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Abstract

Road traffic participants captured by
LiDAR sensor can be recognized even by
the human eye.

In this thesis we present several classifi-
cation models for automatic recognition of
dynamic objects in the urban environment.
All the mechanisms used are based on tra-
ditional machine learning, i.e., k-Nearest
Neighbors rule, Gaussian Mixture Model
and Random Forest.

The features applied are essentially di-
vided into moment family and 3D Haar-
like feature family.

Experiments are performed with the
4-fold cross-validation on a public Sydney
dataset (347 segments) as well as on
an internal Wolfsburg dataset (3203 seg-
ments; not yet public). Both scanned by
Velodyne LiDAR.

Segments are labeled into seven classes:
pedestrian, cyclist, biker, car, van, bus and
truck. In case of uncertainty about the
class, objects are labeled as an outlier.
In addition, a small portion of undefined
objects is added to the validation dataset
and is used for a part of the experiments.

The classification performance on seven
specific classes reaches a state-of-the-art
accuracy of over 96 %.

Keywords: computer vision, object
recognition, LiDAR data, road traffic

Supervisor: doc. Dr. Ing. Radim Séara
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Abstrakt

Uéastniky silni¢niho provozu nasnimané
senzorem LiDAR lze rozeznat i pouhym
okem.

V této praci predstavime nékolik kla-
sifika¢nich modelt pro automatické roz-
poznavani dynamickych objekti v mést-
ském prostredi. VSechny pouzité mecha-
nismy jsou zalozené na tradi¢nim strojo-
vém uceni, tj. k nejblizsich sousedi, smés
Gaussovych rozdéleni a ndhodné lesy.

Priznaky jsou rozdéleny na momento-
vou rodinu a 3D Haarovu pfiznakovou
rodinu.

Experimenty se c¢tyrnasobnou krizo-
vou validaci byly provedeny na vefejném
Sydney datasetu (347 segmentti) i na
internim Wolfsburg datasetu (3203 seg-
mentl; zatim neni zvéfejnény). Oba dva
nasnimané LiDARem Velodyne.

Segmenty jsou rozdélené do sedmi t¥id:
chodec, cyklista, motocyklista, osobni auto-
mobil, doddvka, autobus a kamion. V pri-
padé nejistoty o tridé je objektim prira-
zena, univerzalni t¥ida. Cést valida¢niho
datasetu je navic tvorena témito univer-
zalnimi objekty a je pouzita pro cast ex-
periment.

Vykon klasifikace na sedmi konkrétnich
tridach dosahuje state-of-the-art presnosti
pres 96 %.

Klicova slova: pocitacové vidéni,
rozpoznavani objektt, LIDAR data,
silni¢ni provoz

Pteklad nazvu: Rozpoznavani
ucastniku silni¢niho provozu v bodovych
mnozinach z LiDARu
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Chapter 1

Introduction

. 1.1 Motivation and Task

A 3D object recognition is a central task in any intelligent or autonomous
vehicle. A correct recognition of road traffic participants can be used to
avoid accidents or to predict their future behavior which would serve valuable
information for an optimal control and decision-making systems. Nonetheless,
3D object recognition in the challenging urban environment still remains an
open research problem.

The aim of this thesis is to find a precise and fast classification method for
real-time recognition of road traffic participants from a vehicle that is taking
part in the traffic as well.

Although we can benefit from a combination of multiple sensors (e.g., a
fisheye camera, a radar or an ultrasonic sensor), for the purpose of this thesis
we have decided to use only segmented LiDAR data. In Figure 1.1 there is
an example of how the autonomous vehicle can perceive. As you can see, the
object captured by the LiDAR sensor can be recognized by the human eye
just as well as the RGB image.

The LiDAR is a time-of-flight sensor. The light photon is emitted, hits the
object and bounces back to the device at which point time and distance is
measured.

The LiDAR segments are sparse point clouds of about tens to thousands
of points (see Table 3.3 for per class average). Several point cloud segments
of the same object captured over time will be referred to as a track.

In these days, an autonomous vehicle phenomenon is one of the fastest grow-
ing field of practical application of LiDAR point cloud recognition algorithms
with over 4000 papers published from 2018".

In order to control an autonomous vehicle it is crucial to ensure accurate
perception of the surrounding world (especially fast-moving obstacles).

'Papers from 2018 to 2019 related to LiDAR point cloud recognition in autonomous
vehicle environment, according to Google Scholar.
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(a): LiDAR segment. (b): RGB camera image.

Figure 1.1: Side-by-side comparison of car captured by both the LiDAR (a) and
the RGB camera (b).

We seek a classification model that will be invariant to

1. the number of points per object (density varies by distance from the
observer),

2. a rotation around the vertical axis, i.e., orientation.

Both are needed for safe and optimal control of an autonomous vehicle.
Recognition of distant objects is essential for early decision making. Never-
theless, distant objects are naturally hard to read.

This raises great questions. How accurate a classification of objects using
only the sparse plain depth LiDAR data can be? And is the accuracy sufficient
for reliable use in the real traffic?

. 1.2 Related Work

The recognition of the road traffic participants in the LiDAR point clouds is
an active research area. There have been a wide variety of papers written on
this topic in the recent past and some of them have run into closely related
problems.

Approaches basically vary in class selection, classification method and
feature choice.

Traditional Machine Learning. Similarly to our approach, in [GKF09] they
use shape features (e.g., the number of points, average height, standard
deviation in height, etc.) and spin image descriptor with k-Nearest Neighbor
classifier, Random Forest and SVM to distinguish between 16 classes (e.g.,
car, traffic light, fire hydrant, mailing box, etc.).

Promising results are presented by [TLT11b]. Besides individual segment
features, they have also developed holistic descriptors of whole track such as
mean speed or maximum acceleration. Well-segmented objects are classified
into car, pedestrian, bicyclist, and background classes using an augmented
discrete Bayes filter.
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Classification by the multiclass SVM is also done by [LJH' 16] using local
descriptor histograms (LDHs), spin images and general shape and point
distribution features (e.g., the number of voxels, the height, the mean height
or the standard deviation of the z-coordinate). The urban objects of interest in
this paper are trees, lamp posts, traffic signs, cars, pedestrians and hoardings.

The paper [DDQHD13] proposes an alternative to hand-crafted features,
the unsupervised feature learning. They focus on scans produced by an
outdoor 3D mobile laser scanner (e.g., 3D Velodyne LiDAR on a ground
vehicle), just like us. Among the 14 classes are car, bus, pillar, tree, or truck,
to name a few.

These methods are synergistic to ours, and will be used for comparison
with our results in Section 5.1.

Convolutional Neural Networks. Nowadays, we can also see much effort
in using deep learning for the point cloud segmentation and classification
[WSL*18], [MS15], [Pro10].

Both the machine learning and the deep learning methods are investigated
in [Hacl8] and it is shown that the deep learning approach outperforms
the traditional machine learning. However, it is extremely computationally
demanding.

3D Haar-Like Feature Family. The 3D Haar-like feature family motivated
by successful results in digital photography [V.J"01] has been used in previous
studies [EDP06] for bottles recognition and [PN13] for static engineering
parts (e.g., valve, tube, ladder, etc.) and street objects (e.g., car, tree, stop
sign, etc.) recognition without a priori object segmentation.

Public LiDAR Datasets. For benchmarking there is a few annotated urban
LiDAR object datasets available on the internet such as [HSLT17] (over
4 billion points), [MBVHO09] (over 1.3 million segments), [TLT11a] (1.3 million
segments), [SMGD14] (642 segments), [QUD13] (631 segments). The last one
will be used for a direct comparison with results presented in [DDQHD13]
and [Qual3].

B 13 Ouw Approach

Features and Methods. There is not a general consensus about the best
classification method. Since the deep learning methods are demanding massive
computational resources that are not available in the vehicle, our approach
relies on traditional machine learning. In this thesis, we compare three
methods for point cloud segment classification (i.e., k-Nearest Neighbor,
Gaussian Mixture Model and Random Forest) using four descriptor types
(i.e., a zero-order moment, second-order moment, rescale factor » and 3D
Haar-like features).
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(a): Pedestrian. (b): Cyclist. (b): Biker.

(b): Bus. (b): Truck.

Figure 1.2: LiDAR segment example of each class.

Classes Selection. It is essential to design a reasonable classes division.

For instance, it is worth distinguishing a bus from a truck. Both vehicles
are among the largest on the road but behave differently. Correct recognition
of a bus with a map of its stops can significantly increase the traffic flow.

On the other hand, it is not necessary to divide small two-track vehicles
into a 4WD, sport car, pickup or utility vehicle.

We definitely involve pedestrians because they are the most vulnerable
group of the road traffic participants and must not be harmed.

Finally, we distinguish between seven specific classes® pedestrian, cyclist,
biker (i.e., motorbike rider), car, van, bus, truck and a universal class outlier
for an unspecified object. Figure 1.2 shows a representative example of each
specific class.

The outlier class serves as a mechanism for an incorrect detection controlling,.
In case of uncertainty about the class, the segment will be labeled as the
outlier. The effect of an uncertainty threshold will be shown in Chapter 4.

Data Processing Structure. For reader’s convenience, we present a full
recognition workflow diagram in Figure 1.3.
As a part of this project we have completed an annotated LiDAR dataset

2If they are present in the selected dataset.

4
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Figure 1.3: The recognition workflow diagram.

of urban objects®. Our contribution to the dataset creation is highlighted in
green on the left side of the diagram and further described in Section 3.1.

The right side of the diagram shows the classifier design and testing.

The first two steps, feature selection (highlighted in orange) and method
selection (highlighted in red), are introduced in Section 2.1 and Section 2.2,
respectively.

All classification models were evaluated on our internal Wolfsburg dataset
as well as public Sydney dataset in Chapter 4. This phase is shown in purple.

Our results will be broadly discussed in final Chapter 5.

The main contributions of the thesis are
1. creation of a simple classifier without complicated mechanisms,

2. inspection of the accuracy of 3D object classification captured simultane-
ously by four LiDAR sensors,

3. generalization of a Haar wavelet and making use of 3D Haar-like features
in the combination with common geometrical features,

4. completion of the Wolfsburg dataset.

3The first step (i.e., data collection from LiDAR input) was done by Volkswagen AG
Group Research in Wolfsburg. The second one (i.e., data segmentation) was provided by
Ing. Dominik Fiala from Czech Technical University in Prague [Fialg].

5






Chapter 2
Theory

In this chapter, we describe the theoretical basis for the upcoming chapters,
including the mathematical apparatus used.

First of all, we describe feature families in detail. After that, we will take
a glance at classification methods. In the end of this chapter we will present
measurement methods of the classification performance.

. 2.1 Feature Families for Feature Selection

The purpose of feature extraction is to reduce redundancy in input data and
discard information unrelated to the class recognition task. In the feature
extraction stage the initial point cloud segment is projected into a more
manageable feature space. In that space it is easier to assign an appropriate
class label of the point cloud segment.

To select an informative descriptor in the feature selection stage, we need
sufficiently rich feature families.

Note that the z-axis increases from bottom to top and that z = 0 is the
ground plane.

B 2.1.1 The Moment Family

Let’s define moments up to the second order as follows.

Definition 2.1. Consider a 3D point cloud represented by a set of points
x; € R3. Each point contains random variables 2-, y- and z-coordinate in
the world Cartesian coordinate system, respectively. Let NV € R be a total
number of points in the point cloud and let M; be an i-th moment of the

7
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point cloud, then:

N

My=) 1=N, (2.1)
=1
N

M1 = Z i, (22)
=1
N

M2 = Z €T; .’B;r, (2.3)
=1

are zero, first and second order moments, in the order given.

I 2.1.1.1 The Zero-order Moment

The zero-order moment M, (Equation 2.1) is simple and fast to extract
feature. On its own it is a too naive feature and it is supposed to fail in many
cases. However, it can be beneficial in combination with other features with a
sufficiently sophisticated model that can be trained to recognize how objects
typically look like with a different number of points.

B 2.1.1.2 The Second-order Moment

The main objective of this feature family is satisfaction of the rotational
invariance. Note, however, that we only consider the positions of vehicles
with chassis parallel to the ground, i.e., rotation only about the vertical axis.

Another intention is a possibility of the feature space visualization. Given
the three-dimensional plotting limit, the aim was to select a maximum of three
features to keep the feature space simple and preserve important information
at the same time.

Definition 2.2. Consider again the 3D point cloud represented by a set of
points z; € R3. Using Equations (2.1), (2.2) and (2.3) we write the center of
mass p € R? of the point cloud as

M,
== 2.4
m=r (2.4)
and the covariance matrix S of the point cloud as®
S=—+=-— . 2.5
N, M (2.5)

Remark 2.3. The covariance matrix S is symmetric and positive semidefinite.
It implies that its diagonal elements are the variances of the particular
coordinates, which can never be negative.

4We avoid the Z-notation of covariance for the rest of the thesis not to confuse with the
sum symbol.
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Figure 2.1: Feature space view of [\, Ay, 02].

Next, we split the matrix S to

sM
S 13
S = A SMas | - (2.6)

SMs1  SMasg SMs3

Eigenvalues of Sy, i.e., Az, Ay, are the first two features. As we have
observed (Remark 2.3), the diagonal element sy, is equivalent to variance
in z-coordinate o2 which yields the third feature.

Figure 2.1 shows a view of the [Az, Ay, 03] feature space. As we can
see, classes are interspersed and are not linearly separable with this basic
geometric descriptor.

B 2.1.2 3D Haar-Like Feature Family

More advanced classifiers (especially Random Forest), are able to handle
higher-dimensional feature space efficiently [AG97]. We introduce the Haar
wavelet, to extend the number of feature families in this thesis.

The one-dimensional Haar wavelet is a three-valued piecewise continuous
function defined as follows.

Definition 2.4. [RB9S)]
Let the mother wavelet be

1 0<t<i,
Yty =<-1 L<t<i, (2.7)

0 otherwise.
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Figure 2.2: Haar mother wavelet (W7) and three derived wavelets (W, W3, Wy).

Its time domain scaling function is

1 0<t<l,
o(t) = {0 otherwise. (2:8)

Remark 2.5. The Haar mother wavelet satisfies following properties [RBIS]:

1. The function integrates to zero:
o0
/ B(t)dt = 0. (2.9)
—o0
2. It is square integrable or, equivalently, has finite energy:
> 2
/ ()2 dt = 1. (2.10)
—0o0

Definition 2.6. Taking Wy(t) = ¢(t) and Wi(t) = ¢ (t) a complete Haar

wavelet sequence for n € Z is defined by induction

Won(t) = Wa(28) + Wi(2t — 1), (2.11)
W2n+1(t) = Wn(Qt) — Wn(Qt — 1). (2.12)
(2.13)

Roughly speaking the one-dimensional Haar wavelets divide the unit interval
to several subintervals and assigns 41 to each of them. At the endpoints and
outside of the unit interval it is equal to zero (see Figure 2.2).

The three-dimensional Haar wavelet is a straightforward generalization of
the one-dimensional Haar wavelet as long as we simply apply it according to
each axis.

10
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0 0.2 0.4 0.6 0.8 1
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(c): Partition (4, j, k) = (7, 7, 0). (d): Partition (4, j, k) = (7, 7, 7).

Figure 2.3: The unit cube partitioned by the single wavelet.

Definition 2.7. Let W;, W;, W}, be the 1D Haar wavelets (or the scaling
function itself) defined by Equations (2.11) or (2.12). A 3D Haar wavelet is
defined by an intersection

Ci,j,k(qj) Y, Z) = W’L(x) W](y) Wk‘(z)u /L'7 j7 k > O) (214)

where the domain of W; (resp. W and W}) is the unit interval on z-axis
(resp. y-axis and z-axis).

The intersection divides the unit cube to several cuboids (as shown in
Figure 2.3). The value of each cuboid is {£1}.

The singular case (7, j, k) = (0, 0, 0) (i.e., the intersection of three unit
pulses) is identical to zero-order moment My defined within the moment
family and will be excluded from the 3D Haar wavelet sequence.

It might seem that we have not gained much by doing so. However, consider
a normalized point cloud segment (see Section 2.1.2.1).

Each point of the segment belongs to some cuboid (Figure 2.4 shows a car
segment in three simple configurations). It sufficies to count up all points in
each cuboid and multiply by the corresponding sign. The resulting feature is
obtained by summing up all those numbers, i.e., the total number of points
in cuboids with —1 is subtracted from the total number of points in cuboids
with +1.

11
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(c): Partition (i, 7, k) = (0, 0, 1). (d): Partition (7, 7, k) = (1, 0, 1).

Figure 2.4: The car segment partitioned by the single wavelet.

Wavelets () 1 2 3 4 5 6 7 8
Features (H,) 7 26 63 124 215 342 511 728

Table 2.1: The number of wavelets depending on a.

We will denote the 3D Haar-like features by H., where the subscript o € N
indicates the number of used wavelets.

Table 2.1 shows how rich the Haar feature family is. The size of Hq
is one less® than a number of 3-element variations of (a + 1) elements®
with repetition allowed, i.e., V/(a+ 1, 3) — 1 = (o + 1)® — 1. For example,
#H1 = {(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)},

H, = {(0,0,1), (0,0,2), (0,1,0), (0,1,1), ..., (2,2,2)}, etc.
Iterating over a, Haar wavelets brings a large amount of distinct features’.

B 2.1.2.1 Pre-processing of the Point Cloud Segment

The method described above assumes a normalized point cloud segment. For
that reason, it is necessary to perform several linear transformations to the

SWe subtract the singular case of the three unit pulses intersection.
5To simplify the formula, we consider the unit pulse to be a wavelet too.
7 Although, not an infinity on a discrete point cloud segment.

12



2.2. Classification Methods

data.

At first, the point cloud segment is shifted so that the center of mass is at
the origin.

Next, in order to reduce the number of the object orientations it is rotated
so that dominant eigenvector of the covariance matrix of the point cloud
segment is parallel to the z-axis.

Once this is done, the segment is rescaled by the factor s that is equal to
the distance of the farthest point from the origin.

Finally, the segment is shifted so that the center of mass is in the (%, %, %)
and it fits in the unit cube.

It is important to pay attention to the transformations order. For example,
rotating the point cloud after the rescale and the second shifting can cause
some points lying out of the unit cube.

After the normalization process it is straightforward to divide the point
cloud into a regular voxel structure as a basis for the feature computation.

Additionally, the scaling factor s can be used as a feature as well.

. 2.2 Classification Methods

B 2.2.1 k-Nearest Neighbors Rule

The k-Nearest Neighbors rule classifier [DHS01] serves as a baseline classifier
as it is a non-parametric® and a distribution flexible method.

Quoting essentially verbatim from [FH04], we formally define a k-Nearest
Neighbor rule as follows.

Definition 2.8. Let Txy = {(z1,v1),...,(x;,y1)} be a set of prototype vec-
tors &; € X C R™ and the corresponding classes be y; € Y = {1,...,c}. Let
x € R" be an incoming vector with an unknown class label.

Let B*(z) = {z':|z—a' |<r?} be a n-dimensional ball of radius
r € R™ centered at the vector @ in which k prototype vectors x;, i € {1,...,1}
lies, i.e., {@; : x; € B"(x)}| = k.

Assuming uniform weights of all classes, we compute a posterior probability
of class y

ly ) = "0, (2.15)

where v(x,y) is the number of prototype vectors x; with class y; = y which
lie in the n-dimensional ball B"(x).

The k-Nearest Neighbor (k-NN) classification rule ¢ : X — Y is then
defined as

q(x) = argmax p(y | ). (2.16)
yey

Running the k& parameter optimization, we found the & = 7 to be the best
value in both datasets. A MATLAB implementation fitcknn has been used
to perform the k-Nearest Neighbor classification.

8Except for the number k.

13



2. Theory

B 2.2.2 Gaussian Mixture Model

The general multivariate Gaussian density function in n dimensions is given
by

p(x;p,S) = m exp {—;(w - N)Ts_l(w - N)} ) (2.17)
where p is a n-dimensional mean vector and S € R™*" is a covariance matrix
that is symmetric and positive-definite.

Taking the prototype vector x; as a mean vector, we represent it with a ker-
nel function p(x; x;, S), where S is a diagonal covariance matrix corresponding
to the class of the prototype vector x;.

Following the core idea from [Bis06] we formulate an adjusted Gaussian
Mixture Model classifier as follows.

Definition 2.9. Let Txy = {(x1,v1),...,(x;, 1)} be a set of prototype vec-
tors &; € X C R™ and the corresponding classes be y; € Y = {1,...,c}. Let
X; C X be a subset of all prototype vectors from class y;. Let £ € R" be an
incoming vector with an unknown class label.

Class y; is represented by a mixture of Gaussian components in the form

1

-] 3 p(xS;)), (2.18)

a:ier

p(x|y;)

normalized by the number of elements in the class y;.
The Gaussian Mixture Model (GMM) classifier g : X +— ) is defined as

q(x) = argmax p(x | y). (2.19)
yey
The classifier (2.19) will be evaluated using only the three-dimensional
feature space of [Az, Ay, 02].

B 2.2.3 Random Forest

A classification using a binary decision tree is a predictive model based on a
sequential decision making. One feature criterion is selected as a root node.
Every node (except of the last level) splits into two branches according to
the feature criterion chosen. Nodes in the last level of the decision tree are
called leaves and contain an output class decision [Bis06]. For illustration, a
simple binary tree is shown in Figure 2.5. However, individual decision trees
tend to overfit.
We follow [Bre01] in Definition 2.10.

Definition 2.10. Let 7xy = {(x1,91),...,(x;,y;)} be a set of prototype
vectors &; € X C R™ and the corresponding classes be y; € Y = {1,...,c}.
Let € R" be an incoming vector? with an unknown class label.

9Note that the space of R” implies n € N features.
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2.2. Classification Methods

pedestrian car bus truck

Figure 2.5: One simple decision tree.

Let ©1, ..., Oy are N € N sets of the same size as the original set Txy
created from a random picking of the prototype vectors from the Txy with
replacement.

The ©; serves as a training set for growing the tree h;(©;,s), where
s € N, s < n is a number of features (selected at random out of n features) to
find the best split at each node in the sense of the Gini index [Bis06]. Each
tree is grown to the largest extent possible without pruning and the value of
s is the same for each tree.

A Random Forest is an ensemble of N classifiers {h;(01, s),...,hn(On,s)}.

The incoming vector x is passed down from a root node to a leaf node of
each classification tree. Since there are N trees in the ensemble, we get a
N-dimensional vector of predicted classes K = {k1, ..., kn}.

Assuming uniform weights of all classes and ensemble trees as well, we
define the posterior probability of class y as

Zi]\il Uj (37, y)

p(y|x) = W , (2.20)

where u;(x,y) is 1 when output class of i-th decision tree k; = y at input x
and 0 otherwise.
The Random Forest (RF) classifier ¢ : X — ) is then defined as

q(x) = argmax p(y | ). (2.21)
yey
Figure 2.6 shows a qualitative characteristics of an out-of-bag classification
error [BreO1] convergence. The out-of-bag error decreases with the number of
grown trees almost monotonously. Running a few experiments, we have found
out that it always takes no more than 500 trees to converge. Therefore, we
will keep it as a fixed value for all experiments. Assume d? € N is a number
of features, then s = d features (selected at random) are used in each split.
A MATLAB implementation TreeBagger has been used to perform the
Random Forest classification.
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2. Theory
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Figure 2.6: Out-of-bag classification error over the number of grown trees.

B 2.2.4 Assignment of the Outlier Class

The question to be answered is when and how the universal class is assigned
to the object.

There is a posterior probability of class defined for each classification
method. That allows us to generalize all classifiers with the following rule.

Definition 2.11. Let Txy = {(x1,91),...,(x;,y;)} be a set of prototype
vectors &; € X C R™ and the corresponding classes be y; € V* = {1, ..., cout },
i.e., a set of specific classes ) extended by the outlier class coyt. Let @ € R
be an incoming vector with an unknown class label.

Assume the posterior probability of the class y given x is p(y|x). We
compute two most probable classes

t = argmax p(y | =), (2.22)
yey
Y2 = argmax p(y|x). (2.23)
yey\{u}

The generalized classification rule ¢ : X — )Y is then defined as

P |2)
@) =% pmim D (2.24)
Y1 otherwise,

where T' € R is a probability threshold. Smaller 7" is more restrictive.

The probability threshold T will be further investigated in Chapter 4.
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2.3. Metric Models of Classification Performance

True Class
TN | TN . TN TN | TN
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Figure 2.7: Confusion matrix sections.

. 2.3 Metric Models of Classification Performance

A conventional confusion matrix will be used for the multi-class classification
performance measurement. Let’s consider a confusion matrix in which the
predicted classes are in rows and the true classes are in the columns. In the
confusion matrix the outlier class is treated the same way as the specific
classes.

Given the confusion matrix we generalize a commonly used two-class metric
model of true positive, true negative, false positive and false negative for
multi-class classification.

Without loss of generality consider one particular class c. A true positive
(TP,) is simply the number of correctly classified segments from class ¢, a
false positive (FP.) is the number of segments from a non-c class that were
labeled as a class ¢, a false negative (FN,) is the number of segments from
a class ¢ that were not labeled as a class ¢ and a true negative (TN.) is the
number of segments which do not belong to any previous group mentioned
above (i.e., the segments out of class ¢ which were correctly not classified as
a class c).

Confusion matrix partitions for one particular class are clearly shown in
Figure 2.7, which is motivated by [Kriil6].

Further we define mean precision (PPV), mean recall (TPR), mean F;
score and mean accuracy (ACC) in Equation (2.26), (2.27), (2.28) and (2.29),
respectively. Assume there are C classes in the confusion matrix. All the
parameters are weighted by the number of instances I; in the corresponding
class ¢ as defined in Equation (2.25).
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I;
W = ———,
' Z]C:1 I;
C
TP,
PPV = Nl B
;w’ TP, + FP;’

C
TP,
TPR = Y wims——
Z; VTP FENY

C
PPV, - TPR;
F =2 P
! ; Y"PPV, + TPR;’

TP; + TN;

C
i=1

TP; + TN; + FP; + FN; '

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

The goal is to maximize precision and recall. Consequently, accuracy and

Fy score as well.
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Chapter 3

Datasets

A dataset choice is crucial for an evaluation of developed classifiers.

There are several public datasets available on the internet listed in Sec-
tion 1.2 but only a Sydney dataset [QUD13] was picked of them all to evaluate
our models (see Section 3.2 for detail motivation). The remaining datasets
suffered from common drawbacks such as too few or complete lack of instances
in a class of interest or acquisition by a static LIDAR sensor that provides
different properties than the mobile laser scanner.

We also completed the internal Wolfsburg dataset under the UP-Drive
project'? funded by the European Commision. The Wolfsburg dataset is not
yet public.

B 31 Wolfsburg Dataset

B 3.1.1 Data Origin and Pre-processing

Data were collected in Wolfsburg city, Germany, on November 26, 2018
(4 driving sessions) and on January 14, 2019 (3 driving sessions).

Four LiDAR sensors were mounted on the roof of the egovehicle (Figure 3.1
shows an UP-Drive vehicle with fifth extra LiDAR sensor at the back). That
yields four independent point clouds at a time. The corresponding point
clouds were segmented and aggregated into one scan by Dominik Fiala [Fial8].
As a result, scans are approximately four times denser (see Table 3.3 for a
comparison with the Sydney single scanner).

B 3.1.2 Hand-crafted Annotation

The ground truth annotation of individual segments was achieved by the
human workforce. We went through 23458 scans and collected a total of 3203
segments (see Table 3.1 for details).

Sometimes it was hard to decide which class a segment belongs to. Thus,
camera images were used to verify the ground truth annotation.

108ee www.up-drive.eu.
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3. Datasets

Figure 3.1: UP-Drive vehicle.

(a): Input segment. (b): Outlier separation.  (c): Well-segmented van.

Figure 3.2: Correction of an undersegmented van.

B 3.1.2.1 Post-processing Phase

Several objects were not segmented properly and contained points of another
class or background (e.g., ground or wall). Similarly, a few semantically
separate objects (e.g., two pedestrians walking side by side) were labeled as a
single segment. All of these occurrences have been splitted into its correct
class (resp. erased as shown in Figure 3.2) in post-processing phase.

On the contrary, oversegmented objects have been merged and labeled
according to their class as well.

Due to this approach, we have reached a higher number of well-segmented
samples in the dataset!!.

B 3.1.3 Semi-synthetic Outliers

The original segmentation did not provide sufficient amount of undefined
objects that could be labeled as an outlier. For that reason, additional 1200
segments (selected at random) were extracted from the background.

20



3.2. Sydney Dataset

WOLFSBURG dataset

Class
acq. date scans bus car pedestrian truck van b

1 2018-11-26 11:04 3008 12 211 88 99 86 496
2 2018-11-26 11:10 3703 47 148 99 79 72 445
3 2018-11-26 11:18 3209 2 94 142 45 23 306
4 2018-11-26 11:25 4257 22 285 141 57 107 612
5 2019-01-14 10:38 3461 40 140 91 58 78 407
6 2019-01-14 11:01 3466 20 153 113 65 129 480
7 2019-01-14 11:29 2354 14 157 133 7 76 457

by 23458 157 1188 807 480 571 3203

Table 3.1: Class instances in Wolfsburg dataset.

B 3.1.4 Dataset Overview and Analysis

Unfortunately, there are no cyclists nor bikers in the Wolfsburg dataset. Most
likely it has occurred due to

® strong influence of the industrial environment,
® winter off-season, (see acquisition dates in Table 3.1),
® unsuitable time (before noon),

® cycling unfriendly routes.

Wolfsburg is a location of Volkswagen AG’s headquarters and the biggest
factory. Hence, the majority of cars and vans are Volkswagen and the variety
of vehicle shapes is limited.

B 3.2 Sydney Dataset

In order to be more data independent, we want to select at least one public
dataset. The Sydney dataset seem to be the most useful option.

Motivation of Dataset Choice. While the traffic in Wolfsburg is quite
monotonous, the city of Sydney in Australia provides a wide variety of vehicles
because it is not influenced by the connection to the only one automobile
manufacturer.

Geodetic distance from Sydney to Wolfsburg!'? is about 16250 km. In
this regard, Sydney is the farthest'? city from Wolfsburg that provides a
public dataset [QUD13] of common road traffic participants scanned with
the Velodyne LiDAR.

N GSegmentation-based inaccuracy is not of interest in this thesis. Therefore, all presented
hand-edits are justified. Beyond that, it is a common practice [DDQHD13], [SMGD14].

12 According to Google Maps.

13To the author’s knowledge.
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3. Datasets

SYDNEY dataset
Class biker bus car cyclist pedestrian truck van X
Instances 4 16 125 3 152 12 35 347

Table 3.2: Class instances in Sydney dataset.

Dataset Description and Class Choice. Sydney dataset was generated from
several sequences of Velodyne scans. As in our case, inaccurate segmenta-
tions'* had been manually corrected.

The Sydney dataset contains a total number of 631 objects divided into
26 classes, but only 9 classes of interest. Besides those 9 classes, we have
selected 5 more classes (used in [DDQHDI13]) as outliers. In addition, we
combine small two-track vehicles (4WD, car and ute) into one class car. See
Table 3.2 for final distribution.

B 3.3 Datasets Comparison

In Figure 3.3 there is a comparison of the number of instances in both datasets.
Table 3.3 shows a point cloud density comparison. The segments in Wolfsburg
dataset are about two to four times denser due to the aggregation of four
LiDAR scans.
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(a): Linear scale. (b): Logarithmic scale (decadic).

Figure 3.3: Comparison of the number of segments in both datasets.

WOLFSBURG dataset
Class biker bus car cyclist pedestrian truck van
Points ~ 7999 2088 ~ 264 6925 3191
SYDNEY dataset
Class biker bus car cyclist pedestrian truck van
Points 311 1847 582 124 111 2489 1152

Table 3.3: Average number of points per segment.

!The segmentation techniques used are available in [DUK™11].
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3.4. The k-Fold Cross-Validation

WOLFSBURG dataset

bus car pedestrian truck van outlier by

Fold A 22 285 141 o7 107 315 927
Fold B 52 351 179 157 164 315 1218
Fold C 61 305 232 156 148 315 1217
Fold D 22 247 255 110 152 315 1101

(a) : The number of instances in folds.
WOLFSBURG dataset
bus car pedestrian truck van outlier W

Fold A 0.14 0.24 0.17 0.12 019 025 0.22
Fold B 0.33 0.30 0.22 033 029 025 0.28
Fold C 0.39 0.26 0.29 0.33 026 025 0.28
Fold D 0.14 0.21 0.32 0.23 027 025 0.25

(b) : The instances ratio in folds.

Table 3.4: The four fold division of Wolfsburg Dataset.

. 3.4 The k-Fold Cross-Validation

To ensure valid results, the k-fold cross-validation [Bis06] with the k = 4 for
the purpose of the classification model training and testing has been used.

The k-fold cross-validation yields k confusion matrices. We will add them
together and get a single confusion matrix that will be used for the evaluation.

Note that outliers will be used solely for validation purposes and will not
be part of the training set.

B 3.4.1 Wolfsburg Dataset

Since the presence of segments from the same track in two distinct folds is
flawed, we need to preserve the acquisition date granularity.

We want to divide the dataset into four even parts with the even class
representation in each fold. Table 3.4 shows the final four fold division.

B 3.4.2 Sydney Dataset

In Sydney dataset we follow the pre-designed folding!®.

The only inconvenience is too few cyclists in the dataset to be divided into
four batches (see Table 3.2). In this case, which is not mentioned in the four
fold recommendation, we have decided to omit cyclists in the last fold (i.e.,
no samples in class cyclist). We consider this the best solution that will not
harm the evaluation.

5 The k = 4 as well.
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3. Datasets

SYDNEY dataset

biker bus car cyclist pedestrian truck van outlier X
Fold A 1 5 32 1 37 3 9 58 146
Fold B 1 3 30 1 36 3 11 71 156
Fold C 1 3 29 1 34 3 8 54 133
Fold D 1 5 34 0 45 3 7 58 153

(a) : The number of instances in folds.
SYDNEY dataset

biker bus car cyclist pedestrian truck van outlier W
Fold A 025 031 0.26 0.33 0.24 025 026 024 0.25
Fold B 0.25 0.19 024 0.33 0.24 025 0.31 030 0.27
Fold C 0.25 0.19 0.23 0.33 0.22 025 023 022 0.23
Fold D 0.25 0.31 0.27 0.00 0.30 025 0.20 0.24 0.27

Table 3.5: The four fold division of Sydney Dataset.

(b) : The instances ratio in folds.
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Chapter 4

Experimental Results

In this chapter, we will test the classifiers described in Section 2.2 on both
datasets from Chapter 3.

The entire framework was implemented using MATLAB R2016b with
dependencies on a Statistics and Machine Learning Toolbox and a Wavelet
Toolbox.

Let’s consider a set of the specific classes (hereinafter referred to as SC) and
a set of the specific classes extended by the outlier class (hereinafter referred
to as EC). We provide two ways of evaluation. The first one works solely
with SC and the second one uses whole EC, which is used for the posterior
probability thresholding.

We will be using three combinations of feature families declared in Sec-
tion 2.1. Let us use a special symbol F; to save the space in tables and
graphs

Fi = [Aa, Ay, 0], (4.1)
Fola) = [F1, Mo, 3, Hal. (4.2)

WOLFSBURG dataset

. . Mean Mean Mean Mean
Classification ..
Features Accuracy Precision Recall F; score
(%) (%) (%) (%)
Fi 94.6 89.7 88.1 87.5
SYDNEY dataset
. . Mean Mean Mean Mean
Classification ..
Featires Accuracy Precision Recall Fy score
(%) (%) (%) (%)
Fi 95.8 87.9 87.3 87.5

Table 4.1: The GMM method results on the SC.
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4. Experimental Results

WOLFSBURG dataset

. . Mean Mean Mean Mean
Classification . .
Features Accuracy Precision Recall F; score
(70) (%) (%) (70)
Fi 93.2 87.7 85.8 86.2
Fa(a =0) 96.0 91.8 91.4 91.5
Fola=1) 94.7 88.7 88.1 88.1
Fola =2) 93.4 86.1 85.3 85.3
Fo(a=3) 92.9 85.3 84.2 84.2
SYDNEY dataset
. . Mean Mean Mean Mean
Classification . .
Features Accuracy Precision Recall F; score
(%) (%) (%) (%)
F1 92.3 84.1 77.8 80.1
Fa(a = 0) 95.1 89.1 85.3 86.9
Fola=1) 93.9 83.8 81.8 82.7
Fo(a = 2) 92.2 81.7 78.4 79.7
Fo(a=3) 90.9 79.7 75.8 7.2

Table 4.2: The 7-NN method results on the SC.

WOLFSBURG dataset

. . Mean Mean Mean Mean
Classification o
Features Accuracy Precision Recall F; score
(%) (%) (%) (%)
F1 95.0 89.5 89.3 89.4
Fao(a=0) 96.3 92.2 92.1 92.2
Fola=1) 96.3 92.3 92.1 92.1
Faola = 2) 96.4 92.5 92.4 92.4
Fao(a = 3) 96.4 92.1 92.0 92.1
SYDNEY dataset
. . Mean Mean Mean Mean
Classification ..
Features Accuracy Precision Recall F; score
(%) (%) (%) (%)
F1 94.8 85.8 83.6 84.4
Fa(a = 0) 96.0 88.8 87.3 87.6
Fola=1) 95.4 86.3 85.9 86.0
Fao(a=2) 95.6 85.5 87.0 86.1
Folaw = 3) 94.1 82.7 84.4 83.3

Table 4.3: RF method results on the SC (mean values with approximate
deviation of £1 % are shown).

The probability threshold on the z-axis of the following graphs corresponds
to 1 — T, where T is defined in Section 2.2.4.
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Figure 4.3: The RF method with F2(a = 1) features on the EC.

. 4.1 Best Results

This section is dedicated to the best classifier on the SC in this thesis so far.

The best parameters (weighted average of F; score, accuracy, precision and
recall across all classes) are generated by Random Forest with Fa(a = 2) for
the Wolfsburg dataset (confusion matrix in Table 4.4) and F2(a = 0) for the
Sydney dataset (confusion matrix in Table 4.5). Both confusion matrices are
generated with a random seed.

WOLFSBURG dataset

True
pedestrian car van bus truck
- pedestrian 809 0 0 0 0
2 car 0 1089 81 0 0
= van 0 99 479 0 17
£ bus 0 0 2 124 14
truck 0 0 9 33 449

Table 4.4: Confusion matrix for Wolfsburg dataset.
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4.1. Best Results

SYDNEY dataset

True

pedestrian cyclist biker car van bus truck
pedestrian 147 1 0 0 0 0 0
cyclist 5 2 0 0 0 0 0
T biker 0 0 4 1 1 0 0
2 car 0 0 0 110 5 0 0
£ van 0 0 0 13 26 2 4
bus 0 0 0 1 2 12 6
truck 0 0 0 1 2 2

Table 4.5: Confusion matrix for Sydney dataset.

B 4.1.1 Misclassification Insights

(c): Bus labeled as a truck. (d): Truck labeled as a bus.

Figure 4.4: Four examples of misclassified segments.
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. 4.2 Influence of 3D Haar-Like Features

The number of waves on the z-axis of the following graphs represents the a.
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Figure 4.5: Comparison of 3D Haar-like features influence.
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Chapter b

Discussion and Conclusions

. 5.1 Discussion

The most successful classification models are reviewed in Table 5.1.

Misclassified Segments Observations. Section 4.1 presents two confusion
matrices 4.4, 4.5 of the classification performance. Besides this overall visual-
ization, Section 4.1.1 shows several cases where the model failed (see Figure
4.4). In this paragraph we will try to identify common factors in data that
were classified incorrectly.

Most often we have confused the car with the van and vice versa. Fig-
ure 4.4(a) and 4.4(b) shows the similarity between Volkswagen Touran (the
class car) and Volkswagen Caddy (the class wan) which caused a lot of
classification faults.

Typical attributes of the bus are large windows on both sides. In Fig-
ure 4.4(c) there is a LIDAR segment of a bus with advertising stickers in the
windows which may look like a truck.

Very sparse point cloud segments of trucks (see Figure 4.4(d)) were confused
with buses or vans.

Classification of pedestrians was almost flawless. The only confusion was
with the cyclist class. Both false positives and false negatives have probably
a simple explanation. Two of the three cyclists in the Sydney dataset led
the bike side by side. Thus, the segment represents a pedestrian and a bike
rather than a cyclist.

Influence of 3D Haar-Like Features. In Section 4.2 we have presented an
effect of the size of the 3D Haar-like feature family to classification performance
(see Figure 4.5).

While the H, on its own for small « increases the accuracy, the presence
of more 3D Haar-like features in the F2(a) did not improve the performance.

The computation of 3D Haar-like features is highly dependent on the
position of the segment in the unit cube. Therefore, one of the main reasons
for the 3D Haar-like features failure could be just the imperfect segment
preprocessing that can be enhanced in the future work.
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5. Discussion and Conclusions

. . . . Probability Mean Mean Mean Mean
Classification Classification o
Dataset Method Features Threshold  Accuracy Precision Recall F;p score

(%) (%) (%) (%) (%)

Wolfsburg - SC RF Fala =2) ~ 96.4 92.5 92.4 92.4
Sydney - SC RF Faola=0) ~ 96.0 88.8 87.3 87.6
Wolfsburg - EC RF Faola=1) 70 92.4 85.1 82.6 82.9
Sydney - EC k-NN Fi 35 84.5 73.8 63.5 67.1

Table 5.1: Review of the best classification models (mean values with approxi-
mate deviation of £1 % are shown for RF).

On the other hand, objects in classes are perhaps too diverse (e.g., front-
view, side-view, rear-view, distance based shape, shading with another object,
etc.) to be separable by simply adding and subtracting the number of points
in fixed voxel grid.

Comparison with Previous Studies. Comparison with other studies is always
difficult when the conditions are uneven (e.g., different datasets, different
object classes, etc.). In case of undefined objects, it is usually unclear whether
they were used for training or not. In addition, different papers provide
different performance parameters. The F; score ranges from 47.2 % to 70.0 %,
accuracy from 77.6 % to 98.5 %, precision from 73.1 % to 92.8 % and recall
from 44.3 % to 81.4 %.

Although [GKF09] does not present outlier class in results it was considered
during classification together with 16 specific classes. Our EC set!C is therefore
suitable for comparison. The highest precision is 78 % and the highest recall is
65 %. Both parameters lie in the lower half of our Wolfsburg-Sydney interval
but there is not the confusion matrix to do the proper class reduction.

In [TLT11b] they reached excellent accuracy of 98.5 %. However, for both
training and testing dataset, the segments were prefiltered manually. From
the huge dataset of 1.3 million segments they selected only well-segmented
and well-tracked instances and invalidated all objects with lower frequency
than 10 segments in the track or objects with the total number of points
lower than 75. Those constraints may overlook common cases in practice and
real traffic. They considered classes pedestrian, cyclist, car'™ and background.
We merged classes car, van and truck and exclude the class bus to adjust
the classification conditions for the purpose of the comparison. Our resulting
accuracy is 87.5 % on EC with merged classes.

Considering the EC set, we have slightly outperformed the [LJH"16] with
the mean classification accuracy from 77.6 % to 88.1 % with six specific
classes and undefined class.

Much effort was spent to establish similar conditions with the [DDQHD13].
On the same dataset we got exactly the same maximal F; score 67.1 %. Due
to missing confusion matrix, we are unable to do precise comparison with
regard to our class outlier.

The best classification model in the PhD thesis [Qual3] did slightly better
with maximal F; score 70 % on Sydney dataset.

16The set of the specific classes extended by the outlier class.
17 Consisting of cars, vans and trucks.
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5.2. Conclusions

They achieve overall accuracy over 97 % with six classes in [Hac18], but
less than 25% in the case of the pedestrian class where we have reached
nearly the upper limit of 100 % on both datasets. It should be noted that
their dataset contained only 14 pedestrians from 642 objects and that the
pedestrian classification was not the main objective of that study.

. 5.2 Conclusions

In this thesis we described and experimentally evaluated several potential
classification models for LIDAR point cloud segments of road traffic partici-
pants. All presented classification models rely on a priori segmentation and
hand-annotation.

We have achieved significantly better performance with the Wolfsburg
dataset created by aggregation of four independent LiDAR, scanners.

Our recognition system is able to classify point cloud segments with overall
accuracy up to 96 % depending on the dataset choice and used classes.

Well, is it enough for real traffic? Nothing below 100 % is not enough when
human life is at stake but at least the results achieved are comparable with
current state-of-the-art methods.

. 5.3 Future Work

The direction of the future work that would be most beneficial is the de-
velopment of an automated pre-processing of the point cloud segments so
that no hand-edits are needed. The pre-processing method should remove
background, other objects and noise with adjustable sensitivity'®. On the
other hand, it is not necessary to split undersegmented objects. For example,
one pedestrian behaves differently from a pair and a crowd acts as a whole.
In the case of fast moving objects, it is important to distinguish between the
segment with the cyclist near the car and the segment only with the car. To
do this, it is sufficient to extend the classes by typical combinations of objects
occurring in the segment. The recognition of those cases leads to higher road
safety.

Further experimental studies are needed to estimate whether the neural
networks can bring significant improvements in accuracy.

If the object is seen for a sufficiently long time, the core idea of holistic
track classification in [TLT11b] seems to be very powerful and it could further
improve existing methods for numerous tracks even without unreasonable
constraints.

!81f there is noise remaining in the segment, it is no longer suitable to define the scaling
factor s as the distance of the farthest point from the origin (while computing the 3D
Haar-like features 2.1.2.1).
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Appendix A
Contents of attached CD

Path Description
/ctu__thesis.pdf  This thesis as a PDF file.
/MATLAB/  All MATLAB source codes.

Table A.1: Contents of attached CD.
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