
Czech Technical
University
In Prague

Faculty of Electrical Engineering

Dept. of Control Engineering

Master’s Thesis

Rapid Prototyping of Mobile
Robot Control Algorithms

Andrés España Cabrera

Supervisor: Michal Sojka, PhD.

June 2014

Declaration of Authorship

I, Andrés España Cabrera, declare that this thesis titled, ’Rapid Prototyping of Mo-

bile Robot Control Algorithm’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“Let the future tell the truth and evaluate each one according to his work and accom-

plishments. The present is theirs; the future, for which I really worked, is mine.”

Nicolas Tesla

Abstract

The design of control algorithms for mobile robots has been always a big challenge,

due to the complexity of control techniques and the difficulty that this represents when

trying to implement them in the robots software. This thesis work presents a method to

establish communication and control of a mobile robot from Matlab/Simulink platform.

The robot used is an undergoing project from the Department of Control Engineering of

the Czech Technical University in Prague. Furthermore, this work presents performance

tests and analysis of control algorithms implemented to test communication link and

controllability of the system, from which a set of conclusions and recommendations are

given.

Acknowledgements

First, I would like to express my sincere gratitude towards my supervisor PhD. Michal

Sojka, who gave the opportunity to undertake this project. His guidance, patience and

support during this time were fundamental to complete this work.

As a scholarship holder student, I would like to thank the European Commision for

their finantial support to carry out my studies as part of the Erasmus Mundus Joint

European Master in Space Science and Technology.

Finally, but importantly, I would like to thank my parents, girlfriend and friends for

their unending support during these years abroad. This would not have been possible

without you.

v

Contents

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Main Objective . 2

1.2 Overview . 3

1.3 Structure of Thesis . 3

2 Open Real-Time Ethernet Basics 4

2.1 ORTE Overview . 4

2.1.1 RTPS Protocol objectives . 4

2.2 Publish-Subscribe Architecture . 5

2.2.1 Publish-Subscribe in Real Time Applications 6

2.3 Real Time Publish-Subscribe Model . 7

2.3.1 Publication Parameters . 7

2.3.2 Subscription Parameters . 8

3 Matlab S-Functions & ORTE 9

3.1 S-Function Callback Methods . 9

3.2 S-Functions Implementation . 10

3.2.1 Publishers . 11

3.2.2 Subscribers . 13

4 S-Functions Test -Mobile Robot Control 15

4.1 Control Setup . 15

4.2 Simulator - Robomon . 16

4.3 Robot Kinematics . 18

4.4 Error Definition & Reference Velocities . 19

4.4.1 Reference Velocities vr & ωr . 20

4.5 Controller Proposed: Kanayama . 21

4.5.1 Design . 21

4.5.2 Gain Optimization . 22

4.5.3 Simulation Results . 24

4.6 Controller Proposed: Sanhoury . 29

vi

Contents vii

4.6.1 Design . 29

4.6.2 Simulation Results . 30

4.7 Controllers Performance Comparison . 35

5 Conclusions and Future Work 41

5.1 Summary . 41

5.2 Discussion . 41

5.3 Future Work . 42

Bibliography 43

List of Figures

1.1 3D model of DragonBot . 1

2.1 Publish-Subscribe Architecture [1] . 5

2.2 Publication Arbitration [1] . 7

2.3 Subscription Issue Structure [1] . 8

3.1 Publisher S-Function Diagram . 11

3.2 Subscriber S-Function Diagram . 13

4.1 High Level Control Diagram . 16

4.2 Robomon - Mobile Robot Simulator . 17

4.3 Mobile Robot . 18

4.4 Error Geometry from Current to Reference Position 19

4.5 Controller Kanayama Implemented in Simulink 22

4.6 Initial and Final Position of Mobile Robot 22

4.7 Unconstrained Nonlinear Optimization . 23

4.8 Simulink Final Implementation . 23

4.9 X Position vs Reference Results – Kanayama 24

4.10 Y Position vs Reference Results – Kanayama 25

4.11 φ Position vs Reference Results – Kanayama 25

4.12 Driving Error – Kanayama . 26

4.13 Orientation Error – Kanayama . 27

4.14 Lateral Error – Kanayama . 27

4.15 Trajectory followed and final position for Controller Kanayama 28

4.16 Controller Implemented in Simulink . 30

4.17 X Position vs Reference Results – Sanhoury 31

4.18 Y Position vs Reference Results – Sanhoury 31

4.19 φ Position vs Reference Results – Sanhoury 32

4.20 Driving Error – Sanhoury . 32

4.21 Orientation Error – Sanhoury . 33

4.22 Lateral Error – Sanhoury . 33

4.23 Trajectory followed and final position for Controller Sanhoury 34

4.24 X Position vs Reference Results and Comparison 36

4.25 Y Position vs Reference Results and Comparison 36

4.26 φ vs Reference Results and Comparison 37

4.27 Driving Error Comparison . 37

4.28 Lateral Error Comparison . 38

4.29 Orientation Error Comparison . 38

viii

List of Figures ix

4.30 Trajectories comparison, from initial condition to point 4 39

4.31 Trajectories comparison, from point 4 to 7 39

4.32 Trajectories comparison, from point 7 to 8 40

List of Tables

3.1 Reference Robot Position Publisher – S-Function parameters 12

3.2 Robot Estimated Best Position Publisher – S-Function parameters 12

3.3 Robot Motion Speed Publisher - S-Function parameters 12

3.4 Robot Motion Data subscriber - S-Function parameters 14

3.5 Robot Estimated Best Position Subscriber - S-Function parameters 14

3.6 Laser Sensor ”Hokuyo” Subscriber - S-Function parameters 14

4.1 Control Performance Test - Reference Sequence 35

x

Abbreviations

DCE Department Control Engineering

ORTE Open Real-Time Ethernet

RTPS Real Time-Publisher- Subscribe

UDP User Datagram-Protocol

xi

To my family and friends. . .

xii

Chapter 1

Introduction

Eurobot Association is an international organization created in May 2004 and registered

in France. It was born 6 years after the Eurobot Contest to structure the organization

of this growing contest, and to favor the spirit of exchange and co-operation between

the different organizers [4].

The robots participating in the competition are autonomous robots. Every year a dif-

ferent topic is set for the competition, which determines the type of tasks robots are

built and programmed for. Overall, the main goal of Eurobot is to encourage interest

in robotics in young people on an international scale.

CTU Dragons, representing the Department of Control Engineering of the Czech Tech-

nical University in Prague, participated in this competition for the first time in 2007

with robot DragonBot.

Figure 1.1: 3D model of DragonBot

The topic of 2007 competition was Robot

Recycling Rally. The robots design

and programming were meant to sort

waste. The task was to find bot-

tles, cans and batteries, pick them up

and once having identified the type

of waste, place it in the proper bin

[5].

1

Chapter 1. Introduction 2

For the construction of DragonBot knowledge and technologies from industry and others

developed in the Control Department, were used. Most of the programming back then

was done in C/C++ with the aid of free software tools and libraries. Components were

designed in a versatile and efficient way. The main control program of the robot was

built on finite state machine architecture.

One core component of the robot, which is worth mentioning due to the ultimate goal

of this thesis work, is the middleware used for interaction between different components

of the robot, ORTE.

ORTE is an open source implementation of Real-Time Publish-Subscribe (RTPS) com-

munication protocol. The basics and advantages of using such a protocol, as well as the

importance of it for the accomplishment of the goal of this work, will be explained ahead

in this document.

1.1 Main Objective

This thesis work has as main objective, enabling rapid prototyping of new control

algorithms and strategies for mobile robot, through the use of ORTE from Matlab

Simulink/Stateflow platform.

Among the many advantages of using a middleware such as ORTE, that later in this

document will be listed, is the fact of having a Plug and play connectivity. This meaning

that new applications and/or services are easily detected and any of them can join or

leave the network at any time without any type of reconfiguration. These applications

can be built using different programming languages or platforms. At the end, ORTE

will be in charge of managing the inputs of these different origin applications and trans-

late them into data that other application, sensor or actuator will be able to interpret

accordingly.

After seven years of application developing for DragonBot, there is still no method de-

signed for applications running in Matlab/Simulink that can interact with the robot.

Due to the great potential of such a platform, specially for Control Systems, designing

such a method results convenient for current and future projects.

Chapter 1. Introduction 3

This work intends to develop this communication method and implement a controller

as a way of testing the capabilities of it. The success of this project will help future

projects aiming at having better and easier to design controllers.

1.2 Overview

Thesis work comprehends the following aspects:

1. Familiarization with mobile demo robot available at DCE and internal communi-

cation middleware ORTE.

2. ORTE communication through Matlab S-Functions and Simulink blocks.

3. Implementation of robot control algorithms in Matlab Simulink/Stateflow and

performance testing of controllers.

1.3 Structure of Thesis

The thesis work is structured such that reader understands the development of the work

and the achievement of the goals set at the beginning.

- Chapter 2 Introduces the reader with the ORTE middleware. The understanding

behind it, was a key factor in future development of this work. Objectives of RTPS pro-

tocol are presented, as well as a general overview of the Publish-Subscribe architecture.

Basic concepts for Real-Time applications are explained on this chapter too.

- Chapter 3 Describes how the integration of ORTE middleware was done through

the use of Matlab S-Functions and blocks in Simulink. A very general overview of S-

Functions is presented to the reader. The methodology followed for the design of these

functions is contained in this chapter, along with descriptions of the final implemented

functions.

- Chapter 4 Describes the implementation for the two algorithms to achieve control of

the mobile robot. Tests and performance of both algorithms is presented to the reader,

highlighting advantages, disadvantages and opportunity areas for future implementa-

tions.

- Chapter 5 Presents a summary and an analysis of the results obtained in this work.

Suggested lines of research and development for future projects are also included in this

chapter.

Chapter 2

Open Real-Time Ethernet Basics

2.1 ORTE Overview

The Open Real-Time Ethernet (ORTE) is an open source implementation of Real-Time

Publish-Subscribe (RTPS) communication protocol [1], developed at CTU.

RTPS is an application layer protocol targeted to real-time communication applica-

tions. This protocol is built on the top of standard User Datagram Protocol (UDP)

stack. Since there are many TCP/IP stack implementations under many operating

systems and RTPS protocol does not have any other special HW/SW requirements, it

should be easily ported to many HW/SW target platforms. Because it uses only UDP

protocol, it retains control of timing and reliability [1].

2.1.1 RTPS Protocol objectives

Among the main objectives to use RTPS protocol [2], that in this case are relevant for

this project we find:

- Plug and play connectivity. New applications and services are automatically

discovered and applications can join and leave the network at any time without

the need for reconfiguration.

- Performance and Quality. Performance and quality-of-service properties to

enable best-effort and reliable publish-subscribe communications for real-time ap-

plications over standard IP networks.

4

Chapter 2. Background information and theory 5

- Modularity. In order to allow simple devices to implement a subset and still

participate in the network.

- Scalability. This will enable systems to potentially scale to very large networks.

2.2 Publish-Subscribe Architecture

The publish-subscribe architecture has as ultimate goal simplifying data distribution

from one source to many recipients. A publisher does not have to have any knowledge

of the number or location of subscribers [5].

Subscribers on the other side, receive the data in an anonymous way, without knowing

anything about the publisher. As well is important to mention that an application can

be a publisher and a subscriber at the same time. Having these features available, the

developer simply writes a given application to send or receive the data.

Figure 2.1: Publish-Subscribe Architecture [1]

The publish-subscribe services are typically made available to applications through mid-

dleware, that sits on top of the operating system network interface and presents an ap-

plication programming interface [5]. In the case of DragonBot, the middleware used as

explained before is ORTE.

Chapter 2. Background information and theory 6

The communication process occurs in three simple steps [1]:

- Publisher declares intent to publish a publication.

- Subscriber declares interest in a publication.

- Publisher sends a publication issue.

2.2.1 Publish-Subscribe in Real Time Applications

The publish-subscribe explained in previous section has several useful features for real-

time applications [1]:

- This type of architecture provides an efficient and fast way of distributing data,

due to its efficiency in bandwidth and latency for periodic data exchange.

- Since it provides a high connectivity, this type of architecture is ideal in applica-

tions where publishing and subscribing applications are added and removed dy-

namically .

Real-time applications often require [6]:

- Delivery timing control: This type of applications must know when data is

delivered and how long it remains valid.

- Reliability control: Since reliable delivery conflicts with deterministic timing,

each time-constrained application needs to specify its particular reliability charac-

teristics (for example, how long it is willing to wait).

- Fault-tolerance: The communications layer should not introduce any single-node

points of failure. Moreover, support for “hot standby” or backup data production

is often a requirement.

- Selective degradation: Each real-time logical data-channel must be protected

from the others. The performance of a channel should not be affected by other

channels slowing due to dropouts, network congestion, receiver CPU overload and

so on.

Chapter 2. Background information and theory 7

2.3 Real Time Publish-Subscribe Model

The Real-Time Publish-Subscribe (RTPS) communications model includes protocols to

handle the administrative chores underlying plug-and play and fault-tolerant distributed

system configurations [6]. Among the features included in the model is the use of timing

parameters for both publishers and subscribers, to have control over different types of

data flows and in this way achieve the performance, robustness and reliability objectives.

The following subsections describe the parameters/structure for publishing or subscrib-

ing to data within the network.

2.3.1 Publication Parameters

Each publication is characterized by four parameters [1]:

- Topic → Label that identifies each flow of data

- Type → Data format

- Strength → Publishers weight or priority relative to to other publishers sharing

the same topic.

- Persistence → Amount of time each publication will be valid.

These parameters are of importance for all subscribers waiting for the data they require

for their own processes. Figure 2.2 depicts the way a subscriber assesses among all

available publications, using the properties above explained.

Figure 2.2: Publication Arbitration [1]

Chapter 2. Background information and theory 8

In the case where there are multiple publishers sending the same publication, the sub-

scriber accepts the issue if its strength is greater than the last-received issue or if the

last issues persistence has expired. Typically, a publisher that sends issues with a period

of length T will set its persistence to some time Tp where Tp > T. Thus, as long as the

strongest publisher is functional, its issue will take precedence over a publication issue

of lesser strength [1].

In the case where the strongest publisher stops sending issues (willingly or due to a

failure), other publisher(s) sending issues for the same publication will take over after Tp

elapses. Through this mechanism an inherently robust, quasi-stateless communications

channel is established between the then-strongest publisher of a publication and all of

its subscribers [1].

2.3.2 Subscription Parameters

Each subscription is described through four parameters [1]:

- Topic & Type → Label that identifies each flow of data and data format respec-

tively, as in parameters for publications.

- Minimum Separation → Period of time during which no new issues are accepted

for that specific subscription.

- Deadline → This parameter specifies how long the subscriber is willing to wait for

the next issue.

As seen in Figure 2.3, in one hand the Minimum Separation protects for instance a

slow subscriber against a fast publications. On the other the Deadline provides a fixed

amount of time, that in the case of communication delays could be used to take proper

corrective actions.

Figure 2.3: Subscription Issue Structure [1]

Chapter 3

Matlab S-Functions & ORTE

The communication with robot DragonBot was done through the implementation of

Level-2 C S-Functions in Matlab. These functions were used later in the corresponding

blocks in Simulink.

The first section in this chapter, intends to give a very general overview about these

functions, focusing on the specific aspects that were important for the accomplishment

of the objectives in this project. For further technical details please refer to [7].

In the same way, section 3.2 will introduce the reader with the implemented functions,

important parameters and general strategy followed.

3.1 S-Function Callback Methods

An S-function is a computer language description of a Simulink block written in MAT-

LAB, C, C++, or Fortran. C, C++, and Fortran S-functions are compiled as MEX files

using the mex utility [7]. The S-functions for this project, were developed in C.

Like a Level-2 MATLAB S-function, a MEX S-function consists of a set of callback

methods that the Simulink engine invokes to perform various block-related tasks during

a simulation. The engine directly invokes MEX S-function routines instead of using func-

tion handles as with MATLAB S-functions. Because the engine invokes the functions

directly, MEX S-functions must follow standard naming conventions specified

by the S-function API [7].

9

Chapter 3. Matlab S-Functions & ORTE 10

C MEX S-functions must implement the following callback methods [7]:

- mdlInitializeSizes - Specifies the sizes of various parameters in the SimStruct,

such as the number of output or input ports for the block. This method was used

to define the sizes of the output ports in case of Subscribers and input ports for

Publishers.

- mdlInitializeSampleTimes - Specifies the sample time(s) of the block. For the case

of publishers the INHERITED SAMPLE TIME option was used. For subscribers

it was defined according to the type of data subscribing to.

- mdlOutputs - Calculates the output of the block. For publishers, in this method

the corresponding assignation and issuing of data was done (ORTEPublication-

Send). In the case of subscribers only the assignation of data from subscription

was assigned to the defined outputs.

- mdlTerminate - Performs any actions required at the termination of the simula-

tion. If no actions are required, this function can be implemented as a stub. In

this case for all publishers or subscribers no action was required, and this method

was left empty.

Besides these callback methods, there are others defined as optional, that could be

used by the developer in case of needing to fulfill specific requirements for more complex

applications. Since this project required of a method that could run only at the beginning

of the model execution, due to ORTE initialization conditions, the optional method

mdlStart was used. Please refer to literature for further knowledge on all available

optional methods.

3.2 S-Functions Implementation

Implementation of these functions, required a good understanding on both ORTE pro-

tocol and S-Function’s basic concepts. Implementation was divided into Publishers and

Subscribers, due to differences in the rules and methods to issue or receive data.

Chapter 3. Matlab S-Functions & ORTE 11

3.2.1 Publishers

Publisher S-Functions implemented, will be in charge of publishing the robot data com-

ing from Simulink. This data, once calculated in a Simulink block diagram, is sent

through ORTE to the robot, to make the Robot perform a certain task.

Figure 3.1 depicts the general process taken in every S-Function developed. The main

differences between each data publisher, lie on the number of input ports and the width

of them. As well as in the Topic, Type, Strength and Persistence parameters, that will

have to be modified depending on the data wishing to issue.

Figure 3.1: Publisher S-Function Diagram

Chapter 3. Matlab S-Functions & ORTE 12

Tables 3.1, 3.2 and 3.3 enlist a summary of the S-Function parameters for the functions

developed, aligned with the objectives of this project. The Strength and the Persistence

parameters are omitted in these tables; all functions were designed and tested with the

same values of 1 and 3 seconds respectively.

PublisherRef

Action Publishes Reference Robot Position

Topic ref pos

Type robot pos

Input Port Width 3

Inputs x, y and phi reference position of robot

Table 3.1: Reference Robot Position Publisher – S-Function parameters

Publisher

Action Publishes Robot Best Estimated Position

Topic est pos best

Type robot pos

Input Port Width 3

Inputs x, y and phi values

Table 3.2: Robot Estimated Best Position Publisher – S-Function parameters

PublishSpeed

Action Publishes Reference Motion

Topic motion speed

Type motion speed

Input Port Width 2

Inputs Left and right robot wheel speeds

Table 3.3: Robot Motion Speed Publisher - S-Function parameters

*These S-Functions were tested individually with satisfactory results. For controllability

tests (further explained in Chapter 4), only PublisherRef and Publisher functions were

used. PublishSpeed function was not used due to limitations of simulator.

Chapter 3. Matlab S-Functions & ORTE 13

3.2.2 Subscribers

Subscriber S-Functions implemented, will provide a given Simulink design with data

coming from the robot software through ORTE. This data after being processed by the

function itself, will be ready to be used as part of a design within Simulink platform.

Figure 3.2 depicts the general process taken in every subscriber S-Function developed.

Unlike the publisher functions, an auxiliary function is required to process the data be-

ing published by other applications within the network. This function is needed as an

intermediate step between data being published and data being subscribed to. Through

array manipulation, the function stores published data, to later on assign it to the out-

puts of the Subscriber.

Similarly as for publisher functions, the main differences between each data subscriber

function, lie in the the number of output ports and the width of them. As well as in

the Topic, Type, Minimum Separation and Deadline parameters, that will have to be

modified depending on the data wishing to be subscribed to.

Figure 3.2: Subscriber S-Function Diagram

Chapter 3. Matlab S-Functions & ORTE 14

Tables 3.4, 3.5 and 3.6 enlist a summary of the subscription S-Function parameters

for the functions developed. Its worth mentioning that the Minimum Separation and

Deadline parameters are omitted in these tables; all functions were designed and tested

with the same values of 300 and 0 seconds respectively.

Subscriber

Action Subscribes to Motion data

Topic motion speed

Type motion speed

Output Port Width 2

Outputs Left and right robot wheel speeds

Table 3.4: Robot Motion Data subscriber - S-Function parameters

SubscriberPos

Action Subscribes to Robot Estimated Position data

Topic est pos best

Type robot pos

Output Port Width 3

Outputs x, y and phi robot position data

Table 3.5: Robot Estimated Best Position Subscriber - S-Function parameters

SubscriberHokuyo

Action Subscribes to Laser Sensor (Hokuyo) data

Topic hokuyo scan

Type hokuyo scan

Output Port Width 681

Outputs Vector of values containing distances in mm

to possible obstacles in trajectory

Table 3.6: Laser Sensor ”Hokuyo” Subscriber - S-Function parameters

*These S-Functions were tested individually with satisfactory results. For controllability

tests (further explained in Chapter 4), only SubscriberPos function was used to close

the control loop. Subscriber function couldn’t be used due to limitations of simulator.

SubscriberHokuyo performs well with simulator, but further work is required to process

data coming from laser sensor.

Chapter 4

S-Functions Test -Mobile Robot

Control

4.1 Control Setup

The design of control loops for a mobile robot, to perform specific tasks is always a

big challenge. An easy and friendly way to design and test different types of control

techniques is of high importance to develop more efficient and complex algorithms.

Now that a communication channel is set between a powerful platform like Matlab/

Simulink and the mobile robot through the use of S-Functions described in previous

chapter, its necessary to test the behavior of these functions. Running them on a close-

loop scheme, will provide us with an analysis of the performance of such functions and

evaluate the viability of their use in future projects.

Figure 4.1 depicts the high-level design of the controllers implemented in this project

to test the S-Functions. From the figure it can be seen that the system will Subscribe

to the current status of the robot (1). This status could contain wheel velocities data

or a given position defined by x, y and φ. (In the present work, due to limitations of

the simulator used for the project, as it will be explained in section 4.2, only position

publishers and subscribers were used).

This data provided by the S-Function, will be then compared to the reference(2) given,

in order to calculate errors in position or speed and provide reference velocities to the

controller(3).

15

Chapter 4. Testing S-Functions 16

The controller (4) will process these inputs and will try to minimize the errors in the

system by two control signals: v and w, linear and angular velocity respectively.

These control signals need to be processed taking into account the kinematics of the

robot. Block (5) will transform this v and w into a position or a left/right wheel velocity.

Finally, the loop is closed by simply Publishing (6) this data through ORTE. This data

will be interpreted by a simulator or the real robot software and transformed into a

control action.

Figure 4.1: High Level Control Diagram

4.2 Simulator - Robomon

Since the mobile robot has been a project ongoing for several years now, several applica-

tions have been developed to support the design and test tasks the robot has faced. It’s

clear that due to the nature of a project like this, a simulator that could help visualize

the behavior and/or parameters related to robot’s performance is essential for design

and testing activities.

Robomon is this simulator, developed by CTU Control Department, that has evolved

during the last several years, trying to meet new and more complex requirements.

Aligned with the main goal of this project, it was used to test the functionality of

S-Functions and Controllers developed.

Chapter 4. Testing S-Functions 17

Figure 4.2 shows the main graphical interface of Robomon. The mobile robot is simulated

by the boxes with arrows, where the uncolored box represents the reference position and

the gray box its current position.

Figure 4.2: Robomon - Mobile Robot Simulator

This simulator has the capability to respond to published data through ORTE, simulat-

ing and displaying graphically a given trajectory. Besides, it should be able to publish

robot position, wheel motion, among other data, that could be used by any given sub-

scriber within the network.

For the purpose of this work, Robomon is receiving data, coming from S-Functions

PublisherRef and Publisher (Tables 3.1 and 3.2). This data will be used to simulate

the reference and the current positions of the robot respectively.

During the development of this project it was found that Robomon has not yet imple-

mented the functionality of publishing position of the robot, nor wheel velocities. For

this reason, SubscriberPos (Table 3.5) S-Function is used, in order to subscribe to the

data being published by S-Function Publisher.

Once Robomon has the capability to publish position or motion data, Subscriber func-

tion (Table 3.4) could be used or SubscriberPos could be modified to interact directly

with data being published.

Chapter 4. Testing S-Functions 18

4.3 Robot Kinematics

The mobile robot position can be represented in

global Cartesian coordinate system as seen in Fig-

ure 4.3.

The figure shows how its position is described by x, y and φ values, where the sub-index

c is an abbreviation for current, to represent the robot’s current position [9].

Figure 4.3: Mobile Robot

The motion of the robot can be controlled by its linear v and angular ω velocities. These

velocities are described by [10]:

v =
vleft + vright

2
(4.1)

ω =
v

r
(4.2)

Where r stands for the radius of the robot wheels. Since the robot has two, the velocity

for each wheel can be calculated by the following equations:

vleft = v − r

2w
(4.3)

Chapter 4. Testing S-Functions 19

vright = v +
r

2w
(4.4)

From this, the robot’s kinematics (motion) model are described by the following states

[10]:

ẋ

ẏ

φ̇

 =

cos(φ) 0

sin(φ) 0

0 1

 ·
[
v

ω

]
(4.5)

This model will be used to calculate the errors in position, that will after serve as inputs

for controllers.

4.4 Error Definition & Reference Velocities

After having defined the kinematics of the

robot, the errors in position can be de-

fined considering robot’s current position

and any reference given as it is detailed in

Figure 4.4.

Figure 4.4: Error Geometry from Current to Reference Position

Chapter 4. Testing S-Functions 20

Using previous figure as an aid, three different type of errors in position can be defined

and described by the following equations [9]:

- Driving Error

eD = cos(φc) · (xr − xc) + sin(φc) · (yr − yc) (4.6)

- Lateral Error

eL = −sin(φc) · (xr − xc) + cos(φc) · (yr − yc) (4.7)

- Orientation Error

eφ = φr − φc (4.8)

Where sub-indexes r and c correspond to reference and current positions, respectively.

These errors along with reference linear and angular velocities, will be used as the input

for the controllers that will be presented on the following sections.

4.4.1 Reference Velocities vr & ωr

The reference linear (vr) and angular (ωr) velocities are necessary for the controller

to calculate the corresponding control action. These velocities will be calculated by

comparing the reference position (subindex r) and the current position (subindex c) of

the robot as calculated in equations 4.9 and 4.10, where the term Ts stands for the

sample time in the system. In the case of a tracker robot, vr and wr would depend on

the reference trajectory (at samples k and k−1) only and not on the robot’s position [9].

vr =

√
(xr − xc)2 − (yr − yc)2

Ts
(4.9)

ωr =
φr − φc
Ts

(4.10)

In the potential scenario where the robot needs to rotate for more than a circle (φ from

2π → 0), the control scheme is protected, assuming ωr = ωc, if |ωc| > 2π as suggested

by Karer, et al [10].

Chapter 4. Testing S-Functions 21

4.5 Controller Proposed: Kanayama

4.5.1 Design

The first controller implemented to test

the S-Functions developed, follows the re-

search done by Kanayama [8], in which a

stable control rule is found using a Lya-

punov function [8]. The analysis for the

final derivation of such a controller can be

found on the literature referenced in [8].

Its worth mentioning that the analysis from which the outcome is the previous con-

troller, assumes a perfect velocity tracking.

The control law proposed is as follows:

v = vr · cos(eφ) + k1 · eD (4.11)

w = wr + vr(k2 · eL + k3 · sin(eφ)) (4.12)

Equation 4.11, shows how the controller is fixing for orientation and driving errors. The

first part of equation vr · cos(eφ), will provide the controller with an extra amount of

energy, to fix for eφ in combination with equation 4.12. The proportional controller k1

will fix for any given driving error, in an effort to assure an optimal minimization of error.

Equation 4.12 in combination with equation 4.11 will eliminate both, eL and eφ with

the aid of gains k2 and k3. The wr term will assure the robot angular velocity not to be

affected by potential noise [10].

Chapter 4. Testing S-Functions 22

Figure 4.5: Controller Kanayama Implemented in Simulink

4.5.2 Gain Optimization

Suitable values for the gains in our controller, will depend on the reference point or a

trajectory the robot is designed to follow [10]. In this case the mobile robot is configured

to minimize position errors and not follow a trajectory.

Controller initial constants were found with the aid of an unconstrained nonlinear opti-

mization, from point (1, 1, 0◦) to (2, 3, 235◦), as it can be seen in Figure 4.16.

Figure 4.6: Initial and Final Position of Mobile Robot

Chapter 4. Testing S-Functions 23

Figure 4.7 shows the code used for this optimization. The function criterial represents

the criterion chosen to minimize the error and therefore provide the best possible path

between the two points. This criterion is described by equation 4.13 [10]:

c =
∑

e2(k) =
∑

(xc − xr)2 + (yc − yr)2 + 0.2 · (φc − φr)2 (4.13)

Figure 4.7: Unconstrained Nonlinear Optimization

Having optimized for this designed trajectory these are the final gains used to test the

performance of the controller:

k1 = 2.8691 k2 = −0.3958 k3 = −0.8516

The final implemented Simulink diagram is depicted in Figure 4.8. As it can be seen,

this implementation follows the High-Level description done in section 4.1 (Figure 4.1).

Figure 4.8: Simulink Final Implementation

Chapter 4. Testing S-Functions 24

4.5.3 Simulation Results

The plots in the figures below are meant in one hand, to present the performance of the

controller implemented in the design, which will be discussed ahead.

On the other hand, these results also confirm that the S-Functions designed, perform

accordingly. Thus, the communication channel established between ORTE and Mat-

lab/Simulink is functional and reliable.

The first set of results (Figures 4.9 to 4.11), show the behavior of the mobile robot when

trying to fix its position in the (x, y) plane, along with its orientation. A second set of

results is presented, containing the errors in the system.

Differences between reference and position can be seen for x and y, meaning that the

control signal v is a not enough to correct properly for these mismatches. The system

shows a stabilization time of about 6 seconds.

Figure 4.9: X Position vs Reference Results – Kanayama

Chapter 4. Testing S-Functions 25

Figure 4.10: Y Position vs Reference Results – Kanayama

Figure 4.11: φ Position vs Reference Results – Kanayama

For φ, as seen in Figure 4.11, the controller performs satisfactorily, counteracting com-

pletely the error in orientation.

Chapter 4. Testing S-Functions 26

The data seen in previous plots, is translated into errors in the system as defined in

equations 4.6 − 4.8, graphically shown in Figures 4.12 − 4.14.

From Figures 4.12 and 4.13, it can be seen that the controller can eliminate both, the

driving error and the orientation error. Nevertheless, the lateral error is not properly

eliminated as it can be seen in Figure 4.14.

Figure 4.12: Driving Error – Kanayama

Chapter 4. Testing S-Functions 27

Figure 4.13: Orientation Error – Kanayama

Figure 4.14: Lateral Error – Kanayama

Chapter 4. Testing S-Functions 28

Finally, Figure 4.15 shows the final position of the robot vs the reference along with

the trajectory followed by the robot. As it can be seen, the final position, as well as

the trajectory followed could be certainly improved through a better tuning or a new

control algorithm.

Figure 4.15: Trajectory followed and final position for Controller Kanayama

Analyzing equations 4.11 and 4.12 it can be seen that the response of the controller

could be slow when the error in the driving direction is small and the error of the lateral

direction is large.

Consider the case where the error in the driving direction eD = 0 and the orienta-

tion error eφ = 2 · π , where, the linear velocity v = 0 . In this case, the lateral error

cannot be eliminated to zero especially when eL is relatively large [9].

These limitations of this controller led to research and implement a better controller

that could counteract these scenarios, controller which will be presented in the following

section.

Chapter 4. Testing S-Functions 29

4.6 Controller Proposed: Sanhoury

4.6.1 Design

The second controller implemented, follows the re-

search done by Sanhoury I, et al [9].

A new linear velocity tracking controller is pro-

posed under this research, which is based on a di-

rect Lyapunov method, where the lateral error is

taken into account when designing the linear ve-

locity tracking controller [9]. The angular velocity calculation remains the same as in

eq 4.12. The analysis for such a design, as for Kanayama controller, can be found on

the literature referenced in this work.

The control law proposed by the authors is as follows:

v = vr · cos(eφ) + k1 · eD + k4 · sign(eD) · e2L (4.14)

w = wr + vr(k2 · eL + k3 · sin(eφ)) (4.15)

where,

sign(eD) =

{
−1 eD < 0

1 eD ≥ 0

As seen in equation 4.14 the controller provides the system with an extra factor in

velocity to correct for lateral errors, tuned through k4.

Chapter 4. Testing S-Functions 30

Figure 4.16: Controller Implemented in Simulink

To compare the effectiveness of this new factor in the controller, the same values for

k1, k2 and k3 as in controller Kanayama were used, while k4 was manually tuned to

evaluate the difference in response. The final value used in this case was of k4 = 0.350

4.6.2 Simulation Results

As done before for Controller Kanayama, a first set of results is presented in this sec-

tion (Figures 4.17 to 4.19), to show the response of the controller when counteracting

for differences in x, y and φ. A second set of results is presented (Figures 4.20 to 4.23),

containing the errors in the system.

In general, figures show the improvement in performance of the system by the addition

of this extra term in the controller. The response is faster, and the system shows a

stabilization time of 3− 4 seconds.

Chapter 4. Testing S-Functions 31

Figure 4.17: X Position vs Reference Results – Sanhoury

Figure 4.18: Y Position vs Reference Results – Sanhoury

Chapter 4. Testing S-Functions 32

Figure 4.19: φ Position vs Reference Results – Sanhoury

It is evident from previous plots, that the errors will be minimized in the same way, as

it can be seen in Figures 4.20 to 4.23.

Figure 4.20: Driving Error – Sanhoury

Chapter 4. Testing S-Functions 33

Figure 4.21: Orientation Error – Sanhoury

Important thing to notice is the improvement seen with respect to the lateral error,

Figure 4.22. There is still a small error, but compared to the error seen for previous

controller (Figure 4.14), it is considerably lower.

Figure 4.22: Lateral Error – Sanhoury

Chapter 4. Testing S-Functions 34

A higher setting in linear velocity v, lets the robot develop a better trajectory too, as it

can be seen in Figure 4.23.

Figure 4.23: Trajectory followed and final position for Controller Sanhoury

Chapter 4. Testing S-Functions 35

4.7 Controllers Performance Comparison

The previous section focused on the performance of both controllers implemented, for

a single reference given, since the main objective was to just to test the communication

link between ORTE and Simulink. After the control scheme along with the communica-

tion showed to be functional, it was time to test it under a more complex and realistic

scenario and compare the performance of both controllers.

For this reason, a sequence of different references in x, y and φ was designed to test for

different combinations of errors in the system.

The gains for both controllers were obtained by analyzing the responses for specific

movements in the plane and tuned accordingly. The final gains that are being used by

both controllers are:

k1 = 1.8 k2 = 28.0 k3 = −8.5,

and for Controller Sanhoury:

k4 = 0.15

Since the robot has only two wheels and therefore cannot perform parallel movements

from its current position, trajectories of this type were designed and tested. Table 4.1

enlists the sequence designed for this test.

Input Reference for Testing

Ref. Point Time (s) x y φ Purpose

1 Initial 1 0 0◦ -

2 0 1 3 0◦ Testing for parallel constraint in y

3 30 2 2 45◦ Small Error

4 60 3.5 3 235◦ Large Orientation error

5 90 1 1 0◦ Large Errors in system

6 120 2 3 90◦ -

7 150 4 3 90◦ Testing for parallel constraint in x

8 180 1.5 3.5 20◦ Small error in y

Table 4.1: Control Performance Test - Reference Sequence

Figures 4.24 to 4.26 depict the results of the reference tracking for x, y and φ for both

controllers. Legends Controller #1 and Controller #2 stand for results of Kanayama

and Sanhoury controllers, respectively.

Chapter 4. Testing S-Functions 36

As expected from previous analysis, Controller Sanhoury presents once again a faster

and more aggressive response than the ControllerKanayama. When the system presents

a large error as in seconds 60 to 120, both controllers perform similarly.

Figure 4.24: X Position vs Reference Results and Comparison

From Figure 4.24 it can be noticed the big difference in performance when trying to

perform a maneuver to a parallel position in x, as seen from second 150 to 180.

Figure 4.25: Y Position vs Reference Results and Comparison

Similarly as seen in Figure 4.24, 4.25 shows at the very beginning of the test, the major

difference in performance during a maneuver to a parallel position in y.

Chapter 4. Testing S-Functions 37

Figure 4.26, other than the major error when testing for the parallel constraint in x at

second 150, shows an important deficiency for both controllers. When testing the sys-

tem for small errors, as from second 30 to 50, the controllers are incapable of following

the given orientation angle. This can also be seen in figure 4.25, where both controllers

present a poor performance.

Figure 4.26: φ vs Reference Results and Comparison

As did in previous section, aiming to show the reader a different perspective of these

differences and similarities, the following figures compare the Driving, Lateral and

Orientation errors found in the system in both controllers.

Figure 4.27: Driving Error Comparison

Chapter 4. Testing S-Functions 38

Figure 4.28: Lateral Error Comparison

Figure 4.29: Orientation Error Comparison

Chapter 4. Testing S-Functions 39

The last set of plots compare the trajectories followed by the mobile robot using both

controllers. Reference points in plots are labeled accordingly to Table 4.1.

Figure 4.30: Trajectories comparison, from initial condition to point 4

Figure 4.31: Trajectories comparison, from point 4 to 7

Chapter 4. Testing S-Functions 40

Figure 4.32: Trajectories comparison, from point 7 to 8

Chapter 5

Conclusions and Future Work

5.1 Summary

The main goal of this thesis work was to enable rapid prototyping of control algorithms

for mobile robot, through the integration of middleware ORTE into Matlab Simulink/S-

tateflow platform. This work shows that the communication link established between

robot and platform, is reliable and performs satisfactorily. This performance was tested

under two different closed-loop control schemes, in both cases producing satisfactory

results.

-The controllers implemented and tested in this project revealed the potential of a plat-

form such as Simulink for future control related projects. The friendliness of the envi-

ronment is translated into easiness to implement more complex control algorithms that

could help ongoing or future projects.

Furthermore, a detailed comparison in performance for controllers implemented is given,

highlighting the scenarios where the system could be prone to accuracy errors.

5.2 Discussion

The main results of this project could be divided into two. First, the communication link

between ORTE and Matlab/Simulink, which showed to be efficient and reliable to use

for control purposes. The process followed for the development of this link, was standard

for all subscribers and all publishers separately, due to the roles they play within the

41

Chapter 5. Conclusions and Future Work 42

network used by the communication protocol. The differences among publishers or

subscribers, rely of the type of data they are issuing/receiving to/from ORTE.

Second, the controllers implemented and tested in this project show the effectiveness of

the control technique behind their design. Both controllers perform adequately, however

the second controller represents a better performance, specially when it comes to coun-

teract errors when a reference is given in a parallel position with respect to the current

one.

Important thing to mention is that both controllers perform poorly when the system

has small errors, specially when the degrees of difference in orientation are small, from

a current to a desired position. Anyhow, the controllers here implemented were not

intended to fulfill determined performance requirements (% overshoot, rise time, settling

time, steady state error, etc) but just to prove that control for the mobile robot is

achievable through Matlab/Simulink.

5.3 Future Work

Since this work is a basis for future projects the following areas of opportunity can be

mentioned.

The results shown in this work were obtained using a simulator. S-Functions and control

algorithms should be tested on hardware, to evaluate the behavior of the system and

make corresponding adjustments.

As well, important work could be done regarding the data processing algorithm of the

laser sensor available in the robot, from Matlab/Simulink. At this point the developed

S-function only provides the system with raw data coming from the sensor. If this

algorithm is developed, it will provide object detection capabilities to the robot directly

from Simulink. Also, it could be used to improve control optimality for robot localization

in known environments.

Future controllers should be designed trying to meet specific tasks and/or requirements.

Having a powerful tool as Matlab and Simulink in hand, could led to implement in an

easy way iterative, optimal or robust control techniques.

Bibliography

Bibliography

[1] Smolik P., Pisa P., Sojka M., Sebek Z., Hanzalek Z. ”ORTE – Open Real-Time

Ethernet Manual”. Czech Technical University, August 2012.

[2] Sonck S., et al. ”Real-Time Publish Subscribe (RTPS) Wire Protocol Specification”.

Real Innovations Inc. February 2002. Web. March 2014.

[3] Vokac̃ M. ”Demonstračńı robotická platforma”. MSc thesis, Czech Technical

Univer-

sity, January, 2012. http://rtime.felk.cvut.cz. Web. March 2014.

[4] Eurobot.”Eurobot International Students Robotic Contest”. Eurobot. January

2014. Web. April 2014.

[5] Tran Duy K et al, Autonomous Robot Running Linux for the Eurobot 2007 Com-

petition. 2007. http://rtime.felk.cvut.cz. Web. November 2013.

[6] Castellote G., Bolton P., ”Distributed Real-Time Applications Now Have a Data

Distribution Protocol”, Real-Time Innovations Inc. Sunnyvale CA, Feb 2002.

Web.November 2013.

[7] The MathWorks, Inc. ”Matlab/Simulink Developing S-Functions Manual”, 2013.

[8] Kanayama Y, et al. ”A Stable Tracking Control Method for a Non-Holonomic

Mobile Robot” in Proc. IEEE/RSJ Int. Workshop Intelligent Robots and Systems,

1991, pp. 1236–1241

[9] Sanhoury I, et al. ”Tracking Control of a Nonholonomic Wheeled Mobile Robot”.

PIM Volume1, Issue 1 April 2012, pp. 7-11

[10] Karer G, et al. ”Robot Ballet” in International Cultural and Academic Meeting

of Engineering Students, September 2003.

43

	List of Figures -10pt
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Main Objective
	1.2 Overview
	1.3 Structure of Thesis

	2 Open Real-Time Ethernet Basics
	2.1 ORTE Overview
	2.1.1 RTPS Protocol objectives

	2.2 Publish-Subscribe Architecture
	2.2.1 Publish-Subscribe in Real Time Applications

	2.3 Real Time Publish-Subscribe Model
	2.3.1 Publication Parameters
	2.3.2 Subscription Parameters

	3 Matlab S-Functions & ORTE
	3.1 S-Function Callback Methods
	3.2 S-Functions Implementation
	3.2.1 Publishers
	3.2.2 Subscribers

	4 S-Functions Test -Mobile Robot Control
	4.1 Control Setup
	4.2 Simulator - Robomon
	4.3 Robot Kinematics
	4.4 Error Definition & Reference Velocities
	4.4.1 Reference Velocities vr & r

	4.5 Controller Proposed: Kanayama
	4.5.1 Design
	4.5.2 Gain Optimization
	4.5.3 Simulation Results

	4.6 Controller Proposed: Sanhoury
	4.6.1 Design
	4.6.2 Simulation Results

	4.7 Controllers Performance Comparison

	5 Conclusions and Future Work
	5.1 Summary
	5.2 Discussion
	5.3 Future Work

	Bibliography

