
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Dynamic Control of Collaborative Robot KUKA
LBR iiwa - Demonstrator System

Maroš Mešter

Supervisor: Ing. Jiří Zemánek, Ph.D.
Field of study: Cybernetics and Robotics
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507205 Personal ID number: Mešter Maroš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Dynamic Control of Collaborative Robot KUKA LBR iiwa - Demonstrator System

Bachelor’s thesis title in Czech:

Dynamické řízení kolaborativního robota KUKA LBR iiwa - demonstrační systém

Guidelines:

The aim of this work is to explore and demonstrate the possibilities of dynamic control of the collaborative robot KUKA
LBR iiwa. The project should cover the design of a suitable hardware setup for real-time robot control, provide an overview
and comparison of various robot control methods, and investigate possibilities of feedforward and feedback control along
pre-planned trajectories. The outcome of the work should be a demonstrator system showcasing dynamic control.
Tasks:
1. Design and document a complete hardware setup for real-time robot control, including safety features, sensor and
actuator interfaces, and a local control computer.
2. Conduct an analysis and comparison of different robot control methods, including Fast Robot Interface (FRI), Matlab
KUKA Sunrise Toolbox, and Robot Operating System (ROS), with a focus on easy development and testing of feedback
controllers in Matlab/Simulink environment.
3. Design and implement demonstrative scenarios of dynamic robot control. For example: pendulum passing between
obstacles, Kendama game, inverse spherical pendulum, or playing melodies on saw.
4. Create a mathematical model of the dynamics of the demonstrator system and propose suitable control strategies.
5. Perform simulations and experiments both on the mathematical model and on the real system, and evaluate their results.

Bibliography / sources:

[1] M. N. Vu, C. Hartl-Nesic, and A. Kugi, „Fast swing-up trajectory optimization for a spherical pendulum on a 7-dof
collaborative robot,“ 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 10114-10120, 2021.
[2] C. Hartl-Nesic, J. Kretschmer, M. Schwegel, T. Glück, and A. Kugi, “Swing-up of a spherical pendulum on a 7-axis
industrial robot,” IFAC-PapersOnLine, vol. 52, no. 15, pp. 346–351, 2019.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Jiří Zemánek, Ph.D. Department of Control Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 16.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Jiří Zemánek, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Acknowledgements
I want to express my sincere gratitude to
my advisor and thesis supervisor, Ing. Jiří
Zemánek, Ph.D, for his invaluable guid-
ance and support throughout the whole
development process. I would also like to
attribute special thanks to Ing. Krištof
Pučejdl for his help with the construction
of the polystyrene blocks and aluminium
pendulum rod. Finally, I would like to
thank my family and friends for their over-
whelming support and encouragement.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, May 24, 2024

Signature

Prehlasujem, že som predloženú prácu
vypracoval samostatne a že som uviedol
všetky použité informačné zdroje v
súlade s Metodickým pokynom o dodrži-
avaní etických princípov pri príprave
vysokoškolských záverečných prác.

V Prahe dňa 24. mája 2024

podpis autora práce

v

Abstract
In this bachelor thesis, we investigate the
possibilities of dynamic control of the col-
laborative robot KUKA LBR iiwa and
its incorporation into dynamic control
experiments. We begin by document-
ing the setup for robot control from ex-
ternal computer and provide a compre-
hensive comparison of software options
for robot control, including KUKA Sun-
rise Toolbox, Fast Robot Interface and
ROS 2. Subsequently, we have developed
two demonstrations showcasing dynamic
control which involved regulating oscil-
lations of a ball attached to the robot’s
end effector by a string. This feedforward
control was performed by indirectly con-
trolling the end effector acceleration via
real-time position commands. Addition-
ally, we have developed a physical proto-
type of a pendulum module, which can be
connected to the end effector and provide
feedback data intended for more advanced
control tasks.

Keywords: KUKA LBR iiwa,
manipulator dynamic control, Fast Robot
Interface, KUKA Sunrise Toolbox,
demonstration of dynamic control

Supervisor: Ing. Jiří Zemánek, Ph.D.
Resslova 307/9
12000 Praha 2

Abstrakt
V tejto bakalárskej práci skúmame mož-
nosti dynamického riadenia kolaboratív-
neho robota KUKA LBR iiwa a jeho vy-
užitie v experimentoch obnášajúcich dy-
namické riadenie. V úvode popisujeme
konfiguráciu externého počítača určeného
na ovládanie robota. Zároveň poskytu-
jeme obsiahle porovnanie softvérových
možností ovládania robota, vrátane soft-
vérového doplnku KUKA Sunrise Toolbox,
rozhrania Fast Robot Interface a systému
ROS 2. Následne prezentujeme dve de-
monštrácie dynamického riadenia, ktoré
spočívali v regulácii výchylky guľôčky
voľne zavesenej na koncovom efektore ro-
bota. Toto dopredné riadenie bolo usku-
točnené skrz nepriame ovládanie zrýchle-
nia koncového efektora pomocou posiela-
nia polohových príkazov v reálnom čase.
V závere práce popisujeme vývoj a fyzickú
konštrukciu kyvadlového modulu, ktorý
môže byť pripojený na koncový efektor
robota a poskytovať spätnú väzbu určenú
pre pokročilejšie úlohy riadenia.

Kľúčové slová: KUKA LBR iiwa,
dynamické riadenie manipulátora, Fast
Robot Interface, KUKA Sunrise Toolbox,
demonštrácia dynamického riadenia

Preklad názvu: Dynamické riadenie
kolaboratívneho robota KUKA LBR iiwa
- demonstračný systém

vi

Contents
1 Introduction 1
2 Robot commissioning and
hardware 5
2.1 Manipulator description 5
2.2 External computer 7

2.2.1 Computer setup 7
2.2.2 Networking 7

2.3 External emergency stop device . . 7
2.4 Camera . 8
3 Analysis of different software
options for robot control 11
3.1 Key factors of the analysis 11
3.2 KUKA Sunrise.Workbench 11
3.3 KUKA Sunrise Toolbox 12

3.3.1 Offline motion commands . . . 13
3.3.2 Real-time control 13

3.4 Fast Robot Interface 14
3.4.1 Real-time control 14
3.4.2 FRI in the robot controller . . 15
3.4.3 FRI client application (C++) 17

3.5 FRI + ROS 2 22
3.6 Comparison 24
4 Demonstration: Crane-like
system 27
4.1 Demonstration overview 27
4.2 Theoretical background 27

4.2.1 Dynamic model of the
crane-like system 27

4.2.2 Control strategy 28
4.3 Implementation 30
4.4 Experiments and the

demonstration 32
5 Demonstration: Cup-and-ball
game 35
5.1 Demonstration overview 35
5.2 Swing-up control via energy

shaping . 35
5.3 Implementation 36

5.3.1 Simulation of the dynamics . . 36
5.3.2 Postprocessing in MATLAB . 37
5.3.3 Trajectory execution 38

5.4 Experiments on LBR iiwa 38
5.5 Tension condition 42

6 Development of feedback-capable
pendulum module 43
6.1 Design of mechanical components 43
6.2 Electronics 43
6.3 FRI client application 47
7 Conclusion 49
A Software: scripts and other files. 51
B Note on torque control of LBR
iiwa via FRI 53
C Bibliography 55

vii

Figures
1.1 KUKA LBR iiwa robot system.

Image source: [1] 1
1.2 Example scenario showcasing

dynamic control of a rigid pendulum
via the KUKA LBR iiwa
manipulator. 2

1.3 Diagram illustrating the ideal
control structure. 3

2.1 KUKA LBR iiwa robot system. . . 6
2.2 Photo of the external PC. 8
2.3 External E-STOP button

connection. 9
2.4 Safety configuration in Sunrise
Workbench. 9

2.5 Camera mounted to the table with
KUKA LBR iiwa. 10

3.1 Architecture and communication
scheme of the KUKA Sunrise
Toolbox. 13

3.2 Architecture and communication
scheme of the Fast Robot Interface. 15

3.3 FRI application in the robot
controller (flowchart). 17

3.4 Software structure of the FRI client
application (UML class diagram). . 19

3.5 FRI client application (flowchart). 20
3.6 User-implemented methods in FRI

client application, UML class
diagram. 20

3.7 ROS 2: communication between
lbr_fri_ros2_stack framework
and a user node. 22

3.8 Software architecture of the
lbr_fri_ros2_stack
framework. 23

4.1 Dynamic model of the
demonstrator system. 28

4.2 Example of acceleration and
velocity profiles. 29

4.3 Simulations of the crane-like
system with specific input signals. 30

4.4 Task space trajectory algorithm 31

4.5 Comparison of load angle
oscillation under shaped and
unshaped commands. 32

4.6 Setup for the demonstration of a
crane-like system. 33

5.1 Software implementation of the
swing-up (visualisation). 37

5.2 Simulation of the Cup-and-ball
system. 37

5.3 Joint velocity and acceleration
evolutions over time. 39

5.4 Cup component mountable to the
end effector of LBR iiwa. 40

5.5 Cup-and-ball game components
mounted on LBR iiwa. 40

5.6 Experiments - swing-up of the
ball. 41

5.7 Forces acting on the ball in the
Cup-and-ball system. 42

6.1 Front part of the pendulum
module (CAD model). 44

6.2 Back part of the pendulum module
(CAD model). 44

6.3 Pendulum module with rods. . . . 45
6.4 Schematics of the pendulum

module electronics and the radio
receiver. 46

6.5 Electronics of the pendulum
module. 47

6.6 UML diagram of
LBRPendulumFeedback class. . . 47

6.7 Multithreading in the FRI client
application. 48

B.1 Comparison of predicted and
monitored joint torques. 54

viii

Tables
2.1 DH parameters of KUKA LBR

iiwa 7 R800. 5
2.2 Joint position and velocity limits. 6
2.3 Joint acceleration and jerk limits. 6
2.4 Local network configuration. 8

3.1 List of Java motion "set" methods. 12
3.2 Basic types of real-time commands

provided by KST. 13
3.3 Real-time commands of the KST

able to monitor a certain physical
property. 14

3.4 Data available to monitor through
FRI. 16

3.5 List of C++ methods useful for
further FRI client application
development. 21

3.6 Comparison of the examined
software options. 25

B.1 List of threshold joint torques to
overcome static friction. 54

ix

Chapter 1
Introduction

In today’s world, robotic manipulators are no longer just slow, heavy machines
used in industrial settings. Modern collaborative robots, besides being suitable for
human-robot interaction, are often lightweight, kinematically redundant, capable of
achieving higher joint accelerations, and come equipped with force or torque sensors.
All of these characteristics make collaborative robots a valuable tool that can be
utilized for various research purposes.

A particularly interesting use case for robotic manipulators is their incorporation
into dynamic control experiments. In these experiments, manipulators are often used
to drive, stabilize or otherwise actuate a mechanical system with dynamic behaviour.
One of the most popular robots for dynamic control is the KUKA LBR iiwa. This is
mainly due to the fact that this manipulator can reach sufficient acceleration and is
equipped with an interface for high speed communication (Fast Robot Interface). It
has been documented that this robot in particular was programmed to, for instance,
successfully swing up and stabilize a spherical pendulum [2].

Figure 1.1: KUKA LBR iiwa robot system. Image source: [1]

1

1. Introduction
KUKA LBR iiwa was developed by KUKA Deutschland GmbH and primarily
designed for delicate assembly work and human-robot collaboration. This work will
focus on the KUKA LBR iiwa 7 R800 model. The complete robot system, depicted
in Figure 1.1, consists of:. the manipulator,. robot controller (KUKA Sunrise Cabinet),. control panel (KUKA smartPAD).

This thesis aims to investigate how the KUKA LBR iiwa can be incorporated into
demonstrations of dynamic control. Imagine a scenario in which an underactuated
dynamical system, for example, a rigid pendulum, is attached to the end effector
of LBR iiwa (as illustrated in Figure 1.2). Let us assume that the goal in this
scenario is to stabilize the pendulum in its upright position. Traditional method for
manipulator control, i.e. programming the manipulator to follow a precomputed
trajectory with a constant velocity, is not sufficient to fulfil this goal. For this
reason, a real-time control system which takes into account the attached pendulum
is necessary. To build this control system, a feedback on the states of the pendulum
as well feedback data from the manipulator should be fed into a control algorithm
(most probably running on an external machine), output of which should be sent
back to the robot controller that can adjust the manipulator motion accordingly.
This concept is clearly illustrated in Figure. 1.3

The structure of this thesis is as follows. In Chapter 2 we provide a descrip-
tion of the KUKA LBR iiwa 7 R800 model and document the steps we undertook in
order commission the robot and set up the network communication necessary for
the integration of an external computer into the control structure from Figure 1.3.

control

system

manipulator

pendulum

pendulum encoder

t controller

Figure 1.2: Example scenario showcasing dynamic control of a rigid pendulum via the
KUKA LBR iiwa manipulator.

2

..1. Introduction

manipulator

KUKA robot

controller

control system running

on external PC

dynamical system

with sensing device

computed control commands

robot data monitoring

robot mo on

commands

actua on

feedback

Figure 1.3: Diagram illustrating the ideal control structure for dynamic control experi-
ments on LBR iiwa.

Chapter 3 consists of an analysis of software options and control methods available
for LBR iiwa. In Chapter 4 we present a working demonstration of a feedforward
control of the manipulator utilizing the MATLAB KUKA Sunrise Toolbox. Chap-
ter 5 showcases how the Fast Robot Interface can be used to send motion commands
to the robot in real-time and thus achieve a desired end effector acceleration. Finally,
Chapter 6 documents the construction of a pendulum module mountable to the
robot’s end effector, which, thanks to the pendulum’s encoder, can provide a feedback
of its states.

3

4

Chapter 2
Robot commissioning and hardware

2.1 Manipulator description

The LBR iiwa manipulator (Figure 2.1a) is a 7 DOF redundant kinematic open chain
(RRRRRRR). Every joint contains position, torque and temperature sensors that
provide signals for robot control and safety mechanisms [1]. Denavit-Hartenberg
(DH) parameters of the manipulator were not provided by the manufacturer, however
they have already been measured in other works, such as [3] and [4]. DH parameters
differ based on the mounted flange option. As we have used a robot with the Touch
Electric flange, the DH parameters for our manipulator can be found in Table 2.1.
The orientation of the robot base frame is illustrated in Figure 2.1b.

For the purposes of dynamic control, it is crucial to know the mechanical joint
limits, limits for joint velocity and other higher-order time derivatives of position.
KUKA provides the permissible range for angular joint positions and the maximum
joint velocities in the technical specification of the robot [1], but does not list the
limits for joint acceleration or jerk. Fortunately, these have also been measured
experimentally in similar works (see [4]). All data related to mechanical motion
limits of KUKA LBR iiwa can be found in Tables 2.2 and 2.3.

Table 2.1: DH parameters of the KUKA LBR iiwa 7 R800 manipulator equipped with
the media flange Touch Electric. Data by [4].

θ d a α

0 → 1 θ1 0.340 0 −π
2

1 → 2 θ2 0 0 π
2

2 → 3 θ3 0.400 0 π
2

3 → 4 θ4 0 0 −π
2

4 → 5 θ5 0.400 0 −π
2

5 → 6 θ6 0 0 π
2

6 → 7 θ7 0.152 0 0

5

2. Robot commissioning and hardware
Table 2.2: Joint angular position range and maximal joint velocity of the LBR iiwa 7
R800 model as stated in the official technical specification by KUKA [1].
*The technical specification states that the (maximum) rated payload is 7 kg.

Joint
Angular
position
range

Velocity
limit*

A1 ± 170◦ 98 ◦/s
A2 ± 120◦ 98 ◦/s
A3 ± 170◦ 100 ◦/s
A4 ± 120◦ 130 ◦/s
A5 ± 170◦ 140 ◦/s
A6 ± 120◦ 180 ◦/s
A7 ± 175◦ 180 ◦/s

Table 2.3: Experimentally determined maximal values of joint accelerations and jerks
of the LBR iiwa 7 R800 model obtained by C. Larsen in [4].

Joint

Maximum
measured

acceleration[◦/s2]
Acceleration

standard
deviation[◦/s2]

Maximum
measured

jerk[◦/s3]
Jerk

standard
deviation[◦/s3]

A1 491 0.3 10384 697.8
A2 491 0.3 7757 754.5
A3 501 0.0 9986 464.8
A4 651 0.3 9700 674.9
A5 701 0.0 19406 128.9
A6 901 0.1 32260 453.6
A7 901 0.0 33028 357.8

(a) : Names and orientations of the manipu-
lator’s axes. Image source: [1]

(b) : Orientation of the robot base frame.
The x and y axes are perpendicular to the
table edges and the z = 0 is at the the table
level.

Figure 2.1: KUKA LBR iiwa robot system.

6

.................................... 2.2. External computer

2.2 External computer

2.2.1 Computer setup

In order to be able to configure and write software applications for the robot, a
separate computer has to be connected to the KUKA Sunrise Cabinet robot con-
troller. We have decided to designate the Dell OptiPlex 9020 MT (Figure 2.2) as
the computer for this role. We believe that this machine is a decent choice, as it has
sufficient computing power (Intel Core i7-4790 CPU) and memory (16 GB DDR3)
for executing real-time client applications and has good networking and I/O options
(2 built-in LAN ports, multiple USB slots).

The official software for commissioning, configuring and programming of LBR
iiwa is called KUKA Sunrise Workbench. Considering both the fact that this
software is natively distributed for Windows OS only, and the fact that we wanted to
develop applications in C++/ROS 2 for which Linux-based OS are usually the better
choice, we opted to the install a dual-boot setup on the computer. The options for
booting that we chose were Windows 10 and Ubuntu 24.04 LTS.

2.2.2 Networking

The default LAN port on the robot controller is the KLI (X66) port. This port is
used to synchronize Sunrise Workbench projects between the robot controller
and the user PC. In order to utilize the real-time capable Ethernet connection
provided by the Fast Robot Interface - FRI (see section 3.4), an additional physical
connection between the controller and the user PC needed to be established using
the KONI port on the controller. We connected the KLI and the KONI ports directly
with the network interface cards (NIC) in our desktop PC as the KUKA manual
for the FRI [5] advises not to connect any additional network devices. The local
network consisting of the robot controller and the desktop PC needed additional
configuration. Based on the instructions provided in [6], we set the IP addresses of
the devices to static and arranged for the FRI communication to occur within a
distinct subnet. Detailed specification of our local network configuration is presented
in Table 2.4. This network configuration has been set on both operating systems.

2.3 External emergency stop device

The LBR iiwa can operate in one of its three modes of operation:.T1 (test mode, Cartesian end effector velocity reduced to 250 mm.s−1),.T2 (test mode, no velocity limit),. or AUT (automatic mode).

Although the smartPAD control panel is equipped with an integrated emergency
stop button, without any additional safety features, the robot is only able to operate

7

2. Robot commissioning and hardware

Figure 2.2: Photo of the external PC.

Table 2.4: Configuration of the local network for interfacing the KUKA LBR iiwa.

static IP address subnet mask
Sunrise Workbench

project synchronization
robot controller 172.31.1.147 255.255.0.0.
PC: NIC 1 172.31.1.149 255.255.0.0.

Fast Robot Interface robot controller 192.170.10.2 255.255.255.0.
PC: NIC 2 192.170.10.3 255.255.255.0.

in the T1 mode [6]. For this reason, we have installed an external emergency stop
button. The button that we chose consists of 2 normally closed contacts, which we
connected with corresponding pins of the X11 port on the robot controller using a
4 core shielded cable, see Figure 2.3. The newly installed safety feature had to be
configured in the Sunrise Workbench project. In the safety configuration file, in
the customer PSM1 tab, a new row representing the external emergency stop device
was added, see Figure 2.4.

2.4 Camera

During some experiments (in Chapters 4 and 5) basic object tracking from a
prerecorded video was necessary in order to sufficiently compare simulations with
experiments. For this reason, a camera was added to our setup. It was a USB camera
capable of recording up to 60 FPS. As can be seen in Figure 2.5, we aligned the
camera to point in the direction perpendicular to the plane in which the experiments
were happening and mounted it to the table using a camera stand. We have written
a simple object tracking script in Python using the OpenCV2 library. This script
(available in Appendix A) enabled us to analyze a video from the experiment and
plot the time evolution of object position.

1permanent safety-oriented monitoring
2Online documentation of the OpenCV library: https://docs.opencv.org/4.x/index.

html. [Accessed: 2024-05-23]

8

https://docs.opencv.org/4.x/index.html
https://docs.opencv.org/4.x/index.html

...2.4. Camera

(a) : Back panel of the controller and the stop button. (b) : D-SUB connector.

Figure 2.3: (a) The stop button and the X11 safety port on the back panel of the robot
controller. (b) The D-SUB connector and the pins used for connecting the 2 channels of
the emergency stop button. Channel A (red), channel B (cyan). The D-SUB connector
is plugged into the X11 port on the robot controller. Pins have been chosen based on
the recommendation in manual [7].

Figure 2.4: Screenshot of the SafetyConfiguration.sconf file in our Sunrise
Workbench project.

9

2. Robot commissioning and hardware

Figure 2.5: Camera mounted to the table with KUKA LBR iiwa.

10

Chapter 3
Analysis of different software options for robot
control

3.1 Key factors of the analysis

The goal of this chapter is to provide an overview and a comprehensive comparison of
different software options of controlling the KUKA iiwa manipulator in tasks where
dynamic control is involved. Because of this, our analysis focused on assessment of
capabilities of each software option in the following fields:..1. Diversity of motion control commands, i.e., the type of control commands a

given software option provides. For example, joint position control, joint torque
control or end effector position control...2. Real-time control capabilities...3. Matlab/Simulink integration.

The examined software options include:. KUKA Sunrise.Workbench (the default software supplied with the manipulator),.KUKA Sunrise Toolbox (Matlab add-on),. Fast Robot Interface (FRI) with a custom user application,. FRI integrated to the Robot Operating System (ROS).

3.2 KUKA Sunrise.Workbench

Sunrise.Workbench is the default software for the KUKA LBR iiwa manipulator sup-
plied by the manufacturer. It is a complete development environment, meant to be
installed on an external desktop computer running Windows [6]. It consists of robot
configuration tools (tools for system software installation, safety configurations,
I/O configurations) and application development tools – tools for programming
robot applications in Java. These Java applications may then be uploaded to the
robot’s controller, from which they can be executed.

11

3. Analysis of different software options for robot control.....................
Table 3.1: List of "set" methods used to edit motion parameters of Java motion
commands.

Method name The method sets the:
setCartVelocity() end effector’s absolute velocity.
setJointVelocityRel() relative velocity of robot joints.
setCartAcceleration() end effector’s absolute acceleration.
setJointAccelerationRel() relative acceleration of robot joints.
setCartJerk() end effector’s absolute jerk.
setJointJerkRel() relative jerk of robot joints.

Sunrise.Workbench provides a relatively wide range of Java classes for motion
programming. For instance, the PTP object can either be used to move the robot
to a given configuration in joint space, or to a given configuration in task space.
Trajectory between these points is computed internaly and is the fastest one [6].
Furthermore, the objects LIN, LINREL, CIR and SPL can be used to move the end
effector in task space along pre-programmed trajectories. Every motion instruction
has its motion parameters, which can be set by the "set" methods in Table 3.1.
Although this approach provides a way to set time derivatives of end effector’s
position up to the fourth derivative, the options are still quite limited. We have not
found a native way of editing a given motion parameter during the execution of the
trajectory - meaning it has to be constant. Another shortcoming is the fact that the
"set" methods only accept positive numeric values [6], which in case of acceleration
or jerk is quite limiting.

While the Sunrise.Workbench environment offers sufficient methods for motion
programming along pre-planned trajectories, the environment alone, without addi-
tional Sunrise.Workbench software packages, lacks the functionalities for real-time
control.

3.3 KUKA Sunrise Toolbox

Certain ports on the robot controller are enabled for communication via UDP or
TCP/IP with external devices. KUKA Sunrise Toolbox (KST), developed by M.
Safeea and P. Neto [8], takes advantage of this feature. KST is a free Matlab toolbox
that serves as TCP/IP client application to a server application which also comes
with the KST and has to be installed on the robot controller. Architecture and
communication scheme of the KST can be seen in Figure 3.1.

Among other features, the toolbox provides functions for point-to-point motion,
means of calculating kinematic properties (forward/inverse kinematics, Jacobian
matrix...) and dynamic properties (mass matrix, forward/inverse dynamics...) and
soft real-time control. It has to be noted that the user has to have access to the
DirectServo and SmartServo software extensions by KUKA and these exten-
sions ought to be installed on the robot controller prior to the set-up of KST in
order to utilize the soft real-time control.

12

.................................. 3.3. KUKA Sunrise Toolbox

Figure 3.1: Architecture and communication scheme of the KUKA Sunrise Toolbox.
Source: [8]

Table 3.2: Basic types of real-time commands provided by KST.

Method name Description
sendJointsPositions() Used to send target joint positions. Input is

a 1×7 array in radians.
sendEEfPosition() Used to send target position of the end effec-

tor. Input is a 1×6 cell array where the first 3
elements represent the target positions of EE
(mm) and the last three elements represent
the fixed rotation angles of EE (radians).

sendJointsVelocities() Used to set target joint velocities. Input is a
1×7 cell array representing the target angular
velocity for each joint, in rad.s−1.

3.3.1 Offline motion commands

Because the KUKA Sunrise Toolbox is just an interface between Matlab and Sun-
rise.Workbench, the of set of offline motion commands is similar. PTP motion in
joint space as well as in task space is available, however, only the velocity between
the points can be specified by the programmer. Furthermore, the set of trajectories
is extended by the option to move the end effector along a line with respect to the
end effector reference frame and by the option to move the effector along a planar
arc [9].

3.3.2 Real-time control

The KST offers soft real-time functionalities, claiming to be able to update the
robot’s motion at a frequency of 275 Hz [8],[9]. The highest communication frequency
achieved on our setup was 63 Hz (measured using the time measurig constructs in
MATLAB). Nevertheless, this speed is sufficient for large amount of tasks and the
ease of implementation makes this an attractive approach for real-time control.

The basic types of commands used in real-time control of the KST are shown
in Table 3.2. Notably, position control commands in joint space as well as position

13

3. Analysis of different software options for robot control.....................
Table 3.3: Real-time commands of the KUKA Sunrise Toolbox that also monitor a
certain physical property.

Method name Return type
sendEEfPositionExTorque() Joint torques due to external forces

acting on robot.
sendEEfPositionMTorque() Absolute joint torques as measured

by the sensors.
sendEEfPositionGetActualJpos() Joint positions as measured by the

encoders.
sendEEfPositionGetActualJpos() Actual position and orientation of

the end effector relative to the base
frame of the robot.

control commands in Cartesian task space of the end effector are provided. In case of
joint space, velocity control is also available. Additionally, all of the basic commands
in Table 3.2 come in different versions, for instance sendEEfPositionf(), is the
same as sendEEfPosition() but it is non-blocking, meaning it does not wait
for an acknowledgment from the server before returning the execution. As a result,
the sendEEfPositionf() is faster but could potentially cause some execution
issues [9]. Other versions of the commands implement a way of receiving some data
from the manipulator back to the external computer. List of KST methods that can
return measured data can be found in Table 3.3

3.4 Fast Robot Interface

KUKA offers Sunrise.FRI software extension to the Sunrise.Workbench environ-
ment, which provides an additional way of interfacing the manipulator, called the
Fast Robot Interface (FRI). FRI is an Ethernet-based UDP interface [5] via which
data can be exchanged in real time between an application on the robot controller
and an FRI client application on an external system. Hardware-wise, it is recom-
mended to designate a separate networking cable to mediate the FRI connection,
see section 2.2.2. The FRI architecture scheme is illustrated in Figure 3.2.

3.4.1 Real-time control

FRI allows hard real-time control of the manipulator at up to 1 kHz control loop
rates [5]. Specifically, the cycle time for data transfer can be configurated, the
available range is from 1 to 100 ms. One can use the FRI in order to monitor
certain values or to send certain commands. The list of all the properties that can
be monitored through FRI can be found in Table 3.4. As can also be seen in the
aforementioned table, there are only 3 types of FRI client command modes. They
are:

14

................................... 3.4. Fast Robot Interface

Figure 3.2: Architecture and communication scheme of the Fast Robot Interafce.
Source: [5]

. position command mode: the client application continuously sends the the
desired positions in joint space in radians, [q1, q2, q3, q4, q5, q6, q7],. torque command mode: the client application continuously sends the the
desired joint torques in Nm, [τ1, τ2, τ3, τ4, τ5, τ6, τ7],.wrench command mode: the client application continuously sends the end-
effector wrench vector consisting of 6 elements, [Fx, Fy, Fz, τA, τB, τC], the first
3 elements being translational forces in Newtons along the axes XYZ and the
next 3 elements being torques along the α, β, γ Euler angles (ZYX) in Nm.

It is important to note that the commanded FRI values are not applied directly,
rather they are first sent to the controller’s internal interpolator which plans the
motion in real-time. It takes into account for example the dynamic limits of the
machine. If the commanded values represent a motion that would violate those
limits, the controller attempts to perform the motion in the closest form possible [5].
For this reason, the monitorable property "tracking performance" (see Table 3.4) is
quite useful.

3.4.2 FRI in the robot controller

The Java application in the robot controller needs to be adjusted to be able to
function as a component of the FRI communication scheme depicted in Figure 3.2.
We have developed 3 Java applications for the robot controller (one for each client
command mode) which were heavily inspired by examples provided by KUKA1. In
contrast to the example files, our applications contain code snippets responsible for:.moving the manipulator to a desired position before the start of the FRI

communication,. setting the total time duration of the FRI communication,
1The example files are proprietary scripts which are a part of the commercially available KUKA

Sunrise.FRI software extension.

15

3. Analysis of different software options for robot control.....................
Table 3.4: Data available to monitor through FRI channel.

Data Note
measured joint positions [rad]
commanded joint positions positions commanded by FRI user [rad]
measured joint torques [Nm]
commanded joint torques torques commanded by FRI user [Nm]
external joint torques [Nm]
"Ipo" joint positions positions commanded by internal interpolator

[rad]
client command mode POSITION, WRENCH, TORQUE,

NO_COMMAND_MODE
tracking performance the quality of tracking FRI commands sent to the

manipulator ∈< 0, 1 >, 1 being perfect tracking
sample time the period of sending FRI packets, in [s]
digital IO value {0, 1}
analog IO value
session state IDLE, MONITORING_WAIT, MONITOR-

ING_READY, COMMANDING_WAIT, COM-
MANDING_ACTIVE

connection quality POOR, FAIR, GOOD, EXCELLET
safety state NORMAL_OPERATION, STOP0, STOP1,

STOP2
operation mode T1, T2, AUT
drive state OFF, TRANSITIONING, ACTIVE
overlay type NO_OVERLAY, JOINT, CARTESIAN
control mode POSITION_CONTROL,

CART_IMP_CONTROL,
JOINT_IMP_CONTROL, NO_CONTROL

time stamp Unix time [s, ns]

. editing the stiffness and damping values (in case of torque or wrench control).

The algorithm for the commissioning of the FRI connection is depicted in Figure 3.3.
In the figure, actual Java objects used in our applications are referenced. Inter-
estingly, the FRI commands can be used to overlay Java motion commands (for
example the PTP command), meaning they can be used to alter (and/or monitor)
pre-programmed trajectories in real-time. In the case when the robot motion is
to be controlled solely by the incoming FRI commands, the Java object of the
PositionHold type can be used, which, by itself, does not move the robot, but
can be overlayed by the incoming FRI commands.

Noteworthy third-party Java applications include the multipurpose
LBRserver.java app2 developed by M. Huber [10] which supports all 3 client

2The LBRserver.java file can be found at: https://github.com/lbr-stack/fri/tree/
ros2-fri-1.15/server_app.

16

https://github.com/lbr-stack/fri/tree/ros2-fri-1.15/server_app
https://github.com/lbr-stack/fri/tree/ros2-fri-1.15/server_app

................................... 3.4. Fast Robot Interface

Create an instance of FRIConfiguration using the

client’s IP address as a parameter.

Set the communication period (ms).

Create an instance of FRISession using your

instance of FRIconfiguration.

Create an instance of FRIJointOverlay using your

instance of FRISession.

Specify the expected ClientCommandMode to be

either position, torque or wrench.

Begin the FRI communication using the await()

method of FRISession.

Add your instance of FRIJointOverlay to a

motion command using the addMotionOverlay()

method. The motion command will be overlayed by

the incoming FRI commands.

Close the FRI communication using the close()

method of FRISession.

Communication

established

successfully?

FALSETRUE

Start

Create a String representing the client’s IP address.

Figure 3.3: Flowchart describing the steps necessary to initiate the FRI connection
from the robot’s controller side. In the flowchart, actual Java objects are referenced.

command modes and enables the user to configure FRI parameters through the GUI
on the KUKA smartPAD.

3.4.3 FRI client application (C++)

FRI client application is an executable software script that runs on an external
computer and communicates with the KUKA robot controller, see Figure 3.2. KUKA
supplies the user with C++ or Java-based software development kits (SDK)3 that
facilitate the actual creation of the UDP connection and create blank methods for the
user to fill in. We have decided to use the C++ version of the SDK. The following
text aims to briefly explain the how the SDK works, list the necessary steps in FRI
client application creation and present some generic client applications that we have
made.

Structure and working principle of the SDK

The software development kit provided by KUKA consists of multiple C++ files
(source and header files) and is written in the object-oriented programming paradigm.

3These software development kits were supplied with the Sunrise.FRI software extension. For
this reason, they are not accessible online.

17

3. Analysis of different software options for robot control.....................
The simplified structure of the source code can be seen in Figure 3.4 in the form
of a UML class diagram4. The user is only responsible for creating their own
UserClient class and modifying the monitor() and command() methods to
meet their needs. With the tools provided by the SDK at hand, the algorithm
for communicating with the FRI-enabled application in the robot controller is
quite straightforward. First, the client application creates an instance of the
ClientApplication class (which incorporates an instance of the user-defined
UserClient class). Then, if the FRI channel is successfully opened, the application
cyclically calls the step() method which manages the process of receiving and
sending UDP packets. The complete working principle of the FRI client application
is illustrated in Figure 3.5.

Development of custom FRI client applications

The actual implementation of the UserClient class (see Figure 3.4) is task-specific
and is up to the user to implement it. Here we provide a short list of supplementary
C++ methods of the UserClient class that we have developed, as we believe
that these methods are generic and useful enough to be utilized in future projects.
These methods provide means for monitoring joint limit violations, writing and
reading CSV files, calculating forward kinematics and other functionalities. We
have gathered the methods into a single application template called LBRMethods
which is available in Appendix A. Methods and necessary attributes are visualised
in a UML diagram in Figure 3.6 and full description of the methods is provided
in Table 3.5. Using these methods, we were able to create examples of FRI client
applications, the purpose of which is to demonstrate the monitoring and commanding
functionalities of the FRI. Here, we present 3 standalone applications:..1. LBRMonitor,..2. LBRJointPTP,..3. LBRReadWrite.

The LBRMonitor application showcases a way to record physical properties (for
example the real-time joint torques) during the robot’s motion and save them
to a CSV file. Thanks to the method FKtrans() it also able to record the
Cartesian position of the end effector. The LBRJointPTP showcases the method
ptpJointSpace(). It expects the desired joint configuration and the desired time
duration of the trajectory as a user input. Finally, the LBRReadWrite application
reads a precomputed joint space trajectory from a CSV file, executes it and records
data in the same way as the LBRMonitor application does. All of these applications
can be found in Appendix A.

4Standard rules for a UML class diagrams: https://en.wikipedia.org/wiki/Class_
diagram

18

https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Class_diagram

................................... 3.4. Fast Robot Interface

Figure 3.4: Software structure of the FRI client application in the form of standard
UML class diagram. The diagram consists of blocks representing classes from the C++
SDK provided by KUKA (orange) and block representing the user-written class (aqua).
Only the most important attributes and methods are depicted. For the complete list
of all methods of the LBRState class, refer to the table 3.4 and the FRI manual [5].
Figure source: [5] (redrawn and altered).

19

3. Analysis of different software options for robot control.....................

Call the connect() method of the ClientApplication,

passing the port ID and “NULL” as the 2

parameters.

success ?
FALSE

TRUE

Start

Specify the port ID, default is 30200.

Create an instance of the ClientApplication

class, passing the previously created instances as

the 2 parameters.

Create an instance your UserClient class and an

instance of the UdpConnection class .

set success = TRUE

Call the step() method of the
ClientApplication. Set success

to the method’s return value.

Call the disconnect() method

of the ClientApplication.

LOOP

Figure 3.5: Flowchart illustrating the working principle of the FRI client application.
Details of the C++ objects referenced in this flowchart can be found in the Figure 3.4
and in the FRI manual [5].

Figure 3.6: UML diagram of the user-implemented FRI client class, named LBRMethods
in this case.

20

................................... 3.4. Fast Robot Interface

Table 3.5: List of C++ methods useful for further FRI client application development.
The methods governing forward kinematics were implemented based on the DH parame-
ters of LBR iiwa, see Table 2.1.

Method header Description
bool checkJointLimits(double q[]) Checks whether the joint configuration q[]

violates the joint angle limits. Returns
true if the configuration is valid (safe).

void writeLineToCSV() Writes data in the CSV file specified by
the _writeFile attribue. See method
body for which data is being written.

vector<string> split(const string &s,
char delimiter) Splits a string by a delimiter and stores

the parts in a vector. Helper method for
the readLineCSV() method.

void readLineCSV() Reads a single line from a CSV file specified
by _readFile, sets _qCommand with the
data it read.

void ptpJointSpace() Executes a trajectory in joint space to the
configuration _qGoal in real time, veloc-
ity is specified by the requested trajectory
time _time.

Eigen::Vector3d FKtrans(double q[]) Returns the 3x1 translational vector spec-
ifying the position of end effector in the
base frame based on the robot configura-
tion q[].

Eigen::Matrix3d FKrot(double q[]) Returns the 3x3 rotational matrix of the
end effector in the base frame based on the
robot configuration q[].

Eigen::Matrix4d FK(double q[]) Returns the full 4x4 matrix representing
the transformation from the end effector
to the base frame based on the robot con-
figuration q[].

21

3. Analysis of different software options for robot control.....................
3.5 FRI + ROS 2

Robot Operating System (ROS) is a popular open-source set of software frameworks
and tools used for robot software development. It implements an architecture of
nodes - individual processes that can communicate with each other via standardized
messaging system. This standardization of communication is beneficial in the long
run, because it simplifies the integration of additional devices, such as sensors and
cameras.

Since the release of the LBR iiwa, many open-source projects have been devel-
oped with the aim of integrating the manipulator into the ROS or ROS 2 archi-
tecture. Some projects lack the integration of the FRI [11], [12] or focus solely
on ROS and exclude ROS 2 [13]. For this reason, we have decided to deploy the
lbr_fri_ros2_stack5 [10] to our system because it supports both ROS 2 and all
client commands modes of the FRI. This framework integrates the UDP-based FRI
communication into the ROS 2 build system by creating one publisher node for FRI
monitoring and one subscriber node for receiving FRI commands. The framework
creates custom ROS 2 message types for this purpose. The complete architecture of
the lbr_fri_ros2_stack framework is depicted in Figure 3.8.

In order to utilize the ROS 2 topic streams provided by lbr_fri_ros2_stack,
we developed our own "user" ROS2 node that can both publish and subscribe to
corresponding topics. To achieve this, the user node has to recognize the message
types that are streamed in the topics. We accomplished this by integrating the
lbr_fri_ros2_stack package responsible for message type definition into our
local ROS 2 workspace. This communication between the user node and the frame-
work is illustrated in Figure 3.7. To test this communication, we have written
a user node in Python called joint_commander that functions similarly as our
LBRReadWrite application (see 3.4.3) in that it commmands preplanned joint
configurations from a CSV file. The complete local ROS 2 workspace, including the
joint_commander Pyhton node is attached in Appendix A.

Figure 3.7: ROS 2: communication between lbr_fri_ros2_stack frame-
work and the user node in local workspace. The name of the user node is
joint_commander. This node subscribes to the /lbr/state topic and publishes to
the /lbr/command/joint_position topic.

5Link to Github repository: https://github.com/lbr-stack/lbr_fri_ros2_stack

22

https://github.com/lbr-stack/lbr_fri_ros2_stack

...................................... 3.5. FRI + ROS 2

Figure 3.8: Software architecture of the lbr_fri_ros2_stack framework. Image
source: [10] [Accesed on: 05/03/2024]

23

3. Analysis of different software options for robot control.....................
3.6 Comparison

After reviewing each software option individually, we are able to properly assess
them. The default KUKA Sunrise.Workbench offers a plethora of motion commands,
but the environment without additional extensions does not provide any means of
real-time control. The KUKA Sunrise Toolbox provides a similar range of motion
commands as well as many desirable features for research - such as methods for
calculating forward/inverse kinematics/dynamics and dynamic parameters of LBR
iiwa. It also provides soft real-time control and the fact that it is a MATLAB add-on
makes it the ideal candidate for MATLAB and Simulink integration. The Fast
Robot Interface provides even more reliable version of real-time control but lacks
the desirable methods offered by KST. Finally, the integration of FRI into the ROS
2 infrastructure provides the comfort of programming robot applications in Python
and it could also potentially support MATLAB/Simulink nodes, but more research
needs to be done in this area. To complete this analysis, we present a comparison of
software capabilities is in Table 3.6.

24

....................................... 3.6. Comparison

Table 3.6: Complete comparison of the examined software options for the KUKA LBR
iiwa manipulator. Main table (top) is supported by its legend (bottom). "EE" stands
for end effector.

Sunrise
Work-
bench

KST FRI FRI +
ROS 2

PTP in joint space ✔ ✔ ✔** ✔**
PTP in EE space ✔ ✔ ✔** ✔**
Adjustable trajectory velocity ✔ ✔ ✔** ✔**
Adjustable trajectory acceleration ✔* ✘ ✔** ✔**
Adjustable trajectory jerk ✔* ✘ ✔** ✔**
Real-time control (any type) ✘ ✔ ✔ ✔

Real-time joint space configurations ✘ ✔ ✔ ✔

Real-time joint space velocities ✘ ✔ ✘ ✘

Real-time joint space torques ✘ ✘ ✔ ✔

Real-time EE space configurations ✘ ✔ ✘ ✘

Real-time wrenches in EE space ✘ ✘ ✔ ✔

Access to flange I/O ✔ ✘ ✔ ✔

Color/symbol Meaning
offline functionality
real-time functionality
other

✔* parameter is adjustable, but only positive values are allowed
✔** functionality is not built in, but can be provided by the

suporting Sunrise Workbench appplication

25

26

Chapter 4
Demonstration: Crane-like system

4.1 Demonstration overview

One of many practical applications of dynamic control is the control of a load
suspended on a rope or a string, which is attached to a moving object (for example
an overhead gantry crane or a helicopter). The goal of such control is usually to
minimize the magnitude of swings that the load experiences during the motion of
the object to which it is attached, while also minimizing the time it takes for the
object to move from one location to another. In general, two control strategies for
this task exist: open-loop control, in which the reference signal is being shaped
based on prior knowledge of system dynamics, or closed-loop control, which actively
compensates system vibrations.

In this chapter, we will present a simple demonstration of open-loop control of
a crane-like system. During the demonstration, the LBR iiwa’s end effector will
function as a crane, to which a small load suspended on a string will be attached.
The goal of this demo is to:..1. develop an open-loop control strategy that regulates the angle of deviation of

the load during the end effector’s motion with a secondary goal of planning a
time-optimal trajectory; and..2. showcase this control on an example where the robot has to navigate the ball
through a layout of obstacles without making contact with them.

4.2 Theoretical background

4.2.1 Dynamic model of the crane-like system

In order to develop control strategy for this task, an appropriate dynamic model has
to be designed. Let us assume a planar model (Figure 4.1) consisting of a solid body
capable of motion along the horizontal x̂ direction with mass M . Another object
with mass m (a load) is attached to the horizontally moving body by a string of
length l. This model has 2 degrees of freedom and can therefore be described using
2 generalized coordinates x and θ (angle between the string and the vertical). By

27

4. Demonstration: Crane-like system..............................

Figure 4.1: Dynamic model of the demonstrator system, a diagram.

solving the Euler-Lagrangian equations of this model we have obtained a system of
two second-order nonlinear differential equations,

(M + m)ẍ−mlθ̇2 sin θ + mlθ̈ cos θ = F , (4.1)
lθ̈ + ẍ cos θ + g sin θ = 0 , (4.2)

where F is the driving (input) force acting on the mass M in the x̂ direction. This
model has also been derived in [14] and similar models are often used to describe
inverted pendulums in so-called cart-pendulum systems.

Within the context of this work, the horizontally moving body from the previ-
ous model can represent the robot’s end effector and the smaller body can represent
the load attached to it. However, the representation of the end effector using the
mass M is impractical. Let us instead assume we can reliably control the end
effector’s translational acceleration ẍ. We also assume that m << M so that the
load’s motion has minimum impact on the motion of the end effector. Under these
assumptions the model can be simplified into 1 DOF system governed solely by
equation (4.2) where ẍ is now considered to be the system’s input.

4.2.2 Control strategy

Because of the fact that our model describes only a 2-dimensional crane, we limit
this demonstration to trajectories consisting of 90◦ turns only. This means that the
load will only swing along one task space coordinate. It also puts a constraint on
the motion of the end effector:

ẋ(τn) = 0 , (4.3)

where τn is the time of n-th turning point. Let us further examine the impact of
end effector acceleration ẍ on the system dynamics. As small angle values of θ(t)
are expected, equation (4.2) may be approximated as:

θ̈ + ω2
nθ = −ω2

g
ẍ , (4.4)

28

.................................. 4.2. Theoretical background

Figure 4.2: Example illustration of acceleration and velocity profiles which are the
result of trajectory planning by acceleration shaping. Image source: [15] (redrawn).

where ωn is the natural frequency of load oscillations simply given by:

ωn =
√

g

l
,

where l is the string length and g is the acceleration due to gravity. Equation (4.4)
shows that the acceleration ẍ directly influences the magnitude of load swing. Hoang
et al. in [15] further argue that if one considers ẍ = a = const., then the solution to
the differential equation (4.4) may be written as

θ(t) = a

g
(cos ωnt− 1) . (4.5)

In [15] it is proposed that by setting the acceleration time, τa, to a multiple of the
load natural period Tn, more specifically

τa = kTn = 2kπ

ωn
, k = 1,2, . . . , (4.6)

and subsequently substituting τa to (4.5),then θ(τa) = 0 and θ̇(τa) = 0, which is
exactly what we want to achieve. Hoang et al. in [15] call this approach trajectory
planning by acceleration shaping and so we will do as well. In general, similar control
strategies are usually found under labels such as anti-sway control or time-optimal
anti-sway control [16]. The acceleration and velocity profiles that result from setting
the acceleration time to τa are illustarted in Figure 4.2.

We have developed a simulation of the dynamic system in MATLAB for testing
various shapes of the input acceleration. Some examples of end effector accelerations
and the respective time evolutions of the load angle θ(t) in a system with string
length l = 25 cm are presented in Figure 4.3. The simulations have shown that
even the basic acceleration shaping can minimize the magnitude of oscillations to
approximately 0.1 radians (≈ 5.7 ◦). Although the input signals with more than
one step can reduce the oscillations even further, they require more time to execute,
as each individual step has a duration T/n where n signifies n-step acceleration
shaping. For this reason, we have decided to use the basic acceleration shaping for
the demonstration.

29

4. Demonstration: Crane-like system..............................

Figure 4.3: Simulations of the crane-like system with specific input signals. Basic
acceleration shaping (top row), two-step acceleration shaping (bottom row). Simulations
were performed on a system with string length l = 25 cm and period of oscillation
T ≈ 1 s.

4.3 Implementation

The entirety of this demonstration was developed in MATLAB. Our implementation
can be divided into two parts. First a script regarding the offline trajectory planning
in task space was developed in basic MATLAB. After that, a client app responsible

30

..................................... 4.3. Implementation

for sending the preplanned trajectory to LBR iiwa in real-time was written using
the tools provided by KUKA Sunrise Toolbox (see section 3.3).

In the script Points2TrajectorySym.m (available in Appendix A) we have
developed a simple algorithm that builds a trajectory (meaning position data +
time stamps) of the end effector in task space. The user has to provide horizontal
coordinates of the turning points (i.e. the places where the end effector is supposed
turn) and maximum permissible task space acceleration. With this user input
the script constructs the trajectory incorporating the acceleration shaping control.
This algorithm is described in detailed pseudocode in Figure 4.4. To reiterate, the
trajectory is constructed in such a way that during its execution, the end effector will
experience a horizontal acceleration ẍ which in the context of our dynamic model
represents the model’s input.

Figure 4.4 Task space trajectory algorithm (basic acceleration shaping)
1: x0, y0 ← coordinates of the start
2: xy ← Nx2 array of coordinates of N turning points
3: h← time step
4: amax ← maximum permissible task space acceleration
5: T ← natural period of load oscillation
6:
7: procedure PlanTrajectory(xy, x0, y0, h, amax, T)
8: trajectory ← prepare a 2-dimensional array
9: segments ← calculate distances between turning points in xy

10: smin← compute the shortest distance for acceleration shaping using 1
2amaxT 2

11: vmax ← calculate maximum velocity, given by amaxT
12:
13: for s in segments do
14: if s >= 2smin then
15: tmax ← time of maximum velocity, given by (s− 2smin) / (vmax)
16: a← amax

17: else
18: tmax ← 0
19: a← acceleration given by s/T 2

20: end if
21: t ← symbolic variable representing time
22: asym ← a1(t)− a1(t− T)− a1(t− T − tmax) + a1(t− 2T − tmax)
23: ssym ← integrate asym twice with respect to t
24: sshaped ← convert ssym to a standard (nonsymbolic) array
25: append sshaped to the corresponding place in trajectory
26: end for
27:
28: time← array from 0 with step h to value h · (length of trajectory)
29: return trajectory, time
30: end procedure

31

4. Demonstration: Crane-like system..............................

Figure 4.5: Comparison of load angle oscillation under shaped and unshaped commands.
Data from the run without acceleration shaping is depicted dark green, data from the run
with acceleration shaping is depicted orange. The predicted angle from the simulation is
depicted in blue. String length in the experiment was 25 cm.

One of the most useful features of the KST is its capability to command task
space end effector positions in real-time. Thanks to this, there was no need to
manually convert task space trajectory into joint space trajectory. Our script
KST_IS_realtime.m simply reads the end-effector’s starting height and orienta-
tion, starts the TCP/IP connection and then it keeps commanding the task space
trajectory data combined with the constant z-coordinate and orientation of the end
effector.

4.4 Experiments and the demonstration

The validity of the designed open-loop control strategy was initially tested through a
simple experiment. In this experiment, the end effector, with a wooden ball attached
by a string, was commanded to move in a straight line - first without any open-loop
control and then with opne-control via the acceleration shaping method. The video
of this experiment is accessible through this link1 and it also included in Appendix A.
A comparison of data from the experiment with the simulation data is presented
in Figure 4.5. In the figure, the effect of the acceleration shaping is clearly visible -
the load oscillations during the end effector’s motion are reduced and there is no
observable motion of the load after the end effector has finished moving.

1Video from the open-loop control validation experiment: https://youtu.be/3J86vZgC-YY

32

https://youtu.be/3J86vZgC-YY

.............................4.4. Experiments and the demonstration

Figure 4.6: Setup for the demonstration of a crane-like system passing through a layout
of obstacles. The points at which the end effector was supposed to change direction are
depicted in order.

The final product of these efforts was a demonstration of the crane-like system.
We have cut blocks of various lengths from extruded polystyrene (XPS) to serve as
obstacles. We laid the blocks on the table next to the LBR iiwa, arranging them
to form a path for the end effector with the load to pass through. Picture of the
obstacle layout can be seen in Figure 4.6. The figure also marks the end effector
turning points in order in which they were supposed to be reached. To perform the
demonstration, coordinates of the turning points were supplied to the MATLAB
scripts described in section 4.3. The video of the demonstration is accessible through
this link2 and is also included in Appendix A.

2Video of the crane-like system demonstration:https://youtu.be/N0izJOyTtNI

33

https://youtu.be/N0izJOyTtNI

34

Chapter 5
Demonstration: Cup-and-ball game

5.1 Demonstration overview

The Cup-and-ball game consists of a cup to which a small ball is attached by a string.
The goal of the game is to land the ball in the cup only by moving the cup itself,
or in the case of the popular Kendama1 toy, by moving the handle attached to the
cup. This is a relatively popular task in the field of robotics and demonstrations of
successful catches have been presented in works such as [17] and [18]. However, those
works utilized various reinforcement learning methods. A successful demonstration
leveraging traditional control-based methods has been documented in the thesis by
M. Bujarbaruah [19] where the demonstration has been performed using the Ur5e
manipulator. We believe a similar demonstration can be achieved with LBR iiwa.

This task can be divided into two phases. First is the swing-up phase, the goal of
which is to drive the ball to the upper half of the y-plane, preferably directly above
the cup. The goal of the second phase, the catch phase, is to catch the free-falling
ball. This chapter documents our efforts to demonstrate the swing-up phase.

5.2 Swing-up control via energy shaping

We hypothesise that is it possible utilize the model from section 4.2.1 to sufficiently
describe the dynamics of the Cup-and-ball game in 2 dimensions under the condition
that the string is tense at all times. If this assumption holds true, then a control
strategy, called energy shaping, can be deployed. Energy shaping is a method for
driving a dynamical system, even nonlinear one, to a desired total system energy
Ed.

The second differential equation of our model in 4.2.1 can be rewritten as

θ̈ = − ẍ

l
cos θ − g

l
sin θ . (5.1)

1More information on Kendama: https://en.wikipedia.org/wiki/Kendama.

35

https://en.wikipedia.org/wiki/Kendama

5. Demonstration: Cup-and-ball game
We note u ≡ ẍ as the input to our system. The total mechanical energy of a simple
pendulum is

E = 1
2ml2θ̇2 −mgl cos θ . (5.2)

However, equation (5.2) can also be used in the context our cart-pendulum system,
if we consider the pendulum to be decoupled. The validity of this simplification is
supported by the methodology for energy shaping controller design described in [20].
We can then investigate the change in energy

Ė = ml2θ̇θ̈ −mgl cos θ, (5.3)

and substitute θ̈ from equation (5.1), obtaining

Ė = −uml cos θ . (5.4)

The approach in [14] suggests to design a controller of the form

u = kE θ̇ cos θẼ, kE > 0 , (5.5)

where Ẽ = E −Ed because then the controller (5.5) makes the energy difference
∣∣∣Ẽ∣∣∣

non-increasing. Although the controller (5.5) only regulates the system energy (and
therefore the angle θ), the terms for controlling the position x and the velocity ẋ
can easily be added:

u = kE θ̇ cos θẼ − kpx− kdẋ . (5.6)

The variables kE , kp, kd are design parameters that we can tune.

5.3 Implementation

In theory, if the dynamic model of the Cup-and-ball system is trustworthy enough, it
should be possible to simulate the behaviour of the system with the controller (5.6)
offline, and thus compute the acceleration u in advance. For the purposes of
demonstration using the LBR iiwa manipulator, the preplanned acceleration u can
subsequently be transformed into the desired motion of the end effector.

5.3.1 Simulation of the dynamics

As we have illustarted in Figure 5.1, the first step in our implementation involved
running the simulation of the Cup-and-ball system from which the desired end
effector acceleration ẍ(t) could be obtained as the acceleration itself is the input
to the Cup-and-ball system. To be more exact, we have used MATLAB’s ode45
numerical solver to integrate the equation 5.1. The numerical integration yielded
the ball angle θ(t) and the relative position of the end effector x(t). Example of the
simulation with controller parameters kE=1.7, kp=kd=0.05 is provided in Figure 5.2.
The MATLAB file with simulation can be found in Appendix A as CAB_main.m.

36

..................................... 5.3. Implementation

Simulate the Cup-and-

ball system with the

energy controller.

The result product are the

desired positions of

the cup (end effector) in

time.

For every position ,calculate

inverse kinematics to get the

desired joint positions :

• resample ,

• calculate inverse kinematics,

• check for joint position, velocity

and acceleration limits,

• generate .csv file containing

.

Read the .csv file

with positions

and command them

to LBR iiwa through

the real-time FRI.

MATLAB C++

Figure 5.1: Visualisation of the software implementation of the swing-up phase in the
Cup-and-ball game demostration.

Figure 5.2: Simulation of the Cup-and-ball system with the integrated energy shaping
controller. The desired ball angle was set to θd= 115◦ ≈ 2 rad. The string length was
l = 0.25 m, and ball mass m = 0.0139 kg. The controller parameters were kE=1.7,
kp=kd=0.05.

5.3.2 Postprocessing in MATLAB

As this task requires precise timing, we have decided to utilize the Fast Robot
Interface (section 3.4) to command the desired relative positions x(t) of the end
effector such that the end effector provides the needed acceleration input ẍ(t) to
the Cup-and-ball system. The positions x(t) were sampled unevenly, based on how
the ode45 integrated them. To resolve this, we have created a MATLAB function
that resamples the x(t) array to the needed FRI sampling value (5 ms for instance).
Because of the fact that the FRI client library (section 3.4.3) does not natively
provide any means of calculating forward or inverse kinematics, the calculation had

37

5. Demonstration: Cup-and-ball game
to be done in advance. We have decided to use the joint configuration

qstart = [0, 0.071, 0, − 1.3523, 0, 0.1301, 0] rad ,

as the starting position for the robot motion because this configuration sets the end
effector’s y-coordinate in base frame to y=0 and rotates the end effector’s reference
frame with respect to the base frame by 90◦. More specifically, the transformation
of qstart from the end effector to the base frame becomes

Tstart =

0 0 1 0.585
0 1 0 0
−1 0 0 0.801
0 0 0 1

 .

Next we have generated a list od desired transformations by copying Tstart and
substituting the translational y-coordinate in each of them by a position from x(t).
Finally, we have calculated the inverse kinematic problem for each transformation
using the method gen_InverseKinematics() provided by the KUKA Sunrise
Toolbox (section 3.3) and obtained the robot trajectory in joint space q(t).

Additionally, before exporting the trajectory, we have always numerically differenti-
ated the planned trajectory q(t) to receive an estimate ˆ̇q(t) of joint velocities. We
have used the symmetric approximation of the derivation in the form

ˆ̇qk = qk+1 − qk−1
2h

, (5.7)

where h is the FRI sampling step. Then we have repeated this process again, receiving
an estimate ˆ̈q(t) of joint accelerations. We have done so in order to check for a
potential violation of velocity and acceleration limits. In Figure 5.3, we have plotted
the estimated joint velocities and accelerations that resulted from the processing of
positions x(t) from Figure 5.2.

5.3.3 Trajectory execution

The last step of this implementation involved exporting the desired joint space
trajectory q(t) to a CSV file that the FRI-enabled C++ client aplication could
read and execute. We have utilized our LBRReadWrite application which was
described in detail in section 3.4.3. The C++ application and the MATLAB scripts
for simulation and postprocessing can be found in the corresponding folders of
Appendix A.

5.4 Experiments on LBR iiwa

In order to perform experiments involving swing-up of the ball, we have designed and
3D printed a component resembling a cup that could be attached to the end effector
of LBR iiwa by up to four M6 screws. This component can be seen in Figure 5.4. At
the bottom of the 3D printed component, there was a small hole through which a

38

................................. 5.4. Experiments on LBR iiwa

Figure 5.3: Example of joint velocity (blue) and joint acceleration (green) estimates.
Velocity and acceleration limits (red) are depicted using data from Tables 2.2 and 2.3.

string was tied. For the purposes of comparing experiments with precomputed simu-
lations, we recorded the experiments using the USB camera described in section 2.4.
In the experiments, we purposely used a red ball to ensure easy position tracking.
The constructed setup for Cup-and-ball demonstration can be seen in Figure 5.5.
Results of experiments are presented in Figure 5.6. Experiments were performed
with 2 different string lengths (15 and 25 cm) and with different parameters of the

39

5. Demonstration: Cup-and-ball game

Figure 5.4: 3D printed component to which the ball for the Cup-and-ball demonstration
was attached. The component was mounted to the end effector of LBR iiwa using screw
holes in its back. Front view (left image) and side view (right image).

Figure 5.5: LBR iiwa equipped with components for the Cup-and-ball demonstration.
Two string lengths are depicted, l = 15 cm (left) and l = 25 cm (right).

energy shaping controller. All results in 5.6 show that the behaviour of the real
system fits the predicted model perfectly up until the ball reaches some critical
angle θ ≈ π

2 rad at which point our model fails. In some experiments, we tried to
change the controller parameters during the motion, because we hypothesised that,
for instance, doubling the controller parameter kE at the right moment would result
in a greater swing. In Figure 5.6 we labeled those experiments as experiments with
nonconstant parameters. However, the impact of this is not significant. The largest
angle we were able to achieve with this strategy was θ = 1.73 rad.

We attribute the discrepancy between our model an experiments to the fact that

40

................................. 5.4. Experiments on LBR iiwa

our model assumed the string to be fully stretched at all times. As we observed
this is not true, because the string can loose its tension during the motion. In the
following section we propose a solution to this problem.

Figure 5.6: Comparison of 3 experiments to their respective simulations. Each graph
illustrates the predicted (simulated) angle θ in time (blue) to angle θ measured in the
experiment (orange). Graphs list the parameters of experiments in their titles.

41

5. Demonstration: Cup-and-ball game
5.5 Tension condition

To overcome the difficulties that arised during our experiments with swing-up
described in section 5.4, we analysed the forces acting on the ball with the goal of
obtaining a rigorous condition describing whether tension is present in the string.
To be as general as possible, we expand our model from section 4.2.1 by allowing
the input force to have 2 components, Fx and Fy. Other relevant forces include the
centrifugal force Fc and the radial component of the gravitational force Fg acting
on the ball. These force are depicted in Figure 5.7. We propose that if the forces

Figure 5.7: Forces acting on the ball in the Cup-and-ball system. Diagram also shows
the direction of increasing θ angle.

satisfy the condition

Fc + Fg cos θ − Fx sin θ + Fy cos θ > 0 , (5.8)

then the string experiences tension. The condition can be rewritten in terms of the
system variables and parameters as

mlθ̇2 + mg cos θ −Mẍ sin θ + Mÿ cos θ > 0 . (5.9)

We believe that this condition is useful because it can be added to the numerical
simulation from section 5.3.1 and serve as a stopping condition. Even more signifi-
cantly, it can also be utilized in other methods for trajectory planning because the
relation (5.9) can be viewed as an inequality constraint of an optimization problem,
such as the one described in [19].

42

Chapter 6
Development of feedback-capable pendulum
module

A traditional benchmark of dynamic control is the stabilization of pendulum in its
upright position. This chapter covers the process of designing, prototyping and
programming a planar pendulum module which is supposed to be mounted on the
end effector of LBR iiwa.

6.1 Design of mechanical components

There were a few design criteria that we strived to follow. We wanted the pendulum
module:. to be compact,. to limit the pendulum motion to a single plane,. to support easy exchange of pendulum rods.

The module consisted of two main parts, which together formed a cylindrical body.
The first (front) part of the module, displayed in Figure 6.1, was designed to hold 2
metal bearings coaxially along the cylinder’s central axis, 20 mm apart. Inside these
bearings, the shaft of the pendulum was inserted. The front of the shaft featured
three screw holes (M4) for connecting the pendulum rod, while the back of the
shaft featured a cavity for a disc magnet. This magnet is a component of the hall
effect sensor of the rotary encoder described in section 6.2. The second (back)
part of the module was also cylindrically shaped, see Figure 6.2. Its purpose was to
house the rotary encoder on one side and provide screw holes (M6) for connecting
the whole pendulum module to the end effector. Furthermore, this part featured a
small platform on its top for additional electronics. These components as well as
pendulum rods of various sizes have been 3D printed. Additionally, one 75 cm long
pendulum rod made out of aluminium was also constructed, see Figure 6.3.

6.2 Electronics

In order to supply power for external electronics, internal VCC and GND cable
connections of the X3 port on the Touch Electric media flange were utilized. However,

43

6. Development of feedback-capable pendulum module......................

front

side

screw

holes

component cross section

slots for bearings

(a) : Outer housing for the bearings and the shaft. View of the
component (left), cross section view (right).

magnet slot

front

side

component cross section

(b) : The shaft of the pendulum. The pendulum rod connects to the
front side and the shaft itself slides into the housing. View of the
shaft (left), cross section view (right).

Figure 6.1: Front part of the pendulum module (CAD model). Figure (a) depicts the
outer component which houses the bearings and shaft. Figure (b) depicts the shaft.

encoder slot

platform for

electronics

M6 screw

holes

Figure 6.2: Back part of the pendulum module (CAD model). This component is the
middle part between the end effector and the module front part displayed in Figure 6.1.

44

....................................... 6.2. Electronics

Figure 6.3: 3D printed pendulum module with multiple pendulum rods.

because the LBR iiwa internally runs on 24 V logic, the VCC = 24 V was too high
and a DC-DC step-down converter module had to be used. The voltage was stepped
down to 5 V.

To provide real-time feedback on the pendulum angular position, we installed
the AS5600 contactless magnetic rotary encoder inside the pendulum module. This
encoder measures absolute angle, has 12 bit resolution, sampling rate of 150 µs1

and communicates over the standard I2C interface. The encoder was connected to
an Arduino Nano, which supplied it with the necessary 3.3 V input voltage and
further processed the I2C data. The Arduino itself was powered from the pins of
the previously mentioned step-down converter.

The communication between the Arduino Nano on the pendulum module and
the PC with a robot application was facilitated by a pair of NRF24L01 wireless radio
transmitter-receiver modules. This type of wireless communication was preferred
over Bluetooth or Wi-fi, because it is supposed to achieve the lowest latency [21].
The NRF24L01 transmitter was connected to the Arduino on the pendulum module
and the NRF24L01 receiver was wired to a stationary Arduino connected to the PC
via USB cable. We illustrate the schematics of the electronic circuitry in Figure 6.4
and the physical prototype can be seen in Figure 6.5. The Arduino on the pendulum
module was programmed to continuously read the encoder data and send them over
the radio. More specifically, the AS5600.h library was used to read the 12-bit
encoder value x, which we converted to angle θ in radians using the relation

θ = 2π

212 · x . (6.1)

1Datasheet of the encoder is accessible here: https://www.laskakit.cz/user/related_
files/as5600_ds000365_5-00-1877365.pdf [Accessed: 2024-05-19]

45

https://www.laskakit.cz/user/related_files/as5600_ds000365_5-00-1877365.pdf
https://www.laskakit.cz/user/related_files/as5600_ds000365_5-00-1877365.pdf

6. Development of feedback-capable pendulum module......................

D13/SCK

D12/MISO

D11/MOSI

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1/TX

D0/RX

RESET

AREF

A0

A1

A2

A3

A4

A5

A6

A7

G
N

D

V
IN 5
V

3
V

3

Arduino
Nano

(Rev3.0)

4

6

3

2

1

5

7 8
IRQ

Gnd

Vcc

CE

SCK

MISO

CS

MOSI

NRF24L01+
Breakout
Board

AS5600
1

VCC

2
OUT

3
GND

4
GPO

5
SDA

6
SCL

7
DIR

1 3

1 2
+-

L
M

2
5

9
6

+
V

i

-V
i

+
V
o

-V
i

2 1
34

R
io

R
a
n
d

A
d
j B

u
c
k

C
o
n
v
e
rte

r

D0/RX

D1/TX

D2

D3 PWM

D4

D5 PWM

D6 PWM

D7

D8

D9 PWM

D10 PWM/SS

D11 PWM/MOSI

D12/MISO

D13/SCK

RESET

RESET2

AREF

ioref

A0

A1

A2

A3

A4/SDA

A5/SCL

N/C

G
N

D

3
V

3

5
V

V
IN

Arduino
Uno

(Rev3)

4

6

3

2

1

5

7 8
IRQ

Gnd

Vcc

CE

SCK

MISO

CS

MOSI

NRF24L01+
Breakout
Board

Switch

KUKA DC supply
24V

LM2596 DC-DC step down converter

Figure 6.4: Schematics of the pendulum module electronics (top) and the radio receiver
(bottom).

46

...................................6.3. FRI client application

Figure 6.5: Electronics of the pendulum module installed temporally on a breadboard.

Another method from the AS5600.h library was then used to read immediate
angular velocity θ̇ in rad.s−1. Both of these values were then transmited over radio,
utilizing the RF24.h Arduino library. The purpose of the Arduino script at the
receiving end was to simply read the incoming data and send them over to the serial
port of the computer. The Arduino C++ scripts for the transmitter and receiver
can be found in Appendix A.

6.3 FRI client application

The features of the FRI client application had to be extended in order to correctly
process the incoming data from the pendulum module. This was done by program-
ming additional methods of the UserClient class (described in section 3.4.3).
These additional methods are depicted in Figure 6.6. The first step involved opening

Figure 6.6: UML diagram of LBRPendulumFeedback class.

the serial port. This is done by specifying a port name in the _portName attribute
and calling openSerialPort() in the class constructor, which was programmed
to return the file descriptor _serial_fd of the serial port. Our goal was to con-

47

6. Development of feedback-capable pendulum module......................
tinuously process the serial port data in parallel with the FRI communication. For
this reason, we implemented the serial port reading method SerialReader() as
a separate programme thread running concurrently with the main FRI thread. The
serial reading thread continuously updates the _angle and _velocity variables
and the FRI thread reads them when necessary. The multithreading is illustrated in
Figure 6.7. The client application with these features is available in Appendix A
under the name LBRPendulumFeedback.

angle

angular velocity

mutex protected

shared variables

serial port

reading thread
FRI thread

Figure 6.7: Multithreading in the FRI client application.

48

Chapter 7
Conclusion

In this bachelor thesis, we explored the various ways of controlling a KUKA LBR
iiwa collaborative robot with a focus on its involment in dynamic control exper-
iments. First of all, we have successfully set up the infrastructure necessary for
robot control from an external desktop PC, including the setup of the PC itself, its
network settings and an additional safety button for the manipulator. Our goal was
to construct a setup in which real-time control systems (as illustarred in Figure 1.3)
could be implemented.

We proceeded by implementing and testing most of the suitable software options for
real-time robot control, covering mainly the KUKA Sunrise Toolbox and the Fast
Robot Interface option. The KST appears to be a well-rounded option, combining
the benefits of real-time control and ease of application development, due to the
fact that KST is a MATLAB add-on. However, if precise control of communication
speed is required, the FRI is the more suitable option. We have also extended the
functionalities of the FRI C++ class templates by implementing C++ methods of our
own. Altough the incorporation of FRI into the ROS2 environment was successfull
(thanks to the open-source lbr_stack [10] framework), further development needs
to be done in this area, partly because the lbr_stack framework itself is still in
active development and has significantly changed even throughout writing this thesis.

Furthermore, we have developed two demonstrations of dynamic control which
involved open-loop control of a ball suspended on a string from the LBR iiwa’s end
effector (Chapters 4 and 5). Videos of the crane-like system demonstration from
Chapter 4 have been made available. The demonstration involving the Cup-and-ball
game proved to be more challenging, but served as a good testing ground for the
Fast Robot Interface. We suggested how the results of ball swing-up can be further
improved by constructing the condition for maintaining tension in a string, see equa-
tion (5.9). In both demonstrations, acceleration of the end effector was (indirectly)
controlled via real-time positions commands. During the preparation of this thesis,
direct torque control of the LBR iiwa was also considered (see Appendix B) but it
introduced other, more complex challenges.

Lastly we have designed and constructed a working pendulum module that can be
attached to the end effector and provide real-time feedback on the pendulum’s angle

49

7. Conclusion..
and angular velocity. We believe that from a hardware perspective, this module is
ready for its use in experiments.

In conclusion, the KUKA LBR iiwa collaborative robot proved to be a good choice
when it comes to actuating and controlling a dynamic system. There are several
areas in which future work can be pursued. A natural continuation would be the
implementation of software-based observer and controller for the pendulum module.
Alternatively, other client command modes of the FRI, such as the joint torque
control, can be examined, or the ROS2 infrastructure can be extended.

50

Appendix A
Software: scripts and other files.

The following public repository contains the software and other material referenced
in this thesis:
https://gitlab.fel.cvut.cz/mestemar/dynamic-control-of-control-of-collaborative-robot-
kuka-lbr-iiwa-demonstrator-system. The structure of the repository is as follows:

/
Sunrise Workbench

template.java
FRI

FRI Applications for the robot controller (Java)
MyJointHoldOverlay.java
MyTorqueHoldOverlay.java
MyWrenchHoldOverlay.java

FRI Client Applications
LBRMethods
LBRMonitor
LBRJointPTP
LBRReadWrite

Local ROS2 workspace
Crane-like system demonstration

crane_2D_simulation.m
Points2TrajectorySym.m
KST_IS_realtime.m
input_shaping_validation.mp4
demonstration.mp4

Cup-and-ball
CAB_main.m
postprocessing.m

Pendulum
STL_files
nrf24_transmitter.ino
nrf24_receiver.ino
LBRPendulumFeedback

object tracking in Python

51

https://gitlab.fel.cvut.cz/mestemar/dynamic-control-of-control-of-collaborative-robot-kuka-lbr-iiwa-demonstrator-system
https://gitlab.fel.cvut.cz/mestemar/dynamic-control-of-control-of-collaborative-robot-kuka-lbr-iiwa-demonstrator-system

52

Appendix B
Note on torque control of LBR iiwa via FRI

The purpose of this short section is to document the challenges of direct joint torque
control of KUKA LBR iiwa through the Fast Robot Interface. As mentioned, in
section 3.4.1 there are 3 total client command modes of the FRI, one of them being
joint torque client command mode. In theory, this mode would be very appropriate
for dynamic control experiments because a significant amount of dynamic models
considers either translational force or torque as system input. However, the KUKA
manual on FRI [5] does not provide any information on the manipulator dynamic
model used nor any information about the underlying dynamic controller. For this
reason, significant amount of reverse engineering would be necessary in order to use
this client command mode properly. We document some of our findings here.

Because of the fact that the joint torque command mode only functions in joint
impedance control mode of the FRI-enabled Java application in the robot controller,
we hypothesize that the dynamic model of the manipulator used probably consists
out of two parts:

τ = physical model + impedance control (B.1)

τ represents the 7-element vector of joint torques. We believe that by setting the
stiffness and damping constants of the impedance control to 0 in the FRI Java
application we effectively eliminate the impedance term in (B.1) so that the the
dynamic model becomes [22]:

τ = M(q)q̈ + C(q,q̇)q̇ + G , (B.2)

where M, C, G are the mass matrix, Coriolis matrix and vector of gravity respectively.
We tried to monitor joint torques during the execution of a fast trajectory of the
manipulator in order to compare the predicted joint torques from equation (B.2)
to the monitored data. This comparison can be seen in Figure B.1. From this
comparison, it is clear that the model governed by B.2 is not entirely sufficient
to describe what joint torques are needed to be commanded to perform a certain
trajectory, as the predicted joint torques fit only in cases where large torque values
have been monitored. We further hypothesize that static joint friction could play a
role in the dynamic model. We have measured the values of static friction for each
joint experimentally (by sending ramp signals to each joint, one at the time). The
torque values at which the static friction has been overcome are available in Table B.1.

53

B. Note on torque control of LBR iiwa via FRI

0 5 10
time [s]

-60

-40

-20

0

20

40

N
m

A1A1

0 5 10
time [s]

-100

-50

0

50

100

N
m

A2A2

0 5 10
time [s]

-20

0

20

40

60

N
m

A3A3

0 5 10
time [s]

-30

-20

-10

0

10

20

30

N
m

A4A4

0 5 10
time [s]

-8

-6

-4

-2

0

2

4

6

N
m

A5A5

0 5 10
time [s]

-2

-1

0

1

2

3

4
N

m
A6A6

0 5 10
time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

N
m

A7A7

predicted	torque
measured	torrque
commanded	torque
external	torque

Figure B.1: Comparison of predicted and monitored torque for each joint.

Table B.1: List of threshold joint torques at which the static joint friction was over-
comed.

joint label A1 A2 A3 A4 A5 A6 A7
threshold joint torque [Nm] 1.22 2.89 2.66 2.43 1.25 0.98 0.83

Additionally, even if rigorous dynamic model of the manipulator would be known,
torque control would also had to govern the gravity compensation for the tool
attached to the end effector. In conclusion, the low-level joint torque control of LBR
iiwa would be very fitting for dynamic control experiments, but it introduces new
challenges to basic motion control. On the other hand, FRI joint position control
has an internal dynamic controller built in which means that the real-time motion
control is much more straightforward.

54

Appendix C
Bibliography

[1] KUKA Deutschland GmbH, Augsburg, Germany. Robots LBR iiwa 7 R800,
LBR iiwa 14 R20 Specification (KUKA manual), 2019.

[2] Minh Nhat Vu, Christian Hartl-Nesic, and Andreas Kugi. Fast swing-up
trajectory optimization for a spherical pendulum on a 7-dof collaborative robot.
In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 10114–10120. IEEE, 2021.

[3] Carlos Faria, João L. Vilaça, Sérgio Monteiro, Wolfram Erlhagen, and Estela
Bicho. Automatic denavit-hartenberg parameter identification for serial ma-
nipulators. In IECON 2019 - 45th Annual Conference of the IEEE Industrial
Electronics Society, volume 1, pages 610–617, 2019.

[4] Christian Larsen. Including a collaborative robot in digital twin manufacturing
systems. Master’s thesis, Chalmers University of Technology, SE-412 96 Gothen-
burg, 2019. Avalaible at https://odr.chalmers.se/server/api/core/
bitstreams/b2122839-96c0-4926-8945-ef24510f446e/content.

[5] KUKA Deutschland GmbH, Augsburg, Germany. Software Option KUKA
Sunrise.FRI 1.17 (KUKA manual), 2020.

[6] KUKA Deutschland GmbH, Augsburg, Germany. Operating and Programming
Instructions for System Integrators (KUKA manual), 2021.

[7] KUKA Deutschland GmbH, Augsburg, Germany. Controller, KUKA Sunrise
Cabinet, Provozní návod (KUKA manual), 2019.

[8] Mohammad Safeea and Pedro Neto. Kuka sunrise toolbox: Interfacing collab-
orative robots with matlab. IEEE Robotics & Automation Magazine, PP, 09
2017.

[9] Mohammad Safeea and Pedro Neto. User’s manual: KUKA Sunrise Toolbox.
Coimbra University & Ensam University, 2018. [Online]. URL:https:
//github.com/Modi1987/KST-Kuka-Sunrise-Toolbox/blob/
master/KST_User’s_Guide.pdf.

[10] Martin Huber, Christopher E. Mower, Sebastien Ourselin, Tom Vercauteren,
and Christos Bergeles. Lbr-stack: Ros 2 and python integration of kuka fri for
med and iiwa robots, 2023.

55

https://odr.chalmers.se/server/api/core/bitstreams/b2122839-96c0-4926-8945-ef24510f446e/content
https://odr.chalmers.se/server/api/core/bitstreams/b2122839-96c0-4926-8945-ef24510f446e/content
https://github.com/Modi1987/KST-Kuka-Sunrise-Toolbox/blob/master/KST_User's_Guide.pdf
https://github.com/Modi1987/KST-Kuka-Sunrise-Toolbox/blob/master/KST_User's_Guide.pdf
https://github.com/Modi1987/KST-Kuka-Sunrise-Toolbox/blob/master/KST_User's_Guide.pdf

C. Bibliography
[11] Christoph Hennersperger, Bernhard Fuerst, Salvatore Virga, Oliver Zettinig,

Benjamin Frisch, Thomas Neff, and Nassir Navab. Towards mri-based au-
tonomous robotic us acquisitions: a first feasibility study. IEEE transactions
on medical imaging, 36(2):538–548, 2017.

[12] Antonio Serrano-Muñoz, Íñigo Elguea-Aguinaco, Dimitris Chrysostomou, Simon
Bøgh, and Nestor Arana-Arexolaleiba. A scalable and unified multi-control
framework for kuka lbr iiwa collaborative robots. In 2023 IEEE/SICE Interna-
tional Symposium on System Integration (SII), pages 1–5. IEEE, 2023.

[13] Konstantinos Chatzilygeroudis, Matthias Mayr, Bernardo Fichera, and Aude
Billard. iiwa_ros: A ros stack for kuka’s iiwa robots using the fast research
interface. [Online]. URL: http://github.com/epfl-lasa/iiwa_ros.

[14] Russ Tedrake. Underactuated robotics: Learning, planning, and control for
efficient and agile machines course notes for mit 6.832. Working draft edition,
pages 23–25, 2009. [Online]. URL: https://homes.cs.washington.edu/
~todorov/courses/amath579/Tedrake_notes.pdf.

[15] Nguyen Quang Hoang, Soon-Geul Lee, Hyung Kim, and Sang-Chan Moon.
Trajectory planning for overhead crane by trolley acceleration shaping. Journal
of Mechanical Science and Technology, 28(7):2879–2888, Jul 2014.

[16] Michele Ermidoro, Simone Formentin, Alberto Cologni, Fabio Previdi, and
Sergio M. Savaresi. On time-optimal anti-sway controller design for bridge
cranes. In 2014 American Control Conference, pages 2809–2814, 2014.

[17] Shidi Li. Robot playing kendama with model-based and model-free reinforcement
learning. ArXiv, abs/2003.06751, 2020.

[18] Bojan Nemec, Matej Zorko, and Leon Zlajpah. Learning of a ball-in-a-cup
playing robot. pages 297 – 301, 07 2010.

[19] Monimoy Bujarbaruah. Robust Model Predictive Control with Data-Driven
Learning. PhD thesis, 10 2022. Available at https://www.proquest.com/
openview/60fb2327d74409d51be30b1fdd5ac202/1?pq-origsite=
gscholar&cbl=18750&diss=y.

[20] Chung Choo Chung and John Hauser. Nonlinear control of a swinging pendulum.
Automatica, 31(6):851–862, 1995.

[21] Mahar Faiqurahman, Diyan Novitasari, and Zamah Sari. Qos analysis of
kinematic effects for bluetooth hc-05 and nrf24l01 communication modules
on wban system. Kinetik: Game Technology, Information System, Computer
Network, Computing, Electronics, and Control, 4, 05 2019.

[22] Kevin M Lynch and Frank C Park. Modern robotics. Cambridge University
Press, 2017.

56

http://github.com/epfl-lasa/iiwa_ros
https://homes.cs.washington.edu/~todorov/courses/amath579/Tedrake_notes.pdf
https://homes.cs.washington.edu/~todorov/courses/amath579/Tedrake_notes.pdf
https://www.proquest.com/openview/60fb2327d74409d51be30b1fdd5ac202/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/60fb2327d74409d51be30b1fdd5ac202/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/60fb2327d74409d51be30b1fdd5ac202/1?pq-origsite=gscholar&cbl=18750&diss=y

	Introduction
	Robot commissioning and hardware
	Manipulator description
	External computer
	Computer setup
	Networking

	External emergency stop device
	Camera

	Analysis of different software options for robot control
	Key factors of the analysis
	KUKA Sunrise.Workbench
	KUKA Sunrise Toolbox
	Offline motion commands
	Real-time control

	Fast Robot Interface
	Real-time control
	FRI in the robot controller
	FRI client application (C++)

	FRI + ROS 2
	Comparison

	Demonstration: Crane-like system
	Demonstration overview
	Theoretical background
	Dynamic model of the crane-like system
	Control strategy

	Implementation
	Experiments and the demonstration

	Demonstration: Cup-and-ball game
	Demonstration overview
	Swing-up control via energy shaping
	Implementation
	Simulation of the dynamics
	Postprocessing in MATLAB
	Trajectory execution

	Experiments on LBR iiwa
	Tension condition

	Development of feedback-capable pendulum module
	Design of mechanical components
	Electronics
	FRI client application

	Conclusion
	Software: scripts and other files.
	Note on torque control of LBR iiwa via FRI
	Bibliography

