u|

2 − ρ
u− |u|

2 , (3.12)

where the costate variables λt and λv were introduced. These serve as Lagrange multipliers
to the continuous-time constraints, i.e. the state differential equations (3.1). In addition,
there is the requirement that the control effort must lie within the restricted range given
by (3.7). Together with (3.12), this forms the augmented Lagrangian†

L = H + µ+(U+(v) − u) + µ−(u− U−(v)), (3.13)

where two new Lagrange multipliers, µ+ ≥ 0 and µ− ≥ 0, are introduced. The dynamics
of the costate variables is defined as

λ′
t = −∂L

∂t
= 0, (3.14)

λ′
v = −∂L

∂v
= −λt

v2 − λv
r′(v)v − u+ r(v) − g(x)

v2 − µ+U
′
+(v) + µ−U

′
−(v). (3.15)

In order to find the optimal control law u, the augmented Lagrangian has to be maximised,
which is the formulation of Pontryagin’s principle in Albrecht et al. (2016a). We seek to
find such u to set

0 = ∂L
∂u

= −
(1 + sgn u

2 + ρ
1 − sgn u

2

)
+ λv

v
− µ+ + µ−

=
{

−1 + λv
v − µ+ + µ−, u > 0,

−ρ+ λv
v − µ+ + µ−, u < 0.

(3.16)

Furthermore, there are also the complementary slackness Karush-Kuhn-Tucker conditions,
which need to be satisfied (i.e. one of the factors in the products has to be equal to zero
and both are non-negative):

µ+(U+(v) − u) = 0, (3.17a)
µ−(u− U−(v)) = 0. (3.17b)

What follows now is a discussion of all the cases which can occur and which correspond
to the five possible modes of control. Optimal control law can be found by solving (3.16)
while keeping (3.17) in mind.

†The term augmented Lagrangian has different meaning in optimal control theory than in the field of
constrained optimisation.
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3. Problem Statement and Analysis ...............................
.The case when u > 0:. u = U+(v): To fulfil the complementary condition (3.17), it is necessary to have

µ+ > 0 and µ− = 0, which in combination with (3.16) yields µ+ = λv
v − 1 >

0 =⇒ λv > v.. u < U+(v): We necessarily have µ+ = µ− = 0, so together with (3.16), the
condition λv = v is obtained..The case when u = 0: Although the derivative of the absolute value in the criterion

(3.4) is not defined at zero, we can use the expressions for the positive and negative
case of u in (3.16) to consider their limit cases when u = 0 and, consequently,
µ+ = µ− = 0. We get two conditions: λv = v and λv = ρv. These are the
boundaries for the possible values of λv when u = 0. In conclusion, ρv < λv < v‡..The case when u < 0:. u > U−(v): We necessarily have µ+ = µ− = 0, so together with (3.16), the

condition λ = ρv is obtained.. u = U−(v): To fulfil the complementary condition (3.17), it is necessary to have
µ− > 0 and µ+ = 0, which in combination with (3.16) yields µ− = ρ − λv

v >
0 =⇒ λv < ρv.

For the cases of λv = ρv and λv = v, there is no explicit formula for the control signal
u. All that was gained from the analysis were the bounds u > U−(v) for the first case
and u < U+(v) for the second one. However, such formula can be obtained using the
following reasoning from Albrecht et al. (2016a).

Should the condition λv = v hold on an interval [a, b], then the derivatives of the λv
costate and the speed v must be equal to each other. Therefore, comparing (3.1) and
(3.15) gives

−λt
v2 + u− r(v) + g(x)

v
+ r′(v) = u− r(v) + g(x)

v
, (3.18)

which in turn yields
λt − v2r′(v) = λt − ψ(v) = 0. (3.19)

The auxiliary function is strictly increasing, as was established above, and the equation
(3.19) has a uniquely defined root for every fixed λt < 0, which is denoted as V . This root
is called “cruising speed” or “travel speed” and is held on the entirety of the interval [a, b].
In order to achieve this, the control signal must necessarily be u(V, x) = r(V ) − g(x).

Similar procedure can be followed in the case of the equality λv = ρv, being true on
an interval [a, b]. The equality of derivatives of λv and v provides the equation

λt
v2 + ρ

u− r(v) + g(x)
v

+ ρr′(v) = ρ
u− r(v) + g(x)

v
, (3.20)

‡One could argue that it is not shown that the feasible values for λv for u = 0 lie between the calculated
boundary points or outside of the boundaries. This is, however, resolved by calculating the other control
modes and avoiding the overlap between them in the (λv, v)-space.
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or in other terms
λt + ρv2r′(v) = λt + ρψ(v) = 0. (3.21)

As before, because of the strict monotonicity of the auxiliary function ψ(v), the equation
(3.21) has a unique root for every λt < 0. This root, denoted W , is called “optimal
braking speed”. The control signal is then given as u(W,x) = r(W ) − g(x).

Both of the found holding speeds, V and W , depend on the total time constraint (4.13)
through the λt multiplier. The influence of the total time of journey T on the cruising
speed and optimal braking speed is discussed in subsequent chapters.
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Figure 3.2: Depiction of the η − v plane and its corresponding control regions. For the
purpose of the figure, the regenerative ratio ρ = 0.5, the cruising speed is set to V = 15 m s−1

and the optimal braking speed is W = 25 m s−1.

Overall, we have five different modes of control:..1. Maximum Power: Applying maximal tractive effort. Regular mode...2. Cruising: Holding constant preset travel speed V . Singular mode...3. Coasting: Not applying any tractive or braking effort. Regular mode...4. Optimal Braking: Holding constant optimal braking speed W > V . Singular mode...5. Maximum Braking: Applying maximal braking effort. Regular mode.

The decision of which regular control mode is to be engaged is determined by the values
of the multiplier λv and the vehicle speed v. The case of singular control modes is more
complicated and their incorporation of the optimal control strategy is the subject of
subsequent chapters. It is useful to define a dimensionless quantity η = λv

v − 1 for writing
the decision conditions more clearly:

23



3. Problem Statement and Analysis .................................1. Maximum Power: η > 0...2. Cruising: η = 0, v = V ...3. Coasting: ρ− 1 < η < 0...4. Optimal Braking: η = ρ− 1, v = W ...5. Maximum Braking: η < ρ− 1.

These conditions are shown graphically in figure 3.2. It has been shown in Albrecht
et al. (2016a) and Albrecht et al. (2016b) that the variable η evolves according to the
differential equation

η′ =


ψ(v)−v2u′

v3 η + ψ(v)−ψ(V )
v3 , u(v) > U−(v),

ψ(v)−v2u′

v3 η + ψ(v)−ψ(V )
v3 − (1−ρ)u′

v , u(v) = U−(v).
(3.22)

It is useful to visualise the relationship between the cruising speed V and the optimal
braking speed W by inspecting figure 3.3. It can be observed that W > V for all
ρ ∈ [0, 1). The only exception is the (probably unrealistic) case when ρ = 1. According
to Khmelnitsky (2000), in such a situation the three phases of Cruising, Optimal Braking
and Coasting collapse into a single mode of control. Further examining the figure 3.3, W
decreases and gets closer to V as the regeneration coefficient increases.

Figure 3.3: Relationship between the optimal between the cruising speed V and the optimal
braking speed W depending on the value of ρ ∈ [0, 1).
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Chapter 4

Optimal Train Control on a Flat Track

As it was shown in the previous chapter, the optimal control can only consist of Maximum
Power phase, Coasting phase, Maximum Braking phase and two cruising phases. In this
chapter, the form of optimal speed profiles (with respect to the cost (3.4)) on a flat track
is determined.

4.1 Problem Statement and Analysis

On a flat track, the general problem of minimising the cost function (3.4) under the
dynamics given by the differential equations (3.1) and constraints in the control signal
(3.7) as well as the boundary conditions (3.6) is simplified. The only (but significant)
simplification is in the second of the two state equations

t′ = 1
v
, (4.1a)

v′ = u(x, t, v) − r(v)
v

, (4.1b)

where the g(x) term (component of gravitational acceleration dependent on the gradient
of the track) is missing in the numerator of the right-hand side of the second equation.

4.1.1 Optimality of Cruising Mode

Before we further analyse the form of optimal control for the stated problem, it is useful
to establish that holding speed (Cruising) is the most efficient control mode with respect
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4. Optimal Train Control on a Flat Track.............................
to the cost (3.4) compared to any alternative control with u > 0. The fact is the key to
obtain complete optimal control strategies. The following proof was originally presented
in Albrecht et al. (2016a).

Let the Cruising phase with holding speed V take place on interval x ∈ [a, b]. The
driving control is therefore u(V ) = r(V ) > 0 (the control precisely compensates the
motion resistance). The cost of the phase is given by

JV =
b∫
a

u(V ) dx =
b∫
a

r(V ) = r(V )(b− a). (4.2)

Now consider a different driving control u(x) > 0 such that v(a) = v(b) = V (i.e. the
speed at the endpoints of the interval is the same as the original cruising speed). We
want to show that the latter driving control yields higher cost than the former one. The
state equation (4.1b) can be multiplied by v:

vv′ = u(x) − r(v(x)). (4.3)

This equation can now be integrated over the interval [a, b]. First, let us focus on the
left-hand side of (4.3):

b∫
a

v(x)v′(x) dx =
V∫
V

w dw = 0, (4.4)

where the substitution rule with w = v(x) is used. Integrating the right-hand side of
(4.3) together with this result gives

0 =
b∫
a

u(x) dx−
b∫
a

r(v(x)) dx , (4.5)

which together with the definition of the criterion (3.4) results in formula for cost Jv of
the scenario with the alternative speed profile v(x):

Jv =
b∫
a

r(v(x)) dx . (4.6)

Let us now analyse the difference Jv−JV . If this expression is positive, then the optimality
of the speed-holding strategy will be proofed. Using (4.6), we have

Jv − JV =
b∫
a

[r(v(x)) − r(V )] dx . (4.7)

Utilising the strict convexity of the auxiliary function ϕ(v) = vr(v), we can obtain a
lower bound of the integrand from the previous equation:

ϕ(v) − ϕ(V ) > ϕ′(V )(v − V ) ⇐⇒ r(v(x)) − r(V ) > V r′(V )
(

1 − V

v

)
. (4.8)
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Plugging the obtained lower bound into the integral (4.7) yields

b∫
a

[r(v(x)) − r(V )] dx > V r′(V )
b∫
a

[
1 − V

v(x)

]
dx , (4.9)

provided v(x) 6= V for all x in the interior of [a, b]. If we limit ourselves to only such
trajectories v(x) that take the same amount of time to reach b from a as the speed-holding
one, it must hold that

T = b− a

V
=

b∫
a

1
V

dx =
b∫
a

1
v(x) dx = T. (4.10)

The integral on the right-hand side of (4.9) can now be evaluated:

V r′(V )
b∫
a

[
1 − V

v(x)

]
dx = V r′(v) [b− a− (b− a] = 0. (4.11)

Overall, it was shown that
Jv − JV > 0 (4.12)

which proves that the Cruising driving mode is the most efficient among all other possible
control strategies with u > 0.

4.2 Optimal Sequence of Control Modes

In the previous section, it has been proofed that the Cruising driving regime is optimal
with respect to the criterion (3.4). Therefore, the cruising phase is to be held for as long
as possible while respecting the boundary conditions (3.6).

The most influential boundary condition is the total journey time requirement of

t(X) = T. (4.13)

As it was shown in Khmelnitsky (2000) and also later in Albrecht et al. (2016b), the
choice of the total available journey time T uniquely determines the cruising speed V
(and, by extension, the optimal braking speed W ). If the required T is reduced, the
cruising speed is higher in order to satisfy the constraint (4.13).

The other boundary constraints stem from the set parameters of the initial speed
(3.6b) and the final speed (3.6d). Because the initial speed vi is, in general, not equal to
the cruising speed V, it is necessary to enter the Cruising mode from the initial state.
Two cases can occur:
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Maximum
Power

u = U+(v)

vi, η0
Cruising

v̇ = 0

v = V

Figure 4.1: Visualisation of the optimal switching strategy on a flat track for the case of
vi < V ...1. vi < V : Maximum Power mode is engaged until the cruising speed is reached...2. vi > V : Coasting or Maximum Braking modes are active until the cruising speed is

reached. The Maximum Braking regime does not have to be present in all cases in
contrast to the Coasting phase, which is always present in the described situation.

Both cases are illustrated in figures 4.1 and 4.2, respectively.

Similar discussion can be made depending on the value of the final speed vf:..1. vf < V : Coasting and possibly Maximum Braking are engaged to reach the final
speed at the end of the track...2. vf > V : Maximum Power is activated towards the end of the track.

Both cases are presented in figures 4.4 and 4.3, respectively. The overall sequence of
control regimes (from the start of the track to its finish) can be acquired by “gluing” the
corresponding figures based on the boundary conditions (for example diagrams 4.1 and
4.4 for the case of vi < V and vf < V ).

The above discussion is not entirely exhaustive since it can happen that the cruising
speed V is never achieved. In such case, the Cruising phase is omitted and only the
regular regimes can occur. Visualisation of an exemplar control mode sequence consisting
only of regular modes is shown in figure 4.5.

It can be noticed that the Optimal Braking mode is completely missing in the above
discussion. Indeed, the Optimal Braking regime cannot occur on a flat track since it
would require braking with u = r(W ) − g(x) and slowing down, which is suboptimal. In
the next chapter it is specified under which condition the Optimal Braking mode can be
engaged.
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Coasting

u = 0
vi, η0

Cruising

v̇ = 0

v = V

Figure 4.2: Visualisation of the optimal switching strategy on a flat track for the case of
vi > V .

Cruising

v̇ = 0
v = V, η = 0

Maximum
Power

u = U+(v)

Figure 4.3: Visualisation of the optimal switching strategy on a flat track for the case of
vf > V .

4.3 Track Representation

Since the only property that uniquely defines a particular instance of a flat track is its
length, we can define the type in the following manner:

1 struct FlatTrack <: Track
2 X::Real
3 end

Using multiple dispatch, utility functions for the new type, such as the length function,
can be implemented:

1 length(t::FlatTrack) = t.X

4.4 Solution

Although the functional details of the computation are explained in the next chapter,
the basic usage of the implemented package is presented here for the case of a flat track.
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Cruising

v̇ = 0
v = V, η = 0

Coasting

u = 0

Maximum
Brake

u = U−(v)

η = ρ− 1

Figure 4.4: Visualisation of the optimal switching strategy on a flat track for the case of
vf < V .

Maximum
Power

u = U+(v)

vi, η0
Coasting

u = 0

Maximum
Brake

u = U−(v)

η = 0 η = ρ− 1

Figure 4.5: Visualisation of the optimal switching strategy on a flat track for the case of
omitted Cruising phase with vi < V and vf < V .

Consider the problem (3.11) with a flat track of the length of 10 km, initial speed
vi = 1 m s−1, final speed vf = 1 m s−1, journey time T = 1400 s, control limits

U−(v) = − 3
max(5, v) , (4.14a)

U+(v) = 3
max(5, v) , (4.14b)

and, finally, the resistance term r(v) = a+bv+cv2 with a = 1×10−2, b = 0, c = 1.5×10−5

(the values are taken from the examples in Albrecht et al. (2016a)).

The implemented package takes inspiration from DifferentialEquations.jl with its
problem-solve interface. Using this approach, the problem above is defined with the
problem data passed in as keyword arguments to TrainProblem type:

1 using OptimalTrainControl
2 prob = TrainProblem(; track = FlatTrack(10e3), T = 1400)

As it can be seen, only the track and journey time are specified whereas the other values
are set by default to the above values.

The solution is obtained by simply calling the solve! function:

1 points, sol = solve!(prob)
2 plot(sol.t,sol[2,:])
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Figure 4.6: Optimal solution of the example problem. The cruising speed is computed to
V = 8.97 m s−1. The colour of the line signifies the current control regime: Maximum Power,
Cruising, Coasting, Maximum Braking.

Figure 4.7: Optimal input u computed for the example of flat track of length 10 km.

The result can be inspected in figure 4.6. The solve! function returns a tuple of
switching points between control modes and a solution object which can be handled
the same way as in the DifferentialEquations.jl. The calculated switching points are
(after rounding to integer values): (0: Maximum Power), (88: Cruising), (6324: Coasting),
(9998: Maximum Braking), (10000: Stop). The time of arrival is 1400.5958 s (the default
tolerance for termination of the algorithm is 5 s). The optimal control can be calculated
separately using the following code:

1 u = calculatecontrol!(prob, sol, points)
2 plot(sol.t, u)

The computed optimal control u is plotted in figure 4.7.

Although the above example is very simple, it is useful for demonstrating and visualising
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Figure 4.8: Optimal speed profiles for varying journey times, T ∈
{1400 s, 1200 s, 1000 s, 800 s, 700 s}. The calculated cruising speeds are 8.97 m s−1, 11.08 m s−1,
14.0 m s−1, 19.75 m s−1, 23.57 m s−1, respectively. Notice that in the last two cases, the
cruising speed is never reached.

important concepts. Firstly, the cruising speed should increase if less time is provided
for the journey’s completion. In figure 4.8, multiple optimal speed profiles are drawn.
Each is generated with the same problem data, but with different total journey time
T . It can be immediately observed that the computed cruising speed is higher when
less journey time is provided. It may happen that the cruising speed is not achieved at
all on the optimal speed profile (as it is the case for two of the profiles in figure 4.8).
Although not obvious at first glance, the choice of the cruising speed still matters in such
situations because it influences the portion of time spent in the Coasting mode. The
higher the cruising speed V , the less time is spent in the Coasting mode. In the limit
case of V → ∞, the minimal-time speed profile would be obtained, which would consist
of only Maximum Power and Maximum Braking phases.

Although the Optimal Braking mode cannot occur on a flat track, the influence of the
regenerative coefficient ρ can also be examined. See figure 4.9 where multiple optimal
speed profiles are shown for varying values of ρ. For higher values of ρ, the criterion
(3.4) yields smaller cost for the Maximum Braking phase, which makes it possible for
the Cruising mode to last for longer period. In the limit case when all braking energy is
regenerated (ρ = 1), the Coasting phase disappears and the optimal strategy consists of
only Maximum Power, Cruising and Maximum Braking modes.
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Figure 4.9: Optimal speed profiles for varying regenerative coefficient ρ ∈
{0, 0.3, 0.7, 0.9, 0.99}. The calculated cruising speeds are 8.97 m s−1, 8.66 m s−1, 8.10 m s−1,
7.58 m s−1, 7.21 m s−1, respectively.
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Chapter 5

Optimal Train Control on a General Track

In this chapter, the form of the optimal control with respect to the criterion (3.4) on a
general track with non-flat terrain is described.

5.1 Track Representation

Before moving further, let us define the HillyTrack type, which can represent a general
track. It consists of a DataFrame containing the waypoints in the form of a vector of
distances along the track and a vector of altitude values at those points:

1 function HillyTrack(X, Y)
2 df = DataFrame("Distance" => X, "Altitude" => Y)
3 HillyTrack(df, LinearInterpolator(X, Y))
4 end

After creating the instance, the structure uses the linear interpolator from BasicInterpo-
lators.jl to find altitude values at points which are not defined by the waypoints:

1 trackX = [0, 2e3, 3e3, 5e3, 5.4e3, 8e3]
2 trackY = [0, 0, 35, 35, 30, 30]
3 track = HillyTrack(trackX, trackY)
4 track(2156) # = 5.46
5 plot(track) # implemented using RecipesBase

The created track is shown in figure 5.1.
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5. Optimal Train Control on a General Track ...........................

Figure 5.1: Visualisation of an instance of the HillyTrack type. The red circles show the
waypoints.

5.2 Analysis and Nomenclature

Before we further analyse the form of optimal control for the case of a general track, it
should be restated that the holding speed (Cruising) is the optimal control phase with
respect to the criterion (3.4). This fact can be proofed in the same way as in section 4.1.1,
apart from the fact that the state equations have the general form of (3.1). Therefore,
when calculating the costs of both the Cruising phase and a different v(x) trajectory, we
get

JV =
b∫
a

u(V, x) dx =
b∫
a

(r(V ) − g(x)) dx = r(V )(b− a) −G(b) +G(a), (5.1)

Jv =
b∫
a

(r(v(x)) − g(x)) dx =
b∫
a

r(v(x)) dx−G(b) +G(a), (5.2)

where G(x) is the primitive function to g(x). In spite of this, further steps of the proof
remain the same since the difference of Jv and JV is examined, which is the same as in
the original case:

Jv − JV =
b∫
a

[r(v(x)) − r(V )] dx−G(b) +G(a) +G(b) −G(a) =
b∫
a

[r(v(x)) − r(V )] dx .

(5.3)

Establishing that Cruising mode is optimal even for the case of a general track, it is
time to focus on the underlying contrast with the problem solution on a flat track. The
key fact is that there can exist certain portions (called “segments”) on a track where
holding speed is not possible due to the traction limits set by U+(v) and U−(v).
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Figure 5.2: The speed profile on a steep uphill segment (from the 2nd kilometre on the track
5.1. The speed decreases even though Maximum Power mode is engaged. The cruising speed
is 10 m s−1 and U+(v) = 3/max(5, v).

We will now analyse conditions to correctly identify such segments of a track (Albrecht
et al., 2016a).

5.2.1 Steep Uphill

Consider the situation where it is desired to hold current speed V with positive control,
u > 0. This can be achieved for a flat and uphill terrain if the control effort manages to
overcome both gravitational influence and the mechanical and aerodynamic resistances
combined in the r(V ) term of (3.1b). A problem arises when the maximal control effort
u = U+(V ) fails to compensate these forces and the speed necessarily decreases. Such
segments are called “steep uphill”. An example of a speed profile on a steep uphill portion
of a track is shown in figure 5.2. The following algebraic condition holds on steep uphill
segments at speed V :

U+(v) < r(V ) − g(x). (5.4)

It is important to emphasise that steep uphill segments depend on the preset cruising
speed V , so if a portion of a track is steep uphill for speed V1, it does not necessarily
have to be the case that the segment is also steep uphill for speed V2 < V1. On the other
hand, if a segment is steep uphill at speed V1, it is also steep uphill for speed V2 > V1.
This is due to the fact that the resistance term r(v) is a strictly increasing function.

5.2.2 Steep Downhill

On certain portions of a track, it may be impossible to hold the speed with positive
control, but because of other reasons than in the previous section. The slope of the track

37



5. Optimal Train Control on a General Track ...........................

Figure 5.3: The speed profile on a steep downhill segment (from the 5th kilometre on the
track 5.1. The speed increases even if Coasting mode is engaged. The cruising speed is
10 m s−1.

can be so steep that the vehicle accelerates itself even if there is no tractive effort being
made. Such segments are called “steep downhill” and are characterised by the relation

g(x) > r(V ), (5.5)

i.e. the speed increases due to the influence of gravitational acceleration, which overcomes
the resistive influence r(V ).

As in the case of steep uphill, the definition of steep downhill segments is dependent
on the choice of holding speed V . If a segment is steep downhill at speed V1, it is not
necessarily steep downhill at speed V2 > V1. Conversely, a segment that is steep downhill
at speed V1 is also steep downhill at speed V2 < V1 because r(v) is a strictly increasing
function.

The Optimal Braking mode consists of holding optimal braking speed W with negative
control U−(v) < u < 0. Therefore, the Optimal Braking phase can occur only at portions
of the track which are steep downhill at speed W . In the above example track 5.1,
the downhill segment starting at x = 5 km and ending at x = 5.4 km is steep downhill
at speed W = 14.94 m s−1, which is the optimal braking speed corresponding to the
cruising speed V = 10 m s−1 and the resistance r(v) = a+ cv2 with a = 1 × 10−2 m s−2,
c = 1.5 × 10−5 m−1.

5.3 Solution

As mentioned above, the key difference between the problem (3.11) involving a flat track
and the same problem involving a general track lies in the fact that Cruising mode does
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not have to be feasible for some portions of the track due to the train’s traction limits.
The key idea of the solution lies in identifying these problematic track segments and then
traversing them with the use of the regular control modes (Maximum Power, Coasting,
Maximum Braking). The original algorithm was proposed in Khmelnitsky (2000) and it
has been adapted here for the system (3.1).

The overall structure of the algorithm is following:..1. Choose initial value of the cruising speed V . Calculate the optimal braking speed
W ...2. Find segments of the track on which Cruising or Optimal Braking regimes can take
place. The Cruising mode is only possible on portions of the track which are neither
steep uphill, nor steep downhill at speed V . The Optimal Braking mode can be
engaged only on segments which are steep downhill at speed W , as it is stated in
the previous section...3. Link the segments found in the previous step using only the regular control modes
and obtain pairwise linkages (control mode switching points) between the individual
segments...4. Based on the boundary conditions (3.6), assemble the complete speed profile based
on the linkages from the previous step...5. Check if the total time of the journey T̃ matches the desired T (up to the set
tolerance, the default one is ±5 s). Return the computed speed profile if T has been
achieved, otherwise set a different cruising speed (increase it if T̃ > T , decrease it if
T̃ < T ), recalculate W and go to step 2.

Further sections are dedicated to describing the above points in greater detail.

5.3.1 Finding Singular Segments

Portions of the track on which the singular control modes Cruising and Optimal Braking
can occur are called “singular segments”. These are detected in a way that exploits
the tabulated input format of the HIllyTrack type. Since the rail grade (the slope of
the track) can vary only at the set waypoints, the effective component of gravitational
acceleration is computed at each midpoint x̃k of the interval between subsequent waypoints
[xk−1, xk]∗:

gk = −G sin(x̃k). (5.6)

We then iterate over the list of gk and decide whether the interval [xk−1, xk] has
∗G denotes the magnitude of gravitational acceleration. In the code, this values is set to 9.81 m s−2.
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5. Optimal Train Control on a General Track .............................1. Cruising mode, if it is not steep uphill at speed V , i.e.

U+(V ) − r(V ) + gk > 0, (5.7)

and it is not steep downhill at speed V :

−r(V ) + gk ≤ 0, or (5.8)..2. Optimal Braking mode, if the conditions from the previous point do not apply,
0 < ρ < 1 and the interval is steep downhill at speed W :

−r(W ) + gk ≥ 0. (5.9)

If the neighbouring intervals are of the same type, they are merged into a single segment
of the corresponding type.

The above functionality is implemented in the segmentize function of the package,
which returns a list of Segments. Segment is another convenient datatype which has the
following definition:

1 mutable struct Segment
2 start
3 finish
4 mode
5 holdspeed
6 end

The start and finish fields are self-explanatory, the mode has values Cruising or Opti-
mal Braking and holdspeed has the value corresponding to the mode of the segment (V
for Cruising segments, W for Optimal Braking segments). The result of the segmentize
function with the input data V = 10 m s−1, r(v) = a + cv2 with a = 1 × 10−2 m s−2,
c = 1.5 × 10−5 m−1, ρ = 0.3 and the track 5.1 can be seen in figure 5.4.

5.3.2 Linking Inner Segments

Linking is the procedure of finding speed profiles (along with control mode switching
points) between singular segments, described in the previous section. Using an elegant
technique presented in Khmelnitsky (2000), it is possible to reformulate the problem
as finding the root of an uni-variate monotone function, so-called “linking function”.
Although the linking process in Khmelnitsky (2000) is described for the dynamical model
in the form (1.5), the notation used below is highly similar.
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Figure 5.4: Visualisation of ”segmentizing“ the example track 5.1. The Cruising segments
are blue while the Optimal Braking is orange. The only uncoloured segment (black) is steep
uphill at speed V = 10 m s−1.

Consider the situation when two singular segments, S1 and S2, are to be linked. Also,
let the conditions for leaving S1, Cout(S1), and entering S2, Cout(S2), be defined as
triples in the form (x, v(x), η(x)) and

Cout(S1) = C in(S1) = {x, V, 0} if S1 is a Cruising segment, (5.10)
Cout(S2) = C in(S2) = {x,W, ρ− 1} if S2 is an Optimal Braking segment. (5.11)

The argument of the linking function, denoted F , is a position point xout and the linking
function is evaluated depending on the result of numerical integration of the system

t′ = 1
v
, (5.12a)

v′ = u− r(v) + g(x)
v

, (5.12b)

η′ =


ψ(v)−v2u′

v3 η + ψ(v)−ψ(V )
v3 , u(v) > U−(v),

ψ(v)−v2u′

v3 η + ψ(v)−ψ(V )
v3 − (1−ρ)u′

v , u(v) = U−(v).
(5.12c)

The integration is computed on the interval [xout, xin] and is terminated if speed v(xout)
is equal to the holding speed of S2, Vint, or if the integration reaches the end of the S2
segment. The value of the linking function is then†

F (xout) =


sign η(xin) · ∞, if the end of S2 is reached,
−∞, if the integration is terminated due to v < ε,

η(xin) − ηin, otherwise,
(5.13)

where xout ∈ S1 and {xin, Vin, ηin} = C in(S2). When the root of F is found, it is
guaranteed that both of the states which decide the current control regime (see figure
3.2) have the appropriate values for the singular control mode of the segment S2.

†The integration is stopped if the speed goes below 1 × 10−2 m s−1 to prevent division by near-zero
numbers in (5.12).
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To provide an example, the linking procedure to overcome the steep uphill segment

(2 km − 3 km) is described. The segments to be linked are: Cruising segment S1 (0 m −
2 km) and Cruising segment S2 (3 km − 5 km). The bracketing algorithm from Roots.jl
is then used to find the root of the linking function for xout ∈ [0 m, 2 km]. In figure 5.5,
the graph of the critical portion of the linking function is shown. The optimum is found
for xout = 1943.72 m. The speed and costate trajectories (v and η) can be inspected in
figures 5.7 and 5.6, respectively. Notice that the optimal profile starts the Maximum
Power mode before the steep section to compensate the loss of the speed once the train
is on the uphill segment. Even though the upper two profiles in 5.7 converge towards the
end of the uphill section (because they approach the speed that is low enough to be held
on the steep uphill segment), they differ at the start. The upper profile starts too early
and consumes more energy in the process.

Using code, the linking between the two segments would look

1 using OptimalTrainControl: link
2 sol, points = link(S1, S2, params)

where S1 and S2 are of the Segment type. The structure params contains the problem
data. The link function is not supposed to be directly available to the end user and
is used internally. The optimal linkage can be also neatly visualised in the (η, v) phase
space (see figure 5.8).

It is important to note that a linkage between two segments does not have to exist.
This occurs when the linking function has the same sign for both of the edges of the
starting segment. Furthermore, it is not necessary for the linking profile to contain only a
single control mode. On more complex gradient profiles (e.g. when a steep uphill section
is directly followed by a steep downhill one) it can happen that multiple regime switches
have to be made during the linking process.

5.3.3 Linking Boundary Segments

The problem of linking boundary segments (at the start of the track and at its end) is a
different problem than linking inner segments, described in the previous section. This is
due to the fact that one of the “segments” to be connected is a single point. The linking
strategy is different depending on the type of the boundary segment to be linked (either
the start of the track or the end of the track).

When linking the singular-mode segment S to the start of the track (defined by the
initial speed vi), the strategy is to find the leaving point 0 < xout ∈ S and then integrate
the system (5.12) backwards until the start of the track. The value of the linking function
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Figure 5.5: The value of the linking function for xout ∈ [1900 m, 1980 m]. For distances
xout > 1944 m, the value is −∞.

Figure 5.6: The trajectories of the dimensionless costate η for xout = 1950 m (upper trajec-
tory), xout = 1943.7 m (middle, optimal, trajectory) and xout = 1950 m (lower trajectory).
Only the optimal trajectory finishes with η = 0.

is then defined as

Fi(xout) =
{

−∞, if the integration is terminated due to v < ε,

v(0) − vi, otherwise.
(5.14)

Finding the root of Fi means finding the switching point xout for which the boundary
condition (3.6b) is satisfied.

The situation is very similar when linking the singular-mode segment S to the end
of the track (defined by the final speed vf). After choosing the leaving point xout ∈ S,
the system (5.12) is integrated forwards until the end of the track X. The value of the
linking function is set to

Ff (xout) =
{

−∞, if the integration is terminated due to v < ε,

v(X) − vf, otherwise.
(5.15)
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Figure 5.7: The speed profiles for xout = 1950 m (upper profile), xout = 1943.7 m (middle,
optimal, profile) and xout = 1950 m (lower profile). The lower profile switches to the Coasting
phase and comes to a premature stop. The higher profile starts the Maximum Power mode
too early. The steep uphill section begins at the 2nd km and ends at the 3rd km.

Figure 5.8: The diagram of the (η, v) phase space with a trajectory of optimal linkage
between the singular segments. Notice that the curve is closed, which corresponds to starting
and finishing in the Cruising mode (compare with the point (0, V ) on the diagram 3.2).

As before, finding the root of Ff means finding the switching point xout for which the
boundary condition (3.6d) is satisfied.

It is entirely possible that certain segments cannot be linked to the boundary segments.
This is detected the same way as in the case for linking inner segments: if the linking
function (Fi for linking the start of the track, Ff for linking the end of the track) has
the same sign for both of the edges of the segment S.
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Chapter 6

Results

This chapter summarises the achieved results and provides examples and comparison
with a different solution of the optimal train control problem. In the final part, possible
improvements to the implemented solution are discussed.

6.1 Julia Package

The main contribution of this thesis is the open-source implementation of the optimal
speed profile computation. The code is integrated into the Julia package available on
GitHub (Fanta, 2023a). Its documentation page contains basic description of the package
along with a simple example of its use (see figure 6.2). Although the package is not yet
registered withing the Julia ecosystem, it can be installed by entering

1 using Pkg;
2 Pkg.add("https://github.com/vtfanta/OptimalTrainControl.jl")

into the Julia REPL. Then, after calling using OptimalTrainControl, all of the
package’s functions can be called as shown in the code snippets in the previous chapters.
A more comprehensive coded example is presented in a further section of this chapter.

6.2 Comparison with Known Result

In the final part of Khmelnitsky (2000), an example track and the computed optimal
speed profile with control mode switching points are provided. Since the implemented
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Figure 6.1: The logo of the OptimalTrainControl.jl package (Fanta, 2023a).

Figure 6.2: The “Tutorials” page of the OptimalTrainControl.jl package documentation
(Fanta, 2023b).

computational technique in OptimalTrainControl.jl is heavily influenced by the linking
procedure presented in Khmelnitsky (2000), it is natural to compare the result with this
reference.

The data of the example problem from Khmelnitsky (2000) are presented in table
6.1, the track is shown in the bottom part of figure 6.3. The computation takes about
4 s on a laptop with Intel i7-9750H processor with the clock frequency of 2.6 GHz and
16 GB of RAM. The computed optimal speed profile is provided in figure 6.3 and is to be
compared with the reference solution 6.4 (the reference solution shows the graph of the
mass-specific kinetic energy K(s) = v(s)2/2; figure 6.5 is provided in the same units for
the reader’s convenience). The control mode switching points are compared in table 6.2.
As it can be seen, the solutions match almost perfectly apart from minor discrepancies
in the locations of the switching points. The maximum difference from the reference
solution is 14 m, which is a negligible distance considering the whole 40 km horizon, and
can be most likely attributed to a different numerical solution to the differential equations
(5.12). The computed optimal control u is shown in figure 6.6.
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vi vf T U+(v) U−(v) ρ r(v)

2 m s−1 2 m s−1 3600 s 0.125 m s−2 −0.25 m s−2 0
a = 1.5 × 10−2,
b = 8.98 × 10−5,
c = 8 × 10−5

Table 6.1: The problem data of the example problem presented in Khmelnitsky (2000).

Figure 6.3: The optimal speed profile for the example track originally presented in Khmel-
nitsky (2000).

6.3 More Realistic Track

The algorithm has also been tested on a real rail grade profile of the track between
the Scottish coastal towns of Dingwall and Kyle of Lochalsh. Its gradient profile can
be inspected in the lower part of figure 6.7 and has been obtained from Withington
(2023). The problem is more difficult than the previous problem from Khmelnitsky (2000)
because of the higher number of segments to be linked together.

The solution shown in figure 6.7 has been acquired by solving the problem with the
default input parameters and the total journey time T = (3700 ± 20) s. It is important
to say that the algorithm is unable to find a solution for some values of T and multiple
attempts were needed to find such T for which the optimal solution can be found.
Explanation of this issue is the subject of the final section of this chapter.

6.4 Problem with Regeneration

So far, only examples without regeneration, i.e. ρ = 0, have been considered. Furthermore,
it is useful to show that the initial and final speeds (vi and vf) do not have to be set to a
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Figure 6.4: The original solution from Khmelnitsky (2000). Unlike the model presented in
this thesis, (3.1), the dynamics in Khmelnitsky (2000) works with time and specific energy
E = K + P (the sum of specific kinetic and potential energies) as the state variables. The
specific kinetic energy K(s) = v(s)2/2 is plotted as a function of the travelled distance s.

Figure 6.5: The calculated solution to the example presented in Khmelnitsky (2000), but
transformed by K(x) = v(x)2/2 to show specific kinetic energy for easier comparison with
the original solution 6.4.

low value, but can be chosen arbitrarily. Such boundary conditions can correspond to
a situation when the optimal strategy needs to be recomputed and the train is already
on its way to the next station. The problem parameters are shown in table 6.3 and the
following code produces the solution:
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Distance (m) Control Mode Ref. Distance (m) Ref. Control Mode
0 Maximum Power 0 Maximum Power

634 Cruising 629 Cruising
15 755 Maximum Power 15 758 Maximum Power
19 898 Coasting 19 897 Coasting
24 950 Maximum Power 24 954 Maximum Power
27 896 Coasting 27 898 Coasting
31 998 Cruising 32 012 Cruising
38 194 Coasting 38 205 Coasting
39 957 Maximum Braking 39 958 Maximum Braking

Table 6.2: The comparison of the control switching points of the calculated solution (on the
left) and of the reference solution from Khmelnitsky (2000) (on the right).

Figure 6.6: The optimal control u(x) for the example problem presented in Khmelnitsky
(2000).

1 using OptimalTrainControl
2 trackX = [0, 15e3, 24e3, 35e3]
3 trackY = [0, 0, -65, -65]
4 track = HillyTrack(trackX, trackY)
5 prob = TrainProblem(; track, T = 2600, ρ = 0.8, vᵢ = 15, vf = 16)
6 points, sol = solve!(prob)
7 plot(sol.t, sol[2,:])

The result is presented in figure 6.8. It can be seen that the Optimal Braking phase is
engaged on the steep downhill section. The boundary conditions are also satisfied and
the behaviour is expectable: because vi is higher than the cruising speed V, the initial
mode is Coasting; the final regime is Maximum Power because vf > V .
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Figure 6.7: The optimal speed profile for the more realistic grade profile between the Dingwall
and Kyle of Lochalsh stations.

vi vf T U+(v)∗ U−(v)∗ ρ r(v)∗

15 m s−1 16 m s−1 2600 s 3
max(5,v) − 3

max(5,v) 0.8
a = 1 × 10−2,

b = 0,
c = 1.5 × 10−5

Table 6.3: The problem data for the example with non-zero ρ. The parameters which have
the default value are marked with ∗.

6.5 Comparison with MILP Solution

Although the presented problems may seem simple, it is true that other optimisation
techniques have issues solving even such problems. Consider the mixed-integer linear
programming (MILP) solution approach presented in Wang; De Schutter; van den Boom,
et al. (2013) to solve the problem from Khmelnitsky (2000), described above. The result,
as shown in figures 6.9 and 6.10, bears little similarity to the optimal solution by the
OptimalTrainControl.jl 6.3 and the original solution 6.4. Although the costs are lower
for the MILP solution (968 m2 s2 < 2247 m2 s2), the PWA approximated dynamics of
the time state variable cause that the time constraint would very likely not be achieved
should a train operator adhere to the MILP-calculated driving strategy. Moreover, the
discretised dynamics cause a new global minimum with chattering control to appear,
which is then found by the MILP solver. Such behaviour is typical for direct methods as
discussed in chapter 1.
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Figure 6.8: The optimal speed profile for the case ρ > 0 and nontrivial boundary conditions.
The Optimal Braking mode is active on the steep downhill segment in the middle of the
track.

Figure 6.9: The MILP-computed optimal speed profile (dashed) in contrast to the true
optimal solution (background).

6.6 Possible Improvements

As it was stated above, the implemented solution is still not error-free and could be
significantly improved. One major issue is that on more complex tracks, the algorithm
struggles to find a solution for some combinations of the input parameters (initial speed,
final speed etc.). Three causes of such failures have been identified.

. Firstly, the behaviour of the linking function does not have to be as simple as in the
example 5.5 and can switch values only between positive and negative infinity. In
that case, the linking procedure can have difficulties with linking the segments..The second problem is that the bracket interval of cruising speed V is chosen
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Figure 6.10: The MILP-computed value of the control signal (orange) compared to the true
optimal control signal (blue).

heuristically as [X/(2T ), 2X/T ] where T is the set journey time and X is the length
of the track. This bracket usually works well, except for the cases where the true
cruising speed is very high (T is close to the minimal achievable time)..The final, third, cause for the problems of the algorithm is the numerical inaccuracy
of the solution of system (5.12). The system is highly influenced (because of the
control mode switching) by the trajectory of the costate η, which often approaches
the critical values in such a way that the derivative η′ is zero at the critical point.
Because of this, it can occasionally happen that the true point of contact with the
critical point is missed.

The above issues could be solved by changing the optimal speed profile calculation
procedure to follow the approach described in Albrecht et al. (2016a) and Albrecht et al.
(2016b). This method was originally disregarded in favour of the technique presented
in Khmelnitsky (2000), but the newer method presented by SCG leverages the ability
to express the η variable algebraically. This completely avoids the risk of numerical
inaccuracies when relying on solving differential equations to obtain η. The strange
behaviour of the linking function could be also circumvented with the SCG presented
approach of an energy-based algorithm to find the optimal switching points.

The final problem with the current solution is that the speed limits are not supported.
This feature is, however, needed for practical use of an optimal speed profile planner.

All of the problems are to be addressed in the future, thanks to the open-source nature
of the implemented solution.
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Conclusion

The main goal of this thesis was to present the optimal train control problem and
to implement an open-source software package which solves the optimal train control
problem and provides optimal speed profiles. This goal has been fulfilled and a new
Julia package OptimalTrainControl.jl (Fanta, 2023a) has been created. The package is
accessible via GitHub and enables users to formulate optimal train control problems via
a user-friendly interface introduced in the package documentation.

The secondary goal was to extend the basic functionality of calculating speed trajectory
between individual train stops to allow a general case of recalculating an optimal speed
profile in the middle of a journey. This functionality is present in the solution since the
initial speed and final speed can be chosen arbitrarily.

State of the art references in the field of optimal train control have been presented
and a single method has been chosen for implementation. The principles of the proposed
method have been explained, at first for the simplified case of a flat track, and later for
the general case. A sample of calculated optimal speed profiles for a selection of examples
is also provided.

Despite the effort, the author is not fully satisfied with the presented solution. On
certain occasions, it is possible that the optimal solution is not found. The option to
incorporate speed limits into the problem is completely missing. In retrospect, a slightly
different approach would have possibly yielded better results. Nonetheless, the author
plans to improve the implemented open-source solution further and believes that the
current program provides, despite the discussed issues, a solid foundation for future
development.
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