
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Development of a mobile web browser user
interface for the blind

Bc. Jan Charvát

Supervisor: Doc. Ing. Daniel Novák, PhD.
Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics
April 2019

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

420279Osobní číslo:JanJméno:CharvátPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra řídicí techniky

Kybernetika a robotikaStudijní program:

Kybernetika a robotikaStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Vývoj uživatelského rozhraní pro webový prohlížeč pro nevidomé

Název diplomové práce anglicky:

Development of a mobile web browser user interface for the blind

Pokyny pro vypracování:
1. Seznamte se s existujícím mobilním systémem pro nevidomé uživatele
2. Seznamte se s existujícími opensource mobilními HTML renderovacími jádry. Především prozkoumejte možnosti použití
jádra Gecko a jádra Blink a vyberte vhodného kandidáta pro integraci do existujícího systému.
3. Navrhněte a implementujte uživatelské rozhranní uzpůsobené pro nevidomé uživatele využívající zvolené renderovací
jádro.
4. Výsledný koncept otestujte na 5 nevidomých nebo slabozrakých uživatelích

Seznam doporučené literatury:
[1] Petr Svobodník. “Zpřístupnění mobilních telefonů se systémem Android pro nevidomé uživatele”. Diploma thesis. Czech
Technical University in Prague, 2013.
[2] Mozilla Foundation. Gecko repository on Github. https://github.com/jostw/gecko/tree/master/mobile/android
[3] Chromium contributors. Chromium/Blink repository. https://chromium.googlesource.com/chromium/blink
[4] Ritwika Ghose, T. Dasgupta and A. Basu. Architecture of a web browser for visually handicapped people. 2010 IEEE
Students Technology Symposium (TechSym), Kharagpur, 2010, pp. 325-329.
[5] J. Cofino, A. Barreto, F. Abyarjoo and F. R. Ortega. Sonifying HTML tables for audio-spatially enhanced non-visual
navigation. 2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, 2013, pp. 1-5.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Daniel Novák, Ph.D., Analýza a interpretace biomedicínských dat FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 28.05.2019Datum zadání diplomové práce: 26.02.2019

Platnost zadání diplomové práce:
do konce letního semestru 2019/2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
prof. Ing. Michael Šebek, DrSc.

podpis vedoucí(ho) ústavu/katedry
doc. Ing. Daniel Novák, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
Foremost, I would like to thank my su-

pervisor Doc. Ing. Daniel Novák, PhD.
for offering an interesting topic of inves-
tigation and his support. Furthermore, I
would like to thank Czech Blind United
(SONS) for valuable comments and will-
ingness to help with user testing.

I would also like to thank my parents
for their continued moral and financial
support throughout my studies.

Declaration
I declare that the presented work was

developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne

...................................

signature

v

Abstract
This thesis deals with the development

of a mobile web browser for visually im-
paired people (i.e., blind and low vision).
The user interface was developed con-
cerning the specific needs of the target
user group. The resulting accessible mo-
bile web browser was integrated into the
existing Core system developed for vi-
sually impaired people. Integrated web
browser was tested by visually impaired
users in cooperation with Czech Blind
United (SONS).

Keywords: mobile web browser, web
accessibility

Supervisor: Doc. Ing. Daniel Novák,
PhD.
Department of Cybernetics,
Karlovo náměstí,
Praha 2

Abstrakt
Tato práce se zabývá vývojem mobil-

ního prohlížeče pro lidi se zrakovým posti-
žením (tj. slepce a slabozraké). Uživatel-
ské rozhraní prohlížeče bylo navrhnuto
s ohledem na specifické potřeby cílové
uživatelské skupiny. Výsledný přístupný
prohlížeč byl integrován do existujícího
systému, který byl vyvinut pro zrakově
postižené uživatele. Integrovaný prohlížeč
byl testován zrakově postiženými uživateli
za spolupráce se Sjednocenou organizací
nevidomých a slabozrakých (SONS).

Klíčová slova: mobilní webový
prohlížeč, přístupnost webu

Překlad názvu: Vývoj uživatelského
rozhranní pro webový prohlížeč pro
nevidomé

vi

Contents
1 Introduction 1
1.1 Web accessibility 3

2 The Core system and other
related work 5
2.1 Desktop browsers for visually
impaired . 5

2.2 The TalkBack 6
2.3 Other accessibility solutions 8
2.3.1 The VoiceOver 8
2.3.2 The Corvus 9

2.4 The Core system 9
2.5 Conclusion 12

3 Web browser design 13
3.1 Introduction 13
3.2 Web browser engines 15
3.2.1 WebKit 15
3.2.2 Blink . 15
3.2.3 Gecko and GeckoView 15

3.3 Requirements 16
3.4 Input interface design 17
3.4.1 Controls and navigation in the
page . 17

3.4.2 Voice input 20
3.5 Output interface design 22
3.5.1 Visual . 22
3.5.2 Text-To-Speech 22
3.5.3 Earcons 23
3.5.4 Vibrations 24

3.6 Menu design 24
3.7 Conclusion 24

4 Web browser implementation 27
4.1 Introduction 27
4.2 Architecture 27
4.2.1 Representation and navigation
module . 28

4.2.2 Content extraction and
filtration module 30

4.3 Implementation 30
4.3.1 Main activity 30
4.3.2 Accessibility service 30
4.3.3 Tree search algorithm 31
4.3.4 Menu . 32
4.3.5 Prompt and dialogs 34
4.3.6 Auto-scroll 35
4.3.7 File downloads 36
4.3.8 Finder . 36
4.3.9 Error page 37

4.4 Integration into the Core system 37
4.4.1 The Core System more
technically . 38

4.4.2 Target device 39
4.5 Conclusion 41

5 User testing 43
5.1 Introduction 43
5.2 Pre-test . 43
5.3 Tasks . 45
5.4 Post-test . 47
5.5 Testing summary 48
5.6 Important findings of the testing 48
5.7 Conclusion 49

6 Conclusions 51

Bibliography 53

A User-testing questionnaires 57
A.1 Pre-test questionnary 57
A.2 Post-test questionnary 58
A.2.1 Participant 1 58
A.2.2 Participant 2 58
A.2.3 Participant 3 58
A.2.4 Participant 4 58

vii

A.2.5 Participant 5 59

B Abbreviations used in thesis 61

C CD Content 63

viii

Figures
1.1 Mobile technology, internet and
social media use more common in
advanced economies. 2

2.1 According to the survey on
preferences of screen readers users
[33] is Firefox the most used browser
among the screen readers users. 6

2.2 According to the survey on
preferences of screen readers users
[33], Internet Explorer is not the
most used browser among the screen
readers users for the first time. The
graph also reveals that the popularity
of Firefox and Chrome is stably
increasing. 7

2.3 Several web pages opened in
Chrome browser and explored using
TalkBack service. The green
bounding rectangle is a virtual cursor
(a.k.a accessibility focus), which
marks a current selection, whose
content and type is read by TTS. . . 9

2.4 Examples of UI components used
by the Core system. From left to
right: a) Top level iconic menu item,
b) Numeric keyboard for entering a
number to dial, c) Lower level menu
item and d) Running Stopwatch
activity. 11

2.5 Subset of the Core system menu
graph. 11

3.1 The 26 most often used HTML
elements ordered by frequency
according to [6]. 14

3.2 Most often used navigation
methods for finding information on a
lengthy web page according to the
survey on preferences of screen reader
users [33]. 18

3.3 Target device tactile buttons with
assigned functions. 21

3.4 UI screens from Browser
documents the usage of different
input methods (i.e. keyboard and
speech dictation). From left to right:
a) The classic keyboard input
method with integrated TTS, b) Text
recognized by speech recognition
engine, c) Text inserted to the input
entry in the page after speech
recognition. 21

3.5 Example of a virtual cursor
bounding rectangle. 23

3.6 Tree structure of browser menu. 25

4.1 Block Diagram of the architecture
of the proposed mobile web browser
for the blind. 28

4.2 Example page created to illustrate
the mapping between the HTML
structure of document and a internal
page representation used by the
Representation and navigation
(captured in Figure 4.3). 29
4.3 Representation of the page
captured in Figure 4.2. The long
texts of paragraphs were ommitted
becauseof clarity. 29

4.4 An example of the tree that
represents the structure of a simple
page with logo, menu formed by links
and some text with headings. The
node with red text denotes the
selected node c and green bounding
rectangles the path from root r to
the selected node c after the
algorithm finished. 32

4.5 Examples of some menu screens
implemented using the Core system
UI components. 34

ix

4.6 Examples of UI screens related to
the media playing shows that even
the medial content can be accessed
quite easily: a) Media autoplay
settings option, if selected audio and
video content present in pages starts
automatically, b) Playing video at
youtube.com manually without
autoplay option on using ’Play’
button c) Playing internet radio. . . 34

4.7 Examples of UI screens of
implemented JavaScript prompt
dialogs: a) Simple alert dialog with
message b,c,d,e,f) Text dialog with
optional checkbox a predefined text. 35

4.8 UI screens document an example of
Choice prompt usage in following
use-case: a) User clicks on combobox,
which prompts for the language of
search, b) Choice prompt is
implemented using the Core system
UI components, c) After user selected
Czech language. 36

4.9 Examples of UI screens of
implemented JavaScript prompt
dialogs: a) Button prompt asking for
sharing location, b,c,d) process of
choosing color in Color prompt. . . 36

4.10 UI screens give an example of
downloading files. 37

4.11 UI screens give an example of
using browser finder. From left to
right: a) Find in page item in menu,
b) Keyboard, c,d) First and last
match with the search term. 37

4.12 Example of Error page with
virtual cursor (yellow rectangle)
focusing heading ’Error’. 38

4.13 Example of page representation of
Error page stored in Representation
and navigation module. Element 6
corresponds to the line break tag so
that the role is unknown, because is
not important for accessibility. . . . 38

4.14 Example of voice control usage for
opening the Browser. From left to
right: a) An integrated voice control
feature of the Core system, b)
recognized command open the
Browser, c) Browser opened with
voice command. 39

4.15 Screenshots of integrated web
browser. From left: a) Browser
launch icon in the Core system menu,
b) Screenshot of www.google.com
with selected link "Images", c)
Screenshot of a www.google.com after
page has been almost explored.
Yellow rectangle (a.k.a accessibility
focus) highlights currently selected
page element. 39

4.16 Part of the Core system menu
after the integration with highlighed
Browser. 40

4.17 Target device 41

x

Tables
2.1 TalkBack gestures. 7

3.1 Web browser controls. 20

4.1 States of the algorithm during the
search. Note that the transition
betweeen the 2 children of the same
parent is done in 2 iterations. In first
iteration, the current node is set to
the parent, but the path remains
unchanged. In second iteration, the
unchanged path is used to determine
previously visited child and next
child to visit. 32

A.1 Pre-test questionnary. 57

B.1 Abbrevations used in thesis. . . . 61

C.1 CD content. 63

xi

Chapter 1
Introduction

According to the World Health Organization (WHO) estimates, 1.3 billion
people live with some form of vision impairment, 217 million of them have
moderate to severe vision impairment (VI), and 36 million people are blind
[35]. The leading causes of VI are uncorrected refractive errors, cataract,
age-related macular degeneration, glaucoma, diabetic retinopathy, corneal
opacity, and trachoma. An experience of VI varies upon many different
factors (e.g., availability of prevention and treatment or accessibility of public
space or information space). Vision loss is the most serious sensory disability,
causing approximately 90% deprivation of entire multi-sense perception for
an individual [25]. VI has a significant impact on an individual’s quality of
life (QoL), including the ability to work and to develop personal relation-
ships. Almost half of the visually impaired people (VIP) fell "moderately" or
"completely" cut off from people and things around them [25].

The Assistive technology (AT) is commonly considered to be technology
designed for people with some form of impairment or seniors, and by defini-
tion, it is a broad topic involving technologies, equipment, devices, apparatus,
services, systems, processes and environmental modifications [2]. AT has
a very relevant social impact, allowing impaired people to live more inde-
pendently and perform activities of daily life (ADL) effectively and safely,
which leads to increasing overall QoL. Regrettably, due to our ever-increasing
aging and blind populations, AT has the potential to impact our QoL in the
future broadly. Research on assistive technology for the visually impaired has
traditionally focused on mobility, navigation, object recognition and printed
information access.

Over the last decade, there has been the expansion of smart mobile tech-
nology, and it became an integral part of our everyday life. According to [30]
the smartphones dominates over the cell phones in advanced economies, but
also most of the emerging ones. It’s estimated that in developed countries
76% of adults owns a smartphone and in developing countries 45%. What is
more interesting for this thesis, 90% of adults from developed countries and
60% from developing countries use the internet (see Figure 1.1). A significant
part of them also tends to use social media. It reveals how fundamental the

1

1. Introduction
internet became over the years.

Figure 1.1: Mobile technology, internet and social media use more common in
advanced economies.

The rise of available, omnipresent and ever more powerful smartphones
brought new opportunities in the field of AT [25]. One of the advantages of
modern smart-phone used as a universal accessibility tool is the fact that
most people tend to carry it with themselves most of the day, so it is more
convenient than any other specialized accessibility devices. Multipurpose,
customizable and affordable mobile devices, became the platform for delivering
a large number of diverse ATs in the form of single-purpose applications or
more complex software systems modifying the device behavior for special
needs. However, mainstream mobile devices are typically visually demanding,
which makes them not accessible enough for individuals with VI. This need
led to the exploration of usage of sensory modalities other than vision became
the most powerful tool in making these devices accessible. The most explored
sensor modalities are

2

................................... 1.1. Web accessibility..1. speech recognition,..2. non-speech auditory feedback,..3. haptic feedback,..4. multimodal input,..5. text-to-speech (TTS),..6. gesture recognition.

At present, most of the mainstream smart-phones offer various accessibility
tools making these devices accessible for people having various types of
impairment. Moreover, the developers of mobile applications are encouraged
to follow the correct accessibility design to attract more users with disabilities
[17].

1.1 Web accessibility

Accessing the internet is essential for most of us and is widely used for
shopping or communication among many others. Internet presents the most
significant source of written information in human history, however, without
special tools or browsers, this useful source of information is often inaccessible
to the people with disabilities, in our case to the people who are VI.

The well-working web accessibility solutions are built on following pillars: a)
web design w.r.t accessibility (responsibility of web developers and designers),
b) usage of accessibility tools like screen readers or browsers (responsibility
of accessibility tools developers). The correct design of a web page with
accessibility in mind can prevent some common tiring problems, e.g., search
button with missing or improper description.

Examples of some recommended best practices for accessible web design
according to [34] are..1. Don’t use completely inaccessible elements like Flash...2. Do not use popup windows. They break the back button, confuses the

user and causes lost focus-related problems...3. Put alt tag on images used for links and empty alt tag for any other
image, so that the users are not forced to iterate over a large number of
image descriptions...4. Use label tag for input fields.

According to the survey on preferences of screen reader users [33] based on
responses from 1792 participants, the approximately 85% of respondents an-
swered that ’Better (more accessible) web sites’ would have a more significant
impact on accessibility than ’Better assistive technology.’

3

4

Chapter 2
The Core system and other related work

This work focuses on design and implementation of a mobile web browser for
the blind and VIP and following integration into the phone powered by the
Android-based Core system [31] developed for the VIP. To my best knowledge,
there is no specific mobile web browser for the blind; the existing solutions
are regular mobile web browsers made accessible through multipurpose acces-
sibility tools (e.g., TalkBack on Android OS, or VoiceOver on iOS). These
accessibility tools will be discussed in the following Sections for comparison.
Some of the existing desktop web browsers for the VIP will be discussed in
Section 2.1, because many problems related to web accessibility affects both
desktop and mobile web browsers.

The application called Core system was developed as a Master thesis of Petr
Svobodník from Czech Technical University [31] to make Android-powered
devices more accessible through UI with clear, simplistic design philosophy
customized for needs of people who have vision loss. The existing Core system
is a target of a proposed mobile web browser integration, and principles of
this specialized UI will directly influence the design of a suggested mobile web
browser, for that reason the Core system is described in detail in Section 2.4.

2.1 Desktop browsers for visually impaired

Several attempts have been taken to build a web browser for the VIP. One of
them was Home Page Reader. Home Page Reader was a commercial web
browser developed for VIP by the company IBM and currently is not offered
for purchase anymore. Home Page Reader used extraction and filtering of
text and TTS output with different gender voices for reading a text (male)
and links (female). The product did not support any speech input method,
hierarchical representation of the pages, text-to-Braille or mouse gestures
recognition. Compared to IBM’s Home Page Reader, eGuideDog [36] is a
open-source browser for VIP and features integrated TTS, an advanced text
extraction algorithm and hierarchical page representation. The project also
offers many useful accessibility tools for both users and developers. Another
browser for VIP is WebbIE [27], which features text extraction, image

5

2. The Core system and other related work
processing (removes or replaces images with alternative description) and plain
text representation of the page for ease of use with screen readers. WebbIE
is a closed-source solution but is offered free of charge under the GNU Public
License. Similarly to eGuideDog, the project offers more accessibility tools
than just a browser. Firefox browser [9], which is the most often used browser
among the screen reader users according to [33] (see Figures 2.1 and 2.2), offers
many accessibility tools packed as add-ons [7], which serve various purposes
from web page simplification for screen reading to generating document-
maps based on a headings structure. MozBraille [8] is one of the Firefox
extensions, which transforms it into the standalone accessible web browser
designed for VIP. MozBraille features TTS, text to Braille conversion, digital
magnifier and Braille terminal for blind developers. Another open-source
web browsers for the blind, ShrutiDrishti [29], also combined TTS output
with text to Braille conversion and provided a user-friendly environment and
digital magnifier as well. Another web browser for VIP featuring text to
Braille conversion is BrailleSurf [3].

We can conclude that TTS is the essential feature of the browser for the
blind and was integrated into all examined browsers. Some form of text
extraction and filtering was included in all implementations as well. However,
very few browsers implement text to Braille conversion or automatic speech
recognizer. Another significant limitation of most of the presented browsers
is reading the page content in a sequential pattern.

Figure 2.1: According to the survey on preferences of screen readers users [33]
is Firefox the most used browser among the screen readers users.

2.2 The TalkBack

The TalkBack service is open-source [20] accessibility solution, which comes
pre-installed as part of the Google Android Accessibility Suite [21]. Technically

6

.................................... 2.2. The TalkBack

Figure 2.2: According to the survey on preferences of screen readers users [33],
Internet Explorer is not the most used browser among the screen readers users
for the first time. The graph also reveals that the popularity of Firefox and
Chrome is stably increasing.

TalkBack is implemented as Accessibility Service [18] and is considered to be
the standard way of making Android touch screen phones accessible.

TalkBack uses an excessive number of gestures for navigation, and some
users find it too complex and hard to learn. Most important gestures are
enumerated in Table 2.1.

Action Gesture

Move to next item on screen Swipe right
Move to previous item on screen Swipe left
Cycle through navigation settings Swipe up or down
Select focused item Double-tap
Move to first item on screen Up then down
Move to last item on screen Down then up
Scroll forward Right then left
Scroll back Left then right
Move slider up Right then left
Move slider down Left then right
Home button Up then left
Back button Down then left
Overview button Left then up
Notifications Right then down
Screen search Left then down
Open local context menu Up then right
Open global context menu Down then right

Table 2.1: TalkBack gestures.

7

2. The Core system and other related work
The main reason behind focusing on the TalkBack Service is one of its

modules that makes Android-based web browsers accessible [23]. From our
point of view, the most interesting part of the TalkBack web module (see
Figure 2.3) is specific navigation based on the following options:..1. Headings. Navigate by headings (level 1-6)...2. Links. Navigate by different kinds of links, such as visited, unvisited,

or active...3. Controls. Navigate by other elements, such as form fields, buttons, or
menus...4. Characters, words, or lines. Explore one character, word, or line at
a time...5. Landmarks. Navigate by ARIA landmarks, such as "main" or "naviga-
tion." (Available only in the local context menu.)..6. Special content. Explore content such as tables. (Available only in
the local context menu.)..7. Default. Explore every element on the page in order.

These navigation options represent a reasonable and effective way of navi-
gation in a web page structure. These navigation options can be cycled using
down and up gestures. Linear navigation through page content items is done
by left and right swipe gestures.

2.3 Other accessibility solutions

As said in the Introduction, the smart-phones became the universal platform
for delivering various accessibility tools. Some of them are single-purpose
utility applications; others are far more complex. This Section discusses some
other solutions relevant to this topic.

2.3.1 The VoiceOver

VoiceOver is a gesture-based screen reader included in iOS [26] and servers
similar purpose like TalkBack service in Android systems. VoiceOver makes
both system or third-party applications accessible. Gesture-based control
is somewhat analogical to the gesture control of TalkBack described in
Section 2.2. The text input is handled in a standard way; each character
on the keyboard is read aloud when the user touches it. Some other input
methods like handwriting or speech input are supported as well. VoiceOver
incorporates the so-called Rotor, which enables cycling trough navigation

8

................................... 2.4. The Core system

Figure 2.3: Several web pages opened in Chrome browser and explored using
TalkBack service. The green bounding rectangle is a virtual cursor (a.k.a
accessibility focus), which marks a current selection, whose content and type is
read by TTS.

modes (including headings, links, or images) similarly like TalkBack and
other smart-phone focused accessibility solutions when reading web pages or
PDF documents. Service also features Image recognition tool (triggered by
triple tap) capable of image description to the user, even in the case when
the image was not annotated. Another useful feature of VoiceOver is support
for external Braille keyboards and displays, which is not implemented even
in the most of desktop browsers for blind.

2.3.2 The Corvus

Corvus [5] is a commercial gesture-based ’accessibility kit’ for Android devel-
oped by Slovak company Stopka and consists of two main parts..1. screen reader integrated into Android similarly to TalkBack, but having

own gestures,..2. special user interface tailored for VI users similarly to the Core system.

Corvus includes some accessibility features like a light detector or QR code
scanner intended for object tagging.

2.4 The Core system

The Core system refers to the application, whose development started as a
Master thesis of Petr Svobodník [31]. This section describes the UI design

9

2. The Core system and other related work
philosophy of the Core system, because it has a direct impact on browser
design and integration into the system. The Core system is built using a very
minimalistic UI without the use of graphical elements. The core of the Core
system UI is a textual and contrast (white on black by default) screen, which
usually displays short labels in big font. See Figure 2.4 for an example of
described UI screens used by the Core system.

The Core system is capable of running on smartphones with or without a
touchscreen. The target hardware phone used in the thesis is a smartphone
equipped with tactile buttons. For a more detailed technical description of a
target device see Subsection 4.4.2.

The main menu of the Core system has a structure of a directed graph
(almost tree with a few exceptions). See Figure 2.5 for representative subset
of the menu graph. The navigation in a menu structure can be achieved by
using the following gestures (on a touchscreen) or keys in case of our target
device..1. pressing left d-pad button or tapping in the left half of the screen

navigates the user to the previous item in the list,..2. pressing right d-pad button or tapping in the right half of the screen
navigates the user to the next item in the list,..3. pressing center d-pad button or long pressing anywhere on the screen
navigates the user to the next level of the menu tree,..4. pressing back button or long pressing anywhere on the screen with two
fingers navigates the user to the previous level of the menu tree.

For the quick navigation in menus can be used the numeric keyboard
shortcuts as well (e.g., key three navigates the user to the third menu item).
After the transition to another menu item, the user is informed about the text
and position of the item using auditory speech feedback. The Core system
allows repeated speaking or spelling of the item’s text. The text input is
implemented using various types of keyboards (text, numeric, time, date)
with support for dictation input. The control style of the Browser application
should be consistent with the Core system as much as possible.

The Core system further offers some vision based accessibility tools like
QR code scanner supposed to tag object of daily living or color classifier.

The most significant advantage of Core system is UI developed for VIP, but
this approach limits the possibility of supporting a third-party application
because users are expected to use applications built-in the Core system.

The browser will not be designed as a stand-alone application, but an
integral part of the Core system. The other parts of the browser (e.g., menu
or dialogs) should be consistent with the Core system and use its standard
UI components.

10

................................... 2.4. The Core system

Figure 2.4: Examples of UI components used by the Core system. From left to
right: a) Top level iconic menu item, b) Numeric keyboard for entering a number
to dial, c) Lower level menu item and d) Running Stopwatch activity.

Figure 2.5: Subset of the Core system menu graph.

11

2. The Core system and other related work
2.5 Conclusion

In this chapter, we discussed existing work related to the thesis topic. Existing
desktop web browsers for VIP were analyzed in Section 2.1. TalkBack
service was discussed in Section 2.2, because it represents a standard way of
making Android-based smart-phones accessible and its web module exhibits
an effective way of navigation in the page content. Other relevant accessibility
solutions were described in Section 2.3 as well. One of them, VoiceOver
presents a very similar style of navigation in structured documents and other
exciting features like automatic image annotation. The target of a proposed
mobile web browser integration called Core system was examined in detail
in Section 2.4, because its UI design philosophy, principles, and properties
will directly influence the design of a browser documented in the following
Chapter.

12

Chapter 3
Web browser design

This chapter deals with the design of a web browser user interface (UI). Initial
considerations related to a web browser and the World Wide Web (WWW)
are discussed in Section 3.1. Some open-source browser engines available on
the Android platform are examined to choose a suitable candidate for browser
implementation and integration into the Core system in Section 3.2. Require-
ments on the application are formulated in Section 3.3 and later becomes the
subject of the input UI (Section 3.4) and the output UI (Section 3.5) designs,
which are documented separately.

3.1 Introduction

The World Wide Web is a pervasive and diverse global scale network formed
by various technologies and standards (both hardware and software) at all
ISO/OSI levels. However, the multiplatform World Wide Web is kept together
by its core standards like Hypertext Mark-up Language (HTML), Cascading
Style Sheets (CCS) or JavaScript at the highest level of ISO/OSI levels, or
TPC/IP and UDP protocols from the transport layer. The proposed mobile
web browser is built on top of the protocol stack. Thus the most relevant is a
tree structure of an HTML page because it is subject to information extraction
and filtering algorithm and navigation algorithm as well. Additional semantic
information provided by meaningful mark-ups of text is used to give the blind
user context.

See Figure 3.1 for the list of the most often used HTML elements. The
graph is based on an analysis of 8 million samples of web pages [6]. HTML
tags for link and headings often used for faster navigation to the area of
interest are present among the most often used tags. Link tag occurred in
86.5% of pages and heading of level 1 on more than 55%. The tags form and
input, which often serves for navigation purposes as well, are also present in
the list.

There are different types of pages depending on the purpose and content,
but exact classification can be possibly done in various ways. One of the

13

3. Web browser design..................................

Figure 3.1: The 26 most often used HTML elements ordered by frequency
according to [6].

possible classifications of the web pages might look like follows..1. single article page,..2. multiple article page,..3. e-mail,..4. search engine,..5. portal,..6. blog,..7. form,..8. social network,..9. forum,...10. online shop or auction web site.

There is a need for some classification of web pages to evaluate the ease of
use of a proposed mobile web browser on a sample from each category.

14

................................. 3.2. Web browser engines

3.2 Web browser engines

The web browser engine is the software capable of transforming an HTML
document to its visual form. The engine draws structured text from a
document, and formats it based on provided style declarations (most often
CCS). Rendering engines are usually written in C++ and JavaScript. This
section discusses some open-source candidate browser engines for the proposed
browser implementation.

3.2.1 WebKit

WebKit [1] is a web browser engine written in C++ and initially used only by
macOS. However, currently is multiplatform and available for Linux, Windows,
Apple iOS, Android, and other. WebKit is used by Safari, AppStore and many
other applications on macOS, iOS and Linux. Google originally incorporated
WebKit for its Chrome, but starting from version 28 it was replaced with
Blink engine, which is a fork of WebKit’s component WebCore.

3.2.2 Blink

Blink [4] is a web browser engine written in C++ and used in default Android
browser Chrome, Opera (from version 15), Microsoft Edge, other Chromium-
based browsers and other projects. Blink is developed as a part of the
Chromium Project with contributions from Google, Opera, Intel, or Samsung,
among many others. Blink is available on many platforms, e.g., MS Windows,
Linux, macOS, or Android. The Android’s built-in WebView [24] component
(capable of displaying web content) is currently based on Blink, which replaced
WebKit (similarly to Chrome).

3.2.3 Gecko and GeckoView

Gecko [28] is a web browser engine developed by Mozilla [14]. It is a well-
known engine used in Firefox browser [9], Thunderbird email client, and many
other applications for displaying web pages. Gecko is free (under the Mozilla
Public License) and open-source software written in C++ and JavaScript.
Mozilla officially supports its use on Android, Linux, macOS, and Windows.
Gecko offers a programming API that makes it suitable for a wide variety of
internet-based applications.

GeckoView [13] is a reusable Android library that wraps the native Gecko
engine. Firefox Reality [11], Firefox Focus [10], and other Android applications
are powered by GeckoView, which serves a similar purpose like Android’s built-
in WebView, which was never intended for building web browsers and lacks
some of the features of fully-developed browsers. Moreover, it is impossible

15

3. Web browser design..................................
to know precisely which engine (and what version) will power a WebView on
client devices.

Compared to WebView, GeckoView is a standalone library bundled with
the client application, and developers can be sure the tested code is the
code that will run. Moreover, GeckoView exposes the entire power of the
Web, including being suitable for building browsers, and like Firefox, it offers
excellent support for modern Web standards. GeckoView is bundled with
configurable content blocking feature and does not require any third party
plugins while providing safety for the users. Furthermore, Gecko emphasizes
accessibility [15] and strives to make its software accessible.

One of Mozilla’s accessibility concepts used for page content interpretation
is Gecko accessible role, for the complete list of these roles see [12]. Gecko roles
provided to the client application offer very relevant additional contextual
information about page elements.

The main reason for choosing Gecko (i.e., GeckoView) over the other open-
source rendering engine Blink [4] suggested in the assignment is Gecko’s
support of accessibility features.

It is worth mentioning that GeckoView library is still in development, and
although some stable version exists, this application uses possibly problematic
nightly builds for the benefit of the latest API.

3.3 Requirements

In the beginning, the required functionality of a proposed web browser should
be defined. The web browser should support the following standard features..1. enter a web address or search text using some search engine,..2. navigate forward or backward in the page history,..3. reload the page,..4. find text in the page,..5. bookmarks management (list, open or delete bookmark),..6. history management (list and clear history, open or delete page in his-

tory),..7. content blocking settings (categories of content to block, e.g., ads or
social trackers),..8. open private session,..9. downloaded files management,...10. homepage setting.

16

................................. 3.4. Input interface design

These features are standard and well known from most of the web browsers.
Web browser for blind people has also satisfy some specific additional re-
quirements related to impairment. These mandatory requirements are set
subsequently..1. provide suitable (most often auditory or vibration) output in reaction to

each user action,..2. repeat speech text for current virtual cursor selection,..3. repeat title of the current page,..4. implement suitable text extraction and filtering algorithm,..5. implement a simple and effective mechanism of navigation in a web page
content,..6. provide TTS related settings,..7. support earcons (i.e., sounds that announce events),..8. implement TTS output concerning overwhelming with auditory feedback,..9. support voice input method.

3.4 Input interface design

There are two main aspects of the input UI design. First of them concerns
which input methods will be supported and second which actions and functions
will be assigned to the individual commands (e.g., button or recognized word).
The proposed input user interface mostly relies on tactile hardware buttons
and uses them as the primary source of user input. Navigation-related
operations and other core functionality of the browser will be commanded
through a keyboard. Subsection 3.4.1 describes functions assigned to tactile
buttons. Dictation input method will be incorporated only for text inputs as
a complementary method to keyboard, but it will not be able to input any
in-page navigation related commands.

3.4.1 Controls and navigation in the page

There are two fundamental aspects of web surfing..1. surfing the content of a web page,..2. navigation through web pages,..a. navigation in page history (back or forward),..b. navigation through links.

17

3. Web browser design..................................
Navigation through page history is straightforward function and will be

handled in the browser menu. User will have the option to go back, forward
or open an arbitrary item from history. Navigation among the documents
through links and exploration of these links in the pages will be the subject
to the main activity. Navigation in a web page content is the fundamental
problem in both mobile and desktop web browsers for the blind. Against
the regular user, VI user is unable to summarize a web page content at the
first look visually. The most severe disadvantage of sequential screen reader
approach is the need to explore possibly lenghty page to reach a single line
or link of interest. It is a reason why browsers for the blind offer another
navigation or search options. For navigation in web pages are most often
used these elements: headings, links or landmarks, or integrated finder, based
on preferences of screen readers users on preferred finding method of desired
information in the page (see Figure 3.2).

Figure 3.2: Most often used navigation methods for finding information on a
lengthy web page according to the survey on preferences of screen reader users
[33].

The suggested navigation modes are inspired by existing solutions, and due
to the consultations with representatives of Czech Blind United (SONS) it is
verified and efficient approach and users are familiar with it. The implemented
navigation modes are..1. Default. Explore every element on the page in order...2. Headings. Navigate by headings (level 1-6)...3. Controls. Navigate by other elements, such as form fields, buttons, or

menus...4. Links. Navigate by different kinds of links, such as visited, unvisited,
or active.

18

................................. 3.4. Input interface design..5. Words. Navigate by individual words...6. Landmarks. Navigate by ARIA landmarks, such as "main" or "naviga-
tion."

Compare proposed navigation modes to the navigation modes enumerated
in Section 2.2 related to TalkBack. Navigation modes are very similar;
however, in proposed implementation Special content category was omitted
and is accessible using the Default mode.

Using the Default navigation mode, the whole page content is explored in
logical order as sighted user percepts it. The navigation by headings filters
headings of all levels and can be used to navigate quickly in extensive and
structured texts (e.g., web encyclopedia or newspaper articles) to the area
of interest. The navigation by controls iterates through control elements
like form entries, a different type of buttons, checkboxes, etc. This kind of
navigation allows quick localization of form entries (e.g., search entry). The
landmark mode searches for ARIA landmarks in the page. ARIA landmarks
provide a powerful way to identify the structure of a web page [32]. Due
to the complexity of today’s web content, all perceivable content should be
present inside a semantically meaningful landmark so that the user does not
miss content. The landmarks are meant to support keyboard navigation
in the structure of a web page for screen readers. The roles are assigned
by developers to landmarks based on the type of content in the area and
allow nesting of roles for parent/child relationships of the information that is
present. Some of these roles are..1. Banner identifies site-oriented content at the beginning of each page

(e.g., logo, search tool or site sponsor). It responds to the header...2. Complementary supports a section of the document designed to be
complementary to the main content at a similar level but remains mean-
ingful when separated...3. Content info identifies the common information at the bottom of each
page. It responds to the footer...4. Form identifies a region that contains a collection of items that creates
a from...5. Main identifies primary or main content of the page...6. Navigation identifies groups of links intended to be used for navigation...7. Region represents the perceivable section with relevant to specific con-
tent and important enough that users will likely want to be able to
navigate to the region easily...8. Search identifies a collection of items that, as a whole, creates search
functionality.

19

3. Web browser design..................................
The effective navigation in a web page is achieved by combining different

navigation modes. E.g., user can use headings to navigate in an article to the
paragraph of interest and then switch to word navigation and read section by
words.

The full list of browser functions and their assignment to individual buttons
is available in Table 3.1 and Figure 3.3.

Key Action

Volume up Volume up or voice input on longpress
Volume down Volume down or voice input on longpress
Menu Open a web browser menu
Back Go back in page history
D-pad center Click current element
D-pad left Previous page element
D-pad right Next page element
D-pad up Open global states of the Core system
D-pad down Speak (or spell) current element text
Key 1 Default navigation option
Key 2 Headings navigation option
Key 3 Controls navigation option
Key 4 Links navigation option
Key 5 Words navigation option
Key 6 Landmarks navigation option
Key 7 Go to page top
Key 8 Find in page
Key 9 Go to page bottom
Key 0 Speak current page title
Key * Lock or unlock screen
Key # Switch keyboard type, if active

Table 3.1: Web browser controls.

Technically the navigation in a web page is implemented by navigation
in page tree representation using filtering and extraction algorithms for
generating the correct output information. The technical aspect of navigation
is described in more detail in Section 4.3.3.

3.4.2 Voice input

Even though the voice input method incorporating speech recognition algo-
rithm is not considered to be the primary source of input, it is integrated
as a complementary input channel. To achieve consistency with the Core
system, voice commands will not be used for navigation-related operations
because are used for opening applications or dictating text to the Core system
keyboard. See Figure 3.4 for an example of text dictation result inserted into
the input entry of a search engine.

20

................................. 3.4. Input interface design

Figure 3.3: Target device tactile buttons with assigned functions.

Figure 3.4: UI screens from Browser documents the usage of different input
methods (i.e. keyboard and speech dictation). From left to right: a) The classic
keyboard input method with integrated TTS, b) Text recognized by speech
recognition engine, c) Text inserted to the input entry in the page after speech
recognition.

21

3. Web browser design..................................
3.5 Output interface design

The proposed user interface of a mobile web browser for VIP consists of three
output channels..1. visual (rendered web page with highlighted virtual cursor and UI compo-

nents of the Core system used for dialogs and menu),..2. auditory (text-to-speech and earcons),..3. vibration (produced by integrated vibramotor).

The visual output is a standard output method for all web browsers and is
produced by selected Gecko engine responsible for converting HTML document
to its visual form. Auditory feedback (in form of spoken words synthetised
using TTS engine or brief distinctive sounds called earcons) is incorporated as
primary output as we assume that users are not able to perceive visual output
sufficiently or at all. Vibrations are integrated as a reasonable alternative to
the auditory feedback, because some blind users spontaneously suggest using
vibrations instead of spoken word for some announcements.

3.5.1 Visual

The modern web pages are visually impressive, demanding and thanks to the
JavaScript often very dynamical. Even though, the visual output might be
useless for blind users, for some users who have intermediate vision loss it
could still be beneficial especially for mentioned visual summarization of a
page content and navigation related operations. The only difference between
the regular browser and browser for the blind regarding visual output is that
page element focused by the virtual cursor (a.k.a. accessibility focus) should
be highlighted with bounding rectangle (often green or yellow). See Figure 2.3
for an example of highlighting rectangles in TalkBack service or Figure 3.5
for an example of highlighting rectangles rendered by chosen Gecko engine.

3.5.2 Text-To-Speech

Text-To-Speech (TTS) engine refers to the system capable of converting the
text in some language into the human speech equivalent. The quality of the
synthesized speech can be judged by its similarity to human voice and clarity.
TTS technology is the most often used output method by accessibility tools
intended for VIP.

TTS is considered to be the primary feedback because we do not assume
that mobile device will be used with external text to Braille devices besides
desktop PC. When using TTS as a primary output, we must consider the
possibility that the user can be quickly overwhelmed with never-ending audio

22

................................ 3.5. Output interface design

Figure 3.5: Example of a virtual cursor bounding rectangle.

output. It is the reason why we give user opportunity specify in settings,
which events should be or should not be announced by speech output.

Generation of proper descriptive TTS output for selected page element
is essential mainly due to the often repetitions, and will be implemented as
follows: the type of element and its text will be announced by default. If
additional information (e.g., hint or content description) is present, it will be
announced as well, but there has to be an option to configure if additional
information should be spoken.

Browser implementation will use Google TTS [22] as TTS engine. Google
developed Google TTS engine for the Android OS to be used by Google
applications (e.g., Google Translate), third-party applications, or accessibility
services (e.g., TalkBack). The engine supports approximately 50 languages
a when using default voice with downloaded language packages it works
completely offline.

3.5.3 Earcons

Icons are visual symbols that represent information about an application,
object, or function. Earcons are characteristic, brief, and distinctive sounds
that represent a specific item or event. Earcons are not relevant only for
accessibility tools related to VI but are present in most of the operating
systems (e.g., system sound in Windows or Linux). However, earcons gain
importance in the context of VI as one of the primary output methods.

The proposed web browser implementation provides settings, which allows
configuration of events and elements of a web page, which should be announced
with earcons instead of spoken words. Earcons are one of the possible ways
how to reduce the probability of overwhelming with auditory speech output.

The implementation allows a user to use earcons for these types of events
and items:

23

3. Web browser design....................................1. link,..2. page load started or stopped,..3. first or last element of a selected type,..4. download completed,..5. keyboard opened or closed.

3.5.4 Vibrations

Vibrations are considered to be suitable complementary output method for
the auditory channel (i.e., TTS and earcons) and partially help to reduce the
risk of overwhelming user with auditory (most often speech) output. Most of
the Android smartphones (if not all) are equipped with a vibrator, which is a
mechanical device able to generate vibrations.

3.6 Menu design

Unlike TalkBack and some other accessibility tools currently available, this
browser implementation will not distinguish between local and global context
menu, and both will be merged into one dynamic menu.

The browser menu will have a tree structure (as any other Core system
activity), which can be seen in Figure 3.6. The browser menu meets the
requirements set in Section 3.3.

3.7 Conclusion

This chapter documented the design of a web browser UI. A short insight
into the World Wide Web statistical properties valuable for the later design
of in-page navigation principles was given in Section 3.1. Web browser engine
candidates were examined in Section 3.2. Gecko engine developed by Mozilla
Foundation was chosen for implementation and integration into the Core
system. Requirements on the proposed browser application were formulated
in Section 3.3. Concerning defined requirements, the UI design was exactly
described in Sections 3.4 and 3.5 dedicated to input and output parts of
UI. The design of input UI described the usage of tactile hardware buttons
as the primary input source and principles of navigation in a web page in
Subsection 3.4.1. The usage of speech recognition based voice input, which is
incorporated for launching the application and as an alternative for keyboard
inputs while filling forms, is documented in Subsecton 3.4.2. The key parts
of output UI were enumerated in Section 3.5 and discussed in more detail in
Subsections 3.5.1, 3.5.2, 3.5.4.

24

..................................... 3.7. Conclusion

Figure 3.6: Tree structure of browser menu.

25

26

Chapter 4
Web browser implementation

4.1 Introduction

This chapter deals with the implementation and integration of a mobile
web browser for VIP. The theoretical description of a proposed browser
architecture is given in Section 4.2. The implementation of the UI proposed
in Chapter 3 is described in Section 4.3. The integration into the existing
Core System explained in Section 2.4 is documented in Section 4.4.

The implemented mobile web browser is an Android application and is
implemented in the Android Framework environment. Our browser im-
plementation consists of several Activities and Accessibility Service, which
retrieves the page structure and navigates in that structure using a tree search
algorithm described in Subsection 4.3.3.

4.2 Architecture

This Section describes the top-level architecture of the proposed mobile web
browser for the VIP, which consists from the following modules (similarly like
[16]):..1. Input module provides different input methods (hardware keyboard

buttons, gestures, or voice commands in our case)...2. Content extraction and filtering module provides tools for extrac-
tion and filtration of a relevant web content...3. Representation and navigation module provides suitable structures
for a web page representation and methods for a navigation related
operations...4. Output module provides different output methods (such as Text-To-
Speech (TTS), non speech auditory output or vibrations in our case).

27

4. Web browser implementation..............................
Block diagram of a top-level architecture of a proposed mobile web browser

can be seen in Figure 4.1. Note that Extraction and filtering module and
Representation and navigation module are separated from the architectonical
point of view, but are closely tied in order to exhibit the desired behavior.
Also note that earcons, which could be played as regular sounds are also
sent to the TTS engine, which is more convenient because these sounds are
enqueued into the same buffer as spoken words, which makes synchronization
of audio channels easier. Representation and navigation module and Content
extraction and filtering module are described in following subsections in more
detail.

Figure 4.1: Block Diagram of the architecture of the proposed mobile web
browser for the blind.

4.2.1 Representation and navigation module

Page content representation and navigation is a crucial part of the browser
function. Web pages are documents written in HTML combining text in-
formation with meaningful mark-ups of the text. The tree structure of
representation of a web page content is derived from the naturally tree-
structured HTML. Compare Figure 4.2 capturing an example page with the
Figure 4.3 with page representation used in the Representation and navigation
module.

28

..................................... 4.2. Architecture

Navigation in the page is technically navigation in the page representation
structure, which is a tree as stated before. Navigation has to be implemented
using some graph search algorithm. In the first phases of development Depth-
first search (DFS) algorithm was used for that purpose, because it reflects the
natural ordering of page elements (against Breadth-first search (BFS)). Later
the DFS graph algorithm was found inconvenient in terms of space complexity,
which is for DFS O(|V |), where |V | is the number of vertices in the graph.
Usage of DFS for navigation in lengthy pages would lead to memory wasting
on storing of currently useless objects representing the page elements in closed
and open lists. It is the reason for the design and implementation of a tree
search algorithm, which visits the nodes of the graph in the same order as
DFS, but exhibits lower worst-case space complexity. The proposed tree
search algorithm is described in Subsection 4.3.3.

Figure 4.2: Example page created to illustrate the mapping between the HTML
structure of document and a internal page representation used by the Represen-
tation and navigation (captured in Figure 4.3).

Figure 4.3: Representation of the page captured in Figure 4.2. The long texts
of paragraphs were ommitted becauseof clarity.

29

4. Web browser implementation..............................
4.2.2 Content extraction and filtration module

Extraction and filtering of relevant content is another crucial part of a web
browser functionality. Extraction and filtering feature was a part of all
examined desktop browser implementations in Section 2.1.

Content extraction and filtering module is responsible for filtering the
proper content. E.g., if a user navigates by headings and wishes to go to
the next one, we want to apply some filter accepting only headings elements.
This module mainly consists of various filters, which can be arbitrary joined
using logical operators, and is used by Representation and navigation module
to test if currently visited node is a target node.

4.3 Implementation

Implementation of a proposed browser mainly relies on selected Gecko engine
and Android Accessibility framework and was realized through 2 key parts:
Main Activity and Accessibility Service. Main Activity and Accessibility
Service communicates in order to mutually synchronize using local broadcasts.
Main Activity of a browser is described in Subsection 4.3.1, the Accessibility
Service enabling the accessibility features of Android-based smart-phones is
subsequently examined in Subsection 4.3.2. The designed and implemented
tree search algorithm incorporated for navigation in page representation
structure and its properties are described in detail in Subsection 4.3.3. Some
other important parts of implemented UI are discussed in the following
sections as well.

4.3.1 Main activity

Activity is one of the fundamental concepts in the Android framework and
represents a single, focused thing that the user can do. Main Activity is
regular Android Activity [19] and is in the heart of the proposed mobile
web browser. The layout of Main Activity contains full screen GeckoView
component responsible for page rendering and progress bar visible while the
page is loading. In this activity the most of the surfing happens. As user
iterates over the page elements possibly using some navigation filter, virtual
cursor highlighted with yellow bounding rectangle moves across the screen
and currently selected content or happening event is announced by TTS,
earcon or vibration.

4.3.2 Accessibility service

Android Accessibility framework is a part of the Android operating system
and is built around AccessibilityService class. Accessibility Service is special
type of a service, which should only be used to assist users with disabilities

30

................................... 4.3. Implementation

[18]. They run in the background like any other services, but receives callbacks
by the system when AccessibilityEvent are fired, they can also retrieve the
content of the currently active window or intercept key events or gestures
before being dispatch to activities. Due to privileged access to events and
window content, Accessibility Service represents a threat to security (e.g.
could be used as keyboard logger). That is reason why Accessibility Service
must be explicitly enabled by the user in Accessibility Settings. Moreover,
the developers which use Accessibility Services must justify benefits of that
service for people with disabilities, otherwise, their application is not allowed
to be offered at Google Play Store.

Unfortunately, this browser implementation relies on Accessibility Service,
but the target device does not have any Accessibility Settings so that the
enabling of the Service by the user is not possible. Moreover, it is not desired
to force user of the Core system to enable and disable service in our case. We
wish to enable or disable Accessibility Service programmatically as browser
activity starts or stops. This behavior is achieved by direct modifications in
the system security database, which requires system application permission.

The Accessibility Service can be used to retrieve the content of the current
window in the form of a hierarchical structure of AccessibilityNodeInfo ob-
jects. Tree structure of AccessibilityNodeInfo object which corresponds to
virtual views rendered by Gecko engine is used as page tree representation.
AccessibilityNodeInfo object carries the information about node’s text, hint,
in screen position, children, description, etc. AccessibilityNodeInfo object
also allows performing of specific actions on the view they represent, some
examples of these actions are a click, long-click, scroll, cut, copy, paste, etc.

4.3.3 Tree search algorithm

As stated before, the page representation is a tree of AccessibilityNodeInfo
objects, which represents information about the hierarchy of the page elements.
Class AccessibilityNodeInfo has instance methods for getting parent node and
children nodes. As mentioned before, the DFS algorithm was not suitable in
terms of space complexity. Keeping a possibly very long closed list of objects
is inconvenient and causes some troubles with AccessibilityNodeInfo lifecycle
because objects must be refreshed or recycled to avoid multiple instances for
a single element. The worst-case space complexity of DFS is equal to the
number of nodes of the graph, while worst-case space complexity of proposed
tree search algorithm is O(|Dm|), where |Dm| is a depth of the tree. This
property is caused by the fact that algorithm stores only path to the current
node of the graph. Algorithm visits nodes in the same order as DFS, which is
desired because it reflects the natural ordering of page elements. The inputs
of proposed algorithm are root of the tree r, currently selected node of the tree
c, list of nodes, which form a path from r to c denoted as l, predicate filter f
mapping each node to {0, 1} space and bool b specifying if search should be
performed in backward direction. Based on provided input, the algorithm

31

4. Web browser implementation..............................
might find another node in the page tree representation and return following
outputs: the result of navigation (one of FOUND, FIRST, LAST, NONE),
newly selected node (if result FOUND), the path to the newly selected node
(if result FOUND). See Algorithm 1 for the exact definition of the algorithm.
The backward search (i.e., user wishes navigate to previous page item) is
performed by reversing the order of children of all nodes of a graph and then
applying the same algorithm as for forward search.

For deeper insight into how algorithm works lets imagine the following
use-case. User opens the page with structure captured in Figure 4.4 and
wishes to navigate by heading. After the page is loaded, the algorithm is
initialized with following values r = 1, c = r = 1 and l = ∅ , f = headings
and b = false. Then algorithm visits the tree nodes in the same order as
DFS until it reaches the node satisfying the filter predicate f . The states
of the algorithm during individual iterations are documented in Table 4.1.
The result of the algorithm corresponding to the last iteration is denoted in
Figure 4.4 as well.

Figure 4.4: An example of the tree that represents the structure of a simple
page with logo, menu formed by links and some text with headings. The node
with red text denotes the selected node c and green bounding rectangles the
path from root r to the selected node c after the algorithm finished.

Iteration i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

List of nodes l - 2 2,3 2,3 2,4 2,4 2 5 5,6 5,6 5,7 5,7 5,8 5,8 5,9 5,9 5 10 10,11
Current node c 1 2 3 2 4 2 1 5 6 5 7 5 8 5 9 5 1 10 11

Table 4.1: States of the algorithm during the search. Note that the transition
betweeen the 2 children of the same parent is done in 2 iterations. In first
iteration, the current node is set to the parent, but the path remains unchanged.
In second iteration, the unchanged path is used to determine previously visited
child and next child to visit.

4.3.4 Menu

The menu of the Browser was implemented based on the tree structure
designed in Subsection 3.6 using the standard UI components provided by
the Core system. Figure 4.5 captures examples of UI screens from the
implemented menu. Another Figure 4.6 shows the ’Media autoplay’ option in
’Other settings’ in menu.

32

................................... 4.3. Implementation

Input :Root of the tree r
Input :Current node c
Input :List of nodes l from r to c (path in a tree)
Input :Predicate filter f
Input :Bool backward search b
Output : Status s - one of FOUND, FIRST, LAST, NONE
Output :Found node c if FOUND
Output :List of node l from r to new node c if FOUND
while true do

if c.hasChildren() then
t← −1
for i← 0 to c.childCount()-1 do

if c.child(i) == l.lastNode() then
t← i

end
end
if t == −1 then

c← c.child(b ? c.childCount() - 1 : 0)
l.add(c)
if f.accept(c) then

return FOUND, c, l
end

else if (t < c.childCount() - 1 and not b) or (t > 0 and b)
then

l.removeLastElement()
c← c.child(b ? t-1 : t+1)
l.add(c)
if f .accept(c) then

return FOUND, c, l
end

else
if l.notEmpty() then

l.removeLast()
end
if c == r then

if f .accept(c) then
return b ? FIRST : LAST

end
else

return NONE
end
c← c.parent()

else
c← c.parent()

end
end
Algorithm 1: Tree search algorithm used for navigation in a page repre-
sentation. 33

4. Web browser implementation..............................

Figure 4.5: Examples of some menu screens implemented using the Core system
UI components.

Figure 4.6: Examples of UI screens related to the media playing shows that
even the medial content can be accessed quite easily: a) Media autoplay settings
option, if selected audio and video content present in pages starts automatically,
b) Playing video at youtube.com manually without autoplay option on using
’Play’ button c) Playing internet radio.

4.3.5 Prompt and dialogs

JavaScript prompts resulting in different types of a dialog are delegated by
Gecko engine to the application for custom handling. Gecko recognizes and
delegates these types of prompts to the client application..1. Alert prompt contains title, message and optional checkbox. (See

Figure 4.7)...2. Button prompt is a child of Alert prompt, and further may contain
three types of buttons: positive, neutral and negative...3. Text prompt is a child of Alert prompt, and further contains text input
field. (See Figure 4.7)

34

................................... 4.3. Implementation..4. Auth prompt is a child of Alert prompt, and further contains text
input fields for username and password...5. Choice prompt contains array of choice. There are more types of this
prompt: menu, single and multiple selections. See Figure 4.8 for an
example choice prompt...6. Color prompt allows a user to select the desired color using color picker
dialog. (See Figure 4.9)...7. DateTime prompt allows a user to pick both time or date. There are
variations of this dialog, some of them prompts only for a time, other
for a date or a day of the week, etc...8. File prompt allows a user to select a file using file picker for upload.
This prompt is disabled for now because the Core system do not provide
standard way of managing files...9. Media prompt allows a user to grant or reject permission for accessing
the video or audio source of the device (e.g., front or back camera or
microphone). This prompt is disabled because it is not desired....10. Permission prompt allows a user to grant or reject permissions prompted
by a web page. Example of such a prompt could be a web page asking
to share the location.

All these types of prompt were implemented using the Core System UI
components, while standard browser implementation would use standard
Android dialogs instead.

Figure 4.7: Examples of UI screens of implemented JavaScript prompt dialogs:
a) Simple alert dialog with message b,c,d,e,f) Text dialog with optional checkbox
a predefined text.

4.3.6 Auto-scroll

Unlike regular mobile web browsers, which perform scrolling automatically
in reaction to gestures or key presses, this specific browser implementation
based on the filtered sequential movement of the virtual cursor has to handle
scrolling operations in such a way, that virtual cursor is always on screen.

The auto-scroll feature was implemented with a custom timer using Handler
class, which checks every 3 seconds if the virtual cursor is on screen, if not it
scrolls.

35

4. Web browser implementation..............................

Figure 4.8: UI screens document an example of Choice prompt usage in following
use-case: a) User clicks on combobox, which prompts for the language of search,
b) Choice prompt is implemented using the Core system UI components, c) After
user selected Czech language.

Figure 4.9: Examples of UI screens of implemented JavaScript prompt dialogs:
a) Button prompt asking for sharing location, b,c,d) process of choosing color in
Color prompt.

4.3.7 File downloads

Downloading files is a standard browser functionality. Downloaded files can be
listed in the browser menu (see Figure 4.10 for examples of UI screens related
to file downloading). For now, the downloaded files can be only listed, but
not opened, because the Core System does not supports general mechanism
for handling arbitrary types of files.

4.3.8 Finder

As shown in Figure 3.2 finder is the second most often used navigation method.
The finder option is accessible through the menu or can be accessed using
shortcut assigned to key 8. The finder was not implemented using Gecko
incorporated finder but is performed using a proposed tree search algorithm
with predicate f corresponding to the searched term so that the matches

36

............................ 4.4. Integration into the Core system

Figure 4.10: UI screens give an example of downloading files.

with the search term can be explored similarly to other page elements, e.g.,
headings. See Figure 4.11 for UI screens documenting finder usage.

Figure 4.11: UI screens give an example of using browser finder. From left to
right: a) Find in page item in menu, b) Keyboard, c,d) First and last match
with the search term.

4.3.9 Error page

Error pages are implemented using an error page template, with a placeholder
for error category, error type and title (to support localization). See Figure
4.12 for error page rendered for error unknown host often happening when
connection unavailable and compare to Figure 4.13 capturing the tree structure
of error page as stored in Representation and navigation module. After the
error page is rendered, it can be explored like any other web page.

4.4 Integration into the Core system

This section documents the browser integration into the Core system described
in Section 2.4. The browser can be launch from the Core system menu or
by any of these voice command synonyms ’browser’, ’web’, or ’internet’ (see
Figure 4.14 for a UI screens documenting usage of voice command for opening
the browser). Start of speech recognition is triggered by long pressing volume

37

4. Web browser implementation..............................

Figure 4.12: Example of Error page with virtual cursor (yellow rectangle)
focusing heading ’Error’.

Figure 4.13: Example of page representation of Error page stored in Represen-
tation and navigation module. Element 6 corresponds to the line break tag so
that the role is unknown, because is not important for accessibility.

up or down button. Figure 4.16 captures the Core system menu after the
integration with highlighted entry point into the application. UI screens
from the Core system menu and successfully integrated Browser are shown in
Figure 4.15.

4.4.1 The Core System more technically

This subsection tries to describe the Core system more from a technical
perspective that it was introduced in Section 2.4. The Core system consists
of the following modules and technologies..1. the main java module, which is a standard Android 5.1 (API 22) project,

is written in Java 8,

38

............................ 4.4. Integration into the Core system

Figure 4.14: Example of voice control usage for opening the Browser. From left
to right: a) An integrated voice control feature of the Core system, b) recognized
command open the Browser, c) Browser opened with voice command.

Figure 4.15: Screenshots of integrated web browser. From left: a) Browser
launch icon in the Core system menu, b) Screenshot of www.google.com with
selected link "Images", c) Screenshot of a www.google.com after page has been
almost explored. Yellow rectangle (a.k.a accessibility focus) highlights currently
selected page element...2. third-party native libraries,..3. the Xposed Framework module, which enables the dynamic modifications

of aspects of the target operating system,..4. some helper applications (Text-To-Speech) and hardware ROM cus-
tomizations.

4.4.2 Target device

The Core System currently runs on target low-end hardware device with the
following specification:

39

4. Web browser implementation..............................

Figure 4.16: Part of the Core system menu after the integration with highlighed
Browser...1. Android 4.4 (API 19),..2. Dual core ARMv7 CPU 1.2GHz,..3. 512MB RAM,..4. hardware keyboard with 4 directional D-pad and SOS button,..5. 2.8GB + 1.2GB of internal flash memory (user + system),..6. TFT color display, width 240px, height 320px,..7. WiFi 802.11 b/g/n, Bluetooth 4.0,..8. GPS,..9. SD card up to 32GB support,

40

..................................... 4.5. Conclusion...10. 2.0MPx camera.

The hardware equipment of the target device brings some constraints and
limitations, which was taken into account during the design phase (e.g., design
of custom graph search algorithm presented in Subsection 4.3.3).

Target device (see Figure 4.17) is one of a few remaining smartphones,
which is equipped with a hardware keyboard instead of a touchscreen. Buttons
are big, well spaced and tangible, which makes them suitable for VIP. Despite
the fact, that most of the blind people overcame the end of cell phone era
and adapted to the smartphones, hardware keyboard is still taken as an
advantage.

Figure 4.17: Target device

4.5 Conclusion

The theoretical description of a proposed mobile web browser architecture
was given in Section 4.2. The Representation and navigation module was
desribed in Subsection 4.2.1. The implementation of a proposed architecture
and UI designed in Chapter 3 was documented in Section 4.3 including the
explanation of designed tree search algorithm used for navigation in the page
given in Subsection 4.3.3. The integration into the Core system environment
(explained in Section 2.4) was described in Section 4.4. Specification of a
target device was given in Subsection 4.4.2.

41

42

Chapter 5
User testing

This chapter documents the testing process methodology and the most im-
portant findings derived from the results of usability testing of the proposed
mobile web browser for the blind. Usability testing is a user-centered technique
for evaluating product ease of use by testing it on a user target group.

5.1 Introduction

The solution proposed in this thesis is targeted on VIP and is hopefully
suitable for users with all levels of visual impairment (from intermediate
vision impairment to no light perception).

The testing process was outlined as a standard usability testing process
and consisted of 3 phases:..1. pre-test phase,..2. testing phase,..3. post-test phase.

The experiment was realized in cooperation with the Czech Blind United
(SONS), which contacted and invited participants. 5 participant attended,
and all of them were men. The answered pre-test and post-test questionnaires
are present in Appendix A.

I want to thank Michal Jelínek (SONS) and Martin Procházka for their
willingness and help with the realization of user testing and contacting test
participants.

5.2 Pre-test

The pre-test phase aims to gather important details and user habits of test
participants through short questionary. The collected information is crucial

43

5. User testing
for the evaluation of test results in context. E.g., users with more experience
with accessibility tools dedicated to web browsing might get familiar with
application controls quickly than a slightly experienced user...1. Your age?..a. less than 20..b. 20-35..c. 35-50..d. 50-65..e. more than 65..2. Your gender?..a. male..b. female..3. Do you have a visual experience?..a. yes..b. no..4. How would you rate the level of your visual impairment from the func-

tional perspective?..a. intermediate vision impairment (able to read with reading glasses
or optical magnifiers, navigates mostly visually)..b. serious visual impairment (have some limited projection, able to
read only with difficulties and with the help of digital magnifiers,
navigates with the help of a white cane)..c. blindness (no useful projection, unable to read at all, able to distin-
guish light from darkness)..d. no light perception at all..5. Which mobile phone do you use?..6. Do you use any accessibility solutions for your mobile phone (e.g., Talk-

Back or VoiceOver)?..7. Do you use the internet?..a. yes..b. no..8. Do you use mobile internet?..a. yes..b. no

44

..5.3. Tasks..9. Do you access social media on your mobile phone?...10. For which kind of tasks do you use mobile internet (if you use it)?...11. How often do you use the internet?..a. every day..b. almost every day..c. at least once a week..d. at least once a month..e. less than once a month

5.3 Tasks

This Section describes various and representative tasks chosen for usability
testing. Tasks differ in difficulty and are sorted from the most easier to the
hardest one. All tasks were chosen in a way, so it is possible to finish them in
a reasonable time. First two tasks are not evaluated, because they are meant
to get test participant familiar with browser control...1. Read the manual of Browser application to get familiar with its usage

and control...2. Find the application called Browser in the phone menu under the ’More
applications’ or open it with voice command ’browser’ (or ’web’ or
’internet’). To get familiar with the browser more quickly, complete
following mini-tutorial:..a. The default homepage should be already loaded. Try to explore the

homepage content in the default navigation mode. (By pressing left
and right d-pad buttons)...b. Use any different navigation mode in the page. (By pressing buttons
1-6)..c. Using quick navigation actions Page start (by pressing button 7)
and Page bottom (by pressing button 9) and use it to locate the
first and last element on the page...d. Using link navigation mode (by pressing button 4) find all links in
the page...e. Using controls navigation mode (by pressing button 3) find all
control elements on the page...f. Repeat text for the currently focused element (by pressing down
d-pad button)...g. Repeat title of the current page (by pressing button 0).

45

5. User testingh. Go to the browser menu (by pressing button menu) and explore its
items, then return to the page (by pressing the button back)...i. Go to the browser menu, locate option ’Reload’ and confirm...3. Open browser menu, locate option ’Insert URL or search text’ and

confirm. Type URL of the Czech Wikipedia ’cs.m.wikipedia.org’ to the
keyboard and confirm. After the page is loaded, try to read ’Article of
the week’ present on this page. While reading, try to use word navigation
mode (by pressing button 5)...4. Open browser menu, find option ’Bookmarks’ and confirm. Try to save
the current page as a bookmark and then locate it in ’List bookmarks.’..5. Open browser menu and confirm ’Insert URL or search text’ again. Type
’CTU,’ which is an abbreviation for the Czech Technical University, and
confirm. The committed text should be searched using the default search
engine. Try to locate the link to official university web site ’www.cvut.cz’
among the search results and click on that link (by pressing center d-pad
button)...6. Open browser menu, find option ’Bookmarks’ and confirm. Try to save
the current page as a bookmark too...7. Open browser menu and confirm option ’Go to the homepage.’..8. Try to find the following information using ’Insert URL or search text’
option in the menu (try use text dictation by long pressing volume down
button while in keyboard at least for some searches):..a. name of the capital city of state Kentucky (USA),..b. the birth date and place of Winston Churchill,..c. address of Department of Justice of the Czech Republic...9. ’Go to homepage’ and try to perform a search of your choice using the
search entry in the page. (Pressing Dpad center performs a click, which
opens and closes keyboard if the input element focused.)...10. Open the web page ’www.ctk.cz’ and get the title of the second article
on the main page....11. ’Go to homepage,’ locate ’Find in page’ option in the menu (by pressing
shortcut button 8) and type ’Google.’ Explore all occurrences of that
word on the page....12. Open browser menu and try to use options ’Back’ and ’Forward.’...13. Open browser menu and open any bookmark. After bookmark is loaded
return to the menu again and find ’Settings,’ confirm and then locate
’Homepage settings.’ Try to set the current page as a new homepage.

46

...................................... 5.4. Post-test...14. Open browser menu, go to ’Settings,’ then ’Speech output settings,’ then
’Configure TTS spoken events’ and enable speech output for all events.
Then ’Reload’ page....15. Open browser menu, go to ’Settings’ again, then find ’Speech output
settings’ and ’Earcons settings.’ Try to enable Earcons for all events.
Return to the homepage and try to trigger some events resulting in
playing earcons....16. Open browser menu, go to ’Settings,’ then find ’Search engine’ and select
different search engine for searches made through ’Insert URL or search
text.’ Then find ’Insert URL or search text’ and perform a search of your
choice....17. Open browser menu, find an option ’Turn on Private Browsing’ and
confirm. Now your browsing should be private....18. Open the web page ’www.youtube.com’ and try to play any of the videos
present on the main page....19. Open browser menu, find ’List history,’ delete some page from history
and then open some other page of your choice from history....20. Open browser menu and try ’Clear history.’ After dialog disappears, try
’List history’ item and make sure history is empty....21. Open browser menu and, find the option ’Take Screenshot’ and confirm.
See what happens....22. Return to browser menu once more, locate last option ’Close Browser’
and confirm the selection.

5.4 Post-test

The post-test phase aims to collect valuable feedback from test participants.
The post-test questionnaire administered after the test and consists of the
following questions:..1. Did you find the tasks difficult?..2. Which task was the hardest one?..3. How do you like the ’Browser’ application?..4. Do you have any feedback comments or ideas for improvements?..5. Did you missed any specific function?

47

5. User testing
5.5 Testing summary

The youngest participant was 39 years old and the oldest 54. As mentioned
before, all of them were men. The 4 of 5 test participants were blind, and 1 had
a serious vision loss. The most often used smartphone among the participants
was iPhone together with VoiceOver accessibility service. All participants
answered that they use the internet every day on both smartphone and
desktop PC, but only 2 of them access social media on the phone.

The common tasks participants use mobile internet for are email, reading
articles, shopping and searching for information.

After an initial struggle with controls of the Browser, all participants
finished all tasks quite well. The individual tasks performed by participants
were rated by a number from 1 (finished without any problem in reasonable
time) to 5 (did not finish the task at all) similarly to school grading systems.
The grades were annotated with problems if occurred. The worst grade was
3, and it occurred only once in the first task. The significant part of the tasks
among all participants was rated 1. In the end, all participants stated that
tasks were not hard.

All participants liked the Browser application with some remarks. Par-
ticipants said that the Browser is usable, simple, functional, and easy to
control, but some of them missed specific functions or navigation options.
Participants stated that with some improvements, the Browser could be
perfect accessibility solution.

5.6 Important findings of the testing

The most important finding of the performed test is that blind participants
considered the Browser to be usable and liked its simplicity and concept.
However, each of them missed some functions and proposed some improve-
ments. The most important are the points where all of them agreed. All
participants missed automatic reading function, i.e., reading the text of the
page until the user stops it. The current solution allows reading articles only
by iterating over individual paragraphs. They suggested that this function
should be assigned to the right d-pad button on long press. This feature is
critical and should be implemented in the future. A significant part of them
also suggested that there should be an option to send current URL address
and currently selected link. The current URL should be also filled in the
’Enter URL or search text’ menu option.

Some proposed improvements, which was suggested by single participant,
but was found worth consideration are..1. use only one earcon for page start and page end,

48

..................................... 5.7. Conclusion..2. allow choosing of navigation mode in the menu as an alternative for
buttons,..3. there should be navigation option for localization of tables and lists,..4. it could be announced for links in which ARIA landmark they belong,..5. the earcon for a link should be shorter (e.g., click),..6. the announcement for page loaded and page scanned should be joined
into one,..7. shortcut for ’Find in Page’ assigned to 8 should open keyboard directly
instead of an item in the menu,..8. assign navigation modes to the buttons as in old Nokia legacy phones.

5.7 Conclusion

This Chapter 5 documents the usability testing of designed web browser
integrated into the Core System. The methodology of performed user testing
is described in Section 5.1. Individual phases of testing are described in
dedicated Sections 5.2,5.3 and 5.4. General testing summary is given in
Section 5.5 and important findings are subsequently revealed in Section 5.6.
The Browser was found usable; participants liked it and suggested some
valuable improvements. They all missed Automatic reading function, which
will be incorporated based on their feedback.

49

50

Chapter 6
Conclusions

The brief introduction into the world of ATs, web accessibility, and smart-
phones as a universal platform for delivering various types of accessibility
tools was given in Chapter 1. Chapter 2 was dedicated especially to the Core
System, which was the target system for the proposed web browser integration,
but other existing relevant accessibility tools, browsers, and technologies were
documented as well. The UI design was described in detail in Chapter 3 and
its Sections. Implementation and following integration into the Core system
is explained in Chapter 4. The process of usability testing experiment and
derived valuable findings are documented in Chapter 5. It was found that the
Browsed is usable, and we can say that blind participants liked the concept.
They suggested improvements, which were analyzed, and some of them were
used as valuable feedback for future development.

The contribution of this thesis is mainly the enrichment of the Core system
used by many blind people with a mobile web browser designed especially
for them. The Browser solution is inspired with verified approaches and
integrates them with minimalistic Core system principles.

I want to state that I was impressed with the positivity of the blind people
I met during the usability testing. Blind people struggle every day with
situations most of us can hardly imagine while being smiley, positive and
nice. I am convinced that blind people are very inspiring and beneficial for
society if equipped with useful AT allowing them to live autonomously.

51

52

Bibliography

[1] Inc. Apple. Webkit. https://webkit.org/, 2019. [Online; accessed
1-April-2019].

[2] Alexy Bhowmick and Shyamanta M Hazarika. An insight into assistive
technology for the visually impaired and blind people: state-of-the-art
and future trends. Journal on Multimodal User Interfaces, 11(2):149–172,
2017.

[3] BrailleSurf. Braillesurf. http://www.snv.jussieu.fr/inova/bs4/uk/
index.htm, 2019. [Online; accessed 1-April-2019].

[4] Chromium Contributors. Chromium/blink repository. https://
chromium.googlesource.com/chromium/blink, 2019. [Online; ac-
cessed 1-April-2019].

[5] Corvus. Corvus. http://www.corvuskit.com, 2019. [Online; accessed
1-April-2019].

[6] CSS-Tricks. Average web page data analyz-
ing 8 million websites. https://css-tricks.com/
average-web-page-data-analyzing-8-million-websites/, 2019.
[Online; accessed 1-April-2019].

[7] Mozilla Foundation. Accessibility add-ons. https://addons.mozilla.
org/en-US/firefox/collections/100508/accessibility/, 2017.
[Online; accessed 1-April-2019].

[8] Mozilla Foundation. Mozbraille. http://mozbraille.mozdev.org/,
2017. [Online; accessed 1-April-2019].

[9] Mozilla Foundation. Firefox. https://www.mozilla.org/en-US/
firefox/, 2019. [Online; accessed 1-April-2019].

[10] Mozilla Foundation. Firefox focus. https://www.mozilla.org/en-US/
firefox/mobile/#focus, 2019. [Online; accessed 1-April-2019].

53

https://webkit.org/
http://www.snv.jussieu.fr/inova/bs4/uk/index.htm
http://www.snv.jussieu.fr/inova/bs4/uk/index.htm
https://chromium.googlesource.com/chromium/blink
https://chromium.googlesource.com/chromium/blink
http://www.corvuskit.com
https://css-tricks.com/average-web-page-data-analyzing-8-million-websites/
https://css-tricks.com/average-web-page-data-analyzing-8-million-websites/
https://addons.mozilla.org/en-US/firefox/collections/100508/accessibility/
https://addons.mozilla.org/en-US/firefox/collections/100508/accessibility/
http://mozbraille.mozdev.org/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/mobile/#focus
https://www.mozilla.org/en-US/firefox/mobile/#focus

Bibliography
[11] Mozilla Foundation. Firefox reality. https://blog.mozilla.org/blog/

2018/09/18/firefox-reality-now-available/, 2019. [Online; ac-
cessed 1-April-2019].

[12] Mozilla Foundation. Gecko accessible role. https://developer.
mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/
Interface/nsIAccessibleRole, 2019. [Online; accessed 1-April-
2019].

[13] Mozilla Foundation. Geckoview. https://wiki.mozilla.org/Mobile/
GeckoView, 2019. [Online; accessed 1-April-2019].

[14] Mozilla Foundation. Mozilla. https://www.mozilla.org, 2019. [Online;
accessed 1-April-2019].

[15] Mozilla Foundation. Mozilla accessibility. https://developer.mozilla.
org/en-US/docs/Mozilla/Accessibility, 2019. [Online; accessed 1-
April-2019].

[16] Ritwika Ghose, Tirthankar Dasgupta, and Anupam Basu. Architecture
of a web browser for visually handicapped people. In 2010 IEEE Students
Technology Symposium (TechSym), pages 325–329. IEEE, 2010.

[17] Google. Accessibility overview. https://developer.android.com/
guide/topics/ui/accessibility, 2019. [Online; accessed 1-April-
2019].

[18] Google. Accessibility service. https://developer.
android.com/reference/android/accessibilityservice/
AccessibilityService, 2019. [Online; accessed 1-April-2019].

[19] Google. Android activity. https://developer.android.com/
reference/android/app/Activity, 2019. [Online; accessed 1-April-
2019].

[20] Google. Github talkback repository. https://github.com/google/
talkback, 2019. [Online; accessed 1-April-2019].

[21] Google. Google accessibility suite. https://play.google.com/store/
apps/details?id=com.google.android.marvin.talkback, 2019. [On-
line; accessed 1-April-2019].

[22] Google. Google text-to-speech. https://developer.android.com/
reference/android/speech/tts/TextToSpeech.html, 2019. [Online;
accessed 1-April-2019].

[23] Google. Talkback manual chrome. https://support.google.
com/accessibility/android/answer/2633135?hl=en&ref_topic=
3529932, 2019. [Online; accessed 1-April-2019].

[24] Google. Webview. https://developer.android.com/reference/
android/webkit/WebView, 2019. [Online; accessed 1-April-2019].

54

https://blog.mozilla.org/blog/2018/09/18/firefox-reality-now-available/
https://blog.mozilla.org/blog/2018/09/18/firefox-reality-now-available/
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIAccessibleRole
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIAccessibleRole
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIAccessibleRole
https://wiki.mozilla.org/Mobile/GeckoView
https://wiki.mozilla.org/Mobile/GeckoView
https://www.mozilla.org
https://developer.mozilla.org/en-US/docs/Mozilla/Accessibility
https://developer.mozilla.org/en-US/docs/Mozilla/Accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://github.com/google/talkback
https://github.com/google/talkback
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://developer.android.com/reference/android/speech/tts/TextToSpeech.html
https://developer.android.com/reference/android/speech/tts/TextToSpeech.html
https://support.google.com/accessibility/android/answer/2633135?hl=en&ref_topic=3529932
https://support.google.com/accessibility/android/answer/2633135?hl=en&ref_topic=3529932
https://support.google.com/accessibility/android/answer/2633135?hl=en&ref_topic=3529932
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView

.......................................Bibliography

[25] Lilit Hakobyan, Jo Lumsden, Dympna O’Sullivan, and Hannah Bartlett.
Mobile assistive technologies for the visually impaired. Survey of oph-
thalmology, 58(6):513–528, 2013.

[26] Apple Inc. Vision accessibility. https://www.apple.com/
accessibility/iphone/vision/, 2019. [Online; accessed 1-April-2019].

[27] A King, G Evans, and P Blenkhorn. Webbie: a web browser for visually
impaired people. Citeseer.

[28] Mozilla. Mozilla gecko repository. https://github.com/jostw/gecko/
tree/master/mobile/android/, 2019. [Online; accessed 1-April-2019].

[29] Center For Development of Advanced Computing. Shrutidrishti. https:
//www.cdac.in/index.aspx?id=mc_st_shruti_drishti, 2019. [On-
line; accessed 1-April-2019].

[30] PetGlobal. Smartphone ownership is growing rapidly around the world,
but not always equally. https://www.pewglobal.org/2019/02/05/
smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/,
2019. [Online; accessed 1-April-2019].

[31] Petr Svobodník. Zpřístupnění mobilních telefonů se systémem android
pro nevidové uživatele. 2013.

[32] W3C. Aria landmarks. https://www.w3.org/TR/
wai-aria-practices/examples/landmarks/index.html, 2019.
[Online; accessed 1-April-2019].

[33] WebAIM. Screen reader survey. https://webaim.org/projects/
screenreadersurvey7, 2017. [Online; accessed 1-April-2019].

[34] WebbIE. Practical accessible web design. https://www.webbie.org.
uk/accessibilityinwebdesign.htm, 2017. [Online; accessed 1-April-
2019].

[35] World Health Organization (WHO). Blindness and visual impair-
ment. https://www.who.int/en/news-room/fact-sheets/detail/
blindness-and-visual-impairment, 2019. [Online; accessed 1-April-
2019].

[36] Cameron Wong. eguidedog. https://www.eguidedog.net/, 2019. [On-
line; accessed 1-April-2019].

55

https://www.apple.com/accessibility/iphone/vision/
https://www.apple.com/accessibility/iphone/vision/
https://github.com/jostw/gecko/tree/master/mobile/android/
https://github.com/jostw/gecko/tree/master/mobile/android/
https://www.cdac.in/index.aspx?id=mc_st_shruti_drishti
https://www.cdac.in/index.aspx?id=mc_st_shruti_drishti
https://www.pewglobal.org/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://www.pewglobal.org/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://www.w3.org/TR/wai-aria-practices/examples/landmarks/index.html
https://www.w3.org/TR/wai-aria-practices/examples/landmarks/index.html
https://webaim.org/projects/screenreadersurvey7
https://webaim.org/projects/screenreadersurvey7
https://www.webbie.org.uk/accessibilityinwebdesign.htm
https://www.webbie.org.uk/accessibilityinwebdesign.htm
https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.eguidedog.net/

56

Appendix A
User-testing questionnaires

A.1 Pre-test questionnary

Question Part. 1 Part. 2 Part. 3 Part. 4 Part. 5

1 d c c c c
2 male male male male male
3 no yes yes yes yes
4 d d c c c
5 I CS I,A I I
6 VO - VO, TB VO VO
7 yes yes yes yes, yes
8 yes yes yes yes yes
9 no no yes no yes
10 e, a e, tt, sh, tt, s s, sh, a, m a

Table A.1: Pre-test questionnary.

Legend for Table A.1:..1. CS - the Core system..2. I - iPhone..3. A - Android..4. VO - VoiceOver..5. TB - TalkBack..6. e - email, a - articles, tt - time tables, s - searching, sh - shopping, m -
multimedia

57

A. User-testing questionnaires...............................
A.2 Post-test questionnary

A.2.1 Participant 1..1. No...2. None...3. Usable, simple...4. Current URL should be in ’Enter URL or seach text’ keyboard. Navi-
gation modes should be in menu as well. Missing navigation mode for
table localization...5. Automatic reading.

A.2.2 Participant 2..1. No...2. None...3. Usable, simple...4. Try use the Core system keyboard used in menu for in-page entry. Last
search term should remain in ’Find in Page’ keyboard...5. Automatic reading, medial element control.

A.2.3 Participant 3..1. No...2. None...3. Good, simple, easy to control...4. Join announcments for page loaded and page scanned into one. Announce
return to page after entering search text in ’Find in Page’ keyboard...5. Automatic reading.

A.2.4 Participant 4..1. No...2. Orientation in YouTube page...3. Usable, liked it.

58

................................ A.2. Post-test questionnary..4. Announce number of headings after switching to headings navigation.
Switch ’Back’ and ’Forward’ items in menu. Possibility to rename
bookmark. Confirm dialog for ’Clear history’...5. Automatic reading.

A.2.5 Participant 5..1. No...2. None...3. Easy...4. Read ’link’ after text of the link. Announce tables and lists. 8 should open
keyboard directly not menu item ’Find in Page’. Link could announce
ARIA landmark where it belong...5. Automatic reading, sending of current URL and link, repeating of current
URL.

59

60

Appendix B
Abbreviations used in thesis

Abbreviation Meaning

VI Visual impairment
VIP Visually impaired people
QoL Quality of life
ADL Activities of daily live
UI user interface
PDF portable document format
WWW World Wide Web
HTML Hyper Mark-up Text Language
AT Assistive technology

Table B.1: Abbrevations used in thesis.

61

62

Appendix C
CD Content

Directory name Description

thesis Contains this Master thesis in PDF format.
thesis sources Contains LATEX source codes used to generate this thesis.
java Contains source code of the web browser for blind written in Java.
python Contains source code of scripts written in Python used to generate plots.

Table C.1: CD content.

63

	Introduction
	Web accessibility

	The Core system and other related work
	Desktop browsers for visually impaired
	The TalkBack
	Other accessibility solutions
	The VoiceOver
	The Corvus

	The Core system
	Conclusion

	Web browser design
	Introduction
	Web browser engines
	WebKit
	Blink
	Gecko and GeckoView

	Requirements
	Input interface design
	Controls and navigation in the page
	Voice input

	Output interface design
	Visual
	Text-To-Speech
	Earcons
	Vibrations

	Menu design
	Conclusion

	Web browser implementation
	Introduction
	Architecture
	Representation and navigation module
	Content extraction and filtration module

	Implementation
	Main activity
	Accessibility service
	Tree search algorithm
	Menu
	Prompt and dialogs
	Auto-scroll
	File downloads
	Finder
	Error page

	Integration into the Core system
	The Core System more technically
	Target device

	Conclusion

	User testing
	Introduction
	Pre-test
	Tasks
	Post-test
	Testing summary
	Important findings of the testing
	Conclusion

	Conclusions
	Bibliography
	User-testing questionnaires
	Pre-test questionnary
	Post-test questionnary
	Participant 1
	Participant 2
	Participant 3
	Participant 4
	Participant 5

	Abbreviations used in thesis
	CD Content

