Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering

LIDAR-Based Lane Tracking using Kalman
Filtering and its Fusion with Camera-Based
Lane Data

Daniel Veskrna

Supervisor: Nuri Kundak, MSc.
January 2024

ii

Acknowledgements

I would like to thank my supervisor Nuri
Kundak Msc. for his guidance and willing-
ness throughout the making of this thesis.
I would also like to thank Be. Sana Oth-
manova and the Autonomous Driving and
ADAS department of Porsche Engineering
Services, s.r.o. for the opportunity and
support.

iii

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
thesis.

on January 9, 2024

Abstract

This thesis is devoted to the comparison
of several lane estimation techniques with
different underlying road geometry mod-
els with the use of publicly available LI-
DAR and camera data. For this purpose,
a whole framework was developed for data
processing and error evaluation. Knowl-
edge of how the presented methods behave
under specific circumstances and how they
compare with each other is essential in the
development of new advanced driver as-
sistance systems.

The Kalman filter for lane parameters es-
timation and RANSAC algorithm were
chosen for comparison, with first, second,
and third degree polynomial road mod-
els. The last mentioned model, which is
an approximation of a clothoid, showed
the best results as the Kalman filter
model. A proposed adaptive version of
the Kalman filter capable of switching be-
tween models showed only minor improve-
ments, but further testing is needed. The
RANSAC alone performed poorly, but
showed promising results in the presence
of outliers. Especially as a pre-filter for
the measurements when combined with
the Kalman filter. The framework created
can be used to compare other lane esti-
mation techniques and contribute further
to the development of driver assistance
systems.

Keywords: lane estimation, Kalman
filter, RANSAC, LIDAR

Supervisor: Nuri Kundak, MSc.

Abstrakt

Tato préace je vénovana porovnani néko-
lika technik estimace jizdnich pruhi s rtuz-
nymi modely geometrie vozovky za vy-
uziti verejné dostupnych dat z LIDARu
a kamer. Za timto ucelem byl vyvinut
cely framework pro zpracovani dat a vy-
hodnocovani chyb. Znalost toho, jak se
prezentované metody chovaji za konkrét-
nich okolnosti a jaké jsou ve srovnani mezi
sebou, je nezbytnd pfi vyvoji novych po-
krocilych asistenc¢nich systému pro ridice.

Pro srovnani byl zvolen Kalmantv filtr
pro estimaci parametra jiznich pruha a
algoritmus RANSAC s modely silnic poly-
nomu prvniho, druhého a tfetiho stupné.
Posledni zminény model, ktery je apro-
ximaci klotoidy, vykazoval nejlepsi vy-
sledky jako model pro Kalmantv filtru.
Navrhovana adaptivni verze Kalmanova
filtru schopné prepinat mezi modely pri-
nesla pouze drobné vylepseni, ale je po-
tfeba dalstho testovani. RANSAC jako
samotny si vedl spatné, ale ikazal slibné
vysledky v pritomnosti vysokého Sumu.
A to zejména jako predfiltr pro méreni
v kombinaci s Kalmanovym filtrem. Vy-
tvoreny framework lze pouzit k porovnani
jinych technik estimace jizdnich car a déle
prispét k rozvoji asistenc¢nich systémi ri-
dice.

Klicova slova: estimace jiznich pruhu,
Kalmanuv filtr, RANSAC, LIDAR

Preklad nazvu: Sledovani jiznich pruhu
na bazi LIDAR dat pomoci Kalmova
filtrovani a jeho fize s kamera daty

Contents

1 Introduction 1
1.0.1 Aim of Thesis 2
1.0.2 Layout of Thesis
1.0.3 Personal Contributions
2 State of Art 3

2.1 Lane Detection and Tracking

OVerviewcoovveeeeeeooo... 3
2.1.1 Features-Based Approach
2.1.2 Model-Based Approach
2.1.3 Learning-Based Approach
2.1.4 General Observations 5]

2.2 General Approach to Lane
Tracking [

2.3 LIDAR vs. Camera in Autonomous
Driving

2.3.1 LIDAR: Precision in 3D Spatial
Resolution o ... [7]

2.3.2 Cameras: Cost-Effectiveness
with Environmental Sensitivity . ..

2.4 Kalman Filter

2.4.1 Mathematical Foundation of
Kalman filter

2.4.2 Extended Kalman Filter

2.4.3 Kalman Filters in Advanced
Driver Assistance Systems

2.5 RANSAC Algorithm

2.5.1 RANSAC in Advanced Driver
Assistance Systems

3 Methods and Implementation

3.1 Lane Tracking and Estimation
Methodology

3.2 Overview of PandaSet Database

3.2.1 Data Structure

3.3 Implementation

3.3.1 Preprocessing.

3.3.2 Lane Sorting

3.3.3 Kalman Filter

334RANSAC

3.3.5 RANSAC + Kalman Filter . .

3.3.6 Adaptive Kalman Filter.

34Results L 37
3.4.1 Error Estimation........... 39
3.4.2 Error Results

3.5 Discussion 44

4 Integration of Camera and LIDAR
Data for Enhanced Line Estimation 47

5 Conclusion 49
A Bibliography 51
B Project Specification 53

vi

Figures

2.1 Predict-correct loop of a
Kalman filter. Visualized on
Gaussians, the KF first predicts next
state from provided state transition,
incorporates the measurement,
corrects the state estimate, and
repeats (from Object Tracking:
Kalman Filter with Ease available at
https://www.codeproject.com))..

3.1 Steps of a pipeline presented in the
thesis, comprising of two main parts,
preprocessing and tracking and
estimation................... ...

3.2 A double-end Euler spilar or
clothoid is a curve with linearly
changing curvature depending on the
curve length. By AdiJapan - Own
work, CC BY-SA 3.0,

https://commons.wikimedia.org/ |

| w/index.php?curid=22191870 ...

3.3 Raw point cloud example

3.4 Point cloud of only the lane line
markings. L.

3.5 Transformation of point cloud
sequence frame from the world
coordinates (left) into the EGO
coordinates (middle) and ROI
extraction (right)................

3.6 Example of straight road lines. .

vii

3.7 Example of implemented sliding
window technique in action. On the
left, the first window is initialized
and slides along the means of the
found points. If no points are found
(middle), the new window shift is
predicted. After the whole line is
found, new window is initialized at
the next first point (right)........

3.8 Difference between new window
prediction based on first degree
polynomial (left) and second degree
polynomial (right). The first degree
polynomial resulted in fewer errors
when breaching the gaps in
detection.

3.9 Result after the sliding windows
technique sorting. The input to the
algorithm is on the left, result on the

3.10 Example of the Kalman filter
with each of the three models. The
top row shows the results after just
the first frame, the bottom row after

ten frames...................... 30
3.11 Example of the estimates before

(top row) and after (bottom row)

parallelisation...................

3.12 Example to showcase fitting error
spread of 50 iterations with
increasing percentage of outliers and
an average time for one RANSAC
cycle (red squares), at a constant
threshold value.

https://www.codeproject.com
https://commons.wikimedia.org/w/index.php?curid=22191870
https://commons.wikimedia.org/w/index.php?curid=22191870

3.13 Example to showcase fitting error
spread of 50 iterations with
increasing threshold value and an
average time for one RANSAC cycle
(red squares), at a constant outlier

percentage. 134]

3.14 Example of the RANSAC
algorithm with each of the three

models. 135!
3.15 Example of the Kalman filter

(left), RANSAC algorithm (middle),

and their combination (right) in a

high outlier count scenario.

3.16 Difference between the three
models on a straight road. Even with
numerous detection points here, the
performance of the line model better

fitsthedata. [37

3.17 Example of how modes switch in
a span of one sequence. An average
error of all lines is shown on the right
axis.

3.18 One frame of PandaSet sequence

3.20 Projection of the estimated lines
and LIDAR detections (yellow dots)
onto the image.

viii

3.21 Lateral displacement error
comparison between the individual
methods tested on PandaSet sequence
013. Colored numbers correspond to
the value of the bars. Black lines
represent the standard deviation. .

3.22 Lateral displacement error
comparison between the individual
methods tested on PandaSet sequence
043. Colored numbers correspond to
the value of the bars. Black lines
represent the standard deviation. .

Chapter 1

Introduction

As cars become smarter and smarter, more Advanced Driver Assistance Sys-
tems (ADAS) are being implemented. This is highly motivated by improved
driving safety and efficiency, which many of the existing driver assistance
features, such as forward collision warning or safe lane change, already provide
[1]. It is a well-known fact that most car accidents are caused by human error.
The advancement in autonomous vehicles with ADAS has a great potential to
mitigate such mistakes [2]. Lane detection and tracking algorithms are a key
part of several existing ADASS, such as lane departure warning. It detects
and warns the driver when the car unintentionally crosses lane markings and
can steer the car back into its road lane.

To detect lane markings, most cars today use several cameras, which are
susceptible to extreme weather or poor lighting conditions. RADAR sensors
cannot be used for this purpose because of low resolution, but are suitable
for adaptive cruise control and collision mitigation [3| [4]. Ultrasonic sensors
(USS) are mainly used for lane departure warning, parking assistance, and
other simpler tasks. In recent years, Tesla has begun to remove RADAR
and USS from its vehicles, relying solely on camera-based ADAS [5]. Elon
Musk stated on X that “Humans drive with eyes and biological neural nets,
so makes sense that cameras and silicon neural nets are only way to achieve
generalized solution to self-driving.” [6]. One could argue that we also use
ears and touch to some lesser extent. It is a fact, however, that roads, signs,
markings, etc., are designed for humans. But human senses are prone to error,
and using technology not based on them, such as LIDAR, could mitigate our
mistakes.

1. Introduction

B 1.0.1 Aim of Thesis

This thesis aims to compare several means of lane tracking and estimation
based on LIDAR data. Specifically to use Kalman filter (KF) of different
types with several underlying physical models. Furthermore, to investigate
the possibility of using Random Sample Consensus algorithm (RANSAC) to
improve the line detection. The potential benefits of using measurements
from both LIDAR and camera will be discussed as well. All data for testing
comes from the publicly available PandaSet database by Hesai and Scale [7].

B 1.0.2 Layout of Thesis

There are 6 chapters in this work. Chapter 1 covers the above written
introduction, motivation, and aim of the thesis, which is further discussed in
parts of next chapter 2. It includes state-of-the-art overview of lane detection,
tracking and estimation, general approach to tracking, a look into LIDAR, and
camera abilities, and lastly, theory of Kalman filter and RANSAC algorithms.
Chapter 3, Methods and Implementation, starts with a description of the
PandaSet and characteristics of the measured data, followed by lane tracking
and estimation pipeline in this work. The core implementations of the latter
mentioned algorithms are explained next. Results and discussion follow. The
benefits of LIDAR-Camera integration are in chapter 4. In the last chapter 5,
the final conclusions are drawn. In the very end of the thesis is the appendix
with bibliography, implemented code, and project specification.

B 1.0.3 Personal Contributions

The author of this thesis wrote the algorithms to process the data from
LIDAR and camera. He proposed some methods of how to use them for the
tracking and estimation of road lines. He tested them and evaluated the
obtained results presented in this work.

Chapter 2

State of Art

This chapter delves into current status of the lane detection and tracking field.
Broad overview with key approaches to this problem is discussed first, followed
by general steps of how it is solved. Since this work focuses on using LIDAR
as the main source of measurement data and cameras being commonly used
the most, advantages and disadvantages of LIDAR and camera in context
of ADAS are briefly mentioned next. Last part of this chapter is devoted to
theory of two main methods used in this work, Kalman filter and RANSAC,
discussing their use in ADAS as well.

B 2.1 Lane Detection and Tracking Overview

In a recent study from 2021 [8], the authors provide a comprehensive review
of current approaches to lane detection and tracking algorithms. As they
point out, there are not many studies that provide an overview of the findings
in this area. There are three basic methods for lane detection and tracking:

® Features-Based Approach (Image and Sensor-Based Lane Detection and
Tracking)

® Model-Based Approach (Robust Lane Detection and Tracking)

® Learning-Based Approach (Predictive Controller Lane Detection and
Tracking)

2. State of Art

Each of these will be further discussed, and the following claims are based on
their observations.

B 2.1.1 Features-Based Approach

This methodology relies on the integration of sensors and camera outputs
for decision making in lane detection and tracking. Image frames are pre-
processed, and specific lane detection algorithms are applied. The decision-
making process for lane tracking is guided by sensor values. Several studies
have implemented various methods, including inverse perspective mapping,
kinematic-based fault-tolerant mechanisms, the Hough transform, and Kalman
filters. For example, Kuo et al. implemented a vision-based lane keeping
system using inverse perspective mapping, lane scope feature detection, and
lane markings reconstruction [9]. The performance of these approaches varies
under different conditions, such as sunlight and rain. Challenges include
reduced effectiveness in tunnels and specific environmental scenarios.

B 2.1.2 Model-Based Approach

The Model-Based Approach employs global road models to fit low-level
features, emphasizing robustness against illumination. Geometric parameters
are utilized for effective lane detection. These must be chosen appropriately,
as they are very sensitive to changes in road shapes. Noteworthy studies
have utilized hierarchical agglomerative clustering, adaptive thresholds, and
RANSAC algorithms. These approaches address challenges such as false-lane
detection and strive for improvement, particularly in nighttime scenarios.

Bl 2.1.3 Learning-Based Approach

The Learning-Based Approach involves predictive controllers for lane detec-
tion and tracking. Reinforcement learning, deep learning, and probabilistic
models are integral components. Notable implementations include reinforce-
ment learning-based lane change controllers and deep learning for object
detection. Real-time probabilistic and deterministic prediction of lane chang-
ing is explored, often integrating LIDAR and camera input for enhanced
accuracy.

2.1. Lane Detection and Tracking Overview

B 2.1.4 General Observations

In vision-based systems, image smoothing at the initial lane detection and
tracking stage plays a pivotal role in enhancing system performance. External
disturbances, including weather conditions, vision quality, shadow, blazing,
and internal disturbances, such as narrow or wide lane markings, contribute
the most to algorithm performance drops.

Model-based approaches, which focus on robust lane detection and tracking,
exhibit superior performance under various environmental conditions, with
camera quality significantly influencing lane marking determination. The
choice of filter, particularly the prevalent use of the Kalman filter, significantly
affects the algorithm performance.

Reinforcement learning with model predictive control emerges as a promising
choice to mitigate false-lane detection.

The majority of researchers (>90 %) rely on custom datasets, utilizing various
camera types such as monocular, stereo, and infrared, where stereo cameras
demonstrate superior performance. Frequent calibration remains essential for
accurate decision-making in a complex environment.

One of the greatest challenges in current ADAS is the substantial impact
of changes in environmental and weather conditions on system performance.
Lane markers may be occluded during overtakes, and abrupt changes in
illumination, such as emerging from a tunnel, affect image quality and system
performance. The results unsurprisingly indicate the highest lane detection
and tracking efficiency under dry and light rain conditions. Heavy rain
significantly impacts the efficiency of lane marking detection and unclear
or degraded lane markings contribute to poorer system performance. IMU
(Inertia Measurement Unit) and GPS were shown to be able to improve
RADAR and LIDAR distance measurement performance in these scenarios.

Addressing aforementioned challenges and leveraging advanced technologies
such as deep learning and reinforcement learning present opportunities for
future research and improvement.

2. State of Art

B 22 General Approach to Lane Tracking

The individual methods mentioned in the previous section differ in the
techniques they employ, but the general guideline for lane tracking and
estimation can be summarized in several key steps.

1. Data measurement
2. Data preprocessing
3. Lane point detection

4. Tracking and estimation

Perhaps only the learning-based approach is different in sense that everything
is computed using machine learning techniques (e.g., neural network). There
these steps are not that useful, per say, but this is out of the scope of this
work.

In the first step, all the necessary data are collected. For lane detection, there
are basically only two types of sensors used that can capture the individual
road lines, camera and LIDAR. Camera data come in the form of images with
depth information necessary for the next steps. The output from the LIDAR
is in the form of a point cloud, a 3D space filled with points associated with
intensity of reflection.

The second step involves preprocessing the raw data. Here extraction of the
region of interest (ROI) in front of the car (EGO vehicle) is done, as well
as ground plane segmentation, filtering out everything other than the road
itself.

Then comes the differentiating between the lanes and the ground or the road.
There are many techniques to do so. Detecting lanes from camera images
involves algorithms from computer vision domain, lane labeling, and others
depending on real-time or offline processing. LIDAR exploits its ability to
detect reflected light intensity, finding peaks in the detection that white or
other lighter colors emit. The sliding window technique is a common approach
to find the consecutive points belonging to an individual line, even if gaps
are present.

2.3. LIDAR vs. Camera in Autonomous Driving

In the last step, lane points are used as input to different tracking and
estimation algorithms depending on the approach. It usually involves some
type of lane fitting and smoothing out the results. Detection itself can be
further improved by discarding outliers in the first place.

B 2.3 LIDAR vs. Camera in Autonomous Driving

Autonomous driving is a rapidly evolving field and the choice of sensors for
environmental perception plays a pivotal role in the development of reliable
autonomous systems. Among the array of sensors employed, LIDAR and
cameras stand out as key technologies, each offering distinct advantages and
facing unique challenges.

Bl 2.3.1 LIDAR: Precision in 3D Spatial Resolution

LIDAR, LIght Detection and Ranging, or Laser Imaging, Detection and
Ranging, is renowned for its capacity to provide real-time, high-definition
3D graphics of the surrounding environment. By emitting pulse modulated
light and measuring the time difference between emitted and reflected light,
LIDAR calculates accurate distances and captures intricate details. This
sensor excels in fast response, long detection distances, and high angular
resolution.

However, challenges persist. Point cloud data obtained by LIDAR systems may
contain noise due to factors such as acceleration, deceleration, and changes
in driving direction [I0]. Moreover, the high cost of LIDAR, technology poses
a barrier to mass production and widespread adoption.

B 2.3.2 Cameras: Cost-Effectiveness with Environmental
Sensitivity

Cameras offer a cost-effective solution for environmental perception in au-
tonomous vehicles. Even with their low price, they come with high resolution,
fast speed, and the ability to recognize colors, making them a mainstream

7

2. State of Art

vision sensor. They can also provide depth information in the right configura-
tion. Cameras are widely deployed in various applications, including forward
collision warnings, lane departure warnings, and traffic sign recognition sys-
tems.

Despite their advantages, cameras use natural light, which comes with its
caveats, unlike LIDAR that uses its own light source. They are sensitive to
adverse weather conditions, changes in illumination, and may struggle to
identify distant objects in static images [II]. The potential for decreased
recognition accuracy under challenging conditions remains a concern.

. 2.4 Kalman Filter

The Kalman filter is a recursive algorithm that estimates hidden states of a
dynamic system from a series of noisy measurements. It can also predict the
future state of the system based on past estimates. Originally introduced in
the 1960s by Rudolf. E. Kalmén, the Kalman filter has become a cornerstone
in various fields such as control theory, signal processing, navigation systems,
and robotics. Since then, several versions of KF emerged, notably the
Extended KF and its iterated type or Unscented KF, each aiming to improve
performance in different scenarios.

B 2.4.1 Mathematical Foundation of Kalman filter

The Kalman filter is grounded in the state-space representation of dynamic
systems. The state-space representation is often expressed as

Tpy1 = Frap + Gruy + vg

(2.1)

2z = Hpxp + wy

where:

B 7 is the state vector at time k,
B yy, is the control input,

B z; is the measurement vector,

2.4. Kalman Filter

® [’ G, and H are state transition, input transition, and observation
matrices, respectively,

B vy, and wy are process and measurement noise, respectively.

There are two sets of equations that are being recursively calculated in a
predict-correct loop (see figure [2.1). They have been given many names,
depending on the field where applied. Here they will be referred to as state
prediction and measurement update.

State prediction step:

g1 = Fr@pp + Grug

. (2.2)
Pojik = Fe Py By, + Qe
Measurement update step:
Sk+1 = Hyp1 Py iy + Riga
Ki1 = PopapeHje1 Sk (2.3)

Tryirrr = Trrape + Krr1 (1 — He1Zrgapp)

T
Priippr1 = Pev1 — K1 Sk+1 K4

where:

® %)% is the state prediction,

B Pyt is the state prediction covariance,

B () = cov(v) is the process noise covariance,
® S is the innovation covariance,

® K is the Kalman (filter) gain,

B 21 is the measurement,

B Zjy1|k41 is the updated state estimate,

® Ppi1jk+1 s the updated state covariance,

® R = cov(w) is the measurement noise covariance.

After initialization at 29, Pp|o the state is predicted based on the underlying
state-space model, together with the covariance matrix (2.2). This is some-
times referred to as state and covariance extrapolation at time update step.

9

2. State of Art

predict

v

correct

>

Figure 2.1: Predict-correct loop of a Kalman filter. Visualized on Gaus-
sians, the KF first predicts next state from provided state transition, incorporates
the measurement, corrects the state estimate, and repeats (from Object Tracking:
Kalman Filter with Ease available at https://www.codeproject.com).

Essentially, the KF predicts the behavior of the system at the next time step
and also provides the uncertainty of the prediction.

In the next update step , after the measurement is received, the KF
corrects the prediction and the uncertainty of the current state. As a result,
it provides a new state of the system based on a combination of some physical
model updated by a measurement at that time, infused with their respective
uncertainty. This is then repeated at some sampling time rate until the
measurement stops.

This recursive nature allows the filter to continuously update its estimate
as new measurements become available, making it well suited for real-time
applications. Under the assumptions of Gaussian initial state and all the noise,
the KF is the optimal minimum mean square error state estimator. If
the random variables are not Gaussian and if some assumptions are lowered,
the KF is the best linear MMSE state estimator [12]. This makes it
widely applicable in situations where accurate state estimation is crucial.
However, when either the system model or the measurement model is non-
linear, the KF cannot handle it. This is when its extended version comes
in.

10

https://www.codeproject.com

2.4. Kalman Filter

B 2.4.2 Extended Kalman Filter

The extended Kalman Filter (EKF) is an extension of the Kalman filter
designed to handle nonlinear system dynamics and measurements. Similar
to the KF, it relies on the state-space representation. The dynamics of the
system is expressed as follows:

g1 = f(k, g, ug) + vg

(2.4)
2z = h(k,zk) + wy

where:

® 7, is the state vector at time k,

| qy, is the control input,

B 2 is the measurement vector,

® f(-) represents the non-linear state transition function,
® h(-) represents the non-linear measurement function,

B vy, and wyg are process and measurement noise, respectively.

The logic behind and the steps remain almost the same as in the case of
KF. The difference is in obtaining the predicted state 1. The nonlinear
functions in 2.4/ need to be linearized using Taylor series expansion around the
latest estimate #;. Omitting the third order and higher order terms (HOT)
yields second-order EKF, omitting also the second term yields first-order
EKF. The latter case will be described.

Tpt1 = f(k, Zppp) + Fi(op — Sgpp) + HOT + vy, (2.5)

where
F, = 01 (k) (2.6)

Oz =Ty

is the Jacobian of f, evaluated at the latest state estimate. Similarly, the
measurement is

zip1 = Mk + 1,25 0%) + Hip1 (g1 — Tpgap) + HOT +wir - (2.7)

where

Oh(k +1)

o (2.8)

Hyy1 =
T=Lpy 1|k

11

2. State of Art

is the Jacobian of h, evaluated at the latest state estimate. The difference
in algorithm is in incorporating the state and measurement functions and
corresponding Jacobians.

State prediction step:

T = Fk Tpp ur)

T (2.9)
Propk = Fr P Fy, + Qk
Measurement update step:
Sk+1 = Hi1 PopipHiypy + Ri
Kip1 = PoyinHi 1 Sy (2.10)

Teprpr1 = Trgape + K lzirr — bk + 1,250

T
Pryijkr1 = Prt1 — Ki+1Sk+1 K

The accuracy of EKF predictions depends on the quality of the linearization.
In general, any non-linear transformation will introduce some bias. Calcu-
lations based on the Taylor expansion will omit the HOT terms, inevitably
introducing error. The second-order EKF will perform better, but some error
will still persist. Another bias is introduced, when calculating Jacobians (or
Hessians in the second-order case). The evaluation is done at the estimated
or predicted state, because the exact state is unavailable. However, if the
initial noises and errors are not too large, the EKF performs well [12].

In situations with highly non-linear behavior, the inherent approximations
can lead to divergence of the EKF, rendering the filter unusable. Another
type of KF called Iterative Extended Kalman Filter (IEKF) is capable of
handling these cases to some extent by iterating over the one measurement,
until the difference between two consecutive predictions becomes smaller than
some threshold.

B 2.4.3 Kalman Filters in Advanced Driver Assistance Systems

In the context of ADAS, the KF is particularly valuable for several reasons.
Car sensor measurements are inherently noisy due to environmental factors,
sensor imperfections, and other uncertainties. The KF excels at noise re-
duction, effectively separating the true signal from the noise. This leads to
smoother and more accurate estimates of the system state. ADAS algorithms
require predictions about the future state of the vehicle based on current and

12

2.5. RANSAC Algorithm

past measurements. By incorporating a model of the dynamics of the system,
the KF can predict the future state. This prediction aids in anticipating the
vehicle’s behavior and improving response times. The KF can also integrate
data from different sensors with varying accuracy. It excels in sensor fusion by
dynamically weighting sensor inputs based on their reliability. This ensures
that more accurate sensors contribute more to the overall estimation. The
KF is well suited for dynamic environments. Its recursive nature allows it
to continuously update estimates, making it adaptable to changes in the
vehicle’s surroundings. Brokar et al. demonstrated how KF is able to ignore
minor perturbations and smooth out the tracking.

In lane-keeping assist systems, KFs help predict the vehicle’s future position
and adjust steering interventions accordingly, considering factors like road
curvature and vehicle dynamics. Collision avoidance systems use KFs to
fuse data from radar and lidar sensors to accurately track the positions
of surrounding vehicles, enabling timely collision warnings or interventions.
Adaptive cruise control leverages the ability of KF to predict future positions
of nearby vehicles, enabling smoother and more accurate speed adjustments
to maintain a safe following distance. Overall, the lane tracking task is where
the KF is still used the most [g].

B 25 RANSAC Algorithm

Random Sample Consensus (RANSAC) is an algorithm widely used for robust
model fitting in the presence of outliers (i.e., data that significantly differ from
other observations). Its primary objective is to estimate a model from a set
of data points, even when a significant portion of the data is contaminated by
outliers. This is particularly crucial in scenarios where traditional algorithms
may fail due to the presence of noise or incorrect measurements. A pseudocode
of RANSAC is described in algorithm [1|

The choice of the model depends on the problem at hand. It could be a line,
a plane, a circle, or any other geometric shape, for example. The model is
typically represented by a set of parameters M and the goal is to find the
optimal values for these parameters Mpest. S is a minimal subset of data
points D required for the fit (e.g., 2 points to fit a line).

The error function evaluates how well the model explains each data point
and helps to identify inliers and outliers. For example, find the distance
from the data points to a fitted line that falls within the inlier threshold e.

13

2. State of Art

Algorithm 1: RANSAC
Data: data points D, model parameters M, inlier threshold €, number
of iterations num__iter
Result: best-fitting model My,egt
1 Mbest < @;
2 num__inliers < 0;
3 for i + 1 to num__iter do
4 Randomly select a minimal subset S C D;
Fit a model M using S;
inliers < Find inliers by measuring the error between D and M;
if number of inliers > max__inliers then
L Mbest — M;
max__inliers < inliers;

© 0w N o >

10 return M.,

The model with most inliers (least outliers) is chosen as the best-fitting one.
The threshold is based on a specific application requirement or experimental
evaluation.

The number of iterations num__iter can be roughly determined by the desired
probability of successfully finding the right solution p (commonly chosen as
0.99, i.e. 99 %) and by the probability of choosing an inlier in the data
w (roughly estimated by the number of inliers / number of points, e.g.
0.85 meaning 85 % of inliers). By assuming that all S points are selected
independently and w® is the probability that all S are inliers, then 1 — w®
is the probability that at least one of the S points is an outlier. This to the
power of N (iterations of the algorithm) is the probability of never selecting
S inliers, which is the same as the probability of not finding the right solution,
which can be expressed as

1-w)N=1-p. (2.11)
Taking logarithm of both sides results in desired outcome.
log(1 — p)
=— 2.12
log(1 — wS) (2.12)

However, this is often not sufficient, and in practice the number of iterations
is determined by adding the standard deviation of N or multiplying by it.
Again, it depends on the situation, needed confidence, and time requirements.

V1—w®

num__iter = N + g
w

(2.13)

Although RANSAC is a robust estimator [13], its performance depends on the
appropriate setting of the above parameters. Additionally, there is no upper

14

2.5. RANSAC Algorithm

bound on the time it takes to compute these parameters. Any limit to the
number of iterations results in a nonoptimal solution. Moreover, the algorithm
assumes that a sufficient number of inliers exist to accurately estimate the
model. To handle these problems, optimal RANSAC was proposed [14].

B 2.5.1 RANSAC in Advanced Driver Assistance Systems

ADAS algorithms face challenges in processing sensor data, particularly in the
presence of outliers, noise, and varying environmental conditions. RANSAC
can address these challenges in several ways.

RANSAC robustly estimates the model parameters by iteratively fitting to
subsets of data. This process inherently rejects outliers, contributing to more
accurate object detection that can be compromised by erroneous measure-
ments in the first place. The same applies for lane detection, where lane
markings can be obscured, faded, or interrupted, for example, by shadows
or debris on the road. For example, Lu et al. used Gaussian distribution
RANSAC and achieved great results [I5]. Other tasks, such as sensor calibra-
tion or object tracking, can benefit from the use of RANSAC as well.

15

16

Chapter 3

Methods and Implementation

This chapter gives a complete overview of the lane tracking and estimation
methods and how they were implemented. In the first part, the general
methodology is outlined, followed by a description of the database used for the
testing. Then comes the implementation part, detailing the individual steps
and methods, namely preprocessing, lane sorting, Kalman filter, RANSAC,
and so on. The next section presents the results of this work and what is
the methodology behind the error evaluation. The last part discusses the
results in a broader context, highlighting the advantages, drawbacks, and
future prospects.

B 31 Lane Tracking and Estimation Methodology

The workflow of lane detection and tracking presented in this work is shown
in the diagram The whole process can be divided into two sections,
preprocessing and tracking and estimation.

Firstly, the PandaSet LIDAR point cloud is converted into a format that
can be loaded into the MATLAB environment. There, the lane markings are
separated from the rest of the points, using semantic segmentation labels.
The transformation from the world coordinates into the EGO coordinates is
applied. Next, any points outside the defined region of interest (ROI) are
filtered, leaving only the lanes in front of the EGO vehicle. At this point, all the
selected points belong to the same set, and there is no differentiation between

17

3. Methods and Implementation

LIDAR
Point Cloud .
Preprocessing

Data
Transformatio ROI Extraction Lane Sorting
n

Conversion

Comparison Parallelisation Estimation Selection

Camera Algorithm Parabola
Labeling Selection

Figure 3.1: Steps of a pipeline presented in the thesis, comprising of two main
parts, preprocessing and tracking and estimation.

|
|
Result Lane Parameter Model |
|
|
|

the individual lines of the road. In the later stages, the algorithms require
input in the form of a single road line to estimate its parameters. Therefore,
lane sorting is performed next, depending on the data characteristics, either
by window sliding technique, or via a simpler method. This concludes the
preprocessing part.

Tracking and estimation come next, starting with the selection of the under-
lying physical model. This model represents the shape of the road line to
be estimated using the following algorithms. Three models to compare were
chosen, which essentially represent first-, second-, and third-degree polynomi-
als. These are a line, a parabola, and a clothoid (i.e., Euler spilar; see figure
. The clothoid model is widely used in literature as a shape that the road
forms and is commonly simplified to a third-degree polynomial [16].

After choosing the model, an estimation of its parameters is performed. Two
main algorithms were selected to do so, Kalman filter and RANSAC. There
exist many strategies for approaching LIDAR-based lane tracking using the
KF, but they usually focus on some additional external measurement. For
example, Y. Zhang et al. used GPS / IMU system to build a curb prediction
model with a tracking algorithm [I7], or the lane marking detection method
for localization within an HD map proposed by F. Ghallabi et al. [I8§].

The approach presented in this work aims to track the lane curvature pa-
rameters in the frame of the EGO vehicle only with the LIDAR itself. As it
turns out, this requires only the standard KF (see section . Additionally,
an adaptive KF algorithm is proposed. Since the car is at the origin, its
distance to the estimated lines can be easily calculated later. Furthermore,

18

3.1. Lane Tracking and Estimation Methodology

0.5

-1 -0.5 0 05 1

Figure 3.2: A double-end Euler spilar or clothoid is a curve with linearly changing
curvature depending on the curve length. By AdiJapan - Own work, CC BY-SA
3.0, https://commons.wikimedia.org/w/index.php?curid=22191870

the accuracy of the estimation relies on the correct calibration of the LIDAR
and not on GPS / IMU, which might not provide such accuracy as the LIDAR
does or may not work under ground. M. Thuy et al. did something similar,
claiming to use the EKF [16].

In addition, the RANSAC algorithm and its combination with the KF is
investigated. Using the RANSAC alone for the lane tracking and estimation
is not ideal due to its stochastic nature, but in a symbiosis with the KF might
prove useful in certain driving scenarios.

After the parameter estimation, the fact that the individual road lines are
parallel to each other can be used to make the estimate more robust. In the
last step, the errors of individual algorithms can be evaluated and compared
to each other. This requires the use of a third metric. For this purpose,
camera data are used, and details of how the error is measured and how the
algorithms are implemented are discussed in the following chapters.

19

https://commons.wikimedia.org/w/index.php?curid=22191870

3. Methods and Implementation

. 3.2 Overview of PandaSet Database

PandaSet by Hesai and Scale Al is an open-source dataset for autonomous
driving and machine learning use in mind. It combines Hesai’s LIDAR sensors
with Scale Al’s data annotation. It features more than one hundred 8 second
scenes with over 16,000 LIDAR sweeps and 48,000 camera images. Scale 3D
sensor fusion segmentation provides a combination of cuboid and semantic
segmentation with 28 annotation classes and 37 semantic segmentation la-
bels. The EGO set-up features a mechanical spinning LIDAR, forward-facing
LIDAR, 6 cameras, and on-board GPS and IMU. PandaSet aims to show-
case complex urban driving scenarios in a variety of daytimes and lighting
conditions, all on 2 routes in Silicon Valley [7].

This dataset was carefully chosen because it is

B open-source,
® labeled,

B user-friendly.

As stated before, Waykole et al. found in their large meta-analysis a very
high ratio of custom data used for lane detection and tracking [§]. This
poses a problem, since this approach results in something specifically tailored
to each dataset. Replicating the results or comparing to other methods is
afterwards very difficult, if not impossible. Nevertheless, many high quality
publicly available datasets exist today, for example, Audi’s A2D2 driving
dataset, or K-Lane LIDAR lane data set. Some additional work is required
to understand how to use them and acquire the data needed, but the benefits
are clear. PandaSet is available for both academic and commercial use.

PandaSet comes with a complex label taxonomy done by combining both
human work and smart tools. This results in consistently higher accuracy
than if done independently. There are 37 classes of semantic segmentation,
including lane markings, which is of greatest importance for this work. Dealing
with raw data presents separate problems, such as ground segmentation and
lane detection, and this thesis is mainly focused on tracking and estimation.
Being able to get only points from LIDAR, point cloud belonging to road lines
presents a huge advantage.

Being user-friendly saves a lot of time when trying to incorporate such a

20

3.3. Implementation

dataset into one’s work. All the code in this thesis was developed in MATLAB
environment, but finding publicly available data that could be loaded into
MATLAB workspace was shown to be impossible. PandaSet has very straight-
forward tutorials in the devkit available on GitHub (https://github.com/
scaleapi/pandaset-devkit), easily followed even with basic Python skills.
Converting loaded data to some format readable to MATLAB is afterwards
possible. A framework for such conversion was developed for this work and
is described in the MATLAB live script tutorial available at thesis GitHub
https://gitlab.fel.cvut.cz/veskrdan/lidar-lane-estimation|

Il 3.2.1 Data Structure

Data of each sequence are made up of annotations, camera data, LIDAR
data, and meta files. Annotations include cuboids and semantic segmenta-
tion, however, the latter is not included in every sequence. In the camera
folder, there are images in JPG format from all six cameras around the car.
Each camera has its own parameters included. These are camera intrinsics
parameters (fz, fy, cz, cy), poses with coordinates (z, y, z) and heading (w, z,
y, z) in the world frame, and lastly timestamps. The LIDAR folder includes
point clouds in the world coordinates, poses, and timestamps with the same
structure as in the camera case. The dataset also has GPS coordinates with
its timestamps.

The fact that all the information is stored in the world frame is a bit incon-
venient. Lane tracking and estimation are done in the EGO frame, but the
PandaSet devkit has a tutorial on how to make the transformation. The
method of projecting points from the world frame onto the camera images is
shown as well. However, to do so with the obtained results from tracking, a
sequence of transformations from EGO frame, back to the world frame, to
camera frame, and then into the camera image needs to be performed. This
introduces some error into the final estimate. Furthermore, the camera data
come in the form of JPG images with no depth information. This makes
comparing the results more difficult and is further discussed in section |3.4.1

B 33 Implementation

In this part, details of how the aforementioned steps were implemented will be
discussed. Mathematics behind the key models and transformations will be

21

https://github.com/scaleapi/pandaset-devkit
https://github.com/scaleapi/pandaset-devkit
https://gitlab.fel.cvut.cz/veskrdan/lidar-lane-estimation

3. Methods and Implementation

shown, as well as an overview of the algorithms and their references in the code.
To better understand the structure of the code and how to use it to replicate
the results, a MATLAB live script Tracking and_Estimation_ tutorial.mlx
is available at the GitHub page https://gitlab.fel.cvut.cz/veskrdan/
lidar-lane-estimationl

B 3.3.1 Preprocessing

The PandaSet LIDAR point cloud is in PKL.GZ format, which is converted
in Python convertor.py to a CSV file, together with the other parameters
that are in JSON format. This can then be loaded into MATLAB and further
processed (see figure 3.3)).

Figure 3.3: Raw point cloud example

The CSV files are loaded into tables in MATLAB and points that belong
only to a label Lane Line Marking (specified in classes.json) are extracted
(label__extractor.m, see figure 3.4). Here, the transformation from the world
coordinates into the EGO coordinates is also done. The transformation matrix
T is formed using the LIDAR heading as a quaternion to form a rotation
matrix R:

hw he hy h] =R (3.1)

Together with the LIDAR position, the transformation matrix can be assem-
bled, and the point cloud can be converted to the EGO frame at the given

22

https://gitlab.fel.cvut.cz/veskrdan/lidar-lane-estimation
https://gitlab.fel.cvut.cz/veskrdan/lidar-lane-estimation

3.3. Implementation

Figure 3.4: Point cloud of only the lane line markings.

timestamp. An example can be seen in figure [3.5.

Rin Rip Ri3 ps
Ro1 Rop Ra3z py

T —
R31 R32 R33 p-
0 0 0 1
i X
Yy . Yy
= T
s inv(T) .
1 geo Hworwp

Filtering points outside the ROI comes next (extract ROI). Anything more
than 8 meters away left and right, further than 60 meters in front of the
EGO, and anything behind it is discarded. The resulting part of the road is
directly in front of the EGO vehicle and crops the points that are at the very

edge of the LIDAR detection capabilities (see figure 3.5).

23

3. Methods and Implementation

World Frame View EGO Frame View ROI
100 1 60
80 * 80
n . - 50 . “
of " *® 60 -
L] 1
. . [}
40 ¢ 401 a0f % \
\]
[]
__20f __ 20t _ : ’ \
E E 1 Eg 1)
> > - = >
or or ! ‘ ‘ ‘
] i 1
-20 [-20 [201
¥ |
-40 | -40 |
10t - !
-
-60 s ' 60 - -
L] L] -
/ - .
-80 ‘ ‘ ‘ 80 ‘ ‘ ‘ oL ‘ ‘
-20 -10 0 10 -10 -5 5 0
x [m] x [m] x [m]

Figure 3.5: Transformation of point cloud sequence frame from the world coor-
dinates (left) into the EGO coordinates (middle) and ROI extraction (right).

B 3.3.2 Lane Sorting

To differentiate between individual lines on the road, some kind of sorting
algorithm must be applied. The set of points forming the lane markings, as
can be seen in the figure 3.5, can then be categorized into Line 1 - Line 4, for
example. Each line itself can then be inputted as an input to the estimation
algorithm in the next step.

For the simplest case of a straight road, such as a highway, the sorting can
be performed simply by filtering by the z-axis. For example, in the figure
3.6l every point with & < 0 will belong to the left line and with = > 0 to the
right line. This is indeed very simple and a quick way to prepare the points
for estimation, but in practice unusable. It will fail for more than two lines,
since determining the dividing line other than z = 0 is unreliable and the
EGO vehicle can also shift. If any curvature is present, this approach will
fail completely.

A common way to solve this problem is to use a technique called window
sliding. The principle is to use a defined ROI (window) initialized at the
beginning of the line to find any points within it and then slide the window
in a specific way to find the next points on the line. Essentially, sliding along
the line and finding any points along the way.

24

3.3. Implementation

50
[|
45 -
40 - B t
- -
35+F
& -
30
Eusl 1 |
>
20 . l
15
1 i
Al
. |
8 6 4 2 0 2 4 6 8

x [m]

Figure 3.6: Example of straight road lines.

There are different types of window sliding technique. In a real-time scenario,
after measuring the LIDAR point cloud, ground segmentation, and ROI
extraction, the windows can be initialized at intensity peaks of the points
detection and slide onward to find the individual lines. The principle for
labeled lines here does not have to deal with all of these steps, but the
sliding window technique remains the same. The pseudocode implemented is
described in algorithm 2| (sort_lines.m).

The window resolution is set experimentally, depending on the road setting
(for example, 1x1 meter). The number of windows is then determined by
how many of them fit along the y-axis. If the point cloud is correctly filtered,
initializing the window at the first found point in front of the EGO vehicle
expects to find all points on that particular line. After the whole line is
found, the next first point should belong to a new line. If any points within
the window are found, the mean of them (essentially center of gravity) is
calculated, and the window slides along the y-axis with resy and is shifted
in the z-axis to the new center (figure [3.7|left).

If no points are found, the position of the next window needs to be predicted
(figure [3.7 middle). This is done by fitting a polynomial through the centers
of the previous windows. If there are not enough centers, i.e. at the beginning
of the line, the new window is simply shifted only along the y-axis. After
the gap is breached and the points are found again, the shifting is no longer
predicted. When all of the windows are shifted, the new window is initialized
at the next first point (figure 3.7/ right). Through experimentation, it was
found that predicting using the first-degree polynomial yielded better results.
As the curvature of the road in the tested sequences is not exceptionally high
(e.g., 90° turn), the higher degree prediction often missed the next points (see
figure 3.8)). The percentage of unsorted points for the sequence presented in

25

3. Methods and Implementation

Algorithm 2: Sort Lines

4

© ®w N & O

10
11
12
13

14
15

16
17

Data: unsorted points U
Result: sorted points S
1 Init: resx,resy,num_ windows;

2 S« 0

3 while not all lines are found or no points left do

Find the first point along y-axis P C U,

window <+ Init. with center at P and size resx,resy;
line < 0;

for all windows in num__windows do
points < Find points inside the window;
if points found then
line < points;
center < Find mean of points;
window < Slide window to new center;
Remove points from U
else

L window + Predict new window position;

S <+ line;

Save and move to next line;

60 60 60
. L
sof ' 50F) 50
. 1 . 1
t ! t !
. 1 1
401 v ! 401 v} 401
v 1 s
OO R &
(R IR
E] : "l E [: "l E-
—=30r H —=30r H =30
> § ‘ > % >
[] z [] a
. i !
1] 1]
20 H 20 H 20
i il
10t ‘ . 10 \ . 10f
ol ‘ ol ‘ 0
-5 0 5 -5 0 5
x [m] x [m]

Figure 3.7: Example of implemented sliding window technique in action. On
the left, the first window is initialized and slides along the means of the found
points. If no points are found (middle), the new window shift is predicted. After
the whole line is found, new window is initialized at the next first point (right).

26

3.3. Implementation

the figure was 2.05 % for the second degree polynomial and 0.74 % for the
first degree.

1st-order poly. prediction

2nd-order poly. prediction
60

50

20

101

Figure 3.8: Difference between new window prediction based on first degree

polynomial (left) and second degree polynomial (right). The first degree polyno-
mial resulted in fewer errors when breaching the gaps in detection.

After the sorting is done, the points are divided into individual lines, as can

be seen in the figure The lines are also labeled, so that the points belong
to the same line in each frame of the sequence.

Before After
A A " Lanel
60 60 H Lane2
% " % Lane3
- |] Lane4
sor s \ oo \
% H H !
: H H
401 - Y 401 H
Ly Ly
— : LY —_ : (IR
é a ‘. ‘| é H ‘.‘ ‘|
>30f : H >30f 1 H
1] 1]
i P ‘ (] ‘
1 1 1
. .
201 H 207]
101 \ - l 01 \ |
. .
0 : 0 ‘
5 0 5 5 0 5
x[m] x[m]

Figure 3.9: Result after the sliding windows technique sorting. The input to
the algorithm is on the left, result on the right.

27

3. Methods and Implementation

B 3.3.3 Kalman Filter

The implementation of the Kalman filter differs according to the selected lane
model. Three models were chosen to compare with each other:

Line: y=az + 0

Parabola: y = az® + bz + ¢ (3.3)

1 1
Clothoid: y =y + icon + 601533
The clothoid model is a third-order approximation of the original equation
characterizing a clothoid [16]:

(3.4)

y(t) = /Ot sin <72Tu2> du

Since the EGO vehicle is commonly presented as moving in the direction of
the y-axis, the z and y in|3.3| will be switched from now on. The equations
above represent the measurement model of the KF, where x,y are the LIDAR
measurements, assumed to be independent of the state. The KF estimates
constant parameters of the measurement models, which results in the following
states s and transition matrices F':

. [t o] Ja
Line: F = 0 1] s = [b]
1 0] [a
Parabola: F= [0 1 0| s=
3.5
0 0 1 | (3.5)
(1 0 0] [0
Clothoid: FF= |0 1 0| s= |c¢
0 0 1 _Cl

The states s in all of the measurement models are in linear relation, multi-
plied only by some coefficient after the measurement comes in. Since the
measurement is [y, x| and

y pu—

x

Y

ay+b (36)

28

3.3. Implementation

The y = y term can be omitted (similarly for all models). This leads to the
following measurement matrices H dependent only on the measurement y:

Line: I = y 1}

Parabola: H = [y> y 1] (3.7)

Clothoid: H = [Ly? 142 1}

The states were initialized at s = 0 and the state covariance P with the noise
covariances (), R were treated as 'tuning knobs’, which means that their value
was found experimentally (the real noise values of the models and LIDAR
measurements are not known). The general guideline was to emphasize trust
in the physical model over the measurement model, resulting in lower process
noise values in the @) covariance matrix and higher measurement noise values
in the R covariance matrix.

The complete KF equations were implemented according to 2.3| and 2.3
(track_lines_KF.m). The estimation algorithm for the entire sequence is
described in pseudocode |3 Each sequence of PandaSet contains 80 frames
of LIDAR point clouds (one frame is in figure 3.9, for example). After the
initialization, the KF state is estimated for each line in the frame, resulting
in polynomial coefficients of the chosen model and updated state covariance
matrix. Each point of the line is a new measurement that corrects the
predicted state. After all lines in the frame are estimated, the information is
carried on to the next frame, further improving the estimation. An example
from the run of the algorithm can be seen in figure [3.10. The advantages
of curved models over the line model are obvious here. The improvement
of the estimation over several frames is visible as the overall position of the
estimates gets closer to the LIDAR points.

Algorithm 3: Kalman Filter Loop
Data: sorted lane data .S, underlying model M
Result: estimated lines L
1 params < Initialize KF parameters based on the model M;
2 for all frames in sequence do
3 for all lines in S do
4 for all points in a line do
5 predict(params) < Update params in prediction step;
6
7

z < Get new measurement from line points;
correct(params, z) <— Update params in correction step;

8 L < Save estimated states from params;

29

3. Methods and Implementation

Model: line Frame: 1 Model: parabola Frame: 1 Model: clothoid Frame: 1

60 60 60

50 50 50

40 40 40
E E E

> 30 > 30 > 30

20 20 20

10 10 10

0 0 0

-5 0 5 -5 0 5
X [m] x [m] B Line points x [m]
Estimated lines
Model: line Frame: 10 Model: parabola Frame: 10 Model: clothoid Frame: 10

60 60 - 60

50 50 50

40 40 40
E E E

> 30 > 30 > 30

20 20 20

10 10 10

0 0 0

-5 -5 0 5 -5 0 5
x[m] x[m] x [m]

Figure 3.10: Example of the Kalman filter with each of the three models. The
top row shows the results after just the first frame, the bottom row after ten
frames.

B Parallelisation

On a typical road, the driving lanes with the line markings are parallel to
each other. As each line in the KF loop is estimated separately, none of
them are parallel as a result. This can be corrected, further improving the
estimates.

The best fitting line of each frame is chosen, and the rest is made parallel to
it (make__parallel.m). This is done by finding the lowest RMSE (root mean
square error) of a difference in the x displacement as follows:

[a b c] « result of KF loop
[:1: y] < line points from LIDAR (3.8)
& = polyval(a,b,c,y)

The estimated line parameters in each frame are evaluated at the line points
[,y] that form an estimated #. The RMSE is then calculated, representing

30

3.3. Implementation

a lateral displacement error per meter.

(3.9)

The result is then weighted by adding a value inversely proportionate to the
number of points on the line. If the best fit was made from a line made only
from a few detections, it would make its score worse. When the best line is
found, the parameters of the other lines are adjusted according to it, except
for the coefficient responsible for the placement of the line on the z-axis.
An example of how the estimated lines look before and after the process of
parallelisation can be seen in figure |3.11.

Model: line Frame: 10 Model: parabola Frame: 10 Model: clothoid Frame: 10

60 E 60 . 60

50 50 50

40 40 40
E E E

> 30 > 30 > 30

20 20 20

10 10 10

0 0 0

-5 0 5 -5 0 5 -5 0 5
x [m] x [m] B Line points X [m]
Estimated lines
Model: line Frame: 10 Model: parabola Frame: 10 Model: clothoid Frame: 10

60 60 - 60

50 50 50

40 " 40 40
E \ E E

> 30 \ > 30 > 30

20 20 20

10 10 10

0 0 0

-5 0 5 -5 0 5 -5 0 5
x[m] x [m] x[m]

Figure 3.11: Example of the estimates before (top row) and after (bottom row)
parallelisation.

Although this error is based on the measurement that goes into the estimate
itself, it reflects the best estimated shape of all the lines. If a significant
portion of one line is missing (e.g. obstructed by a different car), the estimate
of it will be very poor. If a line measurement from a camera or other sensor
was available, this error could be based on it, making the estimate even more
robust. The potential benefits of this approach will be discussed in chapter

31

3. Methods and Implementation

B 3.3.4 RANSAC

The RANSAC algorithm loop is similar to the KF loop [3, except the in-
ner most for-cycle is replaced by the function to perform the RANSAC
(track_lines _RANSAC.m). Similarly as before, the algorithm depends on
the model to be fitted.

The main idea is to solve a system of equations, which results in a polynomial
that passes through the given set of points (i.e., polynomial interpolation).
This is formulated by means of the Vandermonde matrix as follows.

Va=1y
1 a2 ... 2! ay p(x1)
1 oz 23 ... ab? as p(z2) (3.10)
1 oz 22, ... a2t an, p(Tm)

where x and y = p(z) are the points to be fitted, a is the vector of coefficients
to be found and V is the Vandermonde matrix. Since the highest degree
in the models is 3 and the maximum of points S is also 3 (the clothoid has
x! = 0), the matrix will be small. Also, the points are chosen to be distinct,
resulting in a square matrix with nonzero determinant, which is invertible.
The solution is to find solving for coefficients a as

a=V"ly (3.11)

The equations for the three models to be solved are as follows

. r -1
Line: lb = 1 xl] lyll
a 1 x9 Y2
c] 1 T l‘% - Y1
Parabola: |b| = |1 zo 22 - Y2
| 2 x% (3.12)
: i 3 Y3
. - -1
T 1 2% %xi” Y1
Clothoid: |co| = |1 a3 §x§’ Y2
c1 | _1 %w% gacg Y3

The number of iterations is decided via [2.12] [2.13| and depends on three
variables. The probability of success p is set to 99 %. The minimum number
of points S to fit the model is 2 or 3 for the line and parabola or clothoid.
Determining the percentage of inliers w is done through experimentation. The

32

3.3. Implementation

average fitting error (as in 3.9)) is displayed on a collor map in the figure [3.12.
Since RANSAC is random, the error will be different each time. Therefore,
there is a sample of 50 iterations for each outlier value (inliers (w) = 1 -
outliers). The average time it took for one run of the algorithm is displayed
on the other axis. The test was performed at a constant threshold value on a
single whole sequence.

As the number of inliers decreases (more outliers), the denominator term
in [2.12] decreases, increasing the number of iterations. The average time it
takes seems to increase exponentially, so a trade-off between the time and
the error needs to be made. In this example with a first-degree polynomial
fitting on a curved road, the ’sweet spot’ seems to be at 70 % of outliers or
30 % of inliers and an average time of about 0.1 seconds. After that, the time
increase seems to bring only diminishing returns in error.

RANSAC error per outlier percentage

0.5 114
112
0.45 A
® 1
o
0.4 °
€ 108 2
5 ®
5 g
0.35 06 &
| ©
$
. s ' l ' 0.4
i 3 " .
0.3 H | s
* . 0.2
s ¢ '
n u "
0.25 n L} T L L I L 0
10 20 30 40 50 80 70 80 90

Outliers [%]

Figure 3.12: Example to showcase fitting error spread of 50 iterations with
increasing percentage of outliers and an average time for one RANSAC cycle
(red squares), at a constant threshold value.

The same principle applies to the threshold value. In this scenario and in
any curve fitting in general, the threshold represents the Euclidian distance
between the found polynomial and all of the points to be fitted. Any points
below this value is regarded as an inlier, and the rest are outliers. Although
this value does not influence the number of iterations, it has a direct correlation
with the fitting error. This is clearly visible in the figure |3.13|, where the best
performance is at 0.1. Variations in average time are negligible. The test was
done in the same manner but with a constant outlier percentage this time.

33

3. Methods and Implementation

RANSAC error per threshold

12¢ 10.208
114 $0.206
11 10.204
09} 10.202
@
0.8} 102 4
S £
507 10.198
© @
| | —
0.6} " . {'0.196 o
(0]
05 . 3 4 0.194
048 | I l 0.192
[]
0.3 0.19
0.2 ' ' ' ' ' ' . 0.188

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold [m]

Figure 3.13: Example to showcase fitting error spread of 50 iterations with
increasing threshold value and an average time for one RANSAC cycle (red
squares), at a constant outlier percentage.

For the purpose of lane estimation, the RANSAC algorithm alone is very
unreliable (see section . Even with the parallelisation step at the end,
the randomness and higher computational requirements are detrimental.
Furthermore, the LIDAR detections are the densest directly in front of the
EGO vehicle, making the probability of choosing the random points from this
part higher. This makes the RANSAC favor only the beginning of the lines
(see figure[3.14). However, the ability to filter out unwanted points (outliers)
is very valuable in some cases, which might prove useful in combination with
the Kalman filter.

34

3.3. Implementation

Model: line Model: parabola Model: clothoid
1 1 1
L] Line points
60 60 601 Estimated lines
5
50| 50+ 50 1
Y] |
40 40 401
E E E !
> 300 >30f > 300 t
; I
20 20 20
101 10+ 10
o . 0 . 0 . . .
0 -5 0 5 -5 0 5
x[m] x[m] x[m]

Figure 3.14: Example of the RANSAC algorithm with each of the three models.

B 3.3.5 RANSAC + Kalman Filter

Even though the Kalman filter is more robust for the purpose of lane estima-
tion than the RANSAC, if a larger amount of outliers is present, it will include
them in the estimation. The RANSAC can be used as a pre-filter to exclude
any such unwanted data. For example, in case of entering a crossing (see
figure the KF (left) tries to include the lines from the other lines. The
result after the paralellisation is not very precise. In contrast, the RANSAC
(middle) performs much better in this scenario, as it completely ignores the
other lines in the crossing.

The algorithm proposed combines the power of RANSAC and KF, taking the
best out of both (track_lines RKF.m). Before the measurement enters the
KF loop, the current frame is passed through the RANSAC algorithm. Any
points outside the RANSAC threshold are marked as outliers and discarded.
The KF then receives only the filtered data as measurements. The resulting
improved estimation can be seen in figure (right).

B 3.3.6 Adaptive Kalman Filter

Road geometry is hardly ever constant, especially in an urban environment.
Highways tend to be almost straight in a window of what a sensor can measure,

35

3. Methods and Implementation

Kalman Filter RANSAC RANSAC + Kalman Filter
| |
L Line points
601 601 601 Estimated lines
— — —
B e, T]
BPe BPe R
50 - b Y 50 - o 50 ~)
[[[- [-
—— T — " —
40+ 40+ 40+
E E E
> 30F] H > 30} 1 > 30}
i i i
20t = 20t il 20t
i i
10 i 10 10
0 . . . 0 . . . 0 . . .
-5 0 5 -5 0 5 -5 0 5
x [m] x [m] x [m]

Figure 3.15: Example of the Kalman filter (left), RANSAC algorithm (middle),
and their combination (right) in a high outlier count scenario.

but exits and other parts have a high curvature. Even though the clothoid
or parabola model can be used to fit straight lines, a simple first-degree
polynomial will be superior (figure . The ability to switch between
several models depending on the shape of the road would be advantageous.

There are many methods on how to implement some sort of model switching.
For example, the interactive multiple model (IMM) algorithm has shown to
be a very robust way to detect a change and switch between different KFs.
However, it is most suitable in situations with a high degree of maneuverability,
such as target tracking, which the road environment is not [I2]. There have
been some studies proposing an adaptive Kalman filter solution, mostly
relying on complex weighting factors to determine the correct model change

[19].

The method proposed here is based on comparing the fitting error of several
KF models running in the background (track_lines AKF.m). Specifically,
the lateral displacement error of the three models with the weighting
process used in the above methods. The model with the lowest error in any
current frame is then chosen, penalized by the length of the line to favor the
estimates based on the most measurement points. The final mode represents
the best overall fitting model to all lines in each frame. Since the KF algorithm
is very efficient, the computational speed is not very compromised even with
3 of them running in the background. An example of the mode switching on

36

Model: line

60 60
50 50
40+ 40

E E
301 >30
20+ 20
101 10
0 . : 0

0 5
x [m]

Model: parabola

3.4. Results

Model: clothoid

60

Line points
Estimated lines

50

401

201

10r

-5 0 5
X [m]

0 5
x [m]

Figure 3.16: Difference between the three models on a straight road. Even with
numerous detection points here, the performance of the line model better fits

the data.

PandaSet sequence 013 (3 lines and a bike lane showcased in most examples
above) can be seen in figure The average error for each mode before
the weighting process is on the right axis.

. 3.4 Results

Since this work aims to compare different lane estimation methods, this
section will summarize the results of all the algorithms implemented and
described above, focusing on their performance next to each other. To do so,
two sequences from the PandaSet were chosen, sequence 013 and sequence

043.

Both sequences are from an urban environment, presenting an example of
typical roads with imperfect line markings and traffic. Sequence 013 has a
significant curvature of the road, heavy traffic obscuring the lines, and also
a separate lane for bikes (see . On the contrary, the sequence 043
is straight with only two dashed lines, but ends on a crossing where a lot of

37

3. Methods and Implementation

Model switching and errors

clothoid

error/m

parabola \/\/\f .
\

v,

0.08

modes

line er.

parabola er.

clothoid er.

line ! ! : ! ! ! 0.02
0 10 20 30 40 50 60 70 80

frame number

Figure 3.17: Example of how modes switch in a span of one sequence. An
average error of all lines is shown on the right axis.

outliers is present (see 3.19).

-~ > . : 3 N
N < /" SN\

Figure 3.18: One frame of PandaSet sequence 013.

More sequences were tested during development, but only two were chosen,
since the camera images need to be labeled manually. This is a tedious and
time-consuming process, but necessary to evaluate the results. Although
there are some algorithms to automate the process, they are either not very
accessible or not suitable for line markings.

The labeling was done in the MATLAB Image Labeler app, trying to choose

38

3.4. Results

Figure 3.19: One frame of PandaSet sequence 043.

pixels that certainly belong to a line and are closest to the center of each line.
This labeling is not perfect, but since all methods are tested against it equally,
it does not pose a huge problem. The resulting PNG images with labeled
pixels can be overlayed on top of the camera images or, more importantly,
used to measure the error of the estimated lines (extract_label _points.m).

B 3.4.1 Error Estimation

The error of the final line estimates needs to be evaluated against a third
variable not present in the estimate calculation itself. The only option in
PandaSet is the camera images, which are not labeled. Moreover, the images
come in JPG format with no depth information. This means that the error
between the estimated line and the labeled line is measured in the image
itself.

To do so, the estimated lines need to be projected into the camera image. The
estimates in the EGO coordinates are projected back into the world frame,
then to the camera frame, and finally into the image. Since the estimate gives
out a polynomial that is evaluated into 2D points [z, y], the third coordinate
needs to be estimated as well. Using the MATLAB function pcfitplane(), a
plane can be fitted through the lines of the processed LIDAR, point cloud.
From the plane equation and the evaluated polynomial, the z-coordinate can

39

3. Methods and Implementation

be obtained.
ar +by+cz=0

—azx —by —d (3.13)

C

z =

The transformation from world to EGO frame in 3.2l can be then done in
reverse. In more practical terms, taking the rotation matrix R{ and the
translation vector t;, from the world-to-EGO inverse transformation matrix
T, where

P, = R P, + 1, (3.14)

can be inverted to received points in the world frame.
P, = (Ry)" (P — t,) (3.15)

From the camera position and heading, the transformation matrix can be
constructed as in [3.2. Points in the world frame can now be transformed into
the 3D camera frame.

P.= RSP, + 1, (3.16)

To transform the 3D camera points into a 2D image, the camera intrinsics
matrix is constructed.

fe 0 ¢
K=10 f, ¢ (3.17)
0 0 1

representing the internal parameters of the camera, focal length f and optical
center c. The final step in projecting the 3D points onto the image plane is
as follows.

P.=KP,.

2] 1 (3.18)
P = l f] =

yc ZC

where P, = [z. Y. 2. are the 3D camera points, P. = [zl y. z.], and
P; = [z; y;] are pixels in the image frame.

The resulting projection can be seen in figure [3.20. It is apparent that there is
a mismatch between the LIDAR points and the lines in the image. This could
be due to wrong camera/LIDAR calibration, an error introduced during the
transformations, or perhaps a skew factor that is usually part of the camera
intrinsic matrix, which is not available in the PandaSet. However, this does
not play a large role, since the main goal is to compare the methods and not
to test them in the real world.

The final error can now be calculated as a reprojection error of each pixel of
the labeled line to the nearest pixel of the estimated line. If done the other
way, the result would favor the closer pixels from the labeling, which is prone

40

3.4. Results

<

Figure 3.20: Projection of the estimated lines and LIDAR detections (yellow
dots) onto the image.

to bias due to the manual labeling. The reprojection error in general is the
average L2 norm of point correspondence errors expressed as

1 N
er=—> Ipi —ail2 (3.19)
N =1

where p; are the observed feature points on the image plane and ¢; are the
predicted image plane locations of the 3D feature points when projected onto
the image plane and distorted using the lens model parameters from the
camera intrinsics. This is essentially what was done during the transformation
above in the case of this work.

This would be enough to give some value to the error between the estimates,
but the error units are pixels, which does not really tell anything meaningful.
The reprojection error can be converted to a length error, if the working
distance is known. However, the camera data do not feature depth information.
Nevertheless, there is a workaround which introduces some bias, since it uses
the depth from the estimates themselves. It will be shown that this introduced
error is almost negligible, and the resulting error would have an actual value.

Using the pixel width of the image wp, and the horizontal focal length f,
the field of view FFOV can be calculated as follows.

Wpg

2fx

The approximate pixel angle a;, can then be found as

FOV = 2arctan

(3.20)

41

3. Methods and Implementation

_Fov

3.21
o (3.21)

ap
If done separately for each pair of line label pixel and closest estimated pixel,
it can be used to calculate an arc error ey, which, when multiplied by the
distance of each estimated pixel before it was transformed from 3D, will give
the length error ¢;.

€qg=0Qp €

corT (3.22)

e =d-eq
Averaging the error per all pixels of a labeled line will essentially give an
average lateral displacement error between the labeled lines and the estimated
lines. With a standard deviation this gives a tangible value to the results.

To prove that the bias introduced by using the distance from the estimates is
very low, a reprojection error of 8 pixels at 10 meters will be assumed. The
length error with the numbers from the camera parameters is

920

1
FOV = 2arctan 51970 — 0.91 rad
0.91

e, = 0.47-8 = 3.8 mrad
e; =3.8mrad-10 m = 3.8 cm

It is clear that even if the error from the distance introduction was, for
example, 0.5 meters, the result would change about only 2 mm. This is very
acceptable, considering that such a high error is very unlikely, and probably
one order higher than it would be in the reality.

B 3.4.2 Error Results

The results of each sequence can be seen in figures [3.21] and [3.22] All the
methods described in the chapters above are plotted in juxtaposition to see
how they compare. The Kalman filters with respective models are in the
bottom group of bars, the RANSAC is on top. The best-performing RANSAC
model combined with the KF is displayed in the RANSAC group.

The numbers on top of the bars correspond to the error value for better
clarity, with the standard deviation as the black line (error + std). Each bar
summarizes the average error between the estimated line and the labeled line
of all lines of the entire sequence. In case of the sequence 013, that means
the overall estimate error of 4 lines in 80 frames.

42

3.4. Results

Lateral displacement error

T T

parabola RANSAC + KF

clothoid RANSAC
parabola RANSAC

line RANSAC

adaptive KF

clothoid KF

parabola KF

line KF

1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18
average error [cm]

Figure 3.21: Lateral displacement error comparison between the individual
methods tested on PandaSet sequence 013. Colored numbers correspond to the
value of the bars. Black lines represent the standard deviation.

Lateral displacement error

line RANSAC + KF

clothoid RANSAC
parabola RANSAC

line RANSAC

adaptive KF

clothoid KF

parabola KF

line KF

0 5 10 15 20 25 30
average error [cm]

Figure 3.22: Lateral displacement error comparison between the individual
methods tested on PandaSet sequence 043. Colored numbers correspond to the
value of the bars. Black lines represent the standard deviation.

43

3. Methods and Implementation

. 3.5 Discussion

The results of sequence 013 in figure |3.21| clearly shows the superiority of
the Kalman filter over the RANSAC algorithm. Especially the clothoid
model KF which is expected since this sequence has a quite high curvature.
In comparison, the adaptive KF (AKF) performed marginally better, with
improvement in error and standard deviation, (6.5 £ 1.7) cm and (6.2 £+ 1.6)
cm, respectively. Since the clothoid model is ahead of the others by far, the
AKF was inclined to choose it more often, hence the rather small improvement.
The PandaSet unfortunately does not feature any longer sequences, and since
they do not overlap, they cannot be stitched together. Testing the AKF
on a longer sequence with more abrupt changes in the curvature would be
preferable, and might showcase its advantage over the other models even
more.

The RANSAC alone performs much worse on this sequence than the KF.
Due to the curvature, the line model is the worst overall, and the clothoid
model offers almost no improvement over the parabola model. The high
standard deviation and computation time seem to result from the more
complex polynomial structure. Combining the clothoid KF with the better
polynomial RANSAC as a prefilter does not result in any improvement over
the KF alone. This is due because there are really no outliers in this sequence,
and hence the measurement goes into the estimator unchanged.

The sequence 043 features straight lanes with dashed lines and has a much
lower number of LIDAR detections than the other tested sequence. There is
also a high change in the slope of the road. Moreover, there is a crossing in
the end, which features a lot of outliers. These attributes together have some
interesting consequences.

There are not many line markings detected by the LIDAR in about the first
half of the sequence (compare figure |3.16{and |3.14)). Most of them and around
30 m ahead of the EGO vehicle and the estimated lined are evaluated in
the whole ROI region up to 65 m. This means that half of the line is being
predicted. The slope of the road also changes, and since the estimation is
done in the 2D plane, the estimates tend to be skewed to the center at the
ends. This makes the clothoid and parabola models better, as they are able
to curve at the tips, better predicting the line markings (see figure 3.22).
The statements above also explained the high standard deviation, since the
estimate is much more precise in front of the EGO vehicle.

The worse performance of the AKF can be explained by the fact that it

44

3.5. Discussion

evaluates the score of how the model fits the data on the measurement. Since
the measurements are not that dense in this case, and it cannot see how
the curved models can predict the actual lines better, it can choose a worse
performing model in the end. This approach could be extended by some more
complex weighting factors or by a moving average of the switching criteria
instead of checking for the switch in every frame.

The higher order RANSAC models are bad at estimating this straight sequence,
especially the clothoid model with a very high standard deviation. On the
contrary, the line model outperforms even the KF estimates, as the ability to
discard the outliers really shines here. This is further demonstrated when the
prefiltered data is used with the KF, resulting in the best overall error (5.9 +
5.2) cm (line RANSAC + KF in figure [3.22).

The results show that the Kalman filter with the underlying clothoid model
is capable of estimating the line markings in various scenarios. The adaptive
Kalman filter can further improve the estimates, and the RANSAC brings
high value in cases with a lot of noise.

The absence of any camera depth information in the PandaSet results in an
inconvenient workaround in order to evaluate the estimated lines. However,
it is unclear whether data from a stereo camera or similar sensor would
drastically improve the precision, at least in the context of this work. The
projection of the LIDAR data from the world frame onto the image plane
according to the PandaSet tutorial shows a clear error between the two sensors
(3.20). This contributes to the resulting error, and it is not certain where this
inconsistency comes from. However, since the aim of this work is to compare
several methods against the same data, the actual error value does not play
that crucial role.

More data and testing are needed to further evaluate performance of these
algorithms. However, the advantages of certain models are obvious. Relying
on the labeled data limits the number of usable measurements, but testing the
performance by other means is challenging. Having larger and easily accessible
labeled datasets would be very beneficial not only for better evaluation of
one’s results, but also to be able to compare to methods developed by others.
Further testing is needed to determine how the approach with plain KF
would stack against some more complicated methods, such as learning-based
algorithms. Especially, comparing whether the low computational benefits
satisfy the performance of the KF.

As ADAS become more and more common in modern cars and advanced
autopilots are starting to emerge, the broader the knowledge of various

45

3. Methods and Implementation

methods applicable, the better. The results of this work and the prepared
framework with an evaluation process can help expand this knowledge and
can be used in the development of lane-keeping and other driving assistants.

46

Chapter 4

Integration of Camera and LIDAR Data for
Enhanced Line Estimation

Line estimation is a critical aspect of autonomous navigation, providing
crucial information on road geometry and facilitating safe vehicle control.
Traditionally, vision-based methods relying solely on camera data have been
employed for line estimation. However, challenges arise when faced with
adverse conditions, such as varying lighting, occlusions, and the presence of
objects in the camera view [20]. To overcome these limitations, the integration
of LIDAR data into the line estimation process could improve accuracy and
reliability.

The fusion of camera and LIDAR data leverages the strengths of each sensor
modality, addressing their individual limitations discussed in previous chap-
ters. While cameras excel at providing high-resolution images for semantic
understanding, LIDAR sensors offer precise distance measurements, especially
in complex three-dimensional environments. When these data sources are
combined, a more comprehensive and accurate representation of the surround-
ings can be achieved, particularly in challenging scenarios where one sensor
may struggle.

There are not many publications on this topic. In one of the newest studies,
Narote et al. [I8] mentions only one notable work, where the actual fusion
is done and where the LIDAR lanes are detected using the cameras. They
propose a new approach that involves a novel algorithm that fuses depth
data from a 2D LIDAR and image data from a camera to remove noise from
objects in the view and reliably detect lanes. The algorithm first identifies
objects using 2D LIDAR, and a modified Bird’s Eye View (BEV) image is

47

4. Integration of Camera and LIDAR Data for Enhanced Line Estimation

generated by converting object pixels to background pixels. Subsequently,
line detection is performed on the modified BEV image, resulting in enhanced
accuracy and robustness against objects in the camera view. No actual lane
tracking and estimation is involved, but they plan to do so using a Kalman
filter.

In this work, the results of line estimation based on the LIDAR data were
compared against labeled line markings in the camera images. It was shown
that there could be a significant difference between these two data sources.
Even with a frequent calibration, there will always be some error, and miti-
gating this by any means should be a high priority for safety reasons. Robust
algorithms, such as the Kamlan filter, exists today that can utilize measure-
ments from more sensors and make an estimate with their noise taken into
account.

There are many techniques for sensor fusion that have already been used
in other fields that could be applicable to this problem. Testing several
approaches, for example, synchronous and asynchronous fusion, estimating
the states from each sensor separately or using one filter for everything, and
so on, presents a very interesting topic for further investigation.

It is not within the scope of this work to test the algorithm performance in a
real driving scenario. However, the integration of both LIDAR and the camera
would most likely result in better line marking detection, further improving
the estimation and tracking. More research is needed to prove the benefits
of the LIDAR-camera fusion, but as the leading car manufacturers with
advanced autopilots (such as Tesla) strive away from using other sensors than
cameras, the motivation behind fades away. There is an ongoing development
of LIDAR technology that should be better suited for cars, but commercial
application is still in the future. Currently, LIDAR is still an expensive
technology with many unknowns but with the potential to increase the overall
safety and efficiency of autonomous driving technologies.

48

Chapter 5

Conclusion

As Advanced Driver Assistance Systems (ADAS) become an integral part of
every modern car, the demand for even more autonomous functions increases.
Parking assistants, lane departure warning, or collision avoidance is practically
a given part of any new vehicle equipment, and the leading automotive
software companies work intensely towards the first degree of full self-driving.
Developing and comparing robust and safe methods for these systems was
never so crucial. This work focused on one problem of this field, lane tracking
and estimation.

The aim of this work is to select common algorithms and models in the
literature and compare them with each other. Furthermore, testing them on a
publicly available PandaSet database with LIDAR and camera measurements.
To do so, a whole framework for data processing and evaluation was developed.

The Kalman filter (KF) and the RANSAC algorithm were chosen as the main
instrument for the lane estimation. Each was tested with three underlying
models representing the curvature of the line markings, namely a first-degree
polynomial, a second-degree polynomial, and a clothoid, which is essentially
a modified third-degree polynomial. Furthermore, an adaptive KF and a
combination of RANSAC plus KF were proposed and compared.

The results showed that the KF with the clothoid model performed better
than any other model or the RANSAC alone. The adaptive KF approach
offered only minor advantages and both showed drawbacks in the presence
of outliers. In this situation, the RANSAC algorithm was able to discard

49

5. Conclusion

them and in combination with the KF showed the best results. However, in
no-outlier scenario it performed poorly and offered no improvement when
used with the KF.

More testing of the presented methods is needed, as there is a lack of data
to evaluate the results. However, the whole framework is prepared, which
is capable of processing the LIDAR point clouds and evaluating the results
against labeled camera images. This represents an important contribution,
as most of the research is done on custom datasets.

Continuing this work, more estimation techniques could be compared. There
are other types of KF with different combinations of models, or entirely
different approaches. For example, the least-squares fitting, other RANSAC
and polynomial fitting, and many more types of estimators. An interesting
approach would be to expand the KF algorithm presented in this work by
estimating the polynomial parameters individually with a constant-velocity
and constant-acceleration model.

50

Appendix A

Bibliography

[1] M. Aly. Real time Detection of Lane Markers in Urban Streets. In
Proceedings of the 2008 IEEFE Intelligent Vehicles Symposium, page 7-12,
June 2008.

[2] A. B. Hillel; R. Lerner; D. Levi; G. Raz. Recent progress in road and
lane detection: A survey. 25:727-745, March 2014.

[3] V. K. Kukkala; J. Tunnell; S. Pasricha; T. Bradley. Advanced Driver-
Assistance Systems: A Path toward Autonomous Vehicles. In IEFEE
Consumer Electronics Magazine, 7:18-25, 2018.

[4] S. Yenkanchi. Multi Sensor Data Fusion for Autonomous Vehicles.
University of Windsor, 2016.

[6] Tesla Motors Inc. Tesla vision update: Replacing ultrasonic sen-
sors with tesla vision. |https://www.tesla.com/en_eu/support/
[transitioning-tesla-vision.

[6] Elon Musk. X. https://twitter.com/elonmusk/status/
144758898731 7547014

[7] Hesai and Scale. PandaSet. https://pandaset.org,.

[8] S. Waykole; N. Shiwakoti; P. Stasinopoulos. Review on lane detection and
tracking algorithms of advanced driver assistance system. Sustainability,
13, 2021.

[9] C.Y.Kuom; Y. R. Lu; S. M. Yang. On the Image Sensor Processing for
Lane Detection and Control in Vehicle Lane Keeping Systems. Sensors,
19, 2019.

o1

https://www.tesla.com/en_eu/support/transitioning-tesla-vision
https://www.tesla.com/en_eu/support/transitioning-tesla-vision
https://twitter.com/elonmusk/status/1447588987317547014
https://twitter.com/elonmusk/status/1447588987317547014
https://pandaset.org

A. Bibliography

[10]

[11]

[19]

[20]

K. Geng; G. Dong; G. Yin; J. Hu. Deep dual-modal traffic objects in-
stance segmentation method using camera and lidar data for autonomous
driving. Remote Sens, 12:1-22, 2020.

W. Wei; B. Shirinzadeh; R. Nowell; M. A. Ghafarian; T. Shen. Enhancing
solid-state lidar mapping with a 2D spinning lidar in urban scenario
slam on ground vehicles. Sensors, 21:1-18, 2021.

Y. Bar-Shalom; X. R. Li; T. Kirubarajan. Estimation with Applications
to Tracking and Navigation. Wiley Interscience, pages 207, 387, 476,
2001.

Peter. J. Huber. Robust Statistics. Wiley, page 1, 1981 (republished in
paperback, 2004).

A. Hast; J. Nysjo; A Marchetti. Optimal RANSAC — Towards a Re-
peatable Algorithm for Finding the Optimal Set. Journal of WSCG,
21:21-30, 2013.

Z. Lu; Y. Xu; X. Shan. A lane detection method based on the ridge
detector and regional G-RANSAC. Sensors, 19, 2019.

M. Thuy; F. P. Leén. Lane Detection and Tracking Based on Lidar Data,
journal = Metrology and Measurement Systems, year = 2010, volume =
17, pages = 311-322.

Y. Zhang; J. Wang; X. Wang; C. Li; L. Wang. A real-time curb detection
and tracking method for UGVs by using a 3D-LIDAR sensor. 2015 IEEE
Conference on Control Applications (CCA), pages 1020-1025, 2015.

F. Ghallabi; F. Nashashibi; G. El-Haj-Shhade; M. A. Mittet. Lidar-based
lane marking detection for vehicle positioning in an hd map. 2018 21st
International Conference on Intelligent Transportation Systems (ITSC),
pages 2209-2214, 2018.

D. Khosla. Adaptive kalman filter approach for road geometry estimation.
Proceedings of the 2003 IEEE International Conference on Intelligent
Transportation Systems, 2:1145-1151, 2003.

S. P. Narote; P. N. Bhujbal; A. S. Narote; D. M. Dhane. A review of
recent advances in lane detection and departure warning system. Pattern
Recognition, 73:216-234, 2018.

52

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
e R
Student's name: Veskrna Daniel Personal ID number: 483632

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics
_

Il. Master’s thesis details
' R
Master's thesis title in English:

LIDAR-Based Lane Tracking using Kalman Filtering and its Fusion with Camera-Based Lane Data

Master’s thesis title in Czech:

Sledovani jiznich pruhll na bazi LIDAR dat pomoci Kalmova filtrovani a jeho flize s kamera daty

Guidelines:

1) Problem introduction and state-of-art overview

2) Implementation of lane points fitting using RANSAC algorithm

3) Lane fitting of generated data and custom or publicly available LIDAR data

4) Implementaition of Extended Kalman Filter (EKF) for lane tracking

5) Other means of tracking and comparison to EKF

6) Proposal and implementation of fusion of lane data from different sensors (i.e. LIDAR + camera)

Bibliography / sources:

[1] Bar-Shalom, Y., Li, R. X., & Kirubarajan, T. Estimation with Applications to Tracking and Navigation (1st ed.).
Wiley-Interscience 2001

[2] Thuy, M., & Ledn, F. Lane Detection and Tracking Based on Lidar Data. Metrology and Measurement Systems, 17(3)
2010

[3] Ghallabi, F., Nashashibi, F. LIDAR-Based Lane Marking Detection For Vehicle Positioning in an HD Map. 21st
International ITSC 2018

[4] Waykole, S., Shiwakoti, N. Review on Lane Detection and Tracking Algorithms of Advanced Driver Assistance System.
Sustainability 2021

[5] Paek, D. H., Kong, S. H., & Wijaya, K. T. K-Lane: Lidar Lane Dataset and Benchmark for Urban Roads and Highways.
2022

Name and workplace of master’s thesis supervisor:

Kundak Nuri, MSc. Porsche Engineering Services, s.r.0., Radlick4 714/113a 158 00 Praha 5

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 20.01.2023 Deadline for master's thesis submission: 09.01.2024

Assignment valid until:
by the end of winter semester 2024/2025

Kundak Nuri, MSc. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

Supervisor's signature Head of department’s signature Dean'’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

	Introduction
	Aim of Thesis
	Layout of Thesis
	Personal Contributions

	State of Art
	Lane Detection and Tracking Overview
	Features-Based Approach
	Model-Based Approach
	Learning-Based Approach
	General Observations

	General Approach to Lane Tracking
	LIDAR vs. Camera in Autonomous Driving
	LIDAR: Precision in 3D Spatial Resolution
	Cameras: Cost-Effectiveness with Environmental Sensitivity

	Kalman Filter
	Mathematical Foundation of Kalman filter
	Extended Kalman Filter
	Kalman Filters in Advanced Driver Assistance Systems

	RANSAC Algorithm
	RANSAC in Advanced Driver Assistance Systems

	Methods and Implementation
	Lane Tracking and Estimation Methodology
	Overview of PandaSet Database
	Data Structure

	Implementation
	Preprocessing
	Lane Sorting
	Kalman Filter
	RANSAC
	RANSAC + Kalman Filter
	Adaptive Kalman Filter

	Results
	Error Estimation
	Error Results

	Discussion

	Integration of Camera and LIDAR Data for Enhanced Line Estimation
	Conclusion
	Bibliography
	Project Specification

