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Study Programme: Cybernetics and Robotics

May 2022





BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492368Personal ID number:Mísař  OndřejStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Interpretation of Positive Detection of Out-of-Control State for Statistical Process Control 

Bachelor’s thesis title in Czech:

Interpretace pozitivní detekce statisticky nezvládnutého stavu při statistické regulaci procesů 

Guidelines:

In multivariate methods for statistical process control, one of the main goals is to detect an out-of-control state (or process
shift) from multiple quality characteristics.The detection methods typically aggregate all measured characteristics into one
score. If the process shift is detected, an essential and closely related topic is the interpretation, i.e. the determination of
which characteristics caused the positive detection.This helps with the subsequent diagnosis and selection of the process
control action. The student should
1. make a literature survey on solutions of interpretation of positive detection of out-of-control state (process shift),
2. choose and implement 2-3 methods of interpretation in combination with one or more methods of process shift detection
(e.g. Hotelling control chart or a machine learning based anomaly detector),
3. generate suitable synthetic data with properties specified by the supervisor that will be used for experimental evaluation
(if possible, data from a real world process provided by supervisor can be also prepared),
4. evaluate the methods from task 2 on data from task 3 and compare them for different process shifts using appropriate
performance measures (e.g. accuracy).

Bibliography / sources:

[1] Bersimis, Sotiris, Aggeliki Sgora, and Stelios Psarakis. "A robust meta method for interpreting the out of control signal
of multivariate control charts using artificial neural networks." Quality and Reliability Engineering International 38.1 (2022):
30-63.
[2] Montgomery, Douglas C. Introduction to statistical quality control. John Wiley & Sons, 2020.
[3] Runger, George C., Frank B. Alt, and Douglas C. Montgomery. "Contributors to a multivariate statistical process control
chart signal." Communications in Statistics--Theory and Methods 25.10 (1996): 2203-2213.

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Macaš, Ph.D.    Cognitive Neurosciences  CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 27.01.2022

Assignment valid until: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Martin Macaš, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



Acknowledgement

I would like to thank my supervisor Martin Macaš for fully supporting me and providing
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Abstrakt

Důležitým předpokladem mnoha aplikaćı metod strojového učeńı v reálném světě je

vysvětlitelnost výsledk̊u těchto metod. Proto je trendem vytvářet metody, které nejen

funguj́ı dobře, ale jsou také vysoce interpretovatelné. Tato práce se zabývá interpretaćı

modelu One-Class Support Vector Machine aplikovaného v oblasti kontroly kvality.

Konkrétně se problém interpretace zaměřuje na určeńı správných charakteristik kvality

(QCs), které jsou př́ıčinou statisticky nezvládnutého stavu stavu (OOC). Byly vybrány

tři interpretačńı metody a porovnány pomoćı tř́ı navržených měr výkonnosti.

Novinkou této práce je použit́ı metody LIME, protože dosud nebyla použita na problém

interpretace One-Class SVM. Nevýhodou této metody je, že uživatel muśı určit, kolik

charakteristik kvality zp̊usobilo OOC, a LIME pak vybere ty, o kterých si mysĺı, že to

jsou. Tento problém jsem vyřešil pomoćı jednoduché heuristiky. Vyhodnoceńı ukázalo, že

výsledky metody LIME jsou výrazně horš́ı než výsledky zbývaj́ıćıch dvou metod, které jsou

již pro problém interpretace v kontrole kvality použ́ıvány. Nicméně toto bylo zp̊usobeno

mnou navrženou heuristikou nikoliv samotnou metodou LIME. To potvrdila i druhá sada

experiment̊u, v ńıž byla interpretačńı metodě LIME poskytnuta informace o tom, kolik

QC je třeba určit pro daný vzorek. V tomto př́ıpadě byly výsledky mnohem slibněǰśı i v

kontextu zbylých metod.

Metoda LIME se jev́ı perspektivně pro interpretaci v oblasti kontroly kvality, nicméně

je třeba nahradit zmı́něnou heuristiku, která určuje kolik QCs je třeba naj́ıt, aby byla

metoda LIME použitelná v praxi.

Kĺıčová slova: interpretace, statistická kontrola proces̊u, detekce statisticky

nezvládnutého stavu, charakteristika kvality





Abstract

An important assumption for many real-world applications of machine learning methods

is the explainability of the outcomes of such methods. Therefore, the trend is to create

methods that not only perform well but are also highly explainable. This thesis deals

with the interpretation of the One-Class Support Vector Machine model applied to quality

control. Specifically, the interpretation problem focuses on determining the correct quality

characteristics (QCs) that are responsible for a positive detection of an out-of-control state

(OOC). Three interpretation methods were selected and compared using three proposed

performance measures.

The novelty of this thesis is the use of the LIME method, as it has not been applied

before to the One-Class SVM interpretation problem. The disadvantage of this method is

that the user has to determine how many quality characteristics caused the positive OOC

detection, and then LIME estimates those that caused the OOC. I solved this problem

using a simple heuristic. The evaluation showed that the results of the LIME method

are significantly worse than the results of the two other methods that are already in use

for the interpretation problem in quality control. However, this was due to the proposed

heuristic, not the LIME method itself. This was confirmed by a second set of experiments,

in which the number of QCs responsible for OOC detection was known and provided to

the LIME method. Then, the LIME gave much more promising results even in the context

of the other methods.

The LIME method is promising for interpretation in quality control. However, a more

sophisticated approach to finding the correct number of shifted QCs needs to be devised

to make the interpretation method applicable in practice.

Keywords: interpretation, statistical process control, out-of-control state

detection, quality characteristic
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Chapter 1

Introduction

In multivariate methods for statistical process control, one of the main goals is to detect an

out-of-control (OOC) state (or process shift) from multiple quality characteristics (QCs).

Detection methods typically aggregate all measured characteristics into one score. If the

process shift is detected, an essential and closely related topic is the interpretation, i.e.

the determination of which characteristics caused the positive detection. This helps with

the subsequent diagnosis and selection of the process control action. This thesis focuses

on the last part of the process control, i.e. the interpretation of positive detection of an

out-of-control state.

1.1 Motivation

Only production process with limited variability can be a source of products that meet

the customer’s expectations. Therefore, almost any process has to be monitored to ensure

an outcome (or product) of expected quality. This is the role of Statistical process

control (SPC) or Multivariate statistical process control (MSPC), when there is more

than one quality characteristic that needs to be observed. Control charts are one of various

MSPC tools and methods. If an out-of-control state is detected, which means that some

unexpected and undesirable change has occurred in the process, action is needed as soon as

possible. Thus, the search for assignable causes begins. Common practice is that engineers

and experts on particular process step in at this point and, after they find the assignable

cause, an action is taken to adjust or correct the process. Interpretation methods can help

experts find the assignable cause. Because the process can be complex, it may not be easy

to identify the assignable cause. Since taking a correct action is time-consuming, any clue

”where to look for” can be crucial.

From one perspective, the interpretation falls into the problem of explainable Artificial

Intelligence (XAI), which has been developing a lot lately and is getting more and more

1



1.2. GOALS Chapter 1

attention. Its importance is more than obvious given the increasing number of applications

of AI methods in critical sectors.

1.2 Goals

The overall goal of this thesis is to test and compare 2-3 methods for interpretation of

positive detection of out-of-control state. This main goal is, of course, divided into several

smaller parts. First, it is necessary to conduct a literature survey and find out which

interpretation methods already exist. The second step is to implement two or three of

them. For the comparison itself, it is necessary to generate benchmark out-of-control

data. Then, in combination with the use of an out-of-control state detector (One-class

SVM), the interpretation methods can be tested and compared on the generated data. In

the last step, it is important to apply appropriate performance measures to compare the

results of different interpretation methods.

1.3 Structure

This thesis is divided into five chapters. This first chapter, which briefly introduced

the scope of this thesis, its goals, and why interpretation is important, is followed by a

chapter with an overview of the basic SPC and MSPC methods. The second chapter also

introduces the One-Class SVM classifier, which is used as an out-of-control state detector

in this thesis. The third chapter covers the interpretation itself, which is explained in

detail. Furthermore, the interpretation methods that I found in the literature are also

mentioned there, especially the three that I decided to use and test. The final part

of this chapter defines the performance measures used to compare the results of the

interpretation methods. The final chapter describes the generation of out-of-control data,

the experiments scenario, and the results of each method with discussion. The conclusion

summarizes the entire work and points out possibilities for future research.

2



Chapter 2

MSPC

Multivariate Statistical Process Control (MSCP) can be described as a set of methods

for controlling a continuous process which leads into its stability and reduction of

variability. In general, p quality characteristics (correlated random variables), x1, x2,

..., xp characterize the quality control problem. For example, it can be the inner and outer

diameter of a bearing that together define the usefulness of the part [1].

2.1 SPC

Historically MSPC evolved from Statistical Process Control (SPC). As the name suggests,

MSPC considers multiple quality characteristics together while SPC considers only one

quality characteristic, which is measured and controlled.

One of the SPC tools is the well-known Shewhart control chart, which can be seen in

Fig. 2.1. The basic control chart graphically represents the measured value of the quality

characteristic as a function of time or sample number. It contains three lines, upper control

limit (UCL), lower Control limit (LCL) and center line, which reflects the average value of

the measured quality characteristics. UCL and LCL are choosen based on the measured

data and so that if the process is in control, then almost all points (usually, the limits are

set as ±3σ standard deviations, which results in ≈ 99.7 %) will fall between them. As long

as the points plot within the control limits, the process is assumed to be in control, and

no action is necessary [1].

2.2 Hotelling T2 control chart

Naive idea could be to use Shewhart control chart for each monitored QC individually

and only if all of p QCs are between their control limit, than the process is considered to

be in-control. We can plot this using a 2d graph, where we plot the values of one QC on

3



2.2. HOTELLING T2 CONTROL CHART Chapter 2

Figure 2.1: Basic example of typical Shewhart control chart

the x-axis and the other on the y-axis. Limits then create a square around the measured

points.

Figure 2.2: Control region using independent control limits (adopted from [1])

But as we can see in Fig. 2.2, one point (observation) appears in unusual distance from

others, but is still inside the control limits. It is not possible to detect this suspiciously

distant observation by univariate control charts, because the shape of the arrangement of

the other points is caused by the correlation between the QCs. It is common in practice,

that QCs are usually not independent, especially when they relate to the same product.

Thus Hotelling T 2 control chart is considered as direct analog of univariate Shewhart

control chart in MSPC.

4



CHAPTER 2. MSPC 2.2. HOTELLING T2 CONTROL CHART

In univariate statistics, considering normal distribution, we have formula for probability

density function

f(x) =
1√
2πσ2

e−
1
2
(x−µ

σ
)2 −∞ < x < ∞ (2.1)

If we ignore the constant, the term in the exponent of the normal distribution can be

written as follows:

(x− µ)(σ2)−1(x− µ) (2.2)

This can be interpreted as standardized distance from x to the mean µ. By ”standardized”

we refer to distance, which is expressed in standard deviation units. We can apply the

same approach to multivariate normal distribution case. Let’s suppose, that we have p

variables. Now the x and µ aren’t scalars, but vectors and instead of σ we have p × p

covariance matrix Σ. So the squared standardized distance from x to µ from Eq. 2.2

changes to

(x− µ)TΣ−1(x− µ) (2.3)

We use T 2 hotelling distance definitions for individual observations, since in our case our

sample size n is always equal to 1. Thus, it can be stated that in the context of this thesis,

observation and sample are the same thing. Suppose that m samples are available and

that p is the number of quality characteristics observed in each sample. Let x̄ and S be

the sample mean vector and covariance matrix, respectively, of these observations.

T 2 = (x− x̄)TS−1(x− x̄) (2.4)

Note that Eq. 2.4 differs from Eq. 2.3 only by substituting x̄ and S for µ and Σ,

respectively. In practice, we usually do not know the exact values of the mean and

covariance matrix, so we have to estimate them from the measured samples. This gives

us a basic intuition on how to understand the value of T 2. If we satisfy the condition of

sufficiently large m (depending on the size of p), for example m ≥ 250 or the covariance

matrix and mean vector are known, we can use the Chi-Square value with p degrees of

freedom at the α significance level, which can be found in tables, to determine the UCL.

For p = 2, we can visualize the measured samples together with the control ellipse, which

determines the UCL threshold, this is depicted by a green line in Fig. 2.3.

Figure 2.3: Control ellipse example

5



2.3. ONE-CLASS SVM Chapter 2

The shape of the ellipse is determined by the correlation between the quality

characteristics, in the extreme case where they are independent it becomes a circle. On the

other hand the greater the dependence between quality characteristics the ”narrower” the

ellipse. Another visualization option is the so-called chi-square control chart. Its advantage

is that it can be used for more than two quality characteristics, because we plot only one

value for each measured sample, which in our case is the value of T 2, and it preserves

time sequence of the plotted points. Other variants of the MSPC control chart are, for

Figure 2.4: Chi-square control chart for two quality characteristics (adopted from [1])

example, the multivariate exponentially weighted moving average chart (MEWMA) or the

multivariate cumulative sum chart (MCUSUM), but since they are not relevant for the

type of data used in this thesis, they will not be further described here [1].

2.3 One-class SVM

In addition to the standard MSPC methods mentioned above, machine learning methods

are also used in the field of out-of-control state detection. Specifically, Support Vector

Machine (SVM). SVM is a supervised learning algorithm that creates one or more optimal

separation hyperplanes that separate classes in a multidimensional space. SVM creates an

ideal hyperplane in a binary classification environment as a linear classifier by maximizing

the margin, or the distance between two classes. By solving a quadratic optimization

problem that maximizes the margin while attempting to keep the training error low, the

SVM is able to perform well on both linearly separable and linearly non-separable datasets

in this situation. Despite the fact that the SVM was designed as a linear classifier, Boser

et al. suggested a way to create non-linear SVM classifiers based on a kernel trick on the

original hyperplane-maximizing SVM [2]. Single-class classification issues are also solved

using a modified version of SVM, where the goal is to represent a positive class without

taking data from a negative sample. The model is normally trained using only the training

set created by the data points of one specific class because the purpose is to find the class

entry in the middle of all classes. In this example, One-Class SVM creates a minimum

6



CHAPTER 2. MSPC 2.3. ONE-CLASS SVM

hyperplane, which is optimal. made up of all data points. The hyperplane boundary then

encircles the data considered to be in-control [3].

Since they proved that One-Class SVM has better classification results than Hotelling T 2

control chart in the out-of-control state detection, this thesis will mainly use One-Class

SVM as a classifier and investigate the role of interpretation on the outliers classified by

the SVM [3].

7



Chapter 3

Interpretation methods

The problem of interpretation falls into the deeper category of explainable AI (XAI), which

has received increasing interest recently. This is due to the fact that, with the increasing

possibilities of using AI methods, many times the output of the black-box model alone is

no longer enough. The user also needs to know the reason (explanation) why the model

made the decision that it did. This is usually needed, especially in critical areas such as

defense, medical, or financial systems. It is often the case that the most accurate methods

(e.g., SVM or DL NN) are the least explainable, and, in contrast, the most explainable

methods (e.g., decision trees) achieve the lowest accuracy. The trend and challenge of

the time are to develop methods that meet both high-performance and explainability

requirements. The main requirement of interpretation is that its output, describing the

outcome or decision of a model, should be primarily human-understandable [4].

MEASUREMENT
Measured 

sample

SVM - OOC
DETECTION

Score

> 0

PROCESS IN 
CONTROL

OOC STATE 
DETECTED

< 0

INTERPRETATION

PROCESS 
ADJUSTMENT

Set of shifted 
QCs

Figure 3.1: Flowchart of process control with added Interpretation
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CHAPTER 3. INTERPRETATION METHODS 3.1. STATE OF THE ART

In our case, we have a trained One-Class SVM model, which is able to evaluate a validation

sample whether it is an in-control (IC) state or an out-of-control (OOC) state. This method

only returns one value for a measured sample, called the score.

This thesis focuses on the interpretation of positive detection of the out-of-control state

by One-Class SVM classifier. This means that if an out-of-control state is detected, an

interpretation method is used on that particular measured sample. It interprets why

the classifier decided that the sample is out-of-control, by choosing a set of quality

characteristics (QCs) in which a shift has occurred. The entire course of actions, from

measuring a sample to adjusting a manufacturing process, when an out-of-control state is

detected, is shown in the flow chart in Fig. 3.1. Our interpretation part is highlighted by

a red dashed rectangle.

The importance of interpretation is pretty clear from the flow chart. When an

out-of-control state occurs and is detected, without interpretation, a supervisor of a

manufacturing process is provided only with the information that the process is out-

of-control and has to find the cause manually himself. On the other hand, when

an interpretation is available, he also receives additional information about which

quality characteristics are shifted. This can directly save time to repair or adjust the

manufacturing process, thus save money.

3.1 State of the art

Historically, around the beginning of the century, analytical interpretation methods based

primarily on various statistical heuristics were developed. Some of them used T 2 Hotelling

value decomposition [5], other projection methods (mainly principal components analysis)

[6] and other approaches [7], [8], [9]. All of the analytical methods mentioned above are

compared and briefly explained in [10].

The development of computation methods followed. These are characterized by the fact

that, unlike analytical methods, they require some training. First of all, these were

different types of neural networks. And they have still been investigated to date. They

have in common that they are mainly feedforward fully connected networks with 3 or 4

layers. There are papers that confirm the suitability of this architecture for the MSCP

interpretation problem [11]. There was still some agreement on the results, with most

of the neural networks having p outputs, each indicating a shift in one of the quality

characteristics. In other studies, the parameters of NNs differ from implementation to

implementation [12]–[15].

In addition to classical neural networks, some authors have also chosen to use SVMs [15],

an ensemble of neural networks with different parameters, and then combine the outputs

[16]. One of the last approaches was also a combination of four analytical interpretation

9
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methods and a neural network, where the neural network had as input the outputs of the

analytical interpretation methods. The task of the neural network was to choose which of

the analytical methods to trust and, therefore, to use its output [17].

Despite all the progress made in this area so far, none of the interpretation methods has

been proven to perform the best in general.

3.2 MYT method

First of implemented interpretation methods is the Mason, Young, and Tracy

decomposition method (MYT) [5]. It is one of the analytical methods based on the

T 2 Hotelling statistic. The main idea behind this algorithm is that we can decompose

the T 2 Hotelling statistic into orthogonal components [10]. These components then show

the effect of each quality characteristic on the resulting T 2 statistic, i.e. the shift. The

algorithm works in the following steps:

Step 1: Computes T 2
i for each variable and removes quality characteristics with

significant T 2
i value.

Step 2: Check whether the T 2 statistic for the remaining subvector (originally

measured vector of quality characteristics without removed ones) is in control, if

yes, all of the shifted quality characteristics were found. Algorithm ends.

Step 3: Removes all pairs that have significant T 2
i,j and again recomputes T 2 for

remaining subvector.

Step 4: In the next steps, the algorithm removes all significant triplets(quadruplets,...)

until the remaining subvector is in-control

T 2
1 denotes the Hotelling’s T 2 statistic for the first variable, and it is computed as:

T 2
1 =

(
x1 − µ1

σ1

)
where µ1 and σ2

1 denote the mean and variance of the first quality characteristic of the

vector x, where the components of x are all quality characteristics.

The general formula for a set q of k quality characteristics is the following.

T 2
q = (xq − µq)

TΣ−1
q (xq − µq),

where xq, Σ
−1
q represents subvector, respectively covariance submatrix obtained from x

respectively Σ by selecting only variables from q.

3.3 ANN method

As second interpretation method, I chose the ANN method. In implementing the neural

network, I was inspired by the architectures already used for this problem that I found

10
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during a literature research mentioned in Section 3.1. Since the number and selection of

inputs, as well as the number of neurons in the hidden layer varies from one implementation

to another, I did some small tests at the beginning when designing the network and chose

the configuration with the best results.

3.3.1 Architecture

Implemented ANN is Multilayer Perceptron (MLP), which is a fully connected class of

feedforward artificial neural networks (ANN), since it has been proven to perform well in

the MSCP domain [11]. It contains 3 layers input, hidden, and output. The number of

inputs and outputs is identically p corresponding to the number of quality characteristics

of the measured sample. The number of neurons in the hidden layer is 16. The sigmoid

function is used as the activation layer for the hidden and output layers.

3.3.2 Inputs

Since the form of the measured data did not allow sample sizes larger than one, the input

options for the neural network were very limited. Thus, the input vector for the neural

network contained p measured values of the quality characteristics of a given sample. I

also tried adding a statistic T 2 or SVM score as input p+1, but it did not have a positive

effect on network performance, rather the opposite. For better network performance, input

values were normalized to the interval [0, 1].

3.3.3 Outputs

The choice of outputs was relatively simple, each output corresponded to one quality

characteristic. Since a sigmoid activation layer was included with the output layer, the

output values were in the interval [0, 1]. Thus, the value in a particular output represented

a kind of probability that a shift in that quality characteristic had occurred. In the case

where the ANN had information on how many k quality characteristics were shifted, it

chose the k quality characteristics with the highest value in the output (probability) as

the interpretation of the particular OOC. Otherwise, when the ANN did not have this

information, it rounded the output values to 0 or 1 and then all quality characteristics

with an output of 1 were chosen as the interpretation of the particular OOC.

3.3.4 Training

The training data generation is shown in Fig. 3.3. The context can be seen in Fig. 4.3. The

original unshifted XA dataset (1000 samples) was generated from the same distribution as

the validation data used for the comparison of the method. Similarly, the shifted dataset

Xtrn was created in the same way as the validation data. See Sections 4.1 and 4.2 for

more details. The Levenberg-Marquardt algorithm and the MSE loss function were used

for training.

11
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SHIFT DATA and 
REMOVE NEGATIVE 

DETECTIONS

XA

N=1000

Not-
shifted

Xtrn, Strn

Shifted

Train NN

ANN
Interpreter

TRAIN 
INTERPRETATION

SVM

Figure 3.2: Flow chart of training the ANN interpretation method

Figure 3.3: An example of the training dataset for ANN

interpretation method. Two quality characteristics and a

particular experiment setup is assumed here.

3.4 LIME method

Local Interpretable Model-agnostic Explanations (LIME) [18] is a relatively new method

that offers a solution to the XAI problem. As the name suggests, it can explain the

predictions of classifiers and regressors using a local approximation by an interpretable

model. It also treats the original model as a black box, which means that it can be

applied to almost any model. The paper illustrates applications, for example, to text
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classification with SVM classifiers or to image classification with deep networks. Since

this method looks very promising based on the number of citations, I decided to apply it

to our case of interpreting positive OOC detection by a One-Class SVM classifier. This

has not been tried before, to the best of my knowledge.

3.4.1 Algorithm

In the following steps, I describe how the algorithm works:

Step 1: A measured sample is set as the query point to be explained.

Step 2: Several points Xs are generated from the multivariate normal distribution

around the query point, for each point the OOC detection is performed by One-Class

SVM classifier and all OOC predictions form the vector Ys.

Step 3: The weights wq for each point xs are calculated based on the Euclidean

distance from the query point.

Step 4: An explainable linear model mapping the generated points Xs to the

predictions Ys using the weight values wq is fitted.

Step 5: The absolute value of the coefficients of the linear model determines the

importance of each variable (quality characteristic). The larger the absolute value

of the coefficient, the more LIME thinks that there has been a shift in this quality

characteristic.

Figure 3.4: An example to present intuition for LIME (adopted from [18])

The intuition for LIME can be seen in Fig. 3.4. The complex black-box model is

represented by the background color. The blue color is used for the area where the model

predicts one class, and the pink is used for the second. The query point is depicted as a

bold red cross. Around the query point, several points are generated and labeled. LIME

then fits a linear model, shown as a dashed line, which is locally faithful for the query

point.

13



3.5. PERFORMANCE EVALUATION Chapter 3

3.4.2 Determination of the number of shifted QCs

One of the main disadvantages of the LIME method is that it returns only a coefficient for

each quality characteristic in the output. The absolute value of the coefficient expresses

how much LIME thinks that a given QC is shifted and therefore caused the OOC. However,

the values are only meaningful relative to each other; there is no threshold that determines

whether or not a particular QC is shifted. For this reason, I created a simple heuristic

that sequentially selects the QCs and checks whether the sample is still in the OOC state.

The heuristic works as follows:

Step 1: Sort the coefficients of the linear model by absolute value.

Step 2: Select the QC with the largest coefficient and replace its measured value by

the mean component from the original in-control data in the available data set.

Step 3: Use One-Class SVM classifier on the updated sample (run OOC detection).

Step 4: If the updated sample is in-control all of the shifted QCs were found.

Otherwise, select the QC with the largest coefficient and repeat steps 2-3.

3.5 Performance evaluation

This section describes the criteria for the evaluation and comparison of the interpretation

methods. It should be pointed out that I evaluate the performance of the interpretation,

where the output is a set, and not the performance of OOC detection, where the output is

the binary class label. However, similarly to the evaluation of common classification,

interpretation can also be evaluated using accuracy accompanied by sensitivity and

specificity.

Let xi be the ith vector of quality characteristics assigned to the positive class (OOC)

by the OOC detector. Let Si denote the set indices of quality characteristics that are

truly shifted (i.e. ground truth). Interpretation predicts a set Ŝi of indices of quality

characteristics that are shifted (i.e. are responsible for the alleged out-of-control state).

Note that our criterion must compare those two sets.

3.5.1 Accuracy

First performance measure is accuracy. It is defined as follows:

Accuracy =

∑n
i 1Si=Ŝi

n
· 100 [%], (3.1)

where the indicator function is defined as

1f =

{
1, if formula f is true,

0, otherwise,

and n is the number of samples in the evaluation data set.
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The advantage of this performance measure is the output in the form of a single value that

directly corresponds to the ratio of successful interpretations, i.e. the number of cases in

which correct shifted quality characteristics were determined in a single experiment.

On the other hand, accuracy assumes only the correct or incorrect result of the

interpretation (0/1 penalty). It does not take into account the severity of the error.

As an example, consider a particular data instance xi where a shift has occurred in the

first, third, and fifth QC, i.e., its true label is Si = {1, 2, 5}. The output of interpretation

method A would be the set Ŝi = {1, 5} and the output of method B would be Ŝi = {3, 4}.
It is obvious that method A has only forgotten one QC, and its result can be helpful, but

method B was completely wrong and its result is useless. For this particular data instance,

the accuracy evaluates the responses of methods A and B as equally wrong, although

A performs better. Moreover, the accuracy does not say whether the method tends to

erroneously output indices of non-shifted quality characteristics or forgets characteristics

that are truly shifted. For these reasons, the following additional criteria are used.

3.5.2 Sensitivity and Specificity

To resolve the problem described above, I used two other complementary performance

measures. The first one captures ”how well” an interpretation method ”does not forget”

QCs if they are included in the label. It is called sensitivity (or true positive rate) and is

defined as follows:

TPR =
TP

P
=

∑n
i=1 |Si ∩ Ŝi|∑n

i=1 |Si|
· 100 [%], (3.2)

where the cardinality of the intersection of the target set Si and the predicted set Ŝi

defines the number of true positives for the ith data sample. It is the number of shifted

quality characteristics that are correctly predicted as shifted. The sum over all n samples

aggregates the true positives over the whole dataset. The cardinality of Si then defines

the number of positives, and its sum gives the number of all occurrences of the shifted

quality characteristic in the dataset. An interpretation with small TPR tends to forget

some shifted characteristics and gives only a subset of shifted characteristics. However, the

interpretation method that always answers that all QCs are shifted will reach the highest

TPR value equal to 100%. Therefore, one must add another criterion.

The second criterion captures ”how well” an interpretation method ”does not add” QCs

that are not shifted. It is called specificity or true negative rate and is defined as follows:

TNR =
TN

N
=

∑n
i |(Si ∪ Ŝi)

′|∑n
i |S′

i|
· 100 [%], (3.3)

where A′ denotes the relative complement of a set A with respect to the set of indices of

all quality characteristics U = {1, 2, . . . , p}, which is defined as

A′ = U\A.
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The cardinality of the complement of the union of label set Si and the result set Ŝi defines

the number of true negatives for ith sample xi for a particular interpretation method. The

cardinality of complement of S′
i then defines the number of negatives. Similarly to TPR,

an interpretation method that always responds that no QC is shifted would have 100 %

TNR and therefore one must consider both TPR and TNR.

TPR and TNR are evaluated on all samples in each experiment, thus the factor and

denominator in Eq. 3.2 and 3.3 are summed over all samples. In general, the higher TPR

and TNR, the better a given interpretation method, but both must be taken into account.

Four variables (P , N , TP , TN) are used in Eq. 3.2 and 3.3. These variables represent

well-known categories: Positive, Negative, True Positive, True Negative. However, in our

case of interpretation evaluation, they refer to individual quality characteristics. Positive

(P) QCs are those that are included in the label of a particular sample, whereas negative

(N) QCs are those that are not. Using the result of an interpretation method to the

identical sample, two remaining categories can be explained. True positive (TP) QCs are

those that are present in both the label and the result, and similarly true negative QCs

(TN) are those that are not present in either.

For a better understanding, suppose the example from the previous Subsection 3.5.1, i.e.

a sample with a shift present in the first, third, and fifth quality characteristics, and the

results of two interpretation methods A and B. The label of this sample is {1, 3, 5}, the
result of the interpretation method A is {1, 5} and result of interpretation method B is

{2, 4}. Since Positive and Negative QCs depend only on the label, they are the same for

both methods. As the label indicates, Positive (P) QCs are {1, 3, 5} and Negative (N)

are {2, 4}.

The results of both methods are shown in the following tables, where the QCs are

categorized together with the number of QCs in each category.

TP TN

QCs {1, 5} {2, 4}
Σ 2 2

Table 3.1: Interpretation method A

TP TN

QCs {} {}
Σ 0 0

Table 3.2: Interpretation method B

If we wanted to evaluate the Eq. 3.2 and 3.3 equations with only this one sample, we

would get these values for interpretation method A:

TPR =
2

3
· 100 ≈ 66 %

FPR =
2

2
· 100 = 100 %

and for interpretation method B:

TPR =
0

3
· 100 = 0 %
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FPR =
0

2
· 100 = 0 %

According to this, we can say that interpretation method A is better than interpretation

method B, because it has higher TPR and TNR at the same time.

It should be noted that all performance measures contain a multiplication by 100 in

their definition formulas. This is because I have decided to display the comparison of

interpretation methods as percentages for the sake of clarity.
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Chapter 4

Experimental comparison of

interpretation methods

Since this work is part of a larger project, I tried to keep the real parameters as much as

possible in the practical part, which, for example, specify the form of the measured data

or the limitations of the measurement itself. First, I focused on generating synthetic data

and then processing it, which mainly consisted of shifting it in different directions. Then I

implemented the selected interpretation methods, applied them to the prepared data, and

compared their results. All the implementation and testing were done in MATLAB.

4.1 In-control data generation

I used the Matlab function mvnrnd to generate random points from the specified normal

distribution.

4.1.1 Normally distributed data

I primarily used the multivariate normal distribution to generate the data, as it closely

approximates the real data distribution, and other papers have also used it for their

experiments. The multivariate normal distribution has two input parameters. The first is

the p-dimensional vector of means, and the p×p covariance matrix, where p is the number

of quality characteristics (QCs). Without loss of generality, I chose the mean vector as the

zero vector. Much more interesting is the choice of the covariance matrix. It determines

the correlation between quality characteristics. Since the number of quality characteristics

and the correlations between them vary in real data, I tried several different covariance

matrices that define the generated data on which I tested the interpretation methods.

The covariance matrix must be a symmetric positive definite matrix. I used two types of
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covariance matrices inspired by [10]

Σ1 =


1 ρ ρ

ρ 1 ρ

ρ ρ 1

 Σ2 =


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

 ,

where ρ is from the interval [-1, 1]. In this example, the covariance matrices for p = 3

quality characteristics is used, the matrices for different p are generated analogically. It is

worth mentioning that the Type I covariance matrix Σ1 is identical to Type II covariance

matrix Σ2 in case of p = 2.

Figure 4.1: Shape of bivariate normal distribution in dependence on ρ

4.1.2 Not-normally distributed data

Other synthetic data was also created using various distributions. First, I created a

bivariate normal distribution, where the two variables (QCs) were correlated. The first

variable has a gamma distribution with parameters of 3 and 0.5, while the second variable

has parameters of 1 and 1. The normal cumulative distribution function (cdf) was then

applied to a conventional normal random variable, producing a uniform random variable

in the interval [0,1]. Applying the inverse cdf of any distribution F to a random variable

U(0,1) results in a random variable whose distribution is exactly F , according to the theory

of univariate random number generation. When a two-step transformation is applied to

each variable in a standard bivariate normal distribution, dependent random variables

with arbitrary marginal distributions are created (gamma distributions defined above) [3].

This dataset is named Copula because of the way it is generated, and this name will also

be used to refer to the results that belong to such data.
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Figure 4.2: Shape of not-normally distributed data

4.2 Data shifting

An out-of-control state of a process is typically manifested by a change of statistical

properties of post-process quality characteristics. Both the shift in the mean and the

change in the variance can occur. It was not possible to determine from the data or from

the knowledge of the production process what the most common possible shifts are and

their sizes in the production process if it gets into an out-of-control state. Because of that,

I decided to consider a set of a shifts of range of different sizes and in different directions.

Moreover, I represent the shift in the manufacturing process as a change in the mean

vector µ and do not consider a shift in the variance (i.e. the change of the covariance

matrix). Thus, the samples that represent the out-of-control process come from a normal

or non-normal distribution with a mean parameter different from those that represent the

in-control process.

The shift was implemented by adding a p-dimensional vector s to the points in the

generated in-control dataset X. The vector s is defined as

s = (s1, s2, ..., sp)
T , (4.1)

where

si =

{
r, if there is a shift in ith QC,

0, otherwise,

and r is a random number from the interval [−3σ, −1σ] ∪ [1σ, 3σ].

Each sample from the dataset X is shifted separately, i.e. a unique shift vector s is

generated for each sample. It should be noted that the random values r are selected from

a uniform distribution from the interval mentioned above.
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I tried to be as general as possible, so I considered all possible sets of shifted quality

characteristics. For p quality characteristics there are

a =

p∑
k=1

(
p

k

)
(4.2)

possible sets of shifted quality characteristics in total. The simplest example is for p = 2,

where a shift could occur in the first, the second or in both quality characteristics. Also

the size of shift in each quality characteristics is important, because it defines a specific one

shift. Because of that, I used all the points in the X for each possible set of shifted quality

characteristics and each point from the set X was shifted individually, i.e. a unique vector

s was generated for each point to perform the shift. So the final shifted set Xshifted was a

times bigger than the original dataset X. This lead to maximal diversity and generality of

the shifts contained in the shifted set Xshifted. Also during the shifting a label describing

particular shift was added to each point in Xshifted. This approach simulates a situation

in which each data sample comes from a different process shift. Although this does not

correspond to reality, where the shift is not so variable, it allows us to provide a more

robust and more general evaluation and comparison of the methods.

4.3 Experimental scenario

XA

N=1000

Not-
shifted

Train SVM

XB

N=100

Not-
shifted

TRAIN OOC 
DETECTOR

SVM Interpreter
UNSHIFTED 

DATA 
GENERATOR

SHIFT DATA and 
REMOVE NEGATIVE 

DETECTIONS

Xval, Sval

Shifted

Validation

INTERPRETATION
Predicted

Ŝval

Performance 
evaluation

Xval

Sval

Figure 4.3: Flow chart of the experiment

The main purpose of the experiments is to evaluate and compare different interpretation

methods (i.e., determination of the predictor’s inputs that are responsible for the current

OOC prediction). It is important to note that the goal is not to evaluate the OOC

detection, which has been performed in other works ([3], [19]).
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4.3.1 Unshifted data generator

First, two sets of in-control data were generated XA and XB with the same distribution.

The dataset XA is used to train the out-of-control state detector, which is the One-Class

SVM classifier in all experiments.

4.3.2 Creating validation data

In practice, the interpretation of an OOC prediction will be performed only in case of

positive outcome of the prediction (regardless of whether the prediction is correct or not).

If the positive prediction is incorrect (false positive prediction), it will be interpreted, but

the interpretation will be neither needed nor meaningful because the process will actually

be in an in-control state. Thus, the validation of the interpretation must be performed only

for correct prediction of OOC state, i.e. on data that are true positive OOC predictions.

The dataset Xval is used for the validation of the interpretation method. Therefore, I

added a shift to the original in-control data XB to artificially simulate the OOC data.

Since the shift is pre-defined and known, I labeled each instance of Xval using the set of

all shifted quality characteristics Sval that is also used in the further validation.

Subsequently, I removed the data which were classified as in-control. This ensures that

the resulting Xval dataset consists only of true positive OOC predictions.

4.3.3 Validation

In next step Xval set is passed to interpretation. An interpretation method estimates

which quality characteristics are responsible for positive OOC detection. Thus, for each

data instance, the label is estimated in the form of a set of quality characteristics that

are shifted. For the whole Xval dataset, the interpretation returns the predicted labels

Ŝval, which are afterwards compared with the true labels stored in Sval. In the last step,

the evaluation metrics are calculated and used for the comparison of the interpretation

methods.

The original generated and validation datasets can be seen in Fig. 4.4. The visible gap

in the middle of the validation dataset is caused by the aforementioned removal of false

negative OOC predictions.

Since the interpretation method is tested on data from shifted process only, all points

predicted as in-control (assigned to the negative class) are actually false negative OOC

detection. There is no point in interpreting a negative detection of an out-of-control state,

since it would not be detected in a real process anyway. The purpose of our experiments

is to evaluate interpretation rather than out-of-control state detection.
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Figure 4.4: Visualization of in-control XA(XB) dataset generated from

normal distribution in comparison with shifted Xval validation dataset

4.4 Results

The results for the data generated from the different types of distribution are shown in

the tables, selected tests are shown in more detail in the confusion matrices. Since the

LIME method only determines how much each quality characteristic contributes to the

out-of-control state, but, by default, does not answer the question of how many are shifted,

I divided the experiments into two main groups.

4.4.1 Unknown number of shifted QCs

The following results refer to a group of experiments without information on the number

of shifted quality characteristics.

ρ

Performance

measure

Method -0.7 -0.3 0.1 0.5 0.9 Copula

Accuracy

[%]

ANN 76 70 68 70 85 71

LIME 55 49 52 58 70 41

MYT 67 72 73 71 73 58

TPR [%]

ANN 89 88 90 89 93 94

LIME 70 67 68 72 80 63

MYT 83 89 90 87 86 83

TNR [%]

ANN 80 72 65 75 87 48

LIME 93 91 94 96 89 86

MYT 78 72 77 79 81 53

Table 4.1: Comparison of interpretation methods for p = 2 and

unknown number of shifted QCs
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(a) ANN results (b) LIME results

(c) MYT results

Figure 4.5: Comparison for bivariate (p = 2) normally

distributed data with ρ = 0.9 in confusion matrices

From the results, we can see that the LIME interpretation method has the worst accuracy

of all the methods in almost all experimental scenarios. On the other hand, it has the best

specificity in all cases and at the same time a not so bad sensitivity, indicating a tendency

to select the correct but only a subset of shifted QCs. This is also evident from confusion

matrix in Fig. 4.5b.

The ANN method performs slightly better than the MYT method when there is a higher

correlation between the quality characteristics; however, when the correlation is lower, the

results of the MYT method appear to be better. An even greater effect of the correlation

between QCs on accuracy is seen in the LIME method, particularly the biggest difference

appeared in Fig. 4.6, where is a comparison between Type I and II covariance matrices,

again increasing correlation has a positive effect on accuracy as in the ANN method.
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ρ (Type of covariance matrix)

Performance

measure

Method -0.5(1) -0.5(2) 0.3(1) 0.3(2) 0.7(1) 0.7(2)

Accuracy

[%]

ANN 58 60 50 51 61 60

LIME 41 28 23 26 36 39

MYT 55 56 59 59 55 57

TPR [%]

ANN 90 87 88 89 90 90

LIME 60 56 54 56 63 61

MYT 85 87 89 89 85 86

TNR [%]

ANN 74 78 63 66 74 74

LIME 94 96 97 95 94 94

MYT 77 73 77 76 70 73

Table 4.2: Comparison of interpretation methods for p = 3 and

unknown number of shifted QCs

(a) ANN result for Type I covariance

matrix

(b) ANN result for Type II

covariance matrix

(c) LIME result for Type I

covariance matrix

(d) LIME result for Type II

covariance matrix

Figure 4.6: Comparison of ANN and LIME method for Type I and II

covariance matrices (p = 3 and ρ = -0.5)

25



4.4. RESULTS Chapter 4

ρ (Type of covariance matrix)

Performance

measure

Method 0.3(1) 0.3(2) 0.8(1) 0.8(2)

Accuracy

[%]

ANN 33 15 16 17

LIME 11 11 31 23

MYT 31 31 35 34

TPR [%]

ANN 83 89 92 92

LIME 48 45 67 58

MYT 80 80 87 85

TNR [%]

ANN 75 46 47 48

LIME 97 98 92 95

MYT 76 78 57 66

Table 4.3: Comparison of interpretation methods for p = 5 and

unknown number of shifted QCs

ρ (Type of covariance matrix)

Performance

measure

Method 0.3(2) 0.8(1) 0.8(2)

Accuracy

[%]

ANN 33 52 46

LIME 8 28 22

MYT 32 37 34

TPR [%]

ANN 82 86 85

LIME 43 65 59

MYT 82 89 85

TNR [%]

ANN 77 84 82

LIME 98 93 95

MYT 76 59 66

Table 4.4: Comparison of interpretation methods for p = 5 and

unknown number of shifted QCs (4x larger datasets)

From Table 4.3 is obvious that the performance of ANN depends on the size of the training

data set. For five or more quality characteristics, 1000 samples in the generated in-control

dataset are not enough. Enlarging the in-control dataset four times solved this problem

as can be seen in Table 4.4.

The sensitivity and specificity of ANN and MYT interpretation methods are similar and

basically follow the accuracy values, i.e. where ANN had better accuracy, it typically has

better TPR and TNR values and vice versa. It can be seen that TNR is generally 10 to 20
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percent worse than TPR for both methods (ANN and MYT). This may have two causes.

The first is the tendency of the method to rather evaluate QCs for which it is not quite

sure as shifted, leading to a higher TPR but lower TNR. The second possible cause is the

imbalance of the samples in the experiment, since one of the extremes (samples with no

shift in any of the QCs) is not present in the sample dataset at all, but the other (samples

with shift in all QCs) is. This leads to an average number of shifted QCs in the sample

higher than p/2 (half of the total number of QCs) and therefore a higher probability of

higher TPR compared to TNR. Unfortunately, to determine which cause is at fault in a

given case, the results need to be examined more closely in the confusion matrix.

4.4.2 Known number of shifted QCs

The following results refer to a group of experiments with information about the number

of shifted quality characteristics.

ρ

Method -0.7 -0.3 0.1 0.5 0.9 Copula

ANN 97 96 98 96 96 80

LIME 97 96 97 98 96 84

MYT 75 82 82 81 81 75

Table 4.5: Accuracy [%] of the interpretation methods for p = 2

and known number of shifted QCs

ρ (Type of covariance matrix)

Method -0.5(1) -0.5(2) 0.3(1) 0.3(2) 0.7(1) 0.7(2)

ANN 86 89 87 89 88 92

LIME 86 89 88 89 89 87

MYT 69 70 72 73 70 70

Table 4.6: Accuracy [%] of the interpretation methods for p = 3

and the known number of shifted QCs

The results in the second group of experiments confirmed our expectations about the LIME

method. Its accuracy is in most cases at a level comparable to the ANN method and in

many cases even exceeds it which can be seen in Tables 4.5 and 4.6. This shows that the

LIME method, presented as a new method of interpretation for One-class SVM classifier,

can compete with current interpretation methods. The problem remains in resolving the

question of how to identify the correct number of quality characteristics to be determined

by the LIME method (my simple heuristic), which seems to not work well.
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(a) ANN result (b) LIME result

(c) MYT result

Figure 4.7: Comparison of methods, when the number of shifted quality

characteristics is known (p = 3, ρ = 0.7, covariance matrix Type I)

The MYT method achieved significantly worse results in the second group of experiments

compared to the other interpretation methods. The reason for this can be seen in Fig. 4.7.

It is mainly due to the fact that the MYT method is the only one that can select a smaller

number of quality characteristics in which a shift has occurred, even if it knows the correct

number of them. However, since this set of experiments was primarily intended to verify

that the poor results of the LIME method are mainly due to my imperfect heuristic for

selecting the correct number of quality characteristics in which a shift has occurred, not

the method itself, the comparison with the ANN method is fully sufficient.

ρ (Type of covariance matrix)

Method 0.3(1) 0.3(2) 0.8(1) 0.8(2)

ANN 66 28 26 26

LIME 65 65 75 70

MYT 48 47 49 50

Table 4.7: Accuracy [%] of interpretation methods for p = 5 and

the known number of shifted QCs
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ρ (Type of covariance matrix)

Method 0.3(2) 0.8(1) 0.8(2)

ANN 66 77 74

LIME 64 77 68

MYT 49 52 51

Table 4.8: Accuracy [%] of the interpretation methods for p = 5

and the known number of shifted QCs (4x larger datasets)

Figure 4.8: Result for ANN method (p = 5, ρ = 0.8, covariance matrix Type I)

Figure 4.9: Result for LIME method (p = 5, ρ = 0.8, covariance matrix Type I)

Again, from Table 4.7 is obvious that the performance of the ANN has dropped in the

case of five QCs, even in the case where the ANN is provided with information on the
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number of shifted QCs. This problem is shown in detail in confusion matrix in Fig. 4.8. In

comparison, in Fig. 4.9 the results of the LIME method are shown. Already from the color

difference, it can be noticed that most of the samples are on the main diagonal, which

indicates high performance of the interpretation method, because on the main diagonal

there are samples for which the label fully matches the result of the interpretation method.

Again, enlarging the in-control dataset four times solved this problem, as can be seen in

Table 4.8.
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Conclusion

As part of this thesis, I conducted a literature research during which I found that the

methods used for interpreting out-of-control state within MSPC are divided into two

approaches, and these are analytical and computational. Currently, methods from the

second approach, specifically different types of neural networks, are mainly being used

and investigated. For comparison, I have implemented one analytical method, MYT,

and one computational method, ANN. The most significant contribution of this thesis

is the last LIME method I used. This method is designed to solve the explainable AI

problem regardless of the blackbox model used for prediction. Furthermore, I used three

performance measures to compare the results of the interpretation methods, particularly

accuracy, sensitivity, and specificity. For the experiments, I generated synthetic in-control

data from various distributions and then shifted these to create a validation dataset of

samples. The biggest disadvantage of the LIME method is that it only returns coefficients

for each quality characteristic in a sample. These coefficients determine how much

particular QC is responsible for the out-of-control state, but the user has to define how

many of them actually select. Thus, I created a simple heuristic to solve this problem

and also divided the experiments into two groups, in first the interpretation methods did

not have the information on how many QCs are shifted, in second this information was

provided to them.

From the results is obvious that neither method was overall better than the others. In the

first group of experiments, the LIME method was the worst in all of the tests, ANN and

MYT results were similar according to accuracy. Nevertheless, sensitivity and specificity

confirmed that poor LIME results were caused by the heuristic to estimate the number of

shifted QCs, not the LIME method itself. These hypotheses were confirmed in the second

group of experiments, where the accuracy of the LIME method was similar to the accuracy

of ANN, and sometimes LIME even outperformed ANN.
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5.1 Future work

Since the LIME method has already proven itself in many other areas, I believe that it has

a future in this area as well. This hypothesis was partially confirmed by the results from

the second group of experiments. On the other hand, an interpretation method that cannot

determine the number of quality characteristics that are shifted is not very useful. Thus,

the scope for future work is obvious. It is necessary to devise some smarter method to

determine the number of quality characteristics that are shifted under the LIME method,

so that this interpretation method is competitive with existing interpretation methods for

real applications where there is no prior knowledge of the number of quality characteristics

that are shifted.
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