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Abstrakt / Abstract
V této práci jsou vypracovány ma-

tematické modely deformovatelných
desek k použití v adaptivní a aktivní
optice. Konkrétně se jedná o pozla-
cenou křemíkovou desku s nalepeným
piezoelementem, pevně uchycenou na
jedné straně. Modely jsou odvozeny
analytickými postupy a metodou koneč-
ných prvků. Výsledky jsou porovnány
s daty naměřenými pomocí laserového
paprsku vychýleného na jednořádkovou
CCD kameru. Nelineární jevy, jako
jsou hystereze a creep, jsou pečlivě
zhodnoceny a uvažovány v modelech.
Ukázána je možnost řízení tvaru desek
s piezoelementy.

Klíčová slova: deformovatelná, flexi-
bilní, křemíková, deska, zrcadlo; piezo-
elektrický aktuátor, piezoelement; hys-
tereze; model, řízení, deformace tvaru;
aktivní, adaptivní optika.

Překlad titulu: Modelování a řízení
piezoelektrického aktuátoru pro aktivní
a adaptivní optiku

This thesis develops mathematical
models of deformable plates used in
adaptive and active optics. In partic-
ular, a Au-coated cantilevered plate
made of silicon with a piezoelectric
patch bonded to it is investigated.
Models are derived using analytical
techniques and finite element method.
The results are compared to measure-
ments obtained using a laser beam
reflected to a line CCD camera. Nonlin-
ear effects such as creep and hysteresis
are carefully investigated and includ-
ed in the model. Strategies for shape
control are outlined.

Keywords: deformable, flexible,
rectangular, silicon plate, mirror; piezo-
electric actuator, patch, fiber composite;
hysteresis; model, control, FEM shape,
deformation; active, adaptive optics.
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Chapter 1
Introduction

This thesis focuses on controlled deformation of flat reflective surfaces (mirrors) used
in active and adaptive optics. The topic has been very attractive in the research engi-
neering community since controlled deformation can reduce impact of disturbances such
as thermal and mechanical disturbance, imperfect manufacturing techniques, wavefront
distortion etc. All these disturbances are unwelcome for the users of optical equipments
and most of them cannot be fixed passively — i. e. by the means of a more precise
manufacturing, filters or other methods that do not use actuators.

The field of actuated optics has got much attention recently; there have been hundreds
of methods using dozens of different actuators implemented. Out of all these, in this
thesis I will use a popular piezoelectric actuator. In particular, a fiber composite piezo
patch (described in section 2.1.2) is used.

1.1 Active and adaptive optics
There are two approaches for non-passive elimination of the unwelcome disturbances
— adaptive and active optics. Collectively I denote these as actuated optics.

Adaptive optics is a branch of actuation which covers disturbances with fast dynam-
ics. It is used to compensate what is called an air optical disturbance. The moving air
mass changes the wavefront and as a consequence, resulting images and measurements
are distorted.

Active optics compensate a much slower or even static disturbances. It is used
to compensate various sources of figure (and hence imaging) errors such as imperfect
manufacturing and long-scale errors of relevant reflecting surfaces, imperfect adjustment
on individual plates/substrates into modules, influences of gravity, heat, etc.

Thin piezoactuators allow for design of various types of deformable mirrors. While
in optical (in visible light) it can lead to essential cost reductions for large aperture
and/or space-based mirrors, there are also numerous applications in X-ray and XUV
optics. The controllable bending (surface shaping/deformation) by active elements is
expected to provide much better angular resolution of the relevant optical systems and
modules. The active approach finds valuable applications also in other areas of X-ray
imaging for many ground-based and laboratory applications, such as precise imaging in
synchrotron beamlines, and in X-ray microscopes, with various applications in X-ray
lithography, radiography, biology, medicine, material research, non-destructive testing,
etc.

1.2 Motivation and goals
This thesis was motivated/inspired by a past research collaboration between a team at
Czech Academy of Sciences and research teams at NASA Goddard Space Flight Center
(GSFC) and Center for Astrophysics in Cambridge, MA (CfA). The research aimed
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
at development of active X-ray optics for US space mission called Generation-X. The
idea was to significantly improve the angular resolution of future large imaging X-ray
telescopes down to sub-arcsec values, impossible by all other (passive) methods and
techniques.

From the experimental results obtained at that time it turned out that a more accu-
rate modeling of piezoactuators was needed to achieve high-precision deformation of a
surface. I was lucky to become part of the project, so I decided to continue exploring
the possibilities of improving the mirrors resolution. In particular, the inspiration for
my research came from the Kirkpatrick-Baez (KB) X-ray optics. Its purpose is to focus
light in a reflective manner (figure 1.1). The lenses are made of a set of coated thin
plates of different parabolic shapes. One such set is able to focus the X-rays in one
dimension. The X-rays are generally reflected twice (using two perpendicularly aligned
sets) to create focal images. Two KB modules (with thin silicon plates) developed in
Prague are shown in figure 1.2.

Common focus of
both mirrors

Secondary mirror
(parabolic 2D)

Primary mirror
(parabolic 2D)

Figure 1.1. Kirkpatrick-Baez reflective lenses.

Figure 1.2. Two sets of thin parabolic plates used to focus X-rays developed at Rigaku
Innovative Technologies Europe in Prague (taken from [1]).

The main goal of this work is to investigate and document suitable methods for mod-
eling and analysis of piezoelectric monomorph plates for the purpose of surface shaping.
The validity of the methods shall be demonstrated by laboratory experiments using a
(provided) rectangular cantilever plate made of silicon with a commercially available
piezoelectric patch bonded to it (figure 1.3). Particular attention in modeling shall
be paid to practical nonlinear phenomena that occur in piezoelectric materials such as
creep, hysteresis and depolarization. Based on the simulation and experimental out-
come some challenges in control design are identified and basic compensation techniques
are surveyed/proposed.

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Outline of the thesis

Figure 1.3. The coated monomorph cantilever plate. A patch piezoactuator on one side
(upper image) and coated silicon wafer on the other (bottom image).

1.3 Outline of the thesis
The thesis starts by introducing the problem analyzed (chapter 2): the monomorph
composition, description of the piezoactuator used including properties needed for the
analysis. The analytical methods in chapter 3 are based on the mathematical descrip-
tion of the elasticity and piezoelectric effect (section 3.1). The analytical modeling
section is structured into two main sections. The static behavior of the plate is mod-
eled in the static analysis section (3.2). A case with more than one electrode will be
included to show possibilities of controling the cantilever plate’s shape. The dynamic
analysis (section 3.3) is presented in modal form resulting from the Euler-Bernoulli
beam equation.

Finite element methods (FEMs) are used to model the monomorph in chapter 4. I
again decided to present static and dynamic methods separately. A nodal approach is
presented in the static FEM section 4.2 and Comsol is used to simulate the cantilever
static deflection (in 2D). The dynamic FEM is in section 4.3. The nodal form is con-
verted into a modal form similar to that used in the analytical analysis and a general
input-output model is shown (section 4.3.1). Comsol is used to find plate modes and
corresponding frequencies in 4.3.2.

The cantilever plate’s bending itself is assumed assumed linear (Hooke’s law, con-
stitutive relationships). A set of nonlinearities that I present in chapter 5 come from
actuator and sensor subsystems. The actuator nonlinearities are that of the piezoelec-
tric material (depolarization, creep and hysteresis) and those brought into the system
by an imperfect amplifier. The hysteresis is modeled using the Prandtl-Ishlinskii model
in section 5.3.2. The sensor nonlinearity, that comes from the setup, is described in
section 5.5.

Response of the cantilever is measured at its tip. The measurements including re-
sponse to initial conditions, modal response and hysteresis loops can be found in chapter
6. Arising control design issues are discussed in chapter 7. There are two sections in the

3



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
chapter, control of the piezoelectric actuator (including the nonlinearities presented) in
section 7.1 and control for the use in adaptive/active optics (section 7.2).

Conclusions and ideas for future work are presented in the last chapter 8.

4



Chapter 2
Piezoelectric monomorph plate

The system I got to test and validate models derived in this thesis is a monomorph
(sometimes called unimorph) piezoelectric plate. In order to analyze the piezoelectric
monomorph, the geometry of it has to be described and a brief overview of its underlying
physics must be done.

hp

hs

L

V

w

Figure 2.1. Piezoelectric monomorph plate.

The piezoelectric monomorph is in my case composed of 2 layers. The first one that
will be called the substrate layer is made of pure silicon 〈100〉 (the three number 100
denote the crystallographic direction) coated by a thin golden layer. The coating is for
the purpose of X-ray reflective optics. The second layer is a piezoelectric actuator, in
my case MFC M-8557-P2, which will be described in 2.1.2.

The dimensions according to figure 2.1 are listed in table 2.1. I am also including
the free length l of the cantilevered monomorph, which is shorter than the total length
L. The shorter length is due to the rigid clamp. It is needed for the analysis.

Parameter Value [mm]
L 100
l 95.5
hs 0.7
hp 0.3
w 63

Table 2.1. Monomorph dimensions.

2.1 Piezoceramics

Piezoceramic is a material used for manufacturing piezoelectric actuators. Many books
like [2] and [3] describing the manufacturing process, the piezoceramic structure and
underlying physics can be found. There is an effort to find new lead-free environment-
friendly materials that would replace Pb in the world’s dominating PZT actuators [4].

5



2. Piezoelectric monomorph plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 PZT

The PZT is a shorthand notation for a piezoelectric ceramic, that is popular thanks to its
large d coefficients of piezoelectric behavior and its relatively low price. The shorthand
stands for PbZrO3 - PbTiO3 and is of perovskite type. Thanks to its tetragonal non-
centrosymmetric structure, PZT exhibits piezoelectric effect [5].

2.1.2 Fiber composites

Instead of a monolithic ceramic, fibers are used for many actuators and sensors. Fibers
are sealed in epoxy and interdigitated electrodes are used (figure 2.2). Fibers are
popular not only for its cheap manufacturing, but mostly thanks to:

. interdigitated electrodes cause better strain performance, larger d33 and d31 con-
stants;. the multiphase structure of piezoceramic and polymer provides bending and twisting
capability;.volume fraction of piezoceramic can be controlled;. electrodes can be positioned in a way to apply electric field in both poling direction
and perpendicular to it (see figure 2.2).

epoxy

PZT

epoxy

d  effect33 d  effect31

electric field

polarization

metal layer - IDE metal layer - surface

PZT

metal layer - IDE

+ + + +

++

Figure 2.2. Interdigitated electrodes used in MFCs (taken from Smart Material1).

Piezoelectric fibers are embedded in a polymer phase (polymer matrix). Glass fibers
(thinner than the ceramic fibers ∼ 5µm) can be added for additional strength of the
composite [6].

There are several patented materials on the market, including Macro Fiber Com-
posite (MFC) invented by NASA and Active Fiber Composite (AFC) developed at the
Active Materials and Structures Lab at MIT. The difference between these two is a
manufacturing process. The final composite design is the same, consists of electrodes,
fibers of piezoceramic and a polymer matrix.

The MFC in my case is composed of thin piezoelectric layers made of Sonox P5052).
The P505 is used in MFC composites, it has properties similar to PZT-5A [7]. Param-
eters and its thermal dependency can be found in [8].

1) www.smart-material.com
2) www.ceramtec.com
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Layers

2.2 Layers
The monomorph is actually not composed of only the two layers. The fact that the
MFC itself is composed of active and passive layers must be taken into account. I need
to consider it to obtain exact models. The active width if the MFC is 180µm only,
which is almost half the actual width of the actuator (300µm). The real composition
of the plate is shown in figure 2.3.

hap

hs

V

hp

Figure 2.3. Actual layers of the piezoelectric monomorph plate.

The width of the active piezoelectric layer completes the table 2.1:

hap = 180µm. (1)

2.3 Material characteristics
The parameters listed in table 2.2 describe electromechanical characteristics of the
monomorph plate. The parameters of the silicon wafer were taken from [9]. Piezoelectric
properties were taken from [8], MFC properties from [10].

The value of ρ of the whole plate and must be averaged for densities listed in table
2.2. I obtained a rough value as

ρ = 0.3 ρmfc + 0.7 ρs = 3110 kg ·m−3, (2)

where ρmfc = 5000 kg·m−3 is an average density of the MFC actuator.

Parameter Notation Value
Young’s modulus of Si Ys 130GPa

Young’s modulus of MFC Yp 30GPa
Poisson’s ratio of Si νs 0.064

Poisson’s ratio of MFC νp 0.31
Coupling constant d31 d31, d13 -180 pm/V
Coupling constant d33 d33 475 pm/V

Density of MFC’s piezoceramic ρp 5440 kg/cm3

Density of Si (20◦C) ρs 2300
Relative permittivity of MFC εp 1800

Capacitance of M-8557-P2 Cp 402 nF
Table 2.2. Mechanical and electrical properties of materials used.

7
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Chapter 3
Analytical models

An analytical model useful for not only the adaptive/active optics will be derived. The
models should be simple enough for the use in control. I will go through the static and
dynamic response (sections 3.2 and 3.3) of the monomorph piezoelectric plate. In order
to analyze the piezoelectric monomorph, an overview of the quantities and parameters
and its underlying physics must be done.

3.1 Mathematical description

3.1.1 Stress and strain
Mechanical properties of a deformable body are mathematically described by two third-
rank tensors. The first is the stress and describes a pressure applied not only along
the main three axises, but also includes the shear stresses. The true origin is the
pressure and because the stress is strictly directional it is always related to an oriented
infinitesimally small surface dA. Normal stress is the stress that is normal to the area
dA and is obtained simply by taking the normal force F and dividing it by the area.
Infinitesimally I get

σn = dFn
dA .

The shear (or plane) stress completes the information by taking forces that act in
the dA plane (perpendicular to the normal force) into account. The complete stress
matrix contains 9 stress components (visualized in figure 3.1):

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 .

x

y

z

x

y

z

external forces

internal forces

σ11

σ22

σ33

σ12

σ13

σ23

σ21

σ32

σ31

Figure 3.1. Geometrical representation of the stress matrix.
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3. Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The second third-rank tensor is the strain. It describes the deformation itself. A

point of an elastic body changes its position in case of an applied stress (the exact
change depends not only on the stress, but also on boundary conditions). The shift in
position can be described by a vector visualized in figure 3.2. The vector is called the
displacement vector and is denoted u = (u1, u2, u3).

x

y

o

r r’

uA
A’

Figure 3.2. Geometrical representation of the displacement.

The complete strain tensor comprises 9 terms:

ε =

 ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 .

The diagonal (principal) strains are those that occur along the main axises (elonga-
tions). The off-diagonal terms represent shear strains and their geometrical meaning is
shown in figure 3.3.

x

y

2

1

β21

β12

Figure 3.3. Geometrical representation of strain (two dimensions).

The infinitesimal strain theory, which is valid only for small strains, approximates
the strain-displacement relation as

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(1)

for i, j = 1, 2, 3, where xk is the k-th coordinate axis (x1 ≡ x, x2 ≡ y, x3 ≡ z) [11].

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Mathematical description

Both the strain and the stress tensors are symmetric, meaning

εij = εji, σij = σji. (2)

Thanks to symmetry a simplified notation that uses 6 component vectors instead of
tensors can be used [12]. The stress and strain are represented by vectors

S =



S1
S2
S3
S4
S5
S6

 , T =



T1
T2
T3
T4
T5
T6

 ,

where

S1 = ε11 = ∂u1

∂x1
,

S2 = ε22 = ∂u2

∂x2
,

S3 = ε33 = ∂u3

∂x3
,

S4 = 2ε23 = ∂u2

∂x3
+ ∂u3

∂x2
,

S5 = 2ε13 = ∂u1

∂x3
+ ∂u3

∂x1
,

S6 = 2ε12 = ∂u1

∂x2
+ ∂u2

∂x1
,

T1 = σ11,

T2 = σ22,

T3 = σ33,

T4 = σ23,

T5 = σ13,

T6 = σ12.

(3)

3.1.2 Constitutive relationships

The two basic relations are those between the stress T and strain S and between the
electric field E = (E1 E2 E3)T and electric displacement D = (D1 D2 D3)T . The relations
were found empirically and are valid for most of the cases (low temperatures, electric
fields and stresses) [12]. A material that undergoes stress can be described by a linear
equation

S = cT (4)

known as the Hooke’s law. The matrix c characterizes compliance of the material.
The larger the compliance value is the larger strain is obtained by applying same stress.
A dielectric that is exposed to electric field can be described by a similar relation

D = εE. (5)

The matrix ε is called the permittivity and characterizes (permits) electric field be-
havior in dielectrics. High permittivity causes high electric flux in the material.

11



3. Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
According to (4) and (5) there are just two matrices that characterize the material’s

behavior. The relations can generally differ from one direction to another:

c =



c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

 , ε =

 ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε12 ε33

 .

For a material that is piezoelectric both the electrical and mechanical descriptions
apply. The linear coupled relation is

S = cET + dE, (6)

D = dTT + εTE. (7)

The piezoelectric coefficient matrix d gives an idea of how piezoelectric the material
really is. Important characteristic of all the piezoelectric materials is the fact that the
coefficient matrix d is same for both direct and transverse piezoelectric effect. The
superscript T indicates transposition. The subscripts indicate that the coefficient is the
same as if there was no piezoelectric effect — i. e. when it is (the coefficient) measured,
all variables that might influence the measurement results are held constant. Here it
is the electric field E being held constant, so the measured uninfluenced compliance
matrix c is denoted cE).

There is only one independent coefficient d for a piezoelectric material that is homo-
geneous and isotropic. But in general it is

d =



d11 d12 d13
d21 d22 d23
d31 d32 d33
d41 d42 d43
d51 d52 d53
d61 d62 d63

 .

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Static analysis

3.2 Static analysis
I will now analyze the shape obtained by applying certain voltage across the piezoelectric
layer. For simplicity, the plate will be represented by a two-dimensional beam clamped
on one end and free on the other. As if the piezoelectric layer had no electromechanical
coupling in the direction that I have just neglected. The assumed geometry can be seen
in figure 3.4. The thin cantilever (beam) can ideally be described by a one-dimensional
equation of motion.

z

x

hp

hs

l

V

Figure 3.4. Geometry of a cantilevered plate used for static analysis.

The electric field E is reduced to one dimension only:

E1 = E2 = 0, (8)

E3 = V

hp
. (9)

The vector of stresses has only one non-zero component:

T2 = · · · = T6 = 0. (10)

Not including shear strains I am left with only a few equations coming from the
constitutive relationships (6), (7):

S1 = 1
Y1
T1 + d13E3, (11)

S2 = −ν21

Y1
T1 + d23E3, (12)

S3 = −ν31

Y1
T1 + d33E3. (13)

From the matrix symmetry similar to (2) d31 = d13 the only relationship, for D3, is

D3 = d31T1 + ε33E3. (14)

A handy representation of the relationships are the resulting blocked stress (15) and
free strain (16) easily obtainable from the relationships above:

T1

∣∣∣
S1=0

= −d13Y1E3, (15)

S1

∣∣∣
T1=0

= d13E3. (16)

13



3. Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
What is more useful in adaptive optics is the free strain rather than the blocked force.

Plugging the geometry of my problem

S1 = u1

L
, (17)

E3 = V

hp
(18)

into (16) I get a relationship describing free displacement of a non-bonded piezoelec-
tric layer (T1 = 0)

u1

∣∣∣
T1=0

= Ld13

hp
V. (19)

The MFC actuator in my case can extend up to displacements calculated in table
3.1.

Voltage V [V] 10 50 100 300
Free displ. u1 [µm] -0.48 -2.41 -4.82 -14.45

Table 3.1. Free displacement of MFC M-8557-P2.

Bonding the actuated piezoelectric layer to a substrate layer causes stress in the
material resulting in a nonzero bending moment. The piezoelectric layer contracts (due
to the d31 effect) and the beam thus deflects its tip downwards (according to figure 3.4).
An element being bent is shown in figure 3.5. I will use a Euler-Bernoulli assumption
that plane sections remain plane after bending.

z

d

V

φ

hn

Figure 3.5. Element of a beam that is being bent.

The neutral axis is the dashed line in figure 3.5. It is characterized by zero stress
and strain along it. In other words, its length stays the same after bending. A position
of the neutral axis is different for different thicknesses and materials used. A stiffer
material tends to place the neutral axis in it’s thickness middle. In my case it is the
silicon wafer that is much more stiff than the MFC; the neutral axis takes place in the
upper half of the monomorph.

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Static analysis

The exact position (distance from the bottom edge of the piezoelectri layer) [13] is
given by

hn = −

(
h2

p

Yp
+ h2

s

Ys

)
− 2

(
hp

Yp
+ hs

Ys

)
(hp + hs)

2
(
hp

Yp
+ hs

Ys

) . (20)

The calculated value for the my case is listed in table 6.1.
Distance from the neutral axis (in the direction shown in figure 3.5) is denoted z.

Based on the figure 3.5 a strain-curvature relationship can be derived

S1(z) = (d+ z)ϕ− dϕ
dϕ

= z

d
= κz, (21)

where κ = 1
d is the local curvature. Using the constitutive relationships (11) and (4)

results in two equations representing the strain:

κz = 1
Yp
T1 + d13E3, (22)

κz = 1
YS
T1. (23)

The resulting moments are obtained by multiplying by z and integrating over the
cross-section (in this case of a simplified plate the thickness instead of cross-section is
used) ∫

z

Ypκz
2 dz =

∫
z

T1z dz +
∫
z

d13YpE3z dz, (24)∫
z

Ysκz
2 dz =

∫
z

T1z dz. (25)

To better understand what the individual integrals mean, I will now represent them
and describe their role in the problem. The first one is

Ms = −
∫
z

Ysκz
2 dz, (26)

a moment resulting from bending stiffness of the substrate. It can be clearly seen
that the higher the Young’s modulus of the substrate material is the more stiff is the
layer. The stiffness also increases with the cross-section area.

The same applies for the piezoelectric layer (its mechanical part)

Mpm = −
∫
z

Ypκz
2 dz. (27)

The electrical part creates a bending moment (which acts against the two moments
above) caused by an applied voltage across the piezoelectric layer

Mpe =
∫
z

d13Y
E

1 E3z dz. (28)

The reason for not using the Youn’s modulus Yp is the fact that the piezo-induced
moment comes from the active part of the MFC layer (ODKAZZZ).

Another moment can be added if there is external force acting on the plate. The
associated moment is denoted Me.

15
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Assuming perfect bonding between the layers the moment equilibrium equation is

Ms +Mpm +Mpe +Me = 0. (29)
The curvature κ is constant along z (thanks to the aforementioned Euler-Bernoulli

assumption) so it can be taken out of the integral. Rewriting (29) I get

κC =MpeV, (30)
where

C = EI

w
. (31)

The EI is a product of second moment of inertia and Young’s modulus. It represents
bending stiffness of the beam (sometimes called flexural rigidity). EI is used throughout
the literature, but here with w constant along the thickness C is used for simplicity.
The C is in my case

C = 1
3

(
Yp

(
(hp − hn)3 + h3

n

)
+ Ys

(
(hs + hp − hn)3 − (hp − hn)3

))
. (32)

Table 6.1 shows the values of EI and C for the monomorph cantilever plate.

Parameter [unit] Value
hn [µm] 675
EI [N·m2] 0.3982
C [N·m] 6.3208

Table 3.2. The computed values of hn, EI and C.

The Mpe represents the piezoelectric induced moment per unit Volt. The moment
is the actuator’s/controller’s input to the system. It is

Mpe = d13Y
E

1
2hn − hp

2 . (33)

For small displacements (angles) the angle ϕ can be approximated as

ϕ = ∂u3

∂x
, (34)

so that the displacement in the x-direction u1 can be rewritten to

u1 = ϕz = ∂u3

∂x
z. (35)

Differentiating (21) I get κ = ∂S1
∂z and with the use of (3) I can eventually rewrite

equation (30) to

∂2u3

∂x2 = Mpe

EI
V. (36)

The equation (30) is in differential form. The transverse displacement u3 can be
obtained by integrating. Here it is where the piezoelectric layer length comes into the
problem. Integrating twice over the length I get different results for different setups
(boundary conditions). In case of more piezoelectric patches bonded to the beam,
individual piezo-induced bending moments will be counted in by the integration. The
integration constants are evaluated by incorporating the boundary conditions.

16
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3.2.1 Solution to a monomorph cantilever
There are two boundary conditions for the cantilever in figure 3.4:

u3(0) = 0, (37)

∂u3(0)
∂x

= 0. (38)

The (37) stands for the left end being fixed in position and the second equation (38)
for the same end being fixed in rotation. The total displacement u3 (with no external
forces applied) is then

u3(x) = Mpe

2EI V x
2. (39)

Below is a table of deflections of the tip for various voltages supplied to the piezo-
electric layer. The displacements were calculated for u3(0.09) for the point I measured
using an experimental setup. It will be compared to the measured data.

Voltage V [V] 10 50 100 200 300
Tip displ. u3 [µm] -41 -205 -409 -818 -1227

Table 3.3. Tip displacement of the cantilever.

The bending curve for V = 200V is plotted in 6.3. I included it to show the parabolic
shape defined by (39).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

-0.8

-0.6

-0.4

-0.2

0
x 10

-3

z 
[m

]

x [m]

Figure 3.6. Parabolic deflection of the monomorph plate for V = 200V.
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3. Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Cantilever with a discontinuous voltage across its length

Let me now model a situation with either more piezoelectric patches of the same type
(except the polarization) bonded to a cantilever or one piezoelectric layer with more
electrodes. Two cases will be modeled, a case with 2 patches/electrodes and a case with
3 electrodes (figure 3.8).

hp

hs

l

VV

V

0.33 l

z

x

Figure 3.7. A cantilever with three electrodes.

General method for solving such discontinuities across the length of the cantilever
is to integrate (36) and solve it by handling the integrals over individual subdomains
(piezoelectric patches). Doing so I am able to obtain a solution for the fixed-free case.
The same can be done for other boundary conditions.

The discontinuous voltage v is in the form

v =


V if x ≤ l

2 ;

−V if x > l
2

(40)

for the first case and

v =


V if x ≤ l

3 ;

−V if l
3 < x ≤ 2l

3 ;

V if x > 2l
3 .

(41)

for the case with three piezoelectric patches. The analytical solution is

u3 =


ηV x2 if x ≤ l

2 ;

ηV (lx− x2

2 −
l2

4 ) if x > l
2

(42)

for a case with two electrodes/patches.

18
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For three electrodes it is

u3 =


ηV x2 if x ≤ l

3 ;

ηV ( 2l
3 x−

x2

2 −
l2

9 ) if l
3 < x ≤ 2l

3 ;

ηV (x2

2 −
2l
3 x+ l2

3 ) if x > 2l
3 .

(43)

where η was substituted for

η = Mpe

2EI . (44)

Below (figure 3.8) is a plot of bending curves for both the cases (42) and (43).

0 0.33 l 0.66 l l
0

z

x

0.33 l

Figure 3.8. Deflection resulting from two (dashed line) and three electrodes (solid).
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3. Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Dynamic analysis

Dynamic behavior of the plate will be analyzed in this section. The study is general and
can be used not only in active and adaptive optics. Vibration analysis is very popular
nowadays as it is possible to harvest energy from piezoelectric patches. And if tuned
properly, the system can be optimized to maximize the energy harvested.

It is good to understand equations that approximate the motion. I will now do a short
analysis of them. The linear part of the dynamics is in the form of the Euler-Bernoulli
equation for a one-dimensional case (beam) [14]

∂2

∂x2 (M(x, t)) + ρA(x)∂
2u3(x, t)
∂t2

= fe(x, t), (45)

which is actually an extended (but undamped) version of (36) with inertia included.
The external forces per unit length are denoted fe(t, r), inertial force of the plate is

FI = ρA
∂2u3(x, t)

∂t2
, (46)

where ρ is density of the beam and A is its cross-sectional area, which can, in general,
depend on x. The bending moment is the same as for the static analysis:

M = EI
∂2u3(x, t)
∂x2 . (47)

I can now rewrite (45) with (47), for a constant flexural rigidity EI I get

EI
∂4u3(x, t)
∂x4 + ρA(x)∂

2u3(x, t)
∂t2

= fe(x, t). (48)

Now, after the short introduction to the linear part of the dynamics, a solution to it
shall be found. The solution is sought in a separated form [13]:

u3(x, t) = X(x)φ(t) = X(x)φ0 e
jωt. (49)

3.3.1 Spatial response
I will start with a spatial response of the one-dimensional case. By plugging equation
(49) back into (48) and dividing it by EI I get

∂4X

∂x4 − k
4X = 0, (50)

which is a standard eigenvalue problem which is to be solved for k, where k4 is

k4 = ρAω2

EI
. (51)

A Laplace transform of (50)

L
{
∂4X

∂x4

}
− L

{
k4X

}
= 0. (52)

yields a solution in a spatial frequency domain

X(s) = 1
s4 − k4

(
s3X(0) + s2X ′(0) + sX ′′(0) +X ′′′(0)

)
. (53)
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A solution in spatial coordinate x would be understood much better and can be
gotten as a inverse Laplace transform of (53). The resulting function is

X(x) = X(0) a(kx) + X ′(0)
k

b(kx) + X ′′(0)
k2 c(kx) + X ′′′(0)

k3 d(kx), (54)

where the functions a, b, c, d are so-called Rayleigh shape functions

a(kx) = 1
2 (cos(kx) + cosh(kx)) ,

b(kx) = 1
2 (sin(kx) + sinh(kx)) ,

c(kx) = 1
2 (− cos(kx) + cosh(kx)) ,

d(kx) = 1
2 (− sin(kx) + sinh(kx)) .

Let me now incorporate the boundary conditions. Four of them are needed to be
able to solve the fourth-order PDE. For the fixed-free case (figure 3.4) they are

X(0) = 0,
X ′(0) = 0,

X ′′(l) = 0,
X ′′′(l) = 0.

It is now obvious that the conditions have to be satisfied by incorporating them into
the solution (54). I need to differentiate the equation to be able to use all the boundary
conditions. After properly differentiating the equation and incorporating the first two
boundary conditions I get X(0) = 0 and X ′(0) = 0, which means that the boundary
conditions are satisfied by the geometry of the shape functions itself.

The other two boundary conditions yield a set of equations(
a(kl) b(kl)

k

kd(kl) a(kl)

)(
X ′′(0)
X ′′′(0)

)
=
(

0
0

)
. (55)

The values X ′′(0) and X ′′′(0) represent a force and moment at x = 0 and must not be
zero (fixed end at x = 0). So a non-trivial solution to (55) is sought, which means that
the determinant of (55) has to be equal to zero. This condition results in a so-called
characteristic equation. For the fixed-free beam (cantilever) it is

cos(kl) cosh(kl) + 1 = 0. (56)

This transcendental equation needs to be solved numerically. The first 5 solutions to
it are listed in table 3.4. The corresponding natural frequencies will be discussed later
in section 3.3.2.

Mode n 1 2 3 4 5
knl 1.8751 4.6941 7.8548 10.9955 14.1372

Table 3.4. A numerical solution to the characteristic equation (56).

I can now rewrite the general solution (54) to the one of an n-th mode, a use of the
boundary conditions reduces it to

Xn(x) = 1
k2
n

X ′′n(0)
(
c(knx) + 1

kn

X ′′′n (0)
X ′′n(0) d(knx)

)
. (57)
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From (55) the fraction X′′′

n (0)
X′′

n (0) can be expressed and substituted in (58) so that I obtain
the final solution of the n-th mode’s spatial response

Xn(x) = 1
k2
n

X ′′n(0)
(
c(knx)−

a(knl)
b(knl)

d(knx)
)
. (58)

Normalized modes defining the shape are represented by the term in the bracket.
The value preceding it is arbitrary and only scales them. The first five normalized
modes are plotted in figure 3.9.

The superposition of modes

u3(x, t) =
∞∑
n=1

Xn(x)φn(t) (59)

represents the spacial response of a cantilever.
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0.5

1

0 0.5 l l
-1

0

1
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z

Figure 3.9. First 5 normalized spatial modes of a transverse vibration of a one-dimensional
structure.
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3.3.2 Time response
One might wonder what the time response of individual modes is. It has been repre-
sented by the φn(t) in equation (59) till now. The separation of time and space helps
solve it separately. Plugging the solution (59) into the Euler-Bernoulli equation (48),
integrating it to get rid of the differential dimensionless form yields

EI
∞∑
n=1

∫ l

0

d4Xn

dx4 φn dx+ ρA
∞∑
n=1

∫ l

0

d2φn
dt2

Xn dx =
∫ l

0
fe(x, t) dx, (60)

which is just what is expected — i. e. the second derivative in time in the PDE
yields a second-order model (undamped in this case) in the form (a detailed derivation
can be found in [13])

φ̈n + ω2
nφn =

∫ l
0 feXn dx

ρA
∫ l

0 X
2
n dx

. (61)

Let me now exclude the external forces to obtain a solution called the free vibration:

φ̈n + ω2
nφn = 0. (62)

The spatial and time response are naturally interconnected. Each spatial mode has
its own natural frequency characterizing its time response. The interconnection in
the model is provided by a mathematical description of its relationship, the dispersion
relation (51). The natural frequencies can be obtained from

ω =

√
EI

ρA
k2. (63)

Mode n 1 2 3 4 5
kn [m−1] 19.63 49.15 82.25 115.14 148.03

ωn [rad·s−1] 551 3452 9667 18945 31314
fn [Hz] 88 549 1539 3015 4984

Table 3.5. First five solutions to (63) (modes of the cantilever).

The solutions to (63) are shown in table 3.5. In order to evaluate it I used table 3.4,
EI value from table 6.1 and ρ from (2).

3.3.3 Two-dimensional vibrations
The analytical model presented above is not suitable for analyzing two-dimensional
cases. It might be possible to obtain a model, but sometimes it is not possible to
solve the eigenvalue problem, so a more approximating theory comes handy. One
such an approximation is the Rayleigh-Ritz method. The shape function w(x, y, t)
is approximated by a linear combination of n admissible functions Ψ(x, y)

w(x, y, t) = Ψ(x, y)q(t). (64)

It is a special set of functions (usually polynomials) which are selected to satisfy
geometry of the system (i. e. boundary conditions). Here q(t) is a time-only dependent
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vector for which we solve the problem. The Lagrange approach is used to formulate
the dynamics of the system which eventually shrinks to a standard form

Mq̈ + Kq̇ = F, (65)

where M is the system’s mass matrix, K is the stiffness matrix and F is the effect of
external forces. Solving the eigenvalue problem (F = 0) of the equation above yields
the desired eigenvalues and corresponding eigenvectors.

There are other methods for evaluating the frequencies and modes for plate vibra-
tions. The choice of such a method depends on the boundary conditions as the methods
are only for some of the 21 combinations (4 edges, each can be free, simply supported
or clamped). The whole plate theory including various methods is covered in [15].

A great book called Formulas for natural frequency and mode shape [16] offer engi-
neers numerical results for the first 6 plate modes for every of the 21 combinations. Not
only rectangular plates are covered by this book — hundreds of different shapes and
kinds of plates, shells and trusses are covered too. I used [16] to calculate the natural
frequencies for my case. I picked a rectangular ratio l

w = 1.5 which is the closest value
listed. The Poisson’s ratio used is 0.3. I used the frequency of the first mode obtained
in section 3.3.2 as a reference. The resulting mode shapes and frequencies fn = ωn

2π are
listed in table 3.6.

Mode n (1, 1) (1, 2) (2, 1) (2, 2) (1, 3) (3, 1)
fn [Hz] 88 296 547 999 1364 1569

Table 3.6. First six numerical solutions (modes) for fn.
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Chapter 4
Finite element models

The finite element method (FEM) was used as a second tool for modeling the plate.
FEM is a very popular way of modeling flexible structure. Many modules supporting
the piezoelectric effect can be found on the market. I used Structural Mechanics and
MEMs module1) as an extension to Comsol Multiphysics.

The initial idea was to use Comsol as a tool for exporting modal matrices, that
could be used to produce a modal state-space model useful for control. After finding
several bugs in Comsol’s software (the part that had bugs is an additional software
called LiveLink for MATLAB), I decided to give up and focus on things that can be
done within the Comsol Multiphysics itself. Static simulations will serve for validating
displacement and shape, dynamic simulations will yield mode shapes and the corre-
sponding natural frequencies.

I will first present the basics of FEM for the electromechanical case in section 4.1,
and then use it to model the plate by including the dynamics 4.3 or omitting it 4.2.

4.1 MDOF formulation
The method is based on using a finite number elements. The plate is simply divided into
elements (points), carefully chosen to represent motion (or other physical phenomenon)
of the plate. I would have an infinite number of points to model every detail. Working
with infinity can be done symbolically, but it is not suitable for numerical algorithms
run on PCs. Therefore, a carefully chosen finite set of points is used instead. It is
usually defined as a mesh, which prescribes the points locations (figure 4.2).
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Figure 4.1. Mapped-swept mesh of the cantilever plate.

1) http://www.comsol.com/products/mems/
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Having a set of points I can find its equation of motion either by Newton’s or La-

grange’s approach. The dynamic behavior of one point is described by a second-order
differential equation in time

mẍ+ bẋ+ kx = Fe, (1)

which can be rewritten using a state vector q =
(
x
ẋ

)
to obtain a state-space model

q̇ = Aq + BFe. (2)

The Fe is an external force acting on the point, m is the inertance (mass) of the
point, k its compliance (stiffness) and b its damping. Equations (1) and (2) express
dynamic behavior of a damped single degree of freedom (1DOF) problem. To cover all
the dynamics, two state variables for one DOF are needed.

A set of more points can be described the same way. The number of states is twice
the number of degrees of freedom, which equals the number of points. The governing
matrix equation is:

Mxẍ + Bxẋ + Kxx = Fe. (3)

It expresses the same as (1) and again the Mx,Kx,Bx is the mass, stiffness and
damping matrix respectively. The matrix Fe is composed of external forces acting on
individual points and vector x is composed of all points included in the analysis.

The electrical part of the system is often modeled statically. The reason for it is the
fact that the mechanical response is much slower than that of the electrical part. The
governing equation for MDOF (multi DOF) electrostatics is

KΦΦ = Qe, (4)

where Φ is an electric potential, KΦ is the matrix of electrical compliance (i. e. ca-
pacitance), and Qe is a matrix of electric charges brought to the electrodes.

Including the electromechanical coupling effects means adding coupling terms to both
the equations (3), (4) so that eventually I get

(
Mx 0
0 0

)(
ẍ
Φ̈

)
+
(

Bx 0
0 0

)(
ẋ
Φ̇

)
+
(

Kx KxΦ
KxΦ KΦ

)(
x
Φ

)
=
(

Fe
Qe

)
. (5)

An ideal source is assumed as there is no damping in (5) for the electrical part.
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4.2 Static FEM

The static finite element analysis reduces the equation (5) so that only potentials are
analyzed. It is the displacement in the mechanical domain and electric potential for
the electrical domain. The resulting equations for static FEM are:

(
Kx KxΦ
KxΦ KΦ

)(
x
Φ

)
=
(

Fe
Qe

)
. (6)

A simulation I performed for a single piezoelectric patch yielded the same parabolic
shape as the one described by equation (39) in section 3.2.1. A visualization of the
2D model is shown in figure 4.2. The tip displacement obtained from the model for an
electrodes voltage V = 10V was -41µm.
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Figure 4.2. Simplified plate (cantilever) deflection using a 2D FEM model (V = 10V).

Table 4.1 shows tip displacements obtained for various input voltages. The model
is fitted with material properties from table 2.2. The supplied voltage was scaled by a
constant due to the fact that the thickness of the active layer is much thinner than the
actual MFC actuator (section 2.2).

Voltage V [V] 10 50 100 200 300
Tip displ. u3 [µm] -41 -203 -406 -813 -1220

Table 4.1. Tip displacement of the cantilever using the 2D FEM model.
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4.3 Dynamic FEM

For dynamic analysis I will be using equation (5) derived above, which when converted
to the state-space form is actually a set of differential-algebraic equations (DAEs), an
expanded form of (2)

Eqq̇ = Aqq + BqFe. (7)
The matrix Eq is usually singular. It is useful to note that there are algebraic equa-

tions coming from the static description of the electrical part. The reason is that not
every solver is capable of solving DAEs directly (due to the mentioned singularity).

The form (5) is a so-called nodal form of the model. It directly expresses its behavior
in terms of the plate’s inertia, stiffness and optionally damping.

The nodal form can be converted into the aforementioned modal form so that the
motion of the flexible structure is expressed as a combination of different modes (shapes)
rather than different points. The conversion is sometimes called a modal decomposition.
The transformation from nodal to modal coordinates is found using the general solution
to (5). I already used the general solution in section 3.3, equation (49). Plugging the
solution into the undamped free vibration case of (3)

Mxẍ + Kxx = 0 (8)
yields

(Kx − ω2Mx)X(x)φ0e
jωt = 0. (9)

A nontrivial solution is sought in this case. To find one for the homogeneous set of
equations (9) the determinant of it must be equal to zero:

|Kx − ω2Mx| = 0. (10)
The equation above has a set of solutions denoted ωn, where n = 1, 2, .. up to the

number of degrees of freedom of the system. In case of a flexible structure which has
infinitely many degrees of freedom, an infinite set of solutions exists. The ωn are called
natural frequencies (or eigenfrequencies) and the corresponding solutions Xn = Xn(x)
for each one of them

(Kx − ω2
nMx)Xnφ0e

jωnt = 0. (11)
are called the mode shapes (eigenvectors). It can be shown that the eigenvectors are

orthogonal with respect to the stiffness and mass matrices [17].
The resulting transformation between the nodal (x) and modal (z) coordinates is

x = Zz, (12)
where Z = (X1, X2, ..) is a matrix of mode shapes and z their corresponding am-

plitudes. The transformation results in the expected second-order model described by
mode shapes with amplitudes varying (oscillating) in time. For the undamped case of
free vibration (8) it is

MxZz̈ + KxZz = 0. (13)
The damped case with external loads included is then

MxZz̈ + BxZż + KxZz = Fe. (14)
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4.3.1 Input-output model
It can be shown [14], [18] that thanks to the orthogonality, the set of equations (13) can
be transformed into an input-output model. A one-dimensional case for the transverse
displacement u3 = u3(x, t) might be assumed to have a separate solution as (49) in
section 3.3. The time-frequency Laplace transform of it, which I will use later, is

U3(x, s) =
∞∑
n=1

Xn(x)Φn(s). (15)

The solution in time φn(t) for an undamped case can be rewritten using the orthog-
onality conditions [14] so that it matches (61) from section 3.3.2:

φ̈n + ω2
nφn = Qn(t), (16)

the variable Qn =
∫
xXn(x)f(x, t) dx can often be decomposed to

Qn(t) = Fnu(t). (17)

The Laplace transform of (16)

s2Φn(s) + ω2
nΦn(s) = Qn(s), (18)

and use of a Laplace transformed relation (17) result in a transfer function for one
single (n-th) mode

Gn(s, x) = Φn(s)
U(s) = XnFn

s2 + ω2
n

. (19)

The complete solution is then obtained by including all the terms as in (15)

G(s, x) =
∞∑
n=1

XnFn
s2 + ω2

n

. (20)

The transfer function is an idealized undamped case. A damping can be added to the
denominator, it would be denoted in the standard notation ζn as a damping ratio for the
n-th mode. The upper limit ideally goes to infinity for a flexible problem with infinitely
many degrees of freedom. For a finite number of points in the nodal coordinates (which
is an approximation of the real problem) a finite number of modes is obtained. And
the transfer function sum’s upper limit is finite. A finite element model is actually a
set of the most influencing shape modes.

The transfer function (20) represents parallel (decoupled) connection of second-order
systems (each with its own mode shape and natural frequency given by the dispersion
relation (51)). The more subsystems the better the accuracy of the model as a whole.
The amplitudes of the mode shapes at higher frequencies are attenuated though, so
it is not a big error to cut them off, keeping only the modes that have the largest
displacement amplitudes.
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4.3.2 Simulation

The simplified two-dimensional case has n modes with frequencies fn. I obtained exact
values using the 2D FEM model already used in figure (6). The first 5 mode shapes
are those plotted in figure 3.9. The corresponding natural frequencies calculated by
Comsol are listed in table 4.2.

Mode n 1 2 3 4 5
fn [Hz] 86 536 1501 2937 4848

Table 4.2. First five modes and corresponding frequencies of the 2D FEM model.

I also created a 3D model using the dimensions from table 2.1 and other required
parameters from table 2.2. In this case full material matrices were needed. These were
hard to get as only some of the parameters can actually be measured or they are not
really influencing simulations and/or experiments. So only a few parameters are listed
in the manufacturers catalogs. I therefore assumed the piezoelectric layer to be of an
orthotropic material, for which I only needed a few parameters that can be found in the
available datasheets [10], [8]. The silicon wafer was modeled as an isotropic material,
using two parameters only: its Young’s modulus and Poisson’s ratio.

Simulating in 3D, I was able to let Comsol evaluate eigenvalues ωn of the plate. The
first 9 modes marked in the (m, n) fashion are plotted in figure 4.3. The number m
stands for a longitudinal mode (along the x-axis), whereas n stands for perpendicular
lateral modes (along the y-axis).
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Figure 4.3. First 9 vibrational modes including the eigenfrequencies evaluated by Comsol
(the (4, 1) mode at 3103 Hz is preceding the (3, 3) mode which is actually the 10th mode).
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Chapter 5
Nonlinearities

The piezoelectric material with similar characteristics to PZT-5A used in the Smart
Material’s MFCs exhibits standard piezoelectric non-linearities such as hysteresis, de-
polarization and creep. Most of the non-linearities come from the fact that piezoceram-
ics such as PZT are composed of ferroelectric domains, each of a uniform polarization.
There is a close analogy with magnetic domains. I will briefly describe the piezoelectric
nonlinearity, evaluate its consequences and decide whether or not to include such flaws
in the model (sections 5.1, 5.2, 5.3).

Other nonlinearities come from the fact that the measurement and control setup
itself is part of the system and it must be considered too. I will briefly go through it in
sections 5.4 and 5.5.

All the nonlinearities come with the actuator and sensor. The plant itself (the bend-
ing cantilever plate) is assumed linear (models from chapters 3 and 4).

5.1 Depolarization
The ceramic piezoelectric devices are manufactured from must be poled. It is a process
of aligning ferroelectric domains in one direction — a so called poling direction. The
poling process is usually done by applying high electric fields (1-10 MV/m) during high
temperatures. The polarized ceramic exhibits piezoelectric properties, whereas a non-
poled ceramic does not, because individual arbitrarily polarized domains cancel out
from the macroscopic point of view.

The poling voltage for the piezoelectric patch I analyzed (MFC-8557-P2) is just
Vpol = 450V, the operating voltage for the same piezoelectric patch is Vmin = −60 V
and Vmax = 360V (taken from [10]). The reason for this is the effect of depolarization.
The poling voltage is low compared to the operating voltage so it is obvious that there
is a vast influence between the electric field and the piezoelectric domains polarization.
In other words the piezoceramic poles itself by the operating voltage. The effect of such
a poling is not that large when keeping the voltage within the recommended operating
region, but it still results in a phenomenon called hysteresis which will be described
and modeled in section 5.3.

If I wanted to operate the piezoelectric patch out of the recommended range what
would happen is that the material’s polarization would suddenly switch by applying
negative voltage. This depolarization effect results in a so-called butterfly loop, i. e.
a voltage-strain (in my case voltage-displacement) plot. The piezo-overlain cantilever
thus exhibits the same behavior and its butterfly loop I measured is shown in figure 6.8
in section 6.4. The sudden switch is followed by a phenomenon called creep.

5.2 Creep
Creep is a phenomenon which is caused by the nature of piezoelectric ceramics and its
structure. The ferroelectric domains influence each other so when a change of polariza-
tion (change in applied voltage) is made a sudden change in strain or stress is observed,
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but it keeps on going even if the input voltage does not change at all. Meaning that it
takes time for the material to reach equilibrium. Time constants of the creep (which
decreases logarithmically with time) can go up to 100 seconds. One could call this effect
an inertia of piezoelectric polarization.

The creep effect can be seen in figure 6.8 and occurs after the sudden depolarization
at roughly ±200 V.

This nonlinearity not really influences the cantilever in my case and I will thus not
model it. The trend in modeling piezoelectric problems is not to include the creep.
Several models exist though, some of them can be found in [19] and [20].

5.3 Hysteresis
The major non-linear phenomenon regarding piezoceramics is that they exhibit hys-
teresis. It is of the same cause as in 5.1 and 5.2. The difference though is the view. In
this case it is a change in polarization influencing quality of the piezoelectric effect. By
the word quality I mainly mean the coupling d constant (matrix) which is not constant
at all (it depends on the voltage, temperature and time). The time dependence is the
mentioned creep and temperature dependence can be omitted. There is a small change
in polarization even for the smallest change of the voltage. These changes result in
better or worse quality of the piezoelectric effect which depends on whether I change
the polarization in favor of d or opposing to it.

Several models that come from the deep understanding can be found, e. g. a domain-
wall model [21]. These models describe the domain wall switching in the material and
are very precise. Its not useful for control purposes for its complexity though. The
models great advantage is their outstanding accuracy resulting from the fact that they
directly describe the underlying physics.

Another possibility to model hysteresis is just to ”describe” its behavior. Meaning
to describe it mathematically. Many descriptions exist, most of them are based on
simple models of generalized relays often called hysterons. The models can be extended
up to a infinite number of hysterons — in most cases a weighted parallel connection
of these. Currently available descriptions include Preisach model, Prandtl-Ishlinskii
model, Maxwell slip model, etc.

Other approaches come up with a totally different approach. They use the fact that
there is small, or even no hysteresis in the charge–strain relationship. One might then
control the charge instead of voltage as in [22] and [23].

5.3.1 Rate-dependence
Rate-dependence and independence is a phenomenon of the hysteresis changing shape
with higher rate. The rate does not directly means frequency, but frequency is mostly
used to measure the rate-dependence. The higher the rate the bigger the losses are in
real actuators and the larger the hysteresis loop area (which represents the losses) is.
Only idealized actuators can be assumed rate-independent or those that are restricted
to operate within a narrow frequency band.

The hysteresis in my thesis is idealized, rate-independent. The reason is that I do
not think the actuator would ever be used in the high frequency (hundreds of Hertz)
band. It is not needed for the purpose of adaptive and active optics.
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5.3.2 Prandtl-Ishlinskii model
The Prandtl-Ishlinskii (PI) model of hysteresis is one of the mathematical models using
hysterons. It is a so-called backlash operator in this case, coming from the backslash of
two gears. Its mathematical description according to [24] leads to

y(t) = max {x(t)− r,min {x(t) + r, y(t− T )}} , (1)

where y(t) is the output at time t, x(t) is the input, r is the magnitude of the backlash
and T is the sampling period. The initial value y(0) must satisfy the equation, in my
case it is y(0) = 0 for a zero cantilever tip displacement.

A weighted combination (parallel connection) of more backlashes

y(t) =
N∑
b=1

wb max {x(t)− rb,min {x(t) + rb, yb(t− T )}} , (2)

where N is their total number, b represents the b-th backlash operator and wb its
weight results in a shape of the hysteresis loop similar to that of the piezoceramics.

The model used for identification comes from [25] and I adopted it from Jiří Figura’s
concurrent thesis on modeling and control of the piezoelectric hysteresis [26]. The iden-
tification was done using 12 backlash operators whose parameters were found using the
least squares method. The measured hysteresis (input voltage vs. output displacement)
is on the left of figure 5.1, the identified model compared to the input is shown on the
right. The hysteresis loops counterclockwise in this case.
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Figure 5.1. Measured input-output relation compared to the identified PI model’s output.

5.4 Actuator amplifier
Another part of the actuator that has to be taken into account is the voltage amplifier.
The very small (38 × 38 × 16 mm) amplifier EMCO G05 that I got with the project
assignment amplifies voltage from 0–12V to 0–500V. The voltage amplification is al-
most linear with a small 40V dead zone near zero. I found a much larger issue for the
control purposes — the G05 not only amplifies the voltage it also amplifies current in
the same ratio. Even though it is rated at 1.5 W the amplifier does deliver it only at full
voltage (output voltage of 500V and the corresponding current of 1mA give 1.5W).
When the voltage to be amplified drops, so does the current (e. g. for 200V its only
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1mA). The problem of charging of the piezoactuator, which is electrically represented
by a capacitor, will be measured and discussed in section 6.5.

The same applies to the actual voltage source. If it has current limitation it should
be set in a way it does not influence the system. The piezoactuator can be electrically
described as a capacitor with capacitance C, the current i(t) through the capacitor is

i(t) = C
dv
dt . (3)

A harmonic signal with a frequency f and peak-to-peak voltage Vpp in the form

v(t) = Vpp
2 cos(2πft) (4)

results in a current according to (3). The maximum (peak) current is thus

imax = πfCVpp. (5)
Other notes regarding driving piezoelectric loads are for example in [27].

5.5 Sensor
The last nonlinearity to be discussed is the sensor part. The measurement setup in
the way I built it is nonlinear. The nonlinearity comes from the geometry and includes
trigonometric functions. The relation between the distance measured by the line camera
and the real deflection of a point of the plate is

ls = l1 + l2 = d1
sin β

sin(α− β) (sin(2α)− cos(2α) tan(2β)) + d2 tan(2β). (6)

The equation is derived according to figure 5.2. I chose the inclination angle α to be
π
4 to maximally simplify the equation to

ls = d1
sin β

sin
(
π
4 − β

) + d2 tan(2β). (7)

Including the assumption that the deflection is parabolic (section 3.2.1) doubles the
slope of the dotted cantilever in figure 5.2, and so the angle ζ. Assuming small deflec-
tions (angles β) for simplification and including the parabolic shape results in

ls = d1
β

π
4 − β

+ 4d2β. (8)
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Figure 5.2. Measured input-output relation compared to the identified PI model’s output.
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Chapter 6
Measurements

The cantilevered plate was measured at one point using the optical setup in figure 5.2
using a laser beam reflected to a line CCD camera Thorlabs LC100. The LC100 has
a single row of 2048 pixels, each 14µm thick. The total displacement that can be
measured is

2048× 14µm = 28.672 mm.

The camera is able to deliver a stunning frame rate of 900 fps (internal trigger).
In case an external trigger is used the frame rate drops to 450 fps. The LC100 is so
sensitive that a current supplying the laser had to be set to minimum value and even
though a total flood of charge occurred. I had to add several layers of paper sheets to
cover the sensor and thus reduce its sensitivity. I finally ended up with a finely tuned
CCD array (figure 6.1). To remove background noise I used a box covering the whole
experiment so that no external light could disturb it.

The plot of pixel intensities in figure 6.1 shows that the laser beam is of no quality.
A position of the intensity peak is used to determine the beam’s position. I wrote a
C script for this purpose as the supplied LC100 driver failed to work in MATLAB.
Thorlabs fixed the issue later so I could use a 32-bit driver for MATLAB. It was still
not fully functional, but I managed to implement it and use in Simulink to maintain
better synchronization between the actuator and sensor.
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Figure 6.1. Light intensity measured on all of the LC100’s pixels (integration time 1.05ms).

For small deflections of the cantilever the measurements on the CCD camera can be
assumed linear. It is not exactly linear though as the relation between the deflection of
the plate and the laser beam is not linear. More on this can be found in section 5.5.

Two options were used to supply the actuator. The first one, with which I started
the measurements, was a small 1.5W G05 from EMCO High Voltage1). This is a unit
the project was assigned with. I found that it has certain limitations and should be
used wisely (to be discussed in section 6.5). The limitations comes mainly from the fact
that the amplifier itself has size of a matchbox. The second option for amplification
1) http://www.emcohighvoltage.com/pdfs/gseries.pdf
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was a large laboratory linear amplifier EPA 104 from Piezo Systems1). This device is
able to deliver ±200 V and a peak current of 200 mA. Its linearity is very good, much
better than that of EMCO G05.

Computer with Humusoft MF 624

V

Line CCD camera LC100

Laser

Cantilever plate V

Voltage 
follower

EMCO G05
amplifier

USB

USB

USB 2.0

Function generator
METEX MXG-9810A

MF 624

V

Voltage 
follower

EMCO G05
amplifier

V

EPA 104
amplifier

V

EPA 104
amplifier

Figure 6.2. Instrument combinations used for the deflection measurements.

Figure 6.3. The measurement setup with EPA 104 amplifier connected to the piezoelectric
patch (left image). A detailed view of the reflected laser beam (right).

The input signal was generated by a computer and outputted using a Humusoft MF
624 I/O2) card or by a function generator METEX MXG-9810A3). I used a voltage
follower the amplifier in case of the EMCO amplifier due to its nonzero input resistance.
Draining current from the MF 624 or the function generator would not be a good idea
since their outputs are designed to make a perfect shape of the voltage function and
not to be a source of current.

1) http://www.piezo.com/prodelect1epa104.html
2) http://www.humusoft.cz/produkty/datacq/mf624/
3) http://www.tequipment.net/MetexMXG-9810A.html
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I used all four combinations of EPA 104, EMCO G05 and MF 624, METEX generator
(figure 6.2). Due to a buggy LC100 driver for MATLAB the external mode in Real-
Time Workshop in Simulink could not be used so I used the normal mode only. The
normal mode was able to deliver a 10millisecond precision, but no better. That is why
I also used the function generator. The measurements of faster signals were made using
the program that I coded in C. I was then able to read output from the line camera at
the full rate of 900 fps.

6.1 Response to initial conditions
The very first thing I decided to measured was response to initial condition. A smoothed
result for a tip displacement movement is in figure 6.4. The initial condition was a
deflection from pixel 620 to 1450. By closer inspection of the response I found that the
frequency of the tip oscillation is 88Hz. I also verified the frequency using FFT (Fast
Fourier transform) in MATLAB.
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Figure 6.4. Tip displacement response to initial conditions (deflection at t = 0).
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6.1.1 Validation of Young’s moduli

The oscillatory movement of the tip is certainly the first resonant mode obtained in the
dynamic analysis in section 3.3.1.

The weight of the plate which I measured to be

m = 21 g. (1)

and the frequency of 88Hz can be used to verify the flexural rigidity EI and the
Young’s moduli respectively. The values were already gotten analytically in section 3.2.
For that purpose I need to get the plate’s weight per unit length ρl. From (1) it is

ρl = m

L
= 0.21 kg·m−1. (2)

Following (51) in section 3.3 I indirectly measured EI to be

EI = ρlω
2
1

k4
1

= 0.4118 N·m2. (3)

Parameter [units] Measured value Analytic value
EI [N·m2] 0.4118 0.3982
C [N·m] 6.5363 6.3208

Table 6.1. Comparison of the measured EI and C with values from table 6.1.

6.1.2 Damping identification
The same plot (figure 6.4) can be used for the purpose of a damping identification. The
speed with which the sinusoid decays is closely related to the damping. I identified the
damping ratio ζ from two local maxima (ya = u3(ta) − u3(0) and yb = u3(tb) − u3(0))
of the decaying sinusoid, where ta < tb. The resulting damping is then

ζ = 1
2πn ln

(
yb
ya

)
. (4)

The parameter h is the number of periods between the two extrema. The damping
ratio is very low for flexible structures, in my case it is

ζ = 0.047. (5)
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6.2 Static deflection

The values from the LC100 were recalculated to convert it from pixels to the tip dis-
placement u3(l). A small error might have been caused by the camera’s noise. The
actual point at which the beam reflected was at a distance of 9 cm from the clamped
end. The values measured are compared to the values from tables 3.3 and 4.1.

Voltage V [V] 10 50 100 200 300
Measured u3 [µm] -45 -206 -388 -825 —
Analytic u3 [µm] -41 -205 -409 -818 -1227
u3 [µm] (FEM) -41 -203 -406 -813 -1220

Table 6.2. Tip displacement of the cantilever comparison.

6.3 Modal response

The dynamic response of the cantilever plate was already simulated using FEM. I could
only measure few modes using the line camera as it is able to reconstruct signals only
below half of its sampling frequency. I measured the rest by projecting the laser beam
onto a paper and watching it wobble. The projected shape of the laser beam was either
horizontal or vertical depending on the mode shape. Combined shapes can even make
the laser beam running in circles. Different points of the cantilever plate yield different
results. There were two points I selected for the measurement, the tip midpoint and
the upper tip corner.

Most of the measured modes were identified and they are listed in table 6.3. The
modes are listed in the same (m,n) manner as in section 4.3.2. The measured modes
are close to those simulated with FEM (figure 4.3) and those gotten from the analytical
study (tables 3.6 and 3.5).

Mode (1, 1) (1, 2) (2, 1) (3, 1) (2, 3)1) (4, 1) (5, 1)
fn [Hz] 88 276 550 1490 2155 3100 4800

Table 6.3. Measured modes including their natural frequencies.

6.4 Hysteresis

The hysteresis already described in section 5.3 was very hard to measure with my setup
due to synchronization problems. The LC100 was badly triggered from Simulink and
its response time was shifted against the reference voltage. The synchronization prob-
lems resulted in an erroneous behavior — the hysteresis loops measured were thicker
for higher frequencies (see figure 6.5). This was not due to the rate-dependence which
occurs on much higher frequencies, but due to the phase shift caused by bad synchro-
nization. The hysteresis loops were smoothed to remove noise.
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Figure 6.5. Hysteresis measured at the tip of the cantilever (unipolar input voltage).

The hysteresis is history-dependent, so it matters what the last state of the material
was. The history can be cleared by a bipolar decaying sinusoid. I used the one plotted
in figure 6.6. The clearing results in the removal of remanent polarization. Three of the
graphs in figure 6.5 were obtained measuring the cleared cantilever, these have a loading
curve starting at around 550th pixel. The last graph (lower right) does not posses a
loading curve, it is a local hysteresis loop for the electrodes voltage of 120–160V.
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Figure 6.6. Clearing the remanent polarization by a linearly decaying sinusoid. The solid
line represents the displacement of the tip. The dashed line is the remanent polarization.
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I had to use the EPA 104 amplifier for measuring the bipolar hysteresis. The amplifier
is not able to deliver more than ±200V, but I would not even use more in this case
because of the depolarization effect (section 5.1). The resulting hysteretic responses for
-180–180V and -100–100V are shown in figure 6.7.
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Figure 6.7. Hysteresis measured at the tip of the cantilever (bipolar input voltage).

The EPA 104 was not able to supply voltage for the butterfly loop measurement,
because of its peak voltage of ±200 V. I had to use the EMCO G05 amplifier in this
case. The measurement (figure 6.8) was done almost statically, the voltage change from
−V to +V took 1 minute.
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Figure 6.8. The measured butterfly loop (voltage on electrodes vs. tip displacement).

6.5 Comparison of the amplifiers
The nonlinearity of amplifiers, especially the G05, already mentioned in section 5.4,
changes the system’s behavior. There are 4 graphs in figure 6.9 demonstrating it. The
discharge time takes more than 2 s in the lower left graph, whereas the rise time is
only 60ms. The asymmetry is due to G05 proportionally amplifying both current and
voltage. This results in a very large output resistance for very low input voltages.
The piezoactuator therefore cannot operate on higher frequencies. It cannot discharge,
oscillating around the peak voltage (upper left and lower right plot in figure 6.9).
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Figure 6.9. Four measurements of the voltage amplifier nonlinearity (G05 and EPA 104).
Reference signal is the dashed line, output the solid line.

The strong nonlinearity of G05 even results in a very interesting phenomenon. The
resonant frequency of 88Hz as measured and calculated before can be excited by a
lower frequency. The reason is the nonlinearity, the way it ”kicks” the system when
charging the amplifier and the inability to discharge it. I measured such behavior
at 44Hz (half of the resonant frequency), 29Hz (third) and 22 Hz (quarter). The
phenomenon is demonstrated by a chirp signal and a detailed view of the output at
the resonance-exciting frequencies (figure 6.10). Another interesting thing is that the
curious excitation takes part even with the EPA 104. It is not that apparent as with
G05, but still visible even by eye. A linear system would not exhibit such a behavior.
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Figure 6.10. Resonance excited by lower frequencies as a consequence of the nonlinearities.
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Chapter 7
Control

The control of active and adaptive optics is among the most discussed long-term goals in
optics. A feedforward compensation of nonlinearities like hysteresis and depolarization,
which I will briefly mention in section 7.1, is useful to get rid of the actuator’s unwanted
properties. It is a well maintained topic already and it is among the goals of adaptive
and active optics. Adding an nonlinear actuator is actually the controller’s problem,
but as outlined in the thesis introduction it is the optics that needs to be controlled,
not the actuator.

Controlling the optics shape is a challenge. A feedforward controller is not always
helpful as it cannot cope with disturbances active and adaptive optics was designed for.
The feedforward design might remove the unwanted predictable disturbances, leaving
those that are unknown to the controller. To know them a sensor must be included.
But how to measure an atmospheric disturbance or flatness of a surface?

There are many solutions for adaptive optics. For example the Shack-Hartman cam-
era or a guided star method for wavefront distortion measurements [28]. But when it
comes to topics closer to active optics, feedback is hard to implement. In my case it is
the camera, with which I measure one point of the plate. Well enough for measuring the
static and dynamic deflection, but not for measuring flatness of the plate. A good idea
would be to use the piezoelectric layer (or add another one) as a sensor. It might be
suitable for dynamic control, but not suitable for static control due to charge leakage.

I will focus on feedworward control only. I will briefly mention problems that come
up with the piezoactuator in section 7.1 and use results from section 3.2 to control
shape of the cantilever in section 7.2.

7.1 Control of the piezoactuator

As already mentioned the actuator brings nonlinearity to the system. Other than that it
is very stable and fast. Its speed depends mostly on the internal resistance of the voltage
source. The G05 amplifier is very limiting (section 6.5) and I would not recommend
it for control. But the tip deflection can be very fast too, its rise time is in the order
of milliseconds. The EPA 104 would do that even faster, but I did not include it into
tests in order to avoid destruction of the cantilever.

The problem of the Silicon wafer attached to the actuator is its fragility. An acci-
dental short-circuiting the piezoactuator means actually short-cuircuiting a capacitor,
which ideally results in an infinitely large current. That means an infinitely fast change
in the strain, so the Si wafer breaks apart.
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7.1.1 Polarity

The measured data plotted in figure 6.8 confirm the depolarization issue. The piezo-
electric actuator should therefore be used in a limited range of input voltages. Only
one polarity should be used ideally to avoid problems with depolarization. Accidentally
depoling the ceramics results in loosing its original properties (mainly the d constants).
To restore it back to its original (catalog) values, the ceramic has to be repoled by
applying strong electric field.

7.1.2 Compensation of the hysteresis

The measured hysteresis loop from section 6.4 can be compensated with an inverse
of the Prandtl-Ishlinskii model [25], [29]. The inverse operator is connected with the
plant in series as shown in figure 7.1. It is a feedforward solution, sometimes called the
open-loop hysteresis compensation.

Inverse
hysteresis

model

Piezoelectric
actuator with

hysteresis
Linear plant

Actuator linearization

Figure 7.1. The feedforward compensation of hysteresis (taken from [25]).

The inverse PI calculated from the PI model from section 5.3.2 and a simulated
compensation according to figure 7.1 are shown below in figure 7.2. Note that the
inverse operator is almost perfectly compensating the hysteresis, the simulation on the
right shows the linear reference-output relation.
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Figure 7.2. The inverse PI model on the right, reference-output relation on the left.
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7.2 Shape control
A reverse analysis of the same problem as in sections 3.2.1 and 3.2.2 can be used to find
electric field that would form a desired shape. The shape must be within the range of
the actuator and the cantilever itself (i. e. its boundary conditions).

The reverse analysis includes double differentiating with respect to x according to
equation (36) in section 3.2. The resulting function of voltage is a second derivative
of a desired shape. The lowest possible degree of a polynomial of the desired shape, a
second-order polynomial, corresponds to a constant voltage. A cosine shape function
results in a cosine function of voltage and so on. A care must be taken though and the
boundary conditions have to be considered. The sine function, for example, does not
fulfill the boundary conditions in my case. Below is a cosine function I chose for the
plate to adapt to:

u3(x) = a cos
(

4π
l
x

)
− a, (1)

which is also plotted in figure 7.3.

0 0.5 l l
-2 a

z

0

x

-a

Figure 7.3. Desired shape of a simplified cantilever plate fixed at (x, z) = (0, 0).

The equation that needs to be solved is

∫ l

0

∫ l

0
ηv(x) dx dx = a cos

(
4π
l
x

)
− a. (2)

The general solution to (2) is a function of voltage

v(x) = −16π2a

ηl2
cos
(

4π
l
x

)
. (3)

Such a function can be approximated by a finite number of electrodes. I modified
the FEM model used in section 4.3 so that it had 10 electrodes and applied voltage to
them according to (3). The voltage was discretized using each electrode’s middle point
as a reference. The calculated voltage for a chosen a is in table 7.1.

Electrode 1 2 3 4 5 6 7 8 9 10
x [mm] 5 15 25 35 45 55 65 75 85 95
V [V] -243 93 300 93 -243 -243 93 300 93 -243

Table 7.1. Calculated voltages V for the 10 electrodes.
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Figure 7.4. Deflection of the monomorph cantilever with 10 electrodes (the voltage is
applied according to table 7.1).

The case with a fixed end is too constrained, it does only allow few functions that
fulfill the boundary conditions. In case of a simply supported structure one could obtain
a model for both the cosine and sine functions which can theoretically be combined to
obtain any periodic function (spatial Fourier series). Such a result can be used for
shaping the mirrors of a KB module (figures 1.1 and 1.2).
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Chapter 8
Conclusions and future work

Models presented in this thesis offer insight into behavior of the cantilever plate with
piezoelectric patches bonded to it. The static analytic model (section 3.2) introduces
analysis of bending moments useful for control design purposes. The dynamic model is
a result of solving partial differential equations with given boundary conditions. The
static model’s contribution is the possibility to control shape of the plate by controling
the piezo-induced bending moment (I demonstrated it in section 7.2 by presenting a
monomorph cantilever with 10 electrodes). The dynamic model completes the under-
standing by doing the modal decomposition of the plate’s motion. I confirmed the static
and modal approach by simulating the monomorph plate in Comsol both statically and
dynamically. The electrodynamics of the actuator can be neglected to reduce the num-
ber of freedoms. Although I managed to find and specify all material parameters (in
the form of matrices) needed for FEM and simulate responses correctly, Comsol was
unable to export state-space matrices for further use of the models.

Another part of the analysis were the nonlinearities. As mentioned in chapter 5 most
of them come from what make the optics adaptive or active. The piezoactuator brings
in many nonlinearities, such as creep, hysteresis and depolarization. I therefore made
considerations regarding compensation of the unwanted effects in section 7. These in-
clude polarity limitations 7.1.1, feedforward hysteresis compensation 7.1.2 and amplifier
selection 6.5. Based on it I found the EMCO High Voltage amplifier not suitable for
dynamic control.

Measurements presented in chapter 6 matched the simulations, a comparison of the
static tip displacements is listed in table 6.2. The measured response of the piezoelectric
actuator was very fast. Sudden changes in the reference voltage should be avoided not
to destroy the fragile Silicon wafer.

Future work might include a laboratory experiment with the same silicon wafer cov-
ered by more electrodes. In case of more than 10 electrodes, the problem of wiring
comes up. It could be eliminated by a distributed control. The distributed control
might also be used and implemented in the X-ray KB layout (figure 1.1). The feedback
control resulting in focused images with minimum distortions is a long-term goal for
the team I was lucky to become part of.
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