Czech Technical University in Prague Faculty of Electrical Engineering Department of Control Engineering

Modelling of acoustic plane waves in gases with variable temperature

Hanna Chaika

Supervisor: doc. Dr. Ing. Michal Bednarik

Czech Technical University in Prague

BACHELOR PROJECT ASSIGNMENT

Student: Hanna Chaika
Study programme: Cybernetics and Robotics
Specialisation: Systems and Control
Title of Bachelor Project: Modelling of acoustic plane waves in gases with variable temperature

Guidelines:

1. Study problems concerning description of acoustic waves in fluids with spatially variable temperature, including derivation of model equations. Take into account one-dimensional temperature distribution.
2. Find analytical solutions of linear model equations for given temperature distributions and realize their analysis.
3. Derive model equation describing nonlinear acoustic plane waves for small temperature gradients. Solve this equation numerically by means of a suitable numerical code in the programming language C . Analyze the numerical results.

Bibliography/Sources:
[1] Press, W. H., Teukolsky, S.A., Vetterling, W. T., Flannerz, B. P.: Numerical Recipes (3ed), Cambridge Univ. Press, New York, 2007,
[2] Blackstock, D.T.: Fundamentals of Physical Acoustics, John Eley \& Sons, USA, 2000
[3] Rudenko, O V., Shvartsburg, A. B.: Nonlinear and Linear Wave Phenomena in Narrow Pipes, Acoustical Physics, vol. 56, No. 4, pp. 429-434, 2010.
[4] Sujith, R. I., Waldherr, G. A. and Zinn, B. T.: An exact solution for one-dimensional acoustic fields in ducts with an axial temperature gradient, Journal of Sound and Vibrafon, vol. 184, No. 3, pp. 389402, 1995.
[5] Subrahmanyam, P. B., Sujith, R. I., Lieuwen, T. C.: A family of exact transient solutions for acoustic wave propagation in inhomogeneous, non-uniform area ducts, Journal of Sound and Vibrafon, vol. 240, No. 4, pp. 705-715, 2001.
[6] Brekhovskikh, L. M., Lysanov, Yu.P.: Fundamental of Ocean Acoustics, Sprinter, New York, 1991.
Bachelor Project Supervisor: doc.Dr.Ing. Michal Bednařík
Valid until the summer semester 2014/2015
L.S.
prof. Ing. Michael Šebek, DrSc.
Head of Department
prof. Ing. Pavel Ripka, CSc. Dean

Acknowledgement

I would like to express my sincere gratitude to my supervisor, doc. Dr. Ing. Michal Bednarik, for his immense knowledge, patience and friendly manner.

Declaration

I declare that I completed the presented thesis independently and that all used sources are quoted in accordance with the Methodological Instructions that cover the ethical principles for writing an academic thesis.

In Prague on

Abstract

Abstrakt Bakalářská práce se zabývá modelováním rovinných akustických vln v plynech s proměnnou teplotou. Pro šíření rovinných vln v teplotně nehomogenním prostředí byla odvozena vlnová rovnice s proměnnými koeficienty. Pro vybrané teplotní distribuce jsou v práci prezentována přesná analytická řešení této rovnice. Pomocí nalezených obecných řešení byly vypočteny koeficienty transmise a reflexe. Pro případ vln konečných amplitud (nelineární vlny) šisíících se tekutinou s malým teplotním gradientem byla odvozena modifikovaná Burgersova rovnice. Tato rovnice byla řešena numericky v kmitočtové oblasti pomocí Runge-Kuttovy metody 4. řádu v programovacím jazyce C.

Klíčová slova

Vlnová rovnice s proměnnými koeficienty; koeficienty transmise a reflexe; Burgersova rovnice.

Abstract

The thesis presents the modelling of acoustic plane waves in gases with variable temperature. The wave equation with variable coefficients for the propagation of plane waves in a thermally inhomogeneous medium was derived. For chosen temperature distributions the exact analytical solutions of this equation are presented in this thesis. The coefficients of transmission and reflection were calculated using found general solutions. For the case of finite amplitude waves (nonlinear waves), propagating in a fluid with a low temperature gradient, the modified Burgers equation was derived. This equation was solved numerically in the frequency domain using the fourth-order Runge-Kutta method written in the C programming language.

Keywords

Wave equation with variable coefficients; transmission and reflection coefficients; the Burgers equation.

Contents

1 Introduction 1
2 Derivation of model equations 2
2.1 Fundamental equations of fluid mechanics 2
2.2 Derivation of basic model equations for temperature-inhomogeneous region 3
3 Exact analytical solutions for various temperature functions 7
3.1 Transformation of derivatives 7
3.2 Analytical solutions for unknown temperature functions 8
3.2.1 First method of finding analytical solution 8
3.2.2 Second method of finding an analytical solution 11
3.2.3 Third method of finding an analytical solution 14
3.3 Finding analytical solutions for known temperature distributions 15
3.3.1 Linear temperature distribution 16
3.3.2 Exponential temperature distribution 18
4 Transmission and reflection coefficients 21
4.1 Sound velocity 21
4.2 Sound pressure 26
4.2.1 Second exact analytical solution 27
4.2.2 Exact analytical solution for a linear temperature distribution 29
4.2.3 Exact analytical solution for an exponential temperature distri- bution 31
5 Derivation of the Burgers-type equation for temperature-inhomogeneous flu- ids 33
5.1 Westervelt equation 33
5.2 Burgers-type equation 33
5.3 Dimensionless Burgers-type equation 35
6 Numerical solution of the Burgers-type equation for temperature-inhomogeneous fluids 36
6.1 Description of the numerical method 36
6.2 Representation of an artificial attenuation filter 38
6.3 Graphical representation of the Burgers-type equation solution for a lin- ear temperature distribution 38
6.3.1 Positive temperature gradient 38
6.3.2 Negative temperature gradient 39
6.3.3 Different lengths of a duct with a positive temperature gradient 40
7 Conclusion 41
Bibliography 43
Appendices
A Attached CD contents I

Abbreviations

Latin capital letters

A constant in Eqs. (3.19), (3.24) and (3.71)
$C_{1}, C_{2} \quad$ integration constants in Eqs. (3.34), (3.53), (3.55), (3.88) and (3.116)
$L \quad$ characteristic length
$P \quad$ acoustic pressure amplitude
$R \quad$ specific gas constant
$T_{A}, T_{B} \quad$ characteristic temperatures of temperature-homogeneous regions A, B resp.
$T_{0} \quad$ absolute temperature in temperature-inhomogenious region
$V \quad$ acoustic velocity amplitude
$W \quad$ dimensionless acoustic velocity

Latin lowercase letters

$b \quad$ constant in Eq. (3.88)
$c_{0} \quad$ linear sound speed in temperature-inhomogenious region
$c_{A} \quad=\sqrt{\varkappa R T_{A}}$, sound speed in temperature-homogeneous region A with absolute temperature T_{A}
$c_{B} \quad=\sqrt{\varkappa R T_{B}}$, sound speed in temperature-homogeneous region B with absolute temperature T_{B}
$k_{A} \quad=\omega / c_{A}$, wave number at $x=0$
$k_{B} \quad=\omega / c_{B}$, wave number at $x=L$
$p \quad$ pressure
$p_{0} \quad$ atmospheric pressure
$p^{\prime} \quad$ acoustic pressure
$q \quad$ constant in Eq. (3.44)
$r \quad$ constant in Eq. (3.17)
t time
$v \quad$ acoustic velocity (the particle velocity of the medium)
$x \quad$ distance

Greek capital letters

$\Delta \quad=c_{A}^{2} q^{2}-4 \omega^{2}$, discriminant of Eq. (3.49)
$\Xi \quad=T_{0} / T_{A}$, dimensionless absolute temperature
$\Pi \quad=p^{\prime} /\left(\rho_{A} c_{A}^{2}\right)$, dimensionless acoustic pressure
$\Upsilon \quad$ dimensionless acoustic velocity amplitude
$\Phi \quad$ dimensionless acoustic pressure amplitude

```
Greek lowercase letters
\(\alpha \quad\) sound diffusivity
\(\beta \quad\) coefficient in Eq. (5.2a)
\(\gamma \quad\) constant in Eq. (3.90)
\(\epsilon \quad\) a shear viscosity
```

ζ	a bulk viscosity
η	variable, given by Eq. (3.3)
θ	dimensionless time
κ	thermal conduction coefficient
\varkappa	ratio of specific heats
μ	small dimensionless parameter
ν	variable, given by Eq. (3.32)
ξ	$=\sqrt{\omega^{2}-r^{2}}$, coefficient in Eq. (3.27)
ρ	density of the medium
ρ_{0}	density of the medium before sound propagation
ρ_{A}, ρ_{B}	densities of the medium in regions A, B resp.
σ	$=x / L$, dimensionless length
τ	$=t-x / c_{A}$, retarded time
ϕ	$=2 /\left(\varkappa R \gamma^{2}\right)$, coefficient in Eq. (3.112)
ω	angular frequency

1 Introduction

The description and analysis of acoustic waves in ducts with a region containing tempera-ture-inhomogeneous fluid represents a significant problem of scientific and practical interest. This interest is induced by the need to understand how temperature fields affect acoustic processes. This would lead to the possibility of more effective design and control systems in which interactions between acoustic and temperature fields occur. This includes, for instance, thermo-acoustic devices and engines, combustors, automotive mufflers, measuring methods of impedance of high-temperature systems, the investigation of thermo-acoustics and combustion instabilities among other possible applications.

This thesis presents modelling of plane acoustic waves in gases with variable temperature. The whole work can be divided into two parts, the first part is devoted to linear model equations, and the second describes nonlinear acoustic plane waves for small temperature gradients.

The analysis consists of seven chapters. Within Chapter 2 the basic linear onedimensional model equations for fluids in temperature-inhomogeneous regions are derived. Chapter 3 is devoted to the exact analytical solutions of linear model equations for varoius temperature distributions. Chapter 4 deals with an application of the found solutions for calculation of transmission and reflection coefficients. In Chapter 5 is presented a derivation of the Burgers equation for temperature-inhomogeneous fluids. The numerical method for the Burgers equation for small temperature gradients is shown in Chapter 6. Chapter 7 states the conclusion.

2 Derivation of model equations

2.1 Fundamental equations of fluid mechanics

To describe acoustic waves in fluids the following system of equations is considered (see e.g. [1], [2]) :

1. The Navier - Stokes equation (Momentum equation)

This equation describes the motion of fluid substances and the general form is

$$
\begin{equation*}
\rho\left[\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \boldsymbol{\nabla} \mathbf{v}\right]=-\boldsymbol{\nabla} p+\left(\zeta+\frac{\epsilon}{3}\right) \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{v})+\epsilon \boldsymbol{\nabla}^{2} \mathbf{v} \tag{2.1}
\end{equation*}
$$

where ρ is the density of the medium, \boldsymbol{v} is the particle velocity of the medium, t is time, p is the pressure, ζ is a bulk viscosity, ϵ is a shear viscosity.
2. Equation of continuity

This equation describes the transport of a conserved quantity, i.e. fluid.

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \tag{2.2}
\end{equation*}
$$

3. Energy equation

$$
\begin{equation*}
\rho T\left(\frac{\partial \varepsilon}{\partial t}+\mathbf{v} \cdot \boldsymbol{\nabla} \varepsilon\right)=\frac{\epsilon}{2}\left(\frac{\partial v_{i}}{\partial x_{k}}+\frac{\partial v_{k}}{\partial x_{i}}-\frac{2}{3} \delta_{i k} \frac{\partial v_{l}}{\partial x_{l}}\right)^{2}+\zeta(\boldsymbol{\nabla} \cdot \mathbf{v})^{2}+\boldsymbol{\nabla} \cdot(\kappa \boldsymbol{\nabla} T) \tag{2.3}
\end{equation*}
$$

where ε is entropy per unit mass, T is absolute temperature, κ is the thermal conduction coefficient, $\delta_{i k}$ is the Kronecker delta.
4. Equation of state

$$
\begin{equation*}
p=p(\rho, \varepsilon) \tag{2.4}
\end{equation*}
$$

- If a perfect gas is considered then the Navier - Stokes equation (2.1) is reduced to the form

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \boldsymbol{\nabla} \mathbf{v}=-\frac{1}{\rho} \boldsymbol{\nabla} p \tag{2.5}
\end{equation*}
$$

which is called the Euler equation.

- Equation of state (2.4) for a perfect gas is (see e.g. [2])

$$
\begin{equation*}
p=R \rho T \tag{2.6}
\end{equation*}
$$

where R is the specific gas constant, i.e. the (molar) gas constant divided by the molar mass of the gas.

2.2 Derivation of basic model equations for temperature-inhomogeneous region

In order to derive model equations it is necessary to take into consideration four equations from the previous section and make some assumptions, which enable us to neglect nonlinear terms. Assuming a perfect, inviscid and non-heat-conducting gas with one-dimensional temperature distribution, Eqs. (2.2), (2.3), (2.5) and (2.6) can be transformed in the following ways (see e.g. [2]) :

- Energy equation

In a perfect gas no energy is dissipated, so $\mathrm{d} \varepsilon / \mathrm{d} t=0$, and hence a specific entropy ε is a constant. From this an isentropic process and an adiabatic gas law take place.

- Equation of state

From Eq. (2.4) it follows

$$
\begin{equation*}
\mathrm{d} p=\left(\frac{\partial p}{\partial \rho}\right)_{\varepsilon} \mathrm{d} \rho+\left(\frac{\partial p}{\partial \varepsilon}\right)_{\rho} \mathrm{d} \varepsilon \tag{2.7}
\end{equation*}
$$

As the process is isentropic then state equation can be written as $p=p(\rho)$ and

$$
\begin{equation*}
\mathrm{d} p=\left(\frac{\partial p}{\partial \rho}\right)_{\varepsilon} \mathrm{d} \rho \tag{2.8}
\end{equation*}
$$

As an adiabatic gas law takes place then

$$
\begin{equation*}
\frac{p}{p_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{\varkappa} \tag{2.9}
\end{equation*}
$$

where p and p_{0} are different specific pressures, ρ and ρ_{0} are different specific densities, \varkappa is the ratio of specific heats.

By assuming the gas to be inviscid, it is permissible to express the sound speed c

$$
\begin{equation*}
c^{2}=\frac{\mathrm{d} p}{\mathrm{~d} \rho} \tag{2.10}
\end{equation*}
$$

Taking into account Eqs. (2.9) and (2.6), the equation above can be written as

$$
\begin{equation*}
c^{2}=\frac{\varkappa p}{\rho}=\varkappa R T . \tag{2.11}
\end{equation*}
$$

Equation (2.10) lets us take into account the following equality

$$
\begin{equation*}
\frac{\mathrm{d} p}{\mathrm{~d} t}=c^{2} \frac{\mathrm{~d} \rho}{\mathrm{~d} t} \tag{2.12}
\end{equation*}
$$

The total derivative is

$$
\begin{equation*}
\frac{\mathrm{d}(\cdot)}{\mathrm{d} t}=\frac{\partial(\cdot)}{\partial t}+v \frac{\partial(\cdot)}{\partial x} . \tag{2.13}
\end{equation*}
$$

Then Eq. (2.12) can be written as

$$
\begin{equation*}
\frac{\partial p}{\partial t}+v \frac{\partial p}{\partial x}=c^{2}\left(\frac{\partial \rho}{\partial t}+v \frac{\partial \rho}{\partial x}\right) \tag{2.14}
\end{equation*}
$$

- Equation of continuity

One-dimensional equation of continuity is

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho v)=0 \tag{2.15}
\end{equation*}
$$

From this equation the equality $v \partial \rho / \partial x=-\partial \rho / \partial t-\rho \partial v / \partial x$ can be obtained. After substitution into Eq. (2.14) the resulting equation is

$$
\begin{equation*}
\frac{\partial p}{\partial t}+v \frac{\partial p}{\partial x}=-c^{2} \rho \frac{\partial v}{\partial x} . \tag{2.16}
\end{equation*}
$$

From Eq. (2.11) the above equation can be written as

$$
\begin{equation*}
\frac{\partial p}{\partial t}+v \frac{\partial p}{\partial x}+\varkappa p \frac{\partial v}{\partial x}=0 . \tag{2.17}
\end{equation*}
$$

- Euler equation

By assuming one-dimensional temperature distribution, Eq. (2.5) takes the form of the one-dimensional Euler equation

$$
\begin{equation*}
\rho \frac{\partial v}{\partial t}+\rho v \frac{\partial v}{\partial x}+\frac{\partial p}{\partial x}=0 . \tag{2.18}
\end{equation*}
$$

Each of the dependent variables can be expressed in the following way (see e.g. [3])

1. the density $\rho(x, t)=\rho_{0}(x)+\rho^{\prime}(x, t)$ is the sum of the ambient density ρ_{0} and an acoustic density ρ^{\prime},
2. the velocity $v=v(x, t)$ is the particle velocity of the medium, resp. acoustic velocity,
3. the pressure $p(x, t)=p_{0}+p^{\prime}(x, t)$ is the sum of the atmospheric pressure p_{0}, which is supposed to be constant (see e.g. [3]) and the acoustic pressure p^{\prime}.
The assumptions can be taken into account $\left|p^{\prime}\right| / p_{0} \sim|v| / c_{0} \sim \rho^{\prime} / \rho \sim \mu \ll 1$, where c_{0} is the linear sound speed, $\mu<0$ is a small dimensionless parameter. It is considered that $c_{0}=c_{0}(x)$ and temperature $T_{0}=T_{0}(x)$ are dependent on the distance x, where T_{0} is the ambient temperature of the fluid.

The substitution of the above dependent variables into the equation of continuity (2.17)

$$
\begin{equation*}
\frac{\partial\left(p_{0}+p^{\prime}\right)}{\partial t}+v \frac{\partial\left(p_{0}+p^{\prime}\right)}{\partial x}+\varkappa\left(p_{0}+p^{\prime}\right) \frac{\partial v}{\partial x}=0 \tag{2.19}
\end{equation*}
$$

and linearization of Eq. (2.19) leads us to the following linear form of the equation of continuity

$$
\begin{equation*}
\frac{\partial p^{\prime}}{\partial t}+\varkappa p_{0} \frac{\partial v}{\partial x}=0 . \tag{2.20}
\end{equation*}
$$

The same substitution into the Euler equation (2.18)

$$
\begin{equation*}
\left(\rho_{0}+\rho^{\prime}\right) \frac{\partial v}{\partial t}+\left(\rho_{0}+\rho^{\prime}\right) v \frac{\partial v}{\partial x}+\frac{\partial\left(p_{0}+p^{\prime}\right)}{\partial x}=0 \tag{2.21}
\end{equation*}
$$

and linearization of Eq. (2.21) leads us to the linear form of the Euler equation

$$
\begin{equation*}
\rho_{0} \frac{\partial v}{\partial t}+\frac{\partial p^{\prime}}{\partial x}=0 . \tag{2.22}
\end{equation*}
$$

Differentiating of Eq. (2.20) with respect to time t and Eq. (2.22) with respect to coordinate x and eliminating the cross-derivative term by their combination yields

$$
\begin{equation*}
\frac{\partial^{2} p^{\prime}}{\partial x^{2}}+\frac{\mathrm{d} \rho_{0}}{\mathrm{~d} x} \frac{\partial v}{\partial t}-\frac{\rho_{0}}{\varkappa p_{0}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}=0 . \tag{2.23}
\end{equation*}
$$

Expressing the derivative $\partial v / \partial t$ from Eq. (2.22) and substituting it into Eq. (2.23) obtains the equation

$$
\begin{equation*}
\frac{\partial^{2} p^{\prime}}{\partial x^{2}}-\frac{\mathrm{d} \rho_{0}}{\mathrm{~d} x} \frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial x}-\frac{\rho_{0}}{\varkappa p_{0}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}=0 . \tag{2.24}
\end{equation*}
$$

From the perfect gas law $p_{0}=R \rho_{0} T_{0}$ the total derivative of p_{0} with respect to x is

$$
\begin{equation*}
0=\frac{\mathrm{d} p_{0}}{\mathrm{~d} x}=R \frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x} T_{0}+R \rho_{0} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} . \tag{2.25}
\end{equation*}
$$

After multiplying the above equation by $1 /\left(R \rho_{0} T_{0}\right)$ the resulting expression is

$$
\begin{equation*}
\frac{1}{\rho_{0}} \frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x}+\frac{1}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}=0 . \tag{2.26}
\end{equation*}
$$

From Eq. (2.11) follows

$$
\begin{equation*}
c_{0}^{2}=\frac{\varkappa p_{0}}{\rho_{0}} \tag{2.27}
\end{equation*}
$$

and using Eq. (2.26) hence is obtained the wave equation with variable coefficients (see e.g. [3])

$$
\begin{equation*}
\frac{\partial^{2} p^{\prime}}{\partial x^{2}}+\frac{1}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} \frac{\partial p^{\prime}}{\partial x}-\frac{1}{c_{0}^{2}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}=0 . \tag{2.28}
\end{equation*}
$$

Assuming a time periodic source of sound, where ω is an angular frequency, it is possible to consider

$$
\begin{equation*}
p^{\prime}(x, t)=P(x) e^{-\mathrm{j} \omega t} . \tag{2.29}
\end{equation*}
$$

Equation (2.28) can be written now as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}+\frac{1}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} P}{\mathrm{~d} x}+\frac{\omega^{2}}{c_{0}^{2}} P=0 . \tag{2.30}
\end{equation*}
$$

Now, let us differentiate vice versa - Eq. (2.20) with respect to x and Eq. (2.22) with respect to t, then the cross-derivative term can be eliminated. This manipulation leads to the wave equation

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial t^{2}}-c_{0}^{2} \frac{\partial^{2} v}{\partial x^{2}}=0 \tag{2.31}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
v(x, t)=V(x) e^{-\mathrm{j} \omega t}, \tag{2.32}
\end{equation*}
$$

into Eq. (2.31) obtains the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}+\frac{\omega^{2}}{c_{0}^{2}(x)} V(x)=0 \tag{2.33}
\end{equation*}
$$

This is the Helmholtz equation.

Let us rewrite the model equations (2.28) and (2.31) in dimensionless form (see e.g. [4])

$$
\begin{gather*}
\frac{\partial^{2} \Pi}{\partial \sigma^{2}}+\frac{1}{\Xi(\sigma)} \frac{\mathrm{d} \Xi(\sigma)}{\mathrm{d} \sigma} \frac{\partial \Pi}{\partial \sigma}-\frac{1}{C_{0}^{2}(\sigma)} \frac{\partial^{2} \Pi}{\partial \theta^{2}}=0 \tag{2.34}\\
\frac{\partial^{2} W}{\partial \theta^{2}}-C_{0}^{2}(\sigma) \frac{\partial^{2} W}{\partial \sigma^{2}}=0 \tag{2.35}
\end{gather*}
$$

Here

$$
\begin{align*}
\Pi & =\frac{p^{\prime}}{\rho_{A} c_{A}^{2}}=\frac{p^{\prime}}{\varkappa p_{0}}, & \sigma=\frac{x}{L}, & \theta=\omega t, \\
C_{0}^{2}(\sigma) & =\frac{c_{0}^{2}(\sigma)}{\omega^{2} L^{2}}=\frac{\varkappa R T_{0}(\sigma)}{\omega^{2} L^{2}}=\frac{\Xi(\sigma)}{h^{2}}, & \Xi=\frac{T_{0}}{T_{A}}, & W=\frac{v}{c_{A}}, \tag{2.36}
\end{align*}
$$

where T_{A} is a characteristic temperature, $c_{A}=c_{0}\left(T_{A}\right)=\sqrt{\varkappa R T_{A}}, \rho_{A}=\rho_{0}\left(T_{A}\right)=$ $p_{0} /\left(R T_{A}\right), L$ is a characteristic length and $h=\omega L / c_{A}$.

Assuming that the solutions of Eqs. (2.34) and (2.35) have a periodic time dependence, i. e.

$$
\begin{equation*}
\Pi(\sigma, \theta)=\Phi(\sigma) e^{-\mathrm{j} \theta} \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
W(\sigma, \theta)=\Upsilon(\sigma) e^{-\mathrm{j} \theta} \tag{2.38}
\end{equation*}
$$

then equations can be written as

$$
\begin{gather*}
\frac{\mathrm{d}^{2} \Phi}{\mathrm{~d} \sigma^{2}}+\frac{1}{\Xi(\sigma)} \frac{\mathrm{d} \Xi(\sigma)}{\mathrm{d} \sigma} \frac{\mathrm{~d} \Phi}{\mathrm{~d} \sigma}+\frac{1}{C_{0}^{2}(\sigma)} \Phi(\sigma)=0, \tag{2.39}\\
\frac{\mathrm{~d}^{2} \Upsilon}{\mathrm{~d} \sigma^{2}}+\frac{\Upsilon(\sigma)}{C_{0}^{2}(\sigma)}=0 . \tag{2.40}
\end{gather*}
$$

3 Exact analytical solutions for various temperature functions

This chapter is devoted to exact analytical solutions. These solutions can be divided into two cases. The first case represents solving equations where the temperature distribution $T_{0}(x)$ is unknown, so it is necessary to find both the temperature distribution $T_{0}(x)$ and the solution of the equation. The second case deals with equations where it is supposed the function $T_{0}(x)$ must be known. For this reason only the equation solution is to be found in this case. Linear and exponential temperature distributions are assumed.

3.1 Transformation of derivatives

Suppose that a function $f(x)$ is known then can be derived the following spatial derivatives

$$
\begin{equation*}
\frac{\mathrm{d}(\cdot)}{\mathrm{d} x}=\frac{\mathrm{d}(\cdot)}{\mathrm{d} f} \frac{\mathrm{~d} f}{\mathrm{~d} x} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\mathrm{d}^{2}(\cdot)}{\mathrm{d} x^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}(\cdot)}{\mathrm{d} x}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}(\cdot)}{\mathrm{d} f} \frac{\mathrm{~d} f}{\mathrm{~d} x}\right)=\left[\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}(\cdot)}{\mathrm{d} f}\right)\right] \frac{\mathrm{d} f}{\mathrm{~d} x}+\left[\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d} f}{\mathrm{~d} x}\right)\right] \frac{\mathrm{d}(\cdot)}{\mathrm{d} f} \\
& =\left[\frac{\mathrm{d}}{\mathrm{~d} f}\left(\frac{\mathrm{~d}(\cdot)}{\mathrm{d} x}\right)\right] \frac{\mathrm{d} f}{\mathrm{~d} x}+\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}} \frac{\mathrm{~d}(\cdot)}{\mathrm{d} f}=\left[\frac{\mathrm{d}}{\mathrm{~d} f}\left(\frac{\mathrm{~d}(\cdot)}{\mathrm{d} f} \frac{\mathrm{~d} f}{\mathrm{~d} x}\right)\right] \frac{\mathrm{d} f}{\mathrm{~d} x}+\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}} \frac{\mathrm{~d}(\cdot)}{\mathrm{d} f} \\
& =\left(\frac{\mathrm{d} f}{\mathrm{~d} x}\right)^{2} \frac{\mathrm{~d}^{2}(\cdot)}{\mathrm{d} f^{2}}+\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}} \frac{\mathrm{~d}(\cdot)}{\mathrm{d} f} \tag{3.2}
\end{align*}
$$

Taking into account a new variable (see e.g. [5])

$$
\begin{equation*}
\eta=\int_{0}^{x} \frac{1}{c_{0}\left(x_{1}\right)} \mathrm{d} x_{1} \tag{3.3}
\end{equation*}
$$

then

$$
\begin{gather*}
\frac{\mathrm{d} \eta}{\mathrm{~d} x}=\frac{1}{c_{0}(x)} \tag{3.4}\\
\frac{\mathrm{d}^{2} \eta}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{c_{0}(x)}\right) \tag{3.5}
\end{gather*}
$$

Putting $\eta(x) \equiv f(x)$ can be used the transformation relations (3.1) and (3.2) as follows

$$
\begin{gather*}
\frac{\mathrm{d}(\cdot)}{\mathrm{d} x}=\frac{\mathrm{d}(\cdot)}{\mathrm{d} \eta} \frac{\mathrm{~d} \eta}{\mathrm{~d} x} \tag{3.6}\\
\frac{\mathrm{~d}^{2}(\cdot)}{\mathrm{d} x^{2}}=\left(\frac{\mathrm{d} \eta}{\mathrm{~d} x}\right)^{2} \frac{\mathrm{~d}^{2}(\cdot)}{\mathrm{d} \eta^{2}}+\frac{\mathrm{d}^{2} \eta}{\mathrm{~d} x^{2}} \frac{\mathrm{~d}(\cdot)}{\mathrm{d} \eta}=\frac{1}{c_{0}^{2}(x)} \frac{\mathrm{d}^{2}(\cdot)}{\mathrm{d} \eta^{2}}+\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{c_{0}(x)}\right) \frac{\mathrm{d}(\cdot)}{\mathrm{d} \eta} \tag{3.7}
\end{gather*}
$$

3.2 Analytical solutions for unknown temperature functions

It is assumed that a temperature distribution $T_{0}(x)$ in a temperature-inhomogeneous region of the length L in a waveguide separates two regions of different constant temperatures T_{A} and T_{B}, see Fig. 1 (see e.g. [4]) .

Fig. 1 Temperature regions in a waveguide.

In dimensionless equations the temperature-inhomogeneous region has the length equal to 1 and separates two temperature-homogeneous regions with constant dimensionless temperatures $\Xi_{A}=1$ and $\Xi_{B}=T_{B} / T_{A}$.

3.2.1 First method of finding analytical solution

To solve the Helmholtz equation (2.33) the first step is to introduce a new function $F(x)$ (see e.g. [6])

$$
\begin{equation*}
V(x)=\sqrt{c_{0}(x)} F(x) \tag{3.8}
\end{equation*}
$$

Its derivatives are

$$
\begin{gather*}
\frac{\mathrm{d}\left(\sqrt{c_{0}} F\right)}{\mathrm{d} x}=F \frac{\mathrm{~d} \sqrt{c_{0}}}{\mathrm{~d} x}+\sqrt{c_{0}} \frac{\mathrm{~d} F}{\mathrm{~d} x}, \tag{3.9}\\
\frac{\mathrm{~d}^{2}\left(\sqrt{c_{0}} F\right)}{\mathrm{d} x^{2}}=\frac{\mathrm{d} F}{\mathrm{~d} x} \frac{\mathrm{~d} \sqrt{c_{0}}}{\mathrm{~d} x}+F \frac{\mathrm{~d}^{2} \sqrt{c_{0}}}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} \sqrt{c_{0}}}{\mathrm{~d} x} \frac{\mathrm{~d} F}{\mathrm{~d} x}+\sqrt{c_{0}} \frac{\mathrm{~d}^{2} F}{\mathrm{~d} x^{2}}, \tag{3.10}
\end{gather*}
$$

where

$$
\begin{gather*}
\frac{\mathrm{d} \sqrt{c_{0}}}{\mathrm{~d} x}=\frac{1}{2 \sqrt{c_{0}}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \tag{3.11}\\
\frac{\mathrm{~d}^{2} \sqrt{c_{0}}}{\mathrm{~d} x^{2}}=-\frac{1}{4 c_{0} \sqrt{c_{0}}}\left(\frac{\mathrm{~d} c_{0}}{\mathrm{~d} x}\right)^{2}+\frac{1}{2 \sqrt{c_{0}}} \frac{\mathrm{~d}^{2} c_{0}}{\mathrm{~d} x^{2}} . \tag{3.12}
\end{gather*}
$$

Substituting into Eq. (2.33)

$$
\begin{equation*}
-\frac{F}{4 c_{0}^{2}}\left(\frac{\mathrm{~d} c_{0}}{\mathrm{~d} x}\right)^{2}+\frac{F}{2 c_{0}} \frac{\mathrm{~d}^{2} c_{0}}{\mathrm{~d} x^{2}}+\frac{1}{2 c_{0}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} F}{\mathrm{~d} x}+\frac{1}{2 c_{0}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} F}{\mathrm{~d} x}+\frac{\mathrm{d}^{2} F}{\mathrm{~d} x^{2}}+\frac{\omega^{2}}{c_{0}^{2}} F=0 . \tag{3.13}
\end{equation*}
$$

And rearranging leads to the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} F}{\mathrm{~d} x^{2}}+\frac{1}{c_{0}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} F}{\mathrm{~d} x}-\frac{1}{4 c_{0}^{2}}\left(\frac{\mathrm{~d} c_{0}}{\mathrm{~d} x}\right)^{2} F+\frac{1}{2 c_{0}} \frac{\mathrm{~d}^{2} c_{0}}{\mathrm{~d} x^{2}} F+\frac{\omega^{2}}{c_{0}^{2}} F=0 \tag{3.14}
\end{equation*}
$$

Imposing the variable η from Eq. (3.3) then it is possible to write Eq. (3.14) in the following form

$$
\begin{equation*}
\frac{1}{c_{0}^{2}} \frac{\mathrm{~d}^{2} F}{\mathrm{~d} \eta^{2}}+\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{c_{0}}\right) \frac{\mathrm{d} F}{\mathrm{~d} \eta}+\frac{1}{c_{0}^{2}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} F}{\mathrm{~d} \eta}-\frac{1}{4 c_{0}^{2}}\left(\frac{\mathrm{~d} c_{0}}{\mathrm{~d} x}\right)^{2} F+\frac{1}{2 c_{0}} \frac{\mathrm{~d}^{2} c_{0}}{\mathrm{~d} x^{2}} F+\frac{\omega^{2}}{c_{0}^{2}} F=0 . \tag{3.15}
\end{equation*}
$$

After modification Eq. (3.15) takes the form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} F}{\mathrm{~d} \eta^{2}}+\omega^{2} F=F\left[\frac{1}{4}\left(\frac{\mathrm{~d} c_{0}}{\mathrm{~d} x}\right)^{2}-\frac{c_{0}}{2} \frac{\mathrm{~d}^{2} c_{0}}{\mathrm{~d} x^{2}}\right] . \tag{3.16}
\end{equation*}
$$

Equation (3.16) is an ordinary differential equation with varible coefficients. In order to get an ordinary differential equation with constant coefficients, it is necessary to equalise the expression in the square brackets using a constant r^{2}. After this step is obtained

$$
\begin{equation*}
\frac{\mathrm{d}^{2} F}{\mathrm{~d} \eta^{2}}+\omega^{2} F=r^{2} F \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{2}=\frac{1}{4}\left(\frac{\mathrm{~d} c_{0}}{\mathrm{~d} x}\right)^{2}-\frac{c_{0}}{2} \frac{\mathrm{~d}^{2} c_{0}}{\mathrm{~d} x^{2}} \tag{3.18}
\end{equation*}
$$

In solving the differential equation (3.18) its solution can be written as

$$
\begin{equation*}
c_{0}(x)=\frac{1}{4} \frac{\left(A^{2}-4 r^{2}\right) x^{2}}{B}+A x+B \tag{3.19}
\end{equation*}
$$

where A and B are integration constants.
After some small algebraic manipulation the relation (3.19) can be expressed in the convenient form

$$
\begin{equation*}
c_{0}(x)=c_{A}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x^{2}+2 A x+1\right] . \tag{3.20}
\end{equation*}
$$

Now, let us remember some relations with characteristic temperature T_{A}. From previous chapter

$$
\begin{equation*}
c_{0}\left(T_{A}\right)=c_{A}, \quad \rho_{0}\left(T_{A}\right)=\rho_{A} \tag{3.21}
\end{equation*}
$$

From Eqs. (2.11) and (2.27) it follows that

$$
\begin{equation*}
c_{0}(x)=\sqrt{\varkappa R T_{0}(x)} . \tag{3.22}
\end{equation*}
$$

As Eq. (3.22) takes place then with the help of Eq. (3.20) it is possible to write a temperature relation

$$
\begin{equation*}
T_{0}(x)=\frac{c_{A}^{2}}{\varkappa R}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x^{2}+2 A x+1\right]^{2} \tag{3.23}
\end{equation*}
$$

According to Eqs. (2.36) and (3.23)

$$
\begin{equation*}
T_{0}(x)=T_{A}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x^{2}+2 A x+1\right]^{2} \tag{3.24}
\end{equation*}
$$

where $T_{A}=c_{A}^{2} /(\varkappa R)$.

Using expressions (2.36) temperature-inhomogeneous region T_{0} can be expressed in dimensionless form (see e.g. [4])

$$
\begin{equation*}
\Xi(\sigma)=\frac{T_{0}(\sigma)}{T_{A}}=\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) L^{2} \sigma^{2}+2 A L \sigma+1\right]^{2} \tag{3.25}
\end{equation*}
$$

Let characteristic length L be equal to 1 m . By choosing different values of constants A, r and velocity c_{A} it is possible to see exemplary solutions for temperature Ξ among many instances.

Fig. 2 Dimensionless temperature function $\Xi(\sigma)$ for different coefficients of Eq. (3.25).

To solve Eq. (3.17) let us use the following substitution

$$
\begin{equation*}
\xi^{2}=\omega^{2}-r^{2} \tag{3.26}
\end{equation*}
$$

where $\omega^{2}-r^{2} \geqslant 0$, because an evanescent wave is not considered. After this substitution Eq. (3.17) can be written as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} F}{\mathrm{~d} \eta^{2}}+\xi^{2} F=0 \tag{3.27}
\end{equation*}
$$

The above equation is a second-order linear ordinary differential equation, where the discriminant is less than zero. Then the roots of the characteristic equation of Eq. (3.27) are complex

$$
\begin{equation*}
\lambda_{1,2}= \pm \mathrm{j} \xi . \tag{3.28}
\end{equation*}
$$

The solution of Eq. (3.27) is then

$$
\begin{equation*}
F(\eta)=C_{1} \cos (\xi \eta)+C_{2} \sin (\xi \eta) \tag{3.29}
\end{equation*}
$$

where C_{1} and C_{2} are constants.
According to Eqs. (3.3) and (3.20) the variable η can be written as

$$
\begin{equation*}
\eta=\int_{0}^{x} \frac{1}{c_{0}\left(x_{1}\right)} \mathrm{d} x_{1}=\int_{0}^{x} \frac{1}{c_{A}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x_{1}^{2}+2 A x_{1}+1\right]} \mathrm{d} x_{1} . \tag{3.30}
\end{equation*}
$$

After integration the variable η can be written as

$$
\begin{equation*}
\eta=-\left.\frac{1}{|r|} \tanh ^{-1}\left[\frac{c_{A}}{|r|}\left(A+\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x_{1}\right)\right]\right|_{0} ^{x}=-\frac{1}{|r|} \nu(x), \tag{3.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu(x)=\tanh ^{-1}\left[\frac{c_{A}}{|r|}\left(A+\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x\right)\right]-\tanh ^{-1}\left(\frac{c_{A}}{|r|} A\right) . \tag{3.32}
\end{equation*}
$$

The absolute value of c_{A} was omitted, because T_{A} is an indoor temperature when $c_{A}>0$.

Now the function $F(x)$ can be written as

$$
\begin{equation*}
F(x)=C_{1} \cos \left(\frac{\xi}{|r|} \nu(x)\right)-C_{2} \sin \left(\frac{\xi}{|r|} \nu(x)\right) . \tag{3.33}
\end{equation*}
$$

Taking into account Eq. (3.8), the solution of the Helmholtz equation (2.33) is

$$
\begin{align*}
& V(x)=\sqrt{c_{0}(x)} F(x)=\sqrt{c_{A}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x^{2}+2 A x+1\right]} \\
& \times\left[C_{1} \cos \left(\frac{\xi}{|r|} \nu(x)\right)-C_{2} \sin \left(\frac{\xi}{|r|} \nu(x)\right)\right] . \tag{3.34}
\end{align*}
$$

The dimensionless form of the velocity is (see e.g. [4])

$$
\begin{align*}
&\left.\Upsilon(\sigma)=\frac{V(\sigma)}{c_{A}}=\sqrt{\frac{1}{c_{A}}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right)\right.} L^{2} \sigma^{2}+2 A L \sigma+1\right] \\
& \times\left[C_{1} \cos \left(\frac{\xi}{|r|} \nu(\sigma)\right)-C_{2} \sin \left(\frac{\xi}{|r|} \nu(\sigma)\right)\right] \tag{3.35}
\end{align*}
$$

where

$$
\begin{equation*}
\nu(\sigma)=\tanh ^{-1}\left[\frac{c_{A}}{|r|}\left(A+\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) L \sigma\right)\right]-\tanh ^{-1}\left(\frac{c_{A}}{|r|} A\right) . \tag{3.36}
\end{equation*}
$$

3.2.2 Second method of finding an analytical solution

Now let us solve Eq. (2.30). It can be rewritten once more

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}+\frac{1}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} P}{\mathrm{~d} x}+\frac{\omega^{2}}{c_{0}^{2}} P=0 . \tag{3.37}
\end{equation*}
$$

Using Eqs. (3.1)-(3.7) the above equation can be written as

$$
\begin{equation*}
\frac{1}{c_{0}^{2}} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} \eta^{2}}+\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{c_{0}}\right) \frac{\mathrm{d} P}{\mathrm{~d} \eta}+\frac{1}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} \frac{1}{c_{0}} \frac{\mathrm{~d} P}{\mathrm{~d} \eta}+\frac{\omega^{2}}{c_{0}^{2}} P=0 \tag{3.38}
\end{equation*}
$$

From Eq. (3.22) can be derived

$$
\begin{equation*}
\frac{\mathrm{d} T_{0}}{\mathrm{~d} x}=\frac{1}{\varkappa R} \frac{\mathrm{~d} c_{0}^{2}}{\mathrm{~d} x} . \tag{3.39}
\end{equation*}
$$

Multiplying Eq. (3.39) by $1 / T_{0}$ leads to

$$
\begin{equation*}
\frac{1}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}=\frac{2 c_{0}}{c_{0}^{2}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \tag{3.40}
\end{equation*}
$$

So, Eq. (3.37) can be modified as follows

$$
\begin{equation*}
\frac{1}{c_{0}^{2}} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} \eta^{2}}-\frac{1}{c_{0}^{2}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} P}{\mathrm{~d} \eta}+\frac{2 c_{0}}{c_{0}^{3}} \frac{\mathrm{~d} c_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} P}{\mathrm{~d} \eta}+\frac{\omega^{2}}{c_{0}^{2}} P=0, \tag{3.41}
\end{equation*}
$$

and after rearranging and reducing it becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} \eta^{2}}+\frac{\mathrm{d} c_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} P}{\mathrm{~d} \eta}+\omega^{2} P=0 \tag{3.42}
\end{equation*}
$$

In order to solve Eq. (3.42) as an ordinary differential equation with constant coefficients, it is necessary take into account that $\mathrm{d} c_{0} / \mathrm{d} x=$ const. Let this constant be q_{1}. Thus, c_{0} has the form

$$
\begin{equation*}
c_{0}(x)=q_{1} x+q_{2}, \tag{3.43}
\end{equation*}
$$

where q_{1} and q_{2} are integration constants and $q_{2} \geq 0$.
By choosing $q_{2}=c_{A}$ and denoting $q 1 / q 2=q$ the form is

$$
\begin{equation*}
c_{0}(x)=c_{A}(q x+1) . \tag{3.44}
\end{equation*}
$$

According to Eq. (3.22), function $T_{0}(x)$ is equal to

$$
\begin{equation*}
T_{0}(x)=T_{A}(q x+1)^{2}, \tag{3.45}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{A}=\frac{c_{A}^{2}}{\varkappa R} . \tag{3.46}
\end{equation*}
$$

Using expressions (2.36) the dimensionless form of temperature-inhomogeneous region T_{0} (see e.g. [4])

$$
\begin{equation*}
\Xi(\sigma)=\frac{T_{0}(\sigma)}{T_{A}}=(q L \sigma+1)^{2} . \tag{3.47}
\end{equation*}
$$

By choosing different values of constant q and letting $L=1 \mathrm{~m}$, it is possible to see exemplary solutions for temperature Ξ among many instances.

Fig. 3 Dimensionless temperature function $\Xi(\sigma)$ for different coefficients of Eq. (3.47).
To solve Eq. (3.42) let us substitute the expression of sound velocity (3.44). Then Eq. (3.42) takes the form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} \eta^{2}}+c_{A} q \frac{\mathrm{~d} P}{\mathrm{~d} \eta}+\omega^{2} P=0 \tag{3.48}
\end{equation*}
$$

The solution of the above equation can be found through the characteristic equation of an appropriate equation.

$$
\begin{equation*}
\lambda^{2}+c_{A} q \lambda+\omega^{2}=0 \tag{3.49}
\end{equation*}
$$

The discriminant of Eq. (3.49) is

$$
\begin{equation*}
\Delta=c_{A}^{2} q^{2}-4 \omega^{2} \tag{3.50}
\end{equation*}
$$

There are different possible solutions according to the sign of the discriminant. The solutions are represented below in the table, where C_{1} and C_{2} are constants.

$\Delta>0$	$\Delta=0$	$\Delta<0$
$\lambda_{1,2}=\frac{-c_{A} q \pm \sqrt{\Delta}}{2}$	$\lambda_{1}=\lambda_{2}=-\frac{1}{2} c_{A} q$	$\lambda_{1,2}=\frac{-c_{A} q \pm \mathrm{i} \sqrt{\Delta}}{2}$
$P(\eta)=C_{1} e^{\left(-\frac{1}{2} c_{A} q+\frac{1}{2} \sqrt{\Delta}\right) \eta}$	$P(\eta)=e^{-\frac{1}{2} c_{A} q \eta}$	$P(\eta)=e^{-\frac{1}{2} c_{A} q \eta}\left[C_{1} \cos \left(\frac{1}{2} \sqrt{\Delta} \eta\right)\right.$
$+C_{2} e^{\left(-\frac{1}{2} c_{A} q-\frac{1}{2} \sqrt{\Delta}\right) \eta}$	$\times\left[C_{1}+C_{2} \eta\right]$	$\left.+C_{2} \sin \left(\frac{1}{2} \sqrt{\Delta} \eta\right)\right]$

Tab. 1 The solution of Eq. (3.48).

According to Eqs. (3.3) and (3.44) the variable η can be written as

$$
\begin{equation*}
\eta=\int_{0}^{x} \frac{1}{c_{0}\left(x_{1}\right)} \mathrm{d} x_{1}=\int_{0}^{x} \frac{1}{c_{A}\left(q x_{1}+1\right)} \mathrm{d} x_{1} \tag{3.51}
\end{equation*}
$$

Notice that x_{1} cannot be equal to $-1 / q$.
After integration the variable η can be written as

$$
\begin{equation*}
\eta=\left.\frac{\ln \left(q x_{1}+1\right)}{c_{A} q}\right|_{0} ^{x}=\frac{1}{c_{A} q} \ln (q x+1) \tag{3.52}
\end{equation*}
$$

Now it is possible to write the solution of Eq. (2.30) according to the discriminant of Eq. (3.49)

- If $\Delta>0$, an evanescent wave is not considered.
- If $\Delta=0$,

$$
\begin{equation*}
P(x)=\frac{1}{\sqrt{q x+1}}\left[C_{1}+C_{2} \ln (q x+1)\right], \tag{3.53}
\end{equation*}
$$

where C_{1} and C_{2} are integration constants. According to Eqs. (2.36) and (3.21) the dimensionless form of the pressure is (see e.g. [4])

$$
\begin{equation*}
\Phi(\sigma)=\frac{1}{\sqrt{q L \sigma+1}}\left[C_{1}+C_{2} \ln (q L \sigma+1)\right] \tag{3.54}
\end{equation*}
$$

where C_{1} and C_{2} are new constants.

- If $\Delta<0$,

$$
\begin{align*}
& P(x)=\frac{1}{\sqrt{q x+1}}\left[C_{1} \cos \left(\sqrt{\frac{1}{4}-\frac{\omega^{2}}{c_{A}^{2} q^{2}}} \ln (q x+1)\right)\right. \\
& \left.+C_{2} \sin \left(\sqrt{\frac{1}{4}-\frac{\omega^{2}}{c_{A}^{2} q^{2}}} \ln (q x+1)\right)\right] \tag{3.55}
\end{align*}
$$

where C_{1} and C_{2} are integration constants. The dimensionless form of this solution is (see e.g. [4])

$$
\begin{align*}
\Phi(\sigma)=\frac{1}{\sqrt{q L \sigma+1}}\left[C _ { 1 } \operatorname { c o s } \left(\sqrt{\frac{1}{4}-\frac{\omega^{2}}{c_{A}^{2} q^{2}}}\right.\right. & \ln (q L \sigma+1)) \\
& \left.+C_{2} \sin \left(\sqrt{\frac{1}{4}-\frac{\omega^{2}}{c_{A}^{2} q^{2}}} \ln (q L \sigma+1)\right)\right] \tag{3.56}
\end{align*}
$$

where C_{1} and C_{2} are new constants.

3.2.3 Third method of finding an analytical solution

There is one more possible way to solve Eq. (2.28). Let us start with multiplying this equation by c_{0}^{2}

$$
\begin{equation*}
\frac{\partial^{2} p^{\prime}}{\partial t^{2}}-\frac{c_{0}^{2}}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} \frac{\partial p^{\prime}}{\partial x}-c_{0}^{2} \frac{\partial^{2} p^{\prime}}{\partial x^{2}}=0 . \tag{3.57}
\end{equation*}
$$

With reference to the following expression

$$
\begin{equation*}
\frac{c_{0}^{2}}{T_{0}} \frac{\partial}{\partial x}\left(T_{0} \frac{\partial p^{\prime}}{\partial x}\right)=\frac{c_{0}^{2}}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} \frac{\partial p^{\prime}}{\partial x}+c_{0}^{2} \frac{\partial^{2} p^{\prime}}{\partial x^{2}}, \tag{3.58}
\end{equation*}
$$

Eq. (3.57) can be written as (see e.g. [6])

$$
\begin{equation*}
\frac{\partial^{2} p^{\prime}}{\partial t^{2}}-\frac{c_{0}^{2}}{T_{0}} \frac{\partial}{\partial x}\left(T_{0} \frac{\partial p^{\prime}}{\partial x}\right)=0 . \tag{3.59}
\end{equation*}
$$

Now let us substitute a new function $F(x, t)$ instead of the pressure

$$
\begin{equation*}
p^{\prime}(x, t)=F(x, t) / \sqrt{T_{0}(x)} . \tag{3.60}
\end{equation*}
$$

Equation (3.59) takes the form

$$
\begin{equation*}
\frac{\partial^{2}\left(F / \sqrt{T_{0}}\right)}{\partial t^{2}}-\frac{c_{0}^{2}}{T_{0}} \frac{\partial}{\partial x}\left(T_{0} \frac{\partial\left(F / \sqrt{T_{0}}\right)}{\partial x}\right)=0 . \tag{3.61}
\end{equation*}
$$

Applying all simplifications, the above equation takes the form

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x^{2}}-\frac{1}{c_{0}^{2}} \frac{\partial^{2} F}{\partial t^{2}}=\frac{1}{\sqrt{T_{0}}} \frac{\mathrm{~d}^{2} \sqrt{T_{0}}}{\mathrm{~d} x^{2}} F . \tag{3.62}
\end{equation*}
$$

Let us remove from Eq. (3.62) derivatives dependent on t . The function F can be represented as $F=F(x, t)=\hat{F}(x) e^{-\mathrm{j} \omega t}$ for this purpose. After substitution and rearranging the resulting equation is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \hat{F}}{\mathrm{~d} x^{2}}=\left(\frac{1}{\sqrt{T_{0}}} \frac{\mathrm{~d}^{2} \sqrt{T_{0}}}{\mathrm{~d} x^{2}}-\frac{\omega^{2}}{c_{0}^{2}}\right) \hat{F} \tag{3.63}
\end{equation*}
$$

Concerning Eq. (3.22) and the right part in brackets of the equation above, which is a constant d, it is possible to derive the following equation

$$
\begin{equation*}
\frac{1}{c_{0}} \frac{\mathrm{~d}^{2} c_{0}}{\mathrm{~d} x^{2}}-\frac{\omega^{2}}{c_{0}^{2}}=d \tag{3.64}
\end{equation*}
$$

This is a nonlinear second-order ordinary differential equation, that can be solved by an appropriate numerical method, but unfortunately its analytical solution is not known and for this reason Eq. (2.28) cannot be solved analytically.

3.3 Finding analytical solutions for known temperature distributions

Let us write Eq. (3.37) once more

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}+\frac{1}{T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} P}{\mathrm{~d} x}+\frac{\omega^{2}}{c_{0}^{2}} P=0 . \tag{3.65}
\end{equation*}
$$

According to the transformations (3.1) and (3.7) it is possible to express the following derivatives

$$
\begin{gather*}
\frac{\mathrm{d} P}{\mathrm{~d} x}=\frac{\mathrm{d} P}{\mathrm{~d} T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}, \tag{3.66}\\
\frac{\mathrm{~d}^{2} P}{\mathrm{~d} x^{2}}=\left(\frac{\mathrm{d} T_{0}}{\mathrm{~d} x}\right)^{2} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} T_{0}^{2}}+\frac{\mathrm{d}^{2} T_{0}}{\mathrm{~d} x^{2}} \frac{\mathrm{~d} P}{\mathrm{~d} T_{0}} . \tag{3.67}
\end{gather*}
$$

Substituting expressions (3.66) and (3.67) into Eq. (3.65), using the equality $c_{0}^{2}=$ $\varkappa R T_{0}$ and rearranging the terms leads to the equation

$$
\begin{equation*}
\left(\frac{\mathrm{d} T_{0}}{\mathrm{~d} x}\right)^{2} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} T_{0}^{2}}+\left[\frac{1}{T_{0}}\left(\frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}\right)^{2}+\frac{\mathrm{d}^{2} T_{0}}{\mathrm{~d} x^{2}}\right] \frac{\mathrm{d} P}{\mathrm{~d} T_{0}}+\frac{\omega^{2}}{\varkappa R} \frac{P}{T_{0}}=0 . \tag{3.68}
\end{equation*}
$$

Keeping in mind the equality

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(T_{0} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}\right)=\frac{\mathrm{d} T_{0}}{\mathrm{~d} x} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}+T_{0} \frac{\mathrm{~d}^{2} T_{0}}{\mathrm{~d} x^{2}}=\left(\frac{\mathrm{d} T_{0}}{\mathrm{~d} x}\right)^{2}+T_{0} \frac{\mathrm{~d}^{2} T_{0}}{\mathrm{~d} x^{2}} \tag{3.69}
\end{equation*}
$$

Eq. (3.68) can be written as (see e.g. [3])

$$
\begin{equation*}
\left(\frac{\mathrm{d} T_{0}}{\mathrm{~d} x}\right)^{2} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} T_{0}^{2}}+\frac{1}{T_{0}} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(T_{0} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}\right) \frac{\mathrm{d} P}{\mathrm{~d} T_{0}}+\frac{\omega^{2}}{\varkappa R} \frac{P}{T_{0}}=0 \tag{3.70}
\end{equation*}
$$

3.3.1 Linear temperature distribution

In this section an acoustic pressure of a duct with a linear temperature distribution is studied. The linear temperature distribution can be given by the expression (see e.g. [3])

$$
\begin{equation*}
T_{0}(x)=T_{A}(A x+1), \tag{3.71}
\end{equation*}
$$

where A is constant.
The dimensionless form of a temperature function Ξ is according to Eq. (2.36) (see e.g. [4])

$$
\begin{equation*}
\Xi(\sigma)=\frac{T_{0}(\sigma)}{T_{A}}=A L \sigma+1 \tag{3.72}
\end{equation*}
$$

Some dimensionless linear temperature distributions are made possible by choosing different values of constant A and letting $L=1 \mathrm{~m}$ are shown in Fig. 4.

Fig. 4 Some possible linear dimensionless temperature distributions Ξ.
As derivatives of the temperature function (3.71) are

$$
\begin{equation*}
\frac{\mathrm{d} T_{0}}{\mathrm{~d} x}=T_{A} A \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left(T_{0} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(T_{A}^{2} A^{2} x+T_{A}^{2} A\right)=T_{A}^{2} A^{2}, \tag{3.73}
\end{equation*}
$$

then multiplying Eq. (3.70) by $1 / T_{A}^{2} A^{2}$ and substituting the above derivatives into this equation obtains the following equation (see e.g. [3])

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} T_{0}^{2}}+\frac{1}{T_{0}} \frac{\mathrm{~d} P}{\mathrm{~d} T_{0}}+\frac{\omega^{2} /\left(T_{A}^{2} A^{2}\right)}{\varkappa R} \frac{P}{T_{0}}=0 . \tag{3.74}
\end{equation*}
$$

To simplify Eq. (3.74) a new independent variable s is introduced

$$
\begin{equation*}
s^{2}=a T_{0}, \tag{3.75}
\end{equation*}
$$

where the constant a is given by

$$
\begin{equation*}
a=\frac{4 \omega^{2}}{T_{A}^{2} A^{2} \varkappa R} . \tag{3.76}
\end{equation*}
$$

It is necessary to know the first and the second derivatives of a new variable s with respect to T_{0}

$$
\begin{equation*}
2 s \mathrm{~d} s=a \mathrm{~d} T_{0} \quad \Rightarrow \quad \frac{\mathrm{~d} s}{\mathrm{~d} T_{0}}=\frac{a}{2 s} \tag{3.77}
\end{equation*}
$$

$$
\begin{equation*}
2\left(\frac{\mathrm{~d} s}{\mathrm{~d} T_{0}}\right)^{2}+2 s \frac{\mathrm{~d}^{2} s}{\mathrm{~d} T_{0}^{2}}=0 \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} s}{\mathrm{~d} T_{0}^{2}}=-\frac{a^{2}}{4 s^{3}} \tag{3.78}
\end{equation*}
$$

According to transformation of derivatives the derivatives of Eq. (3.74) then

$$
\begin{gather*}
\frac{\mathrm{d} P}{\mathrm{~d} T_{0}}=\frac{\mathrm{d} P}{\mathrm{~d} T_{0}} \frac{\mathrm{~d} s}{\mathrm{~d} T_{0}}=\frac{a}{2 s} \frac{\mathrm{~d} P}{\mathrm{~d} T_{0}}, \tag{3.79}\\
\frac{\mathrm{~d}^{2} P}{\mathrm{~d} T_{0}^{2}}=\left(\frac{\mathrm{d} s}{\mathrm{~d} T_{0}}\right)^{2} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} s^{2}}+\frac{\mathrm{d}^{2} s}{\mathrm{~d} T_{0}^{2}} \frac{\mathrm{~d} P}{\mathrm{~d} s}=\frac{a^{2}}{4 s^{2}} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} s^{2}}-\frac{a^{2}}{4 s^{3}} \frac{\mathrm{~d} P}{\mathrm{~d} s}, \tag{3.80}
\end{gather*}
$$

and Eq. (3.74) transforms to Eq. (3.83). Some steps of transforming are included

$$
\begin{gather*}
\frac{a^{2}}{4 s^{2}} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} s^{2}}-\left(\frac{a^{2}}{4 s^{3}}-\frac{a^{2}}{2 s^{3}}\right) \frac{\mathrm{d} P}{\mathrm{~d} s}+\frac{a^{2}}{4 s^{2}} P=0, \tag{3.81}\\
\frac{a^{2}}{4 s^{2}} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} s^{2}}+\frac{a^{2}}{4 s^{3}} \frac{\mathrm{~d} P}{\mathrm{~d} s}+\frac{a^{2}}{4 s^{2}} P=0 \tag{3.82}
\end{gather*}
$$

By multiplying Eq. (3.82) by $4 s^{2} / a^{2}$ the final equation after the transformation is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} s^{2}}+\frac{1}{s} \frac{\mathrm{~d} P}{\mathrm{~d} s}+P=0 \tag{3.83}
\end{equation*}
$$

Equation (3.83) is the zeroth order Bessel equation. The solution to the equation is well known and given by

$$
\begin{equation*}
P(s)=C_{1} \mathrm{~J}_{0}(s)+C_{2} \mathrm{Y}_{0}(s) \tag{3.84}
\end{equation*}
$$

where C_{1} and C_{2} are complex integration constants, J_{0} and Y_{0} are the Bessel and Neumann functions of the order zero.

Let us express variable s

$$
\begin{equation*}
s=\sqrt{a T_{0}}=\sqrt{\frac{4 \omega^{2}}{T_{A}^{2} A^{2} \varkappa R}} \sqrt{T_{0}}=\frac{\omega}{b} \sqrt{T_{0}}, \tag{3.85}
\end{equation*}
$$

where

$$
\begin{equation*}
b=\frac{T_{A}|A|}{2} \sqrt{\varkappa R} \tag{3.86}
\end{equation*}
$$

Then acoustic pressure can be rewritten as

$$
\begin{equation*}
P\left(T_{0}\right)=C_{1} \mathrm{~J}_{0}\left(\frac{\omega}{b} \sqrt{T_{0}}\right)+C_{2} \mathrm{Y}_{0}\left(\frac{\omega}{b} \sqrt{T_{0}}\right) \tag{3.87}
\end{equation*}
$$

Let us substitute temperature distribution (3.71)

$$
\begin{equation*}
P(x)=C_{1} \mathrm{~J}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}(A x+1)}\right)+C_{2} \mathrm{Y}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}(A x+1)}\right) . \tag{3.88}
\end{equation*}
$$

The dimensionless form of the pressure is (see e.g. [4])

$$
\begin{equation*}
\Phi(\sigma)=C_{1} \mathrm{~J}_{0}(B \sqrt{A L \sigma+1})+C_{2} \mathrm{Y}_{0}(B \sqrt{A L \sigma+1}) \tag{3.89}
\end{equation*}
$$

where C_{1}, C_{2} are new constants, $B=\left(\omega \sqrt{T_{A}}\right) / b$.

3.3.2 Exponential temperature distribution

This section investigates the acoustic pressure of a duct with an exponential temperature distribution that is given by the expression (see e.g. [3])

$$
\begin{equation*}
T_{0}(x)=T_{A} e^{-\gamma x}, \tag{3.90}
\end{equation*}
$$

where T_{A} and γ are constants.
The dimensionless form Ξ of the temperature-inhomogeneous region T_{0} is (see e.g. [4])

$$
\begin{equation*}
\Xi(\sigma)=\frac{T_{0}(\sigma)}{T_{A}}=e^{-\gamma L \sigma} . \tag{3.91}
\end{equation*}
$$

Some dimensionless exponential temperature distributions made possible by choosing different values of constant γ and letting $L=1 \mathrm{~m}$ are shown in Fig. 5 .

Fig. 5 Some possible exponential dimensionless temperature distributions Ξ.
Let us find derivatives to substitute into Eq. (3.70)

$$
\begin{equation*}
\frac{\mathrm{d} T_{0}}{\mathrm{~d} x}=-T_{A} \gamma e^{-\gamma x} \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left(T_{0} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(-T_{A}^{2} \gamma e^{-2 \gamma x}\right)=2 T_{A}^{2} \gamma^{2} e^{-2 \gamma x} . \tag{3.9}
\end{equation*}
$$

Substituting into Eq. (3.70) and reducing gives the equation

$$
\begin{equation*}
\left(T_{A} \gamma e^{-\gamma x}\right)^{2} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} T_{0}^{2}}+2 T_{A} \gamma^{2} e^{-\gamma x} \frac{\mathrm{~d} P}{\mathrm{~d} T_{0}}+\frac{\omega^{2}}{\varkappa R} \frac{P}{T_{A} e^{-\gamma x}}=0 . \tag{3.93}
\end{equation*}
$$

Multiplying Eq. (3.93) by $1 / \gamma^{2}$

$$
\begin{equation*}
\left(T_{A} e^{-\gamma x}\right)^{2} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} T_{0}^{2}}+2 T_{A} e^{-\gamma x} \frac{\mathrm{~d} P}{\mathrm{~d} T_{0}}+\frac{\omega^{2}}{\varkappa R \gamma^{2}} \frac{P}{T_{A} e^{-\gamma x}}=0 \tag{3.94}
\end{equation*}
$$

and using backward substitition $T_{A} e^{-\gamma x}=T_{0}$ leads to the equation (see e.g. [3])

$$
\begin{equation*}
T_{0}^{2} \frac{\mathrm{~d}^{2} P}{\mathrm{~d} T_{0}^{2}}+2 T_{0} \frac{\mathrm{~d} P}{\mathrm{~d} T_{0}}+\frac{\omega^{2}}{\varkappa R \gamma^{2}} \frac{P}{T_{0}}=0 . \tag{3.95}
\end{equation*}
$$

To simplify the previous equation two new variables w and z are introduced

$$
\begin{equation*}
w=P \sqrt{T_{0}} \quad \text { and } \quad z^{2}=\varpi \frac{1}{T_{0}} \tag{3.96}
\end{equation*}
$$

where constant ϖ is

$$
\begin{equation*}
\varpi=\frac{4 \omega^{2}}{\varkappa R \gamma^{2}} \tag{3.97}
\end{equation*}
$$

1. Let us start to work with variable w in the following three steps:

- expressing the derivatives to substitute into Eq. (3.95)

$$
\begin{gather*}
\frac{\mathrm{d} P}{\mathrm{~d} T_{0}}=\frac{\mathrm{d}}{\mathrm{~d} T_{0}}\left(\frac{w}{T_{0}^{1 / 2}}\right)=\frac{1}{T_{0}^{1 / 2}} \frac{\mathrm{~d} w}{\mathrm{~d} T_{0}}-\frac{1}{2} \frac{w}{T_{0}^{3 / 2}} . \tag{3.98}\\
\frac{\mathrm{d}^{2} P}{\mathrm{~d} T_{0}^{2}}=-\frac{1}{2} \frac{1}{T_{0}^{3 / 2}} \frac{\mathrm{~d} w}{\mathrm{~d} T_{0}}+\frac{1}{T_{0}^{1 / 2}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} T_{0}^{2}}-\frac{1}{2}\left[\frac{T_{0}^{3 / 2} \mathrm{~d} w / \mathrm{d} T_{0}-3 / 2 w T_{0}^{1 / 2}}{T_{0}^{3}}\right] \\
=-\frac{1}{T_{0}^{3 / 2}} \frac{\mathrm{~d} w}{\mathrm{~d} T_{0}}+\frac{1}{T_{0}^{1 / 2}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} T_{0}^{2}}+\frac{3}{4} \frac{w}{T_{0}^{5 / 2}} . \tag{3.99}
\end{gather*}
$$

- substitution into Eq. (3.95)

$$
\begin{align*}
T_{0}^{2}\left[-\frac{1}{T_{0}^{3 / 2}} \frac{\mathrm{~d} w}{\mathrm{~d} T_{0}}+\frac{1}{T_{0}^{1 / 2}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} T_{0}^{2}}+\frac{3}{4} \frac{w}{T_{0}^{5 / 2}}\right] & +2 T_{0}\left[\frac{1}{T_{0}^{1 / 2}} \frac{\mathrm{~d} w}{\mathrm{~d} T_{0}}-\frac{1}{2} \frac{w}{T_{0}^{3 / 2}}\right] \\
& +\frac{\omega^{2}}{\varkappa R \gamma^{2}} \frac{w}{T_{0}^{3 / 2}}=0 \tag{3.100}
\end{align*}
$$

- multiplying and rearranging terms in the previous equation gives the equation below

$$
\begin{equation*}
T_{0}^{3 / 2} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} T_{0}^{2}}+T_{0}^{1 / 2} \frac{\mathrm{~d} w}{\mathrm{~d} T_{0}}-\frac{1}{4} \frac{w}{T_{0}^{1 / 2}}+\frac{\omega^{2}}{\varkappa R \gamma^{2}} \frac{w}{T_{0}^{3 / 2}}=0 \tag{3.101}
\end{equation*}
$$

2. Now let us work with the second variable z :

- finding the first and the second derivatives of a new variable z with respect to the temperature T_{0}

$$
\begin{gather*}
2 z \mathrm{~d} z=-\varpi \frac{1}{T_{0}^{2}} \mathrm{~d} T_{0} \Rightarrow \frac{\mathrm{~d} z}{\mathrm{~d} T_{0}}=-\frac{\varpi}{2 z} \frac{1}{T_{0}^{2}} \tag{3.102}\\
\frac{\mathrm{~d}^{2} z}{\mathrm{~d} T_{0}^{2}}=-\frac{\varpi}{2}\left(-\frac{1}{z^{2}} \frac{1}{T_{0}^{2}} \frac{\mathrm{~d} z}{\mathrm{~d} T_{0}}-2 \frac{1}{T_{0}^{3}} \frac{1}{z}\right)=\frac{\varpi}{2}\left(2 \frac{1}{z} \frac{1}{T_{0}^{3}}-\frac{\varpi}{2 z^{3}} \frac{1}{T_{0}^{4}}\right) \\
= \tag{3.103}\\
\varpi \frac{\varpi}{z} \frac{1}{T_{0}^{3}}-\frac{\varpi^{2}}{4 z^{3}} \frac{1}{T_{0}^{4}} \frac{\mathrm{~d} z}{\mathrm{~d} T_{0}}
\end{gather*}
$$

- according to the transformation of derivatives the derivatives of Eq. (3.101) then

$$
\begin{gather*}
\frac{\mathrm{d} w}{\mathrm{~d} T_{0}}=\frac{\mathrm{d} w}{\mathrm{~d} z} \frac{\mathrm{~d} z}{\mathrm{~d} T_{0}}=-\frac{\varpi}{2 z} \frac{1}{T_{0}^{2}} \frac{\mathrm{~d} w}{\mathrm{~d} z} \tag{3.104}\\
\frac{\mathrm{~d}^{2} w}{\mathrm{~d} T_{0}^{2}}=\left(\frac{\mathrm{d} z}{\mathrm{~d} T_{0}}\right)^{2} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+\frac{\mathrm{d}^{2} z}{\mathrm{~d} T_{0}^{2}} \frac{\mathrm{~d} w}{\mathrm{~d} z}=\frac{\varpi^{2}}{4 z^{2}} \frac{1}{T_{0}^{4}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+\left(\frac{\varpi}{z} \frac{1}{T_{0}^{3}}-\frac{\varpi^{2}}{4 z^{3}} \frac{1}{T_{0}^{4}}\right) \frac{\mathrm{d} w}{\mathrm{~d} z} \tag{3.105}
\end{gather*}
$$

- substituting the above derivatives into Eq. (3.101)

$$
\begin{align*}
T_{0}^{3 / 2}\left[\frac{\varpi^{2}}{4 z^{2}} \frac{1}{T_{0}^{4}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+\left(\frac{\varpi}{z} \frac{1}{T_{0}^{3}}-\frac{\varpi^{2}}{4 z^{3}} \frac{1}{T_{0}^{4}}\right) \frac{\mathrm{d} w}{\mathrm{~d} z}\right] & -T_{0}^{1 / 2} \frac{\varpi}{2 z} \frac{1}{T_{0}^{2}} \frac{\mathrm{~d} w}{\mathrm{~d} z}-\frac{1}{4} \frac{w}{T_{0}^{1 / 2}} \\
& +\frac{\varpi}{4} \frac{w}{T_{0}^{3 / 2}}=0 . \tag{3.106}
\end{align*}
$$

- reducing and rearranging of terms

$$
\begin{equation*}
\frac{\varpi^{2}}{4 z^{2}} \frac{1}{T_{0}^{5 / 2}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+\left(\frac{\varpi}{2 z} \frac{1}{T_{0}^{3 / 2}}-\frac{\varpi^{2}}{4 z^{3}} \frac{1}{T_{0}^{5 / 2}}\right) \frac{\mathrm{d} w}{\mathrm{~d} z}-\frac{1}{4} \frac{w}{T_{0}^{1 / 2}}+\frac{\varpi}{4} \frac{w}{T_{0}^{3 / 2}}=0 . \tag{3.107}
\end{equation*}
$$

- from Eqs. (3.96) it follows that $T_{0}=\varpi / z^{2}$, substitution of this equality into Eq. (3.107)

$$
\begin{equation*}
\frac{\varpi^{2}}{4 z^{2}} \frac{z^{5}}{\varpi^{5 / 2}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+\left(\frac{\varpi}{2 z} \frac{z^{3}}{\varpi^{3 / 2}}-\frac{\varpi^{2}}{4 z^{3}} \frac{z^{5}}{\varpi^{5 / 2}}\right) \frac{\mathrm{d} w}{\mathrm{~d} z}-\frac{1}{4} \frac{w z}{\varpi^{1 / 2}}+\frac{\varpi}{4} \frac{w z^{3}}{\varpi^{3 / 2}}=0 . \tag{3.108}
\end{equation*}
$$

- after some reductions and rearranging some terms

$$
\begin{equation*}
\frac{z^{3}}{4 \varpi^{1 / 2}} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+\frac{1}{4} \frac{z^{2}}{\varpi^{1 / 2}} \frac{\mathrm{~d} w}{\mathrm{~d} z}-\frac{1}{4} \frac{w z}{\varpi^{1 / 2}}+\frac{1}{4} \frac{w z^{3}}{\varpi^{1 / 2}}=0 . \tag{3.109}
\end{equation*}
$$

- multiplying the above equation by $4 \varpi^{1 / 2} / z^{3}$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}+\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}+\left(1-\frac{1}{z^{2}}\right) w=0 \tag{3.110}
\end{equation*}
$$

Equation (3.110) is the first order Bessel differential equation. The solution is given as

$$
\begin{equation*}
w(z)=C_{1} \mathrm{~J}_{1}(z)+C_{2} \mathrm{Y}_{1}(z), \tag{3.111}
\end{equation*}
$$

where C_{1} and C_{2} are integration complex constants and J_{1} and Y_{1} are the Bessel and Neumann functions of the first order. Let us express variable z

$$
\begin{equation*}
z=\sqrt{\frac{\varpi}{T_{0}}}=\sqrt{\frac{4 \omega^{2}}{\varkappa R \gamma^{2}}} \sqrt{\frac{1}{T_{0}}}=\omega \phi \frac{1}{\sqrt{T_{0}}}, \tag{3.112}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=\frac{2}{\sqrt{\varkappa R \gamma^{2}}} . \tag{3.113}
\end{equation*}
$$

So, the solution of Eq. (3.110) can be written in the form

$$
\begin{equation*}
w\left(T_{0}\right)=C_{1} \mathrm{~J}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{0}}}\right)+C_{2} \mathrm{Y}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{0}}}\right) . \tag{3.114}
\end{equation*}
$$

According to Eqs. (3.96) the acoustic pressure then is

$$
\begin{equation*}
P\left(T_{0}\right)=\frac{w\left(T_{0}\right)}{\sqrt{T_{0}}}=\frac{1}{\sqrt{T_{0}}}\left[C_{1} \mathrm{~J}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{0}}}\right)+C_{2} \mathrm{Y}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{0}}}\right)\right] . \tag{3.115}
\end{equation*}
$$

Let us substitute temperature distribution (3.90)

$$
\begin{equation*}
P(x)=\frac{1}{\sqrt{T_{A} e^{-\gamma x}}}\left[C_{1} \mathrm{~J}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma x}}}\right)+C_{2} \mathrm{Y}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma x}}}\right)\right] . \tag{3.116}
\end{equation*}
$$

The dimensionless form of the pressure is (see e.g. [4])

$$
\begin{equation*}
\Phi(\sigma)=\sqrt{e^{\gamma L \sigma}}\left[C_{1} \mathrm{~J}_{1}\left(B \sqrt{e^{\gamma L \sigma}}\right)+C_{2} \mathrm{Y}_{1}\left(B \sqrt{e^{\gamma L \sigma}}\right)\right] \tag{3.117}
\end{equation*}
$$

where C_{1}, C_{2} are new constants, $B=(\omega \phi) / \sqrt{T_{A}}$.

4 Transmission and reflection coefficients

This chapter deals with the calculation of transmission and reflection coefficients for exact analytical solutions derived in the previous chapter.

4.1 Sound velocity

The first exact analytical solution was derived for an acoustic velocity. Consider the reflection and transmission problem through the temperature-inhomogeneous region for an incident plane wave sketched in Fig. 6. The wave is partly reflected and partly transmitted (see e.g. [2]).

Fig. 6 Reflection and transmission of a sound velocity in a waveguide (see e.g. [2]).
It is essential to know the amplitudes V_{r} and V_{t} of the reflected and transmitted waves respectively and their integral constants.

In the region A can be written

$$
\begin{equation*}
V_{A}=V_{i} e^{\mathrm{j} k_{A} x}+V_{r} e^{-\mathrm{j} k_{A} x} \tag{4.1}
\end{equation*}
$$

where the quantities V_{i} and V_{r} are the complex velocity amplitudes of the incident and reflected waves, and

$$
\begin{equation*}
k_{A}=\frac{\omega}{c_{A}} \tag{4.2}
\end{equation*}
$$

In the temperature-inhomogeneous region the velocity amplitude is given by Eq. (3.34). Let us write it once more

$$
\begin{align*}
& V(x)=\sqrt{c_{0}(x)} F(x)=\sqrt{c_{A}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x^{2}+2 A x+1\right]} \\
& \times\left[C_{1} \cos \left(\frac{\xi}{|r|} \nu(x)\right)-C_{2} \sin \left(\frac{\xi}{|r|} \nu(x)\right)\right] \tag{4.3}
\end{align*}
$$

where

$$
\begin{equation*}
\nu(x)=\tanh ^{-1}\left[\frac{c_{A}}{|r|}\left(A+\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) x\right)\right]-\tanh ^{-1}\left(\frac{c_{A}}{|r|} A\right), \quad \xi^{2}=\omega^{2}-r^{2} \tag{4.4}
\end{equation*}
$$

In the region B can be written

$$
\begin{equation*}
V_{B}=V_{t} e^{\mathrm{j} k_{B}(x-L)} \tag{4.5}
\end{equation*}
$$

where V_{t} is the complex acoustic velocity amplitude of the transmitted wave and

$$
\begin{equation*}
c_{B}=\sqrt{\varkappa R T_{B}}, \quad(4.6 \mathrm{a}) \quad \quad k_{B}=\frac{\omega}{c_{B}} \tag{4.6b}
\end{equation*}
$$

The acoustic velocities must be the same on the interface of temperature-homogeneous and temperature-inhomogeneous regions. This is true for the both interfaces that have coordinates $x=0$ and $x=L$. Consequently, there are two conditions in the waveguide

1. condition

$$
\begin{equation*}
V_{A}(0)=V(0) \tag{4.7}
\end{equation*}
$$

2. condition

$$
\begin{equation*}
V_{B}(L)=V(L) \tag{4.8}
\end{equation*}
$$

But these conditions contain four unknown variables V_{r}, V_{t}, C_{1} and C_{2}. So, it is necessary to impose two more conditions.

From the equation of continuity (2.20) and Eq. (2.27) the following equation can be written

$$
\begin{equation*}
\frac{\partial p^{\prime}}{\partial t}+\rho_{0} c_{0}^{2} \frac{\partial v}{\partial x}=0 \tag{4.9}
\end{equation*}
$$

Substitution of the equalities (2.29) and (2.32) into Eq. (4.9)

$$
\begin{equation*}
P(x)=\frac{\rho_{0} c_{0}^{2}}{\mathrm{j} \omega} \frac{\mathrm{~d} V}{\mathrm{~d} x} \tag{4.10}
\end{equation*}
$$

Let us distinguish densities and velocities in temperature-homogeneous regions A and B

$$
\begin{array}{ll}
\rho_{0}(x=0)=\rho_{A}, & c_{0}(x=0)=\sqrt{\varkappa R T_{A}}=c_{A} \\
\rho_{0}(x=L)=\rho_{B}, & c_{0}(x=L)=\sqrt{\varkappa R T_{B}}=c_{B} \tag{4.12}
\end{array}
$$

From Eqs. (4.1), (4.5), (4.10), (4.11), (4.12) the acoustic pressures in regions A and B are

$$
\begin{gather*}
P_{A}=\frac{\rho_{A} c_{A}^{2}}{\mathrm{j} \omega} \mathrm{j} k_{A}\left(V_{i} \mathrm{e}^{\mathrm{j} k_{A} x}-V_{r} e^{-\mathrm{j} k_{A} x}\right) \tag{4.13}\\
P_{B}=\frac{\rho_{B} c_{B}^{2}}{\mathrm{j} \omega} \mathrm{j} k_{B} V_{t} e^{\mathrm{j} k_{B}(x-L)} \tag{4.14}
\end{gather*}
$$

The pressures also must be the same on the interface of temperature-homogeneous and temperature-inhomogeneous regions. For the interface at coordinate $x=0$ the following steps are introduced

$$
\begin{equation*}
\left.P_{A}\right|_{x=0}=\left.P(x)\right|_{x=0} \tag{4.15}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{\rho_{A} c_{A}^{2}}{\mathrm{j} \omega} \mathrm{j} k_{A}\left(V_{i} e^{\mathrm{j} k_{A} x}-V_{r} e^{-\mathrm{j} k_{A} x}\right)\right|_{x=0}=\left.\frac{\rho_{A} c_{A}^{2}}{\mathrm{j} \omega} \frac{\mathrm{~d} V}{\mathrm{~d} x}\right|_{x=0} \tag{4.16}
\end{equation*}
$$

After reducing the term $\rho_{A} c_{A}^{2} / \mathrm{j} \omega$ in Eq. (4.16) the left part $\mathrm{j} k_{A}\left(V_{i} e^{\mathrm{j} k_{A} x}-V_{r} e^{-\mathrm{j} k_{A} x}\right)$ then is the acoustic velocity derivative $\mathrm{d} V_{A} / \mathrm{d} x$. So,

$$
\begin{equation*}
\left.\frac{\mathrm{d} V_{A}}{\mathrm{~d} x}\right|_{x=0}=\mathrm{j} k_{A}\left(V_{i}-V_{r}\right)=\left.\frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x=0} . \tag{4.17}
\end{equation*}
$$

Similarly, the acoustic velocity derivative at coordinate $x=L$ is

$$
\begin{equation*}
\left.\frac{\mathrm{d} V_{B}}{\mathrm{~d} x}\right|_{x=L}=\mathrm{j} k_{B} V_{t}=\left.\frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x=L} . \tag{4.18}
\end{equation*}
$$

As a consequence, the acoustic velocity derivatives must be the same on the interface of temperature-homogeneous and temperature-inhomogeneous regions. For both interfaces at coordinates $x=0$ and $x=L$ the two following boundary conditions are defined
3. condition

$$
\begin{equation*}
\left.\frac{\mathrm{d} V_{A}}{\mathrm{~d} x}\right|_{x=0}=\left.\frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x=0} \tag{4.19}
\end{equation*}
$$

4. condition

$$
\begin{equation*}
\left.\frac{\mathrm{d} V_{B}}{\mathrm{~d} x}\right|_{x=L}=\left.\frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x=L} . \tag{4.20}
\end{equation*}
$$

Substituting Eqs. (4.1), (4.3), (4.5) into the four derived boundary conditions (4.7), (4.8), (4.19), (4.20) produces the following system of equations

$$
\begin{align*}
V_{i}+V_{r} & =C_{1} G_{1}, \tag{4.21}\\
V_{t} & =C_{1} H_{1}+C_{2} H_{2}, \tag{4.22}\\
\mathrm{j} k_{A}\left(V_{i}-V_{r}\right) & =C_{1} M_{1}+C_{2} M_{2}, \tag{4.23}\\
\mathrm{j} k_{B} V_{t} & =C_{1} N_{1}+C_{2} N_{2}, \tag{4.24}
\end{align*}
$$

where

$$
\begin{align*}
& G_{1}=\sqrt{c_{A}}, \quad \psi(L)=A+\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) L, \quad \xi=\sqrt{\omega^{2}-r^{2}}, \tag{4.25}\\
& \chi(L)=\sqrt{c_{A}\left[\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) L^{2}+2 A L+1\right]}, \tag{4.26}\\
& \nu(L)=\tanh ^{-1}\left[\frac{c_{A}}{|r|} \psi(L)\right]-\tanh ^{-1}\left(\frac{c_{A}}{|r|} A\right), \tag{4.27}\\
& H_{1}=\chi(L) \cos \left(\frac{\xi}{|r|} \nu(L)\right), \quad H_{2}=-\chi(L) \sin \left(\frac{\xi}{|r|} \nu(L)\right), \tag{4.28}\\
& M_{1}=\sqrt{c_{A}} A, \quad M_{2}=\frac{\xi}{\sqrt{c_{A}}}, \tag{4.29}\\
& \varrho(L)=\frac{\xi c_{A}\left(A^{2}-\frac{r^{2}}{c_{A}^{2}}\right) \chi(L)}{c_{A}^{2} \psi^{2}(L)-r^{2}}, \quad k(L)=\frac{c_{A} \psi(L)}{\chi(L)}, \tag{4.30}\\
& N_{1}=\varrho(L) \sin \left(\frac{\xi}{|r|} \nu(L)\right)+k(L) \cos \left(\frac{\xi}{|r|} \nu(L)\right), \tag{4.31}\\
& N_{2}=\varrho(L) \cos \left(\frac{\xi}{|r|} \nu(L)\right)-k(L) \sin \left(\frac{\xi}{|r|} \nu(L)\right) . \tag{4.32}
\end{align*}
$$

Solving the system of Eqs. (4.21)-(4.24) obtains

$$
\begin{align*}
C_{1} & =\frac{2 k_{A}\left(k_{B} H_{2}+\mathrm{j} N_{2}\right) V_{i}}{k_{A} k_{B} G_{1} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} G_{1} N_{2}+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]} \tag{4.33}\\
C_{2} & =-\frac{2 k_{A}\left(k_{B} H_{1}+\mathrm{j} N_{1}\right) V_{i}}{k_{A} k_{B} G_{1} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} G_{1} N_{2}+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]}, \tag{4.34}\\
V_{r} & =\frac{\left(k_{A} k_{B} G_{1} H_{2}-M_{1} N_{2}+M_{2} N_{1}+\mathrm{j}\left[k_{A} G_{1} N_{2}-k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]\right) V_{i}}{k_{A} k_{B} G_{1} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} G_{1} N_{2}+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]}, \tag{4.35}\\
V_{t} & =\frac{\mathrm{j} 2 k_{A}\left(H_{1} N_{2}-H_{2} N_{1}\right) V_{i}}{k_{A} k_{B} G_{1} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} G_{1} N_{2}+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]} . \tag{4.36}
\end{align*}
$$

As V_{i} is optional, the reflection coefficient $R^{(v)}$ and transmission coefficient $\operatorname{Tr}^{(v)}$ can be calculated on the basis of solutions of the system equations. The coefficients (see e.g. [2], [4]) are defined by

$$
\begin{equation*}
R^{(v)}=\frac{V_{r}}{V_{i}} \tag{4.37}
\end{equation*}
$$

and

$$
\begin{equation*}
T r^{(v)}=\frac{V_{t}}{V_{i}} \tag{4.38}
\end{equation*}
$$

By supposing values of air constants as $\varkappa=7 / 5$ and $R=287.058 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$, setting the characteristic length L to 1 m and choosing different values of constants A, r and velocity c_{A} it is possible to see a frequency dependence of the wave reflection and transmission coefficients of the exact analytical solutions given by Eq. (4.3). Here attention must be paid to one serious condition

$$
\begin{equation*}
\xi^{2}=\omega^{2}-r^{2} \geq 0 \tag{4.39}
\end{equation*}
$$

That is why the graphs start at point $\omega=|r|$.

Fig. 7 Dependence of modulii of reflection and transmission coefficients for $c_{A}=345 \mathrm{~ms}^{-1}$, $|r|=597.558 \mathrm{~s}^{-1}, A=1 \mathrm{~m}^{-1}$ in Eq. (4.3) on angular frequency.

Fig. 8 Dependence of modulii of reflection and transmission coefficients for $c_{A}=345 \mathrm{~ms}^{-1}$, $|r|=172.5 \mathrm{~s}^{-1}, A=-0.008 \mathrm{~m}^{-1}$ in Eq. (4.3) on angular frequency.

Fig. 9 Dependence of modulii of reflection and transmission coefficients for $c_{A}=345 \mathrm{~ms}^{-1}$, $|r|=301.39 \mathrm{~s}^{-1}, A=-0.662 \mathrm{~m}^{-1}$ in Eq. (4.3) on angular frequency.

Fig. 10 Dependence of modulii of reflection and transmission coefficients for $c_{A}=345 \mathrm{~ms}^{-1}$, $|r|=0.97 \mathrm{~s}^{-1}, A=0.328 \mathrm{~m}^{-1}$ in Eq. (4.3) on angular frequency.

4.2 Sound pressure

The following exact analytical solutions are derived for sound pressure.
Consider the reflection and transmission problem through the temperature-inhomogeneous region for an incident plane wave sketched in Fig. 11. The wave is partly reflected and partly transmitted as it was for sound velocity, but now the object of interest is sound pressure (see e.g. [2], [4]).

Fig. 11 Reflection and transmission of a sound pressure in a waveguide (see e.g. [2], [4]).
Now, it is necessary to know the amplitudes P_{r} and P_{t} of reflected and transmitted waves respectively and also their integral constants.

In the region A can be written

$$
\begin{equation*}
P_{A}=P_{i} e^{\mathrm{j} k_{A} x}+P_{r} e^{-\mathrm{j} k_{A} x} \tag{4.40}
\end{equation*}
$$

where the quantities P_{i} and P_{r} are the complex velocity amplitudes of the incident and reflected waves, and the same Eq. (4.2) is applied.

In the region B can be written

$$
\begin{equation*}
P_{B}=P_{t} e^{\mathrm{j} k_{B}(x-L)} \tag{4.41}
\end{equation*}
$$

where V_{t} is the complex velocity amplitude of the transmitted wave, and Eqs. (4.6) are true.

In the temperature-inhomogeneous region pressure amplitude is given by appropriate equalities, derived in the previous chapter, and all of these equalities are discussed below.

To calculate P_{r}, P_{t}, C_{1} and C_{2} it is necessary to deduce boundary conditions. These conditions can be imposed in a similar manner to boundary conditions of sound velocity.

From the linear form of the Euler equation (2.22) it follows that

$$
\begin{equation*}
\frac{\partial v}{\partial t}=-\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial x} . \tag{4.42}
\end{equation*}
$$

After substitution of equalities (2.29) and (2.32) into Eq. (4.42)

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(V(x) e^{-\mathrm{j} \omega t}\right)=-\frac{1}{\rho_{0}} \frac{\partial}{\partial x}\left(P(x) e^{-\mathrm{j} \omega t}\right) \tag{4.43}
\end{equation*}
$$

the amplitude of sound velocity then is

$$
\begin{equation*}
V(x)=\frac{1}{\mathrm{j} \rho_{0} \omega} \frac{\mathrm{~d} P}{\mathrm{~d} x} . \tag{4.44}
\end{equation*}
$$

From Eqs. (4.11), (4.12), (4.40), (4.41), (4.44) the acoustic velocities at regions A and B are

$$
\begin{gather*}
V_{A}=\frac{\mathrm{j} k_{A}}{\mathrm{j} \rho_{A} \omega}\left(P_{i} \mathrm{e}^{\mathrm{j} k_{A} x}-P_{r} e^{-\mathrm{j} k_{A} x}\right) \tag{4.45}\\
V_{B}=\frac{\mathrm{j} k_{B}}{\mathrm{j} \rho_{B} \omega} P_{t} \mathrm{e}^{\mathrm{j} k_{B}(x-L)} \tag{4.46}
\end{gather*}
$$

The velocities also must be the same on the interface of temperature-homogeneous and temperature-inhomogeneous regions. For an interface at coordinate $x=0$ the following steps are introduced

$$
\begin{gather*}
\left.V_{A}\right|_{x=0}=\left.V(x)\right|_{x=0} \tag{4.47}\\
\left.\frac{\mathrm{j} k_{A}}{\mathrm{j} \rho_{A} \omega}\left(P_{i} e^{\mathrm{j} k_{A} x}-P_{r} e^{-\mathrm{j} k_{A} x}\right)\right|_{x=0}=\left.\frac{1}{\mathrm{j} \rho_{A} \omega} \frac{\mathrm{~d} P}{\mathrm{~d} x}\right|_{x=0} . \tag{4.48}
\end{gather*}
$$

After reducing the term $1 / \mathrm{j} \rho_{A} \omega$ in Eq. (4.48) the left part $\mathrm{j} k_{A}\left(P_{i} e^{\mathrm{j} k_{A} x}-P_{r} e^{-\mathrm{j} k_{A} x}\right)$ is then an acoustic pressure derivative $\mathrm{d} P_{A} / \mathrm{d} x$. So

$$
\begin{equation*}
\left.\frac{\mathrm{d} P_{A}}{\mathrm{~d} x}\right|_{x=0}=\mathrm{j} k_{A}\left(P_{i}-P_{r}\right)=\left.\frac{\mathrm{d} P}{\mathrm{~d} x}\right|_{x=0} . \tag{4.49}
\end{equation*}
$$

Similarly, the acoustic pressure derivative at coordinate $x=L$ is

$$
\begin{equation*}
\left.\frac{\mathrm{d} P_{B}}{\mathrm{~d} x}\right|_{x=L}=\mathrm{j} k_{B} P_{t}=\left.\frac{\mathrm{d} P}{\mathrm{~d} x}\right|_{x=L} . \tag{4.50}
\end{equation*}
$$

Finally, the four boundary conditions for the rest analytical solutions can be introduced

1. condition

$$
\begin{equation*}
P_{A}(0)=P(0), \tag{4.51}
\end{equation*}
$$

2. condition

$$
\begin{equation*}
P_{B}(L)=P(L) \tag{4.52}
\end{equation*}
$$

3. condition

$$
\begin{equation*}
\left.\frac{\mathrm{d} P_{A}}{\mathrm{~d} x}\right|_{x=0}=\left.\frac{\mathrm{d} P}{\mathrm{~d} x}\right|_{x=0} \tag{4.53}
\end{equation*}
$$

4. condition

$$
\begin{equation*}
\left.\frac{\mathrm{d} P_{B}}{\mathrm{~d} x}\right|_{x=L}=\left.\frac{\mathrm{d} P}{\mathrm{~d} x}\right|_{x=L} . \tag{4.54}
\end{equation*}
$$

4.2.1 Second exact analytical solution

In the temperature-inhomogeneous region the pressure amplitude is given by Eqs. (3.53) and (3.55).

- $\Delta=c_{A}^{2} q^{2}-4 \omega^{2}=0$

Let us write Eq. (3.53) once more

$$
\begin{equation*}
P(x)=\frac{1}{\sqrt{q x+1}}\left[C_{1}+C_{2} \ln (q x+1)\right] . \tag{4.55}
\end{equation*}
$$

For this solution only one frequency can be found, that is why we are not interested in this solution.

- $\Delta=c_{A}^{2} q^{2}-4 \omega^{2}<0$

According to Eq. (4.2) the exact analytical solution (3.55) can be rewritten as

$$
\begin{align*}
& P(x)=\frac{1}{\sqrt{q x+1}}\left[C_{1} \cos \left(\sqrt{\frac{1}{4}-\frac{k_{A}^{2}}{q^{2}}} \ln (q x+1)\right)\right. \\
&\left.+C_{2} \sin \left(\sqrt{\frac{1}{4}-\frac{k_{A}^{2}}{q^{2}}} \ln (q x+1)\right)\right] \tag{4.56}
\end{align*}
$$

According to the system of Eqs. (4.51)-(4.54), the system of equations for the exact analytical solution (4.56) is then

$$
\begin{align*}
P_{i}+P_{r} & =C_{1}, \tag{4.57}\\
P_{t} & =C_{1} H_{1}+C_{2} H_{2}, \tag{4.58}\\
\mathrm{j} k_{A}\left(P_{i}-P_{r}\right) & =C_{1} M_{1}+C_{2} M_{2}, \tag{4.59}\\
\mathrm{j} k_{B} P_{t} & =C_{1} N_{1}+C_{2} N_{2}, \tag{4.60}
\end{align*}
$$

where

$$
\begin{align*}
& \chi(L)=\sqrt{\frac{1}{4}-\frac{k_{A}^{2}}{q^{2}}} \ln (q L+1), \tag{4.61}\\
& H_{1}=\frac{1}{\sqrt{q L+1}} \cos (\chi(L)), \quad H_{2}=\frac{1}{\sqrt{q L+1}} \sin (\chi(L)), \tag{4.62}\\
& M_{1}=-\frac{1}{2} q, \quad M_{2}=q \sqrt{\frac{1}{4}-\frac{k_{A}^{2}}{q^{2}}}, \tag{4.63}\\
& N_{1}=-q(q L+1)^{-\frac{3}{2}}\left[\frac{1}{2} \cos (\chi(L))+\sqrt{\frac{1}{4}-\frac{k_{A}^{2}}{q^{2}}} \sin (\chi(L))\right], \tag{4.64}\\
& N_{2}=-q(q L+1)^{-\frac{3}{2}}\left[\frac{1}{2} \sin (\chi(L))-\sqrt{\frac{1}{4}-\frac{k_{A}^{2}}{q^{2}}} \cos (\chi(L))\right] . \tag{4.65}
\end{align*}
$$

The solution of the system of Eqs. (4.57)-(4.60) is

$$
\begin{align*}
C_{1} & =\frac{2 k_{A}\left(k_{B} H_{2}+\mathrm{j} N_{2}\right) P_{i}}{k_{A} k_{B} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} N_{2}-k_{B}\left(H_{2} M_{1}-H_{1} M_{2}\right)\right]}, \tag{4.66}\\
C_{2} & =-\frac{2 k_{A}\left(k_{B} H_{1}+\mathrm{j} N_{1}\right) P_{i}}{k_{A} k_{B} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} N_{2}-k_{B}\left(H_{2} M_{1}-H_{1} M_{2}\right)\right]}, \tag{4.67}\\
P_{r} & =\frac{\left(k_{A} k_{B} H_{2}-M_{1} N_{2}+M_{2} N_{1}+\mathrm{j}\left[k_{A} N_{2}+k_{B}\left(H_{2} M_{1}-H_{1} M_{2}\right)\right]\right) P_{i}}{k_{A} k_{B} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} N_{2}-k_{B}\left(H_{2} M_{1}-H_{1} M_{2}\right)\right]}, \tag{4.68}\\
P_{t} & =\frac{\mathrm{j} 2 k_{A}\left(H_{1} N_{2}-H_{2} N_{1}\right) P_{i}}{k_{A} k_{B} H_{2}+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A} N_{2}-k_{B}\left(H_{2} M_{1}-H_{1} M_{2}\right)\right]} . \tag{4.69}
\end{align*}
$$

The calculation of reflection and transmission coefficients (P_{i} is optional) is the same as for sound velocity (see e.g. [2], [4])

$$
\begin{equation*}
R^{(P)}=\frac{P_{r}}{P_{i}} \tag{4.70}
\end{equation*}
$$

and

$$
\begin{equation*}
T r^{(P)}=\frac{P_{t}}{P_{i}} . \tag{4.71}
\end{equation*}
$$

By supposing values of air constants as $\varkappa=7 / 5$ and $R=287.058 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$, setting the characteristic length L to 1 m and choosing different values of constants q, T_{A} it is possible to see a frequency dependence of the wave reflection and transmission coefficients of the exact analytical solutions given by Eq. (4.56). $\Delta=c_{A}^{2} q^{2}-4 \omega^{2}<0$, $c_{A}>0$ and from Eq. (4.56) it can be concluded that $\omega>-1 / q$, then only $q>0$ can be examined. Let us choose $T_{A}=296 \mathrm{~K}$ and some different values of q to see these frequency dependencies.

Fig. 12 Dependence of modulii of reflection and transmission coefficients for $T_{A}=296 \mathrm{~K}$ and different values of q in Eq. (4.56) on angular frequency.

4.2.2 Exact analytical solution for a linear temperature distribution

The exact analytical solution for a linear temperature distribution from Chapter 3 is

$$
\begin{equation*}
P(x)=C_{1} \mathrm{~J}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}(A x+1)}\right)+C_{2} \mathrm{Y}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}(A x+1)}\right) \tag{4.72}
\end{equation*}
$$

where $b=T_{A}|A| \sqrt{\varkappa R} / 2$.
After all calculations according to the system of Eqs. (4.51)-(4.54) the following system of equations is produced

$$
\begin{align*}
P_{i}+P_{r} & =C_{1} G_{1}+C_{2} G_{2}, \tag{4.73}\\
P_{t} & =C_{1} H_{1}+C_{2} H_{2}, \tag{4.74}\\
\mathrm{j} k_{A}\left(P_{i}-P_{r}\right) & =C_{1} M_{1}+C_{2} M_{2}, \tag{4.75}\\
\mathrm{j} k_{B} P_{t} & =C_{1} N_{1}+C_{2} N_{2}, \tag{4.76}
\end{align*}
$$

where

$$
\begin{align*}
& G_{1}=\mathrm{J}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}}\right), \quad G_{2}=\mathrm{Y}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}}\right) \tag{4.77}\\
& H_{1}=\mathrm{J}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}(A L+1)}\right), \quad H_{2}=\mathrm{Y}_{0}\left(\frac{\omega}{b} \sqrt{T_{A}(A L+1)}\right), \tag{4.78}\\
& M_{1}=-\frac{\omega A}{2 b} \sqrt{T_{A}} \mathrm{~J}_{1}\left(\frac{\omega}{b} \sqrt{T_{A}}\right), \quad M_{2}=-\frac{\omega A}{2 b} \sqrt{T_{A}} \mathrm{Y}_{1}\left(\frac{\omega}{b} \sqrt{T_{A}}\right), \tag{4.79}\\
& N_{1}=-\frac{\omega A}{2 b} \sqrt{\frac{T_{A}}{A L+1}} \mathrm{~J}_{1}\left(\frac{\omega}{b} \sqrt{T_{A}(A L+1)}\right) \tag{4.80}\\
& N_{2}=-\frac{\omega A}{2 b} \sqrt{\frac{T_{A}}{A L+1}} \mathrm{Y}_{1}\left(\frac{\omega}{b} \sqrt{T_{A}(A L+1)}\right) . \tag{4.81}
\end{align*}
$$

Solution of the system of Eqs. (4.73)-(4.76) is
$C_{1}=$
$\frac{2 k_{A}\left(k_{B} H_{2}+\mathrm{j} N_{2}\right) P_{i}}{k_{A} k_{B}\left(G_{1} H_{2}-G_{2} H_{1}\right)+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A}\left(G_{1} N_{2}-G_{2} N_{1}\right)+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]}$,
$C_{2}=-1 \times$
$\frac{2 k_{A}\left(k_{B} H_{1}+\mathrm{j} N_{1}\right) P_{i}}{k_{A} k_{B}\left(G_{1} H_{2}-G_{2} H_{1}\right)+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A}\left(G_{1} N_{2}-G_{2} N_{1}\right)+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]}$,
$P_{r}=P_{i} \times$
$\frac{k_{A} k_{B}\left(G_{1} H_{2}-G_{2} H_{1}\right)-M_{1} N_{2}+M_{2} N_{1}+\mathrm{j}\left[k_{A}\left(G_{1} N_{2}-G_{2} N_{1}\right)-k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]}{k_{A} k_{B}\left(G_{1} H_{2}-G_{2} H_{1}\right)+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A}\left(G_{1} N_{2}-G_{2} N_{1}\right)+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]}$,
$P_{t}=P_{i} \times$
$\frac{\mathrm{j} 2 k_{A}\left(H_{1} N_{2}-H_{2} N_{1}\right)}{k_{A} k_{B}\left(G_{1} H_{2}-G_{2} H_{1}\right)+M_{1} N_{2}-M_{2} N_{1}+\mathrm{j}\left[k_{A}\left(G_{1} N_{2}-G_{2} N_{1}\right)+k_{B}\left(H_{1} M_{2}-H_{2} M_{1}\right)\right]}$.

The reflection and transmission coefficients can be calculated according to Eqs. (4.70), (4.71) (see e.g. [2], [4]).

By supposing values of constants for air as $\varkappa=7 / 5$ and $R=287.058 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$, setting the characteristic length L to 1 m and choosing different values of constants A, T_{A} it is possible to see a frequency dependence of the wave reflection and transmission coefficients of the exact analytical solution given by Eq. (4.72). Let us choose $T_{A}=296$ K for a positive temperature gradient, $T_{A}=752 \mathrm{~K}$ for a negative temperature gradient and some different values of A to see these frequency dependencies.

Fig. 13 Dependence of modulii of reflection and transmission coefficients for $T_{A}=296 \mathrm{~K}$ and different values of A (positive gradient) in Eq. (4.72) on angular frequency.

Fig. 14 Dependence of modulii of reflection and transmission coefficients for $T_{A}=752 \mathrm{~K}$ and different values of A (negative gradient) in Eq. (4.72) on angular frequency.

4.2.3 Exact analytical solution for an exponential temperature distribution

The exact analytical solution for an exponential temperature distribution was derived in the previous chapter

$$
\begin{equation*}
P(x)=\frac{1}{\sqrt{T_{A} e^{-\gamma x}}}\left[C_{1} \mathrm{~J}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma x}}}\right)+C_{2} \mathrm{Y}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma x}}}\right)\right] \tag{4.86}
\end{equation*}
$$

where $\phi=2 / \sqrt{\varkappa R \gamma^{2}}$.
According to the system of Eqs. (4.51)-(4.54), the system of equations for an exact analytical solution (4.86) is the same as the system of Eqs. (4.73)-(4.76), therefore the solution has the form of Eqs. (4.82)-(4.85), but notations $G_{1}, G_{2}, H_{1}, H_{2}, M_{1}, M_{2}, N_{1}$ and N_{2} have different meanings

$$
\begin{align*}
G_{1} & =\frac{1}{\sqrt{T_{A}}} \mathrm{~J}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A}}}\right), & G_{2} & =\frac{1}{\sqrt{T_{A}}} \mathrm{Y}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A}}}\right) \tag{4.87}\\
H_{1} & =\frac{1}{\sqrt{T_{A} e^{-\gamma L}}} \mathrm{~J}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma L}}}\right), & H_{2} & =\frac{1}{\sqrt{T_{A} e^{-\gamma L}}} \mathrm{Y}_{1}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma L}}}\right) \tag{4.88}\\
M_{1} & =\frac{\gamma \omega \phi}{2 T_{A}} \mathrm{~J}_{0}\left(\omega \phi \frac{1}{\sqrt{T_{A}}}\right), & M_{2} & =\frac{\gamma \omega \phi}{2 T_{A}} \mathrm{Y}_{0}\left(\omega \phi \frac{1}{\sqrt{T_{A}}}\right) \tag{4.89}\\
N_{1} & =\frac{\gamma \omega \phi}{2 T_{A} e^{-\gamma L}} \mathrm{~J}_{0}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma L}}}\right), & N_{2} & =\frac{\gamma \omega \phi}{2 T_{A} e^{-\gamma L}} \mathrm{Y}_{0}\left(\omega \phi \frac{1}{\sqrt{T_{A} e^{-\gamma L}}}\right) \tag{4.90}
\end{align*}
$$

Reflection and transmission coefficients can be calculated according to Eqs. (4.70), (4.71) (see e.g. [2], [4]).

By supposing values of air constants as $\varkappa=7 / 5$ and $R=287.058 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$, setting the characteristic length L to 1 m and choosing different values of constants γ, T_{A} it is possible to see a frequency dependence of the wave reflection and transmission coefficients of the exact analytical solution given by Eq. (4.86). Let us choose $T_{A}=296$ K for both positive and negative temperature gradients and some different values of γ to see frequency dependencies.

Fig. 15 Dependence of modulii of reflection and transmission coefficients for $T_{A}=296 \mathrm{~K}$ and different values of γ (positive gradient) in Eq. (4.86) on angular frequency.

Fig. 16 Dependence of modulii of reflection and transmission coefficients for $T_{A}=296 \mathrm{~K}$ and different values of γ (negative gradient) in Eq. (4.86) on angular frequency.

5 Derivation of the Burgers-type equation for temperature-inhomogeneous fluids

In this section the Burgers-type equation for nonlinear acoustic waves in the temperatureinhomogeneous fluids and its dimensionless form is derivated. The classical Burgers equation is the most widely used model equation for studying the combined effects of dissipation and nonlinearity on progressive plane waves (see e.g. [7]).

5.1 Westervelt equation

Let us begin with the nonlinear acoustic wave equation for progressive waves, which is called the Westervelt equation (see e.g. [1], [8], [9])

$$
\begin{equation*}
\square^{2} p^{\prime}=-\frac{\alpha}{\rho_{0} c_{0}^{4}} \frac{\partial^{3} p^{\prime}}{\partial t^{3}}-\frac{\beta}{\rho_{0} c_{0}^{4}} \frac{\partial^{2} p^{\prime 2}}{\partial t^{2}} \tag{5.1}
\end{equation*}
$$

where β is the nonlinearity coefficient, α is the sound diffusivity and \square^{2} is the d'Alembertion operator for plane waves. These notations mean

$$
\begin{equation*}
\beta=\frac{\varkappa+1}{2}, \quad \square^{2}(\cdot)=\frac{\partial^{2}(\cdot)}{\partial x^{2}}-\frac{1}{c_{0}^{2}} \frac{\partial(\cdot)}{\partial t}, \quad \alpha=\frac{4}{3} \epsilon+\zeta+\kappa\left(\frac{1}{c_{V}}-\frac{1}{c_{p}}\right) \sim \mu \tag{5.2a}
\end{equation*}
$$

(5.2b)
where c_{V} and c_{p} are specific heats at constant volume and pressure respectively and $\mu<1$ a small dimensionless parameter.

The left hand side of Eq. (5.1) represents the canonical wave equation for acoustic waves in homogeneous fluids. For temperature-inhomogeneous media it was derived the wave equation (2.24) which can be expressed as

$$
\begin{equation*}
\square_{i}^{2} p^{\prime}=0 \tag{5.3}
\end{equation*}
$$

where $\square_{i}^{2}(\cdot)=\frac{\partial^{2}(\cdot)}{\partial x^{2}}-\frac{1}{\rho_{0}} \frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x} \frac{\partial(\cdot)}{\partial x}-\frac{1}{c_{0}^{2}} \frac{\partial^{2}(\cdot)}{\partial t^{2}}$ is the d'Alembertion operator for plane waves in temperature-inhomogeneous media. On the basis of this operator the Westervelt equation (5.1) can be modified for a temperature inhomogeneous media

$$
\begin{equation*}
\square_{i}^{2} p^{\prime}=-\frac{\alpha}{\rho_{0} c_{0}^{4}} \frac{\partial^{3} p^{\prime}}{\partial t^{3}}-\frac{\beta}{\rho_{0} c_{0}^{4}} \frac{\partial^{2} p^{2}}{\partial t^{2}} \tag{5.4}
\end{equation*}
$$

The validity of this equation is restricted to regions with low temperature gradients.

5.2 Burgers-type equation

Given that the spatial variation of a plane progressive acoustic wave is small enough in proportion to one wavelength it is possible to apply the multiple-scale method to simplify Eq. (5.4). The retarded time $\tau=t-x / c_{A}$ is introduced.

Let us find the solution of Eq. (5.4) in the form (see e.g. [7])

$$
\begin{equation*}
p=p\left(x_{1}, \tau\right) \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{1}=\mu x \tag{5.6b}
\end{equation*}
$$

$$
\tau=t-\frac{x}{c_{A}}
$$

In the retarded time frame (i.e., for an observer in a reference frame that moves at speed c_{A}), nonlinearity and absorption separately produce only slow variations as functions of distance. Moreover, the relative order of the variations due to each effect is the same, i.e., it is $O(\mu)$. Thus, it can be anticipated that the combined effects of nonlinearity and absorbtion will introduce variations of the same order. The coordinate x_{1} is referred to as the slow scale corresponding to the retarded time frame τ.

To derive a simplified progressive-wave equation that accounts for both absorption and nonlinearity, let us first rewrite Eq. (5.4) in the new coordinate system $\left(x_{1}, \tau\right)$. Transformations of the partial derivatives are

$$
\begin{gather*}
\frac{\partial(\cdot)}{\partial x}=\mu \frac{\partial(\cdot)}{\partial x_{1}}-\frac{1}{c_{A}} \frac{\partial(\cdot)}{\partial \tau} \tag{5.7}\\
\frac{\partial^{2}(\cdot)}{\partial x^{2}}=-\mu \frac{2}{c_{A}} \frac{\partial^{2}(\cdot)}{\partial \tau \partial x_{1}}+\frac{1}{c_{A}^{2}} \frac{\partial^{2}(\cdot)}{\partial \tau^{2}} \tag{5.8}\\
\frac{\partial(\cdot)}{\partial t}=\frac{\partial(\cdot)}{\partial \tau}, \quad \frac{\partial^{2}(\cdot)}{\partial t^{2}}=\frac{\partial^{2}(\cdot)}{\partial \tau^{2}}, \quad \frac{\partial^{3}(\cdot)}{\partial t^{3}}=\frac{\partial^{3}(\cdot)}{\partial \tau^{3}} \tag{5.9}
\end{gather*}
$$

applying the introduced notations

$$
\begin{align*}
\frac{\partial^{2} p^{\prime}}{\partial x^{2}} & =-\mu \frac{2}{c_{A}} \frac{\partial^{2} p^{\prime}}{\partial \tau \partial x_{1}}+\frac{1}{c_{A}^{2}} \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}} \\
\frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x} & =\mu \frac{\mathrm{d} \rho_{0}}{\mathrm{~d} x_{1}}, \quad \frac{\partial p^{\prime}}{\partial x}=\mu \frac{\partial p^{\prime}}{\partial x_{1}}-\frac{1}{c_{A}} \frac{\partial p^{\prime}}{\partial \tau} \tag{5.10}\\
\frac{\partial^{2} p^{\prime}}{\partial t^{2}} & =\frac{\partial^{2} p^{\prime}}{\partial \tau^{2}}, \quad \frac{\partial^{3} p^{\prime}}{\partial t^{3}}=\frac{\partial^{3} p^{\prime}}{\partial \tau^{3}}
\end{align*}
$$

Substitution of derivatives (5.10) into Eq. (5.4) gives
$-\mu \frac{2}{c_{A}} \frac{\partial^{2} p^{\prime}}{\partial \tau \partial x_{1}}+\frac{1}{c_{A}^{2}} \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}}-\frac{\mu^{2}}{\rho_{0}} \frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x_{1}} \frac{\partial p^{\prime}}{\partial x_{1}}+\frac{\mu}{\rho_{0} c_{A}} \frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x_{1}} \frac{\partial p^{\prime}}{\partial \tau}-\frac{1}{c_{0}^{2}} \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}}=-\frac{\alpha}{\rho_{0} c_{0}^{4}} \frac{\partial^{3} p^{\prime}}{\partial \tau^{3}}-\frac{2 \beta}{\rho_{0} c_{0}^{4}} p^{\prime} \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}}$.
We are interested in the second approximation of the above equation. The third term in Eq. (5.11) is $O\left(\mu^{3}\right)$ and is therefore discarded. After that and small rearranging Eq. (5.11) can be written as

$$
\begin{equation*}
-\mu \frac{2}{c_{A}} \frac{\partial^{2} p^{\prime}}{\partial \tau \partial x_{1}}+\left(\frac{1}{c_{A}^{2}}-\frac{1}{c_{0}^{2}}\right) \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}}+\frac{\mu}{\rho_{0} c_{A}} \frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x_{1}} \frac{\partial p^{\prime}}{\partial \tau}=-\frac{\alpha}{\rho_{0} c_{0}^{4}} \frac{\partial^{3} p^{\prime}}{\partial \tau^{3}}-\frac{2 \beta}{\rho_{0} c_{0}^{4}} p^{\prime} \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}} \tag{5.12}
\end{equation*}
$$

Integration of Eq. (5.12) with respect to τ, multiplication of the resulting equation by $-c_{A} / 2$ and having noted

$$
\begin{equation*}
-\frac{c_{A}}{2}\left(\frac{1}{c_{A}^{2}}-\frac{1}{c_{0}^{2}}\right)=\frac{1}{2 c_{A}} \frac{c_{A}^{2}-c_{0}^{2}}{c_{0}^{2}}=\frac{1}{2 c_{A}} \frac{T_{A}-T_{0}}{T_{0}}=\frac{1-\Xi(\sigma)}{2 c_{A} \Xi(\sigma)} \tag{5.13}
\end{equation*}
$$

leads to equation

$$
\begin{equation*}
\mu \frac{\partial p^{\prime}}{\partial x_{1}}+\frac{1-\Xi(\sigma)}{2 c_{A} \Xi(\sigma)} \frac{\partial p^{\prime}}{\partial \tau}-\frac{\mu}{2 \rho_{0}} \frac{\mathrm{~d} \rho_{0}}{\mathrm{~d} x_{1}} p^{\prime}=\frac{\alpha c_{A}}{2 \rho_{0} c_{0}^{4}} \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}}+\frac{\beta c_{A}}{\rho_{0} c_{0}} p^{\prime} \frac{\partial p^{\prime}}{\partial \tau} . \tag{5.14}
\end{equation*}
$$

Applying Eq. (2.26) and returning to the physical coordinate x in place of x_{1} the above equation can be written as

$$
\begin{equation*}
\frac{\partial p^{\prime}}{\partial x}+\frac{1-\Xi(\sigma)}{2 c_{A} \Xi(\sigma)} \frac{\partial p^{\prime}}{\partial \tau}+\frac{1}{2 T_{0}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} x} p^{\prime}-\frac{\alpha c_{A}}{2 \rho_{0} c_{0}^{4}} \frac{\partial^{2} p^{\prime}}{\partial \tau^{2}}-\frac{\beta c_{A}}{\rho_{0} c_{0}^{4}} p^{\prime} \frac{\partial p^{\prime}}{\partial \tau}=0, \tag{5.15}
\end{equation*}
$$

and this is the Burgers-type equation for a temperature-inhomogeneous fluid.

5.3 Dimensionless Burgers-type equation

Using expressions (2.36) the Burgers-type equation (5.15) can be written as

$$
\begin{equation*}
\frac{\partial \Pi}{\partial \sigma}+\frac{[1-\Xi(\sigma)] \omega L}{2 c_{A} \Xi(\sigma)} \frac{\partial \Pi}{\partial \theta}+\frac{1}{2 \Xi(\sigma)} \frac{\mathrm{d} \Xi(\sigma)}{\mathrm{d} \sigma} \Pi-\frac{\alpha \omega^{2} L}{2 \Xi(\sigma) \rho_{A} c_{A}^{3}} \frac{\partial^{2} \Pi}{\partial \theta^{2}}-\frac{\beta \omega L}{\Xi(\sigma) c_{A}} \Pi \frac{\partial \Pi}{\partial \theta}=0 . \tag{5.16}
\end{equation*}
$$

Introducing new constants

$$
\begin{equation*}
Q=\frac{\omega L}{2 c_{A}}, \quad G=\frac{\alpha \omega^{2} L}{2 \rho_{A} c_{A}^{3}}, \quad N=\frac{\beta \omega L}{c_{A}} \tag{5.17}
\end{equation*}
$$

and remembering

$$
\begin{equation*}
\sigma=\frac{x}{L}, \quad \theta=\omega \tau \tag{5.18}
\end{equation*}
$$

the Burgers-type equation (5.16) can be rewritten into the form

$$
\begin{equation*}
\frac{\partial \Pi}{\partial \sigma}+\frac{1-\Xi(\sigma)}{\Xi(\sigma)} Q \frac{\partial \Pi}{\partial \theta}+\frac{1}{2 \Xi(\sigma)} \Pi \frac{\mathrm{d} \Xi(\sigma)}{\mathrm{d} \sigma}-\frac{G}{\Xi(\sigma)} \frac{\partial^{2} \Pi}{\partial \theta^{2}}-\frac{N}{\Xi(\sigma)} \Pi \frac{\partial \Pi}{\partial \theta}=0 . \tag{5.19}
\end{equation*}
$$

Equation (5.19) is the dimensionless Burgers-type equation for plane progressive nonlinear waves in temperature-inhomogeneous fluids.

6 Numerical solution of the Burgers-type equation for temperature-inhomogeneous fluids

In this chapter, a numerical method for solving the Burgers-type equation was implemented in the C programming language and the numerical solutions obtained from this method are presented.

6.1 Description of the numerical method

Let us write the dimensionless Burgers-type equation (5.19) for plane progressive nonlinear waves in temperature-inhomogeneous fluids once more

$$
\begin{equation*}
\frac{\partial \Pi}{\partial \sigma}+\frac{1-\Xi(\sigma)}{\Xi(\sigma)} Q \frac{\partial \Pi}{\partial \theta}+\frac{1}{2 \Xi(\sigma)} \Pi \frac{\mathrm{d} \Xi(\sigma)}{\mathrm{d} \sigma}-\frac{G}{\Xi(\sigma)} \frac{\partial^{2} \Pi}{\partial \theta^{2}}-\frac{N}{\Xi(\sigma)} \Pi \frac{\partial \Pi}{\partial \theta}=0, \tag{6.1}
\end{equation*}
$$

where $Q=\omega L /\left(2 c_{A}\right), G=\alpha \omega^{2} L /\left(2 \rho_{A} c_{A}^{3}\right), N=\beta \omega L / c_{A}, \sigma=x / L, \theta=\omega \tau$.
Let us suppose acoustic pressure in the form (see e.g. [1], [10])

$$
\begin{equation*}
\Pi(\sigma, \theta)=\sum_{n=-\infty}^{\infty} \Phi_{n}(\sigma) e^{\mathrm{j} n \theta}, \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{-n}(\sigma)=\Phi_{n}^{*}(\sigma) . \tag{6.3}
\end{equation*}
$$

Here, the asterisk sign * means complex conjugate.
Remembering dependence of functions $\Pi(\sigma, \theta), \Xi(\sigma), \Phi(\sigma)$ let us omit writing these dependencies in the following equations to simplify expressions.

Substituting Eq. (6.2) into Eq. (6.1)

$$
\begin{align*}
\sum_{n=-\infty}^{\infty}\left[\frac{\mathrm{d} \Phi_{n}}{\mathrm{~d} \sigma}+\mathrm{j} n \frac{1-\Xi}{\Xi} Q \Phi_{n}+\frac{1}{2 \Xi} \Phi_{n} \frac{\mathrm{~d} \Xi}{\mathrm{~d} \sigma}\right. & \left.+\frac{n^{2} G}{\Xi} \Phi_{n}\right] e^{\mathrm{j} n \theta} \\
& =\frac{1}{2} \frac{N}{\Xi} \frac{\partial}{\partial \theta} \sum_{i=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \Phi_{i} \Phi_{m} e^{\mathrm{j}(i+m) \theta} \tag{6.4}
\end{align*}
$$

The right-hand side of Eq. (6.4) can be derivated, thus Eq. (6.4) can be rewritten

$$
\begin{align*}
\sum_{n=-\infty}^{\infty}\left[\frac{\mathrm{d} \Phi_{n}}{\mathrm{~d} \sigma}+\mathrm{j} n \frac{1-\Xi}{\Xi} Q \Phi_{n}+\frac{1}{2 \Xi} \Phi_{n} \frac{\mathrm{~d} \Xi}{\mathrm{~d} \sigma}\right. & \left.+\frac{n^{2} G}{\Xi} \Phi_{n}\right] e^{\mathrm{j} n \theta} \\
& =\sum_{n^{\prime}=-\infty}^{\infty}\left(\mathrm{j} \frac{n^{\prime}}{2} \frac{N}{\Xi} \sum_{m=-\infty}^{\infty} \Phi_{m} \Phi_{n^{\prime}-m}\right) e^{\mathrm{j} n^{\prime} \theta}, \tag{6.5}
\end{align*}
$$

where $n^{\prime}=i+m$.

The left-hand and right-hand sides of Eq. (6.5) are equal for arbitrary dimensionless time θ only for $n^{\prime}=n$ and when terms in brackets are equal, so

$$
\begin{equation*}
\frac{\mathrm{d} \Phi_{n}}{\mathrm{~d} \sigma}+\mathrm{j} n \frac{1-\Xi}{\Xi} Q \Phi_{n}+\frac{1}{2 \Xi} \Phi_{n} \frac{\mathrm{~d} \Xi}{\mathrm{~d} \sigma}+\frac{n^{2} G}{\Xi} \Phi_{n}=\mathrm{j} \frac{n}{2} \frac{N}{\Xi} \sum_{m=-\infty}^{\infty} \Phi_{m} \Phi_{n-m} \tag{6.6}
\end{equation*}
$$

To apply convolution to the right-hand side of Eq. (6.6) it is convenient to express the summation in the following step using the expression (6.3)

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} \Phi_{m} \Phi_{n-m}=\sum_{m=1}^{n-1} \Phi_{m} \Phi_{n-m}+2 \sum_{m=n+1}^{\infty} \Phi_{m} \Phi_{m-n}^{*} \tag{6.7}
\end{equation*}
$$

Thus, there are only terms Φ_{n} with positive n in summation (6.7). Thanks to this and expression (6.7) it is possible to rewrite Eq. (6.6)

$$
\begin{align*}
& \frac{\mathrm{d} \Phi_{n}}{\mathrm{~d} \sigma}=-\mathrm{j} n \frac{1-\Xi}{\Xi} Q \Phi_{n}-\frac{1}{2 \Xi} \Phi_{n} \frac{\mathrm{~d} \Xi}{\mathrm{~d} \sigma}-\frac{n^{2} G}{\Xi} \Phi_{n} \\
&+\mathrm{j} \frac{n}{2} \frac{N}{\Xi}\left(\sum_{m=1}^{n-1} \Phi_{m} \Phi_{n-m}+2 \sum_{m=n+1}^{\infty} \Phi_{m} \Phi_{m-n}^{*}\right) \tag{6.8}
\end{align*}
$$

By placing a limitation on the M terms of the Fourier series, Eq. (6.8) can be rewritten as

$$
\begin{align*}
& \frac{\mathrm{d} \Phi_{n}}{\mathrm{~d} \sigma}=-\mathrm{j} n \frac{1-\Xi}{\Xi} Q \Phi_{n}-\frac{1}{2 \Xi} \Phi_{n} \frac{\mathrm{~d} \Xi}{\mathrm{~d} \sigma}-\frac{n^{2} G}{\Xi} \Phi_{n} \\
&+\mathrm{j} \frac{n}{2} \frac{N}{\Xi}\left(\sum_{m=1}^{n-1} \Phi_{m} \Phi_{n-m}+2 \sum_{m=n+1}^{M} \Phi_{m} \Phi_{m-n}^{*}\right) \tag{6.9}
\end{align*}
$$

Equation (6.9) is a simultaneous system of ordinary nonlinear differential equations with M complex independent variables $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{M}$, which can be written as

$$
\begin{equation*}
\Phi_{n}=\frac{1}{2}\left(\Phi R_{n}-\mathrm{j} \Phi I_{n}\right) \tag{6.10}
\end{equation*}
$$

The system of equations, which is represented by Eq. (6.9), can be solved numerically by the standard fourth-order Runge-Kutta method (see e.g. [11]). Let us denote Eq. (6.9) by function $f\left(\sigma_{n}, \Phi_{n}\right)$. To have an initial value problem just a boundary initial condition should be added. The organization of the numerical method then can be written as

$$
\begin{align*}
k_{1} & =h f\left(\sigma_{n}, \Phi_{n}\right) \\
k_{2} & =h f\left(\sigma_{n}+\frac{h}{2}, \Phi_{n}+\frac{k_{1}}{2}\right) \\
k_{3} & =h f\left(\sigma_{n}+\frac{h}{2}, \Phi_{n}+\frac{k_{2}}{2}\right) \tag{6.11}\\
k_{4} & =h f\left(\sigma_{n}+h, \Phi_{n}+k_{3}\right. \\
\Phi_{n+1} & =\Phi_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)+O\left(h^{5}\right)
\end{align*}
$$

where h is a step size and $O\left(h^{5}\right)$ is an error term of the 4 th order.
This Runge-Kutta method was written in C language, as a result a boundary value problem is resolved.

To find acoustic pressure, according to Eqs. (6.2), (6.10) and the result from C code, the following equation should be evaluated

$$
\begin{equation*}
\Pi(\sigma, \theta)=\sum_{m=1}^{M}\left[\Phi R_{m} \cos (m \theta)+\Phi I_{m} \sin (m \theta)\right] \tag{6.12}
\end{equation*}
$$

6.2 Representation of an artificial attenuation filter

The sequential generation of higher harmonics leads to the transfer of acoustic energy from the first harmonic components to the components higher, where the acoustic energy is damped more effectively, because attenuation increases with frequency. This leads to a phenomenon which is called the nonlinear attenuation. Considering the finite number of Fourier series terms leads to the interruption of acoustic energy flow from the lower harmonics to higher, i.e. the disruption of nonlinear attenuation, as a result acoustic energy starts accumulating at the highest harmonics and therefore higher harmonics grow abnormally. Due to this fact the higher harmonics have more effect than they really have during nonlinear interaction. For this reason even lower harmonics start rising, that is why numerical instability occurs in the solution. In a way this instability influence affects the solution by causing unwanted and gradually rising oscillations. In order to avoid this phenomenon, it is necessary, especially while considering a lower number of harmonics, to introduce artificial attenuation which replaces dissipation of acoustic energy that occurs at ignored higher harmonic components. Therefore, artificial attenuation should influence higher harmonics to a greater extent than lower ones. As an example, attenuation can be implemented so that with each integration step calculated harmonic components can be multiplied by the following function

$$
\begin{equation*}
\frac{\sin \left(\frac{n}{D}\right)}{\frac{n}{D}} \tag{6.1.}
\end{equation*}
$$

where n is a number of particular harmonic component, D is a selected constant.
This filter is implemented in C code.

6.3 Graphical representation of the Burgers-type equation solution for a linear temperature distribution

Let us see possible solutions of the Burgers-type equation. A linear temperature distribution is given by Eq. (3.71).

6.3.1 Positive temperature gradient

Let us set the angular frequency ω to $10000 \mathrm{~s}^{-1}$, the characteristic temperature T_{A} to 298.15 K , the complex pressure amplitude of incident wave is -2000 j Pa. The first point of interest is a linear temperature distribution with a positive gradient. The gradient is set by constant A. The solution is represented in Fig. 17.

The following statement can be made: as the temperature gradient is higher, pressure amplitude is lower. The same result could be seen from the transmission coefficient graph in Fig. 13. In Fig. 17 distortion of a wave profile can be also observed. There is no a big difference between constant temperature T_{A} and nonzero positive gradients since these gradients are small.

Fig. 17 The solution of the Burgers-type equation for temperature inhomogeneous fluids with positive temperature gradient A.

6.3.2 Negative temperature gradient

The second point of interest is a linear temperature distribution with a negative gradient A. Let us leave the angular frequency ω with the same value of $10000 \mathrm{~s}^{-1}$ and the complex pressure amplitude is -2000 j Pa , the characteristic temperature T_{A} set to 357.78 K.

Fig. 18 The solution of the Burgers-type equation for temperature inhomogeneous fluids with negative temperature gradient A.

As the temperature gradient is lower, pressure amplitude is higher. The same result could be seen from the transmission coefficient graph in Fig. 14. As for a positive temperature gradient the difference of phases can be seen, the nonlinearity of a wave profile can be also observed, the difference between constant temperature T_{A} and nonzero negative gradients are also small enough due to small gradients.

6 Numerical solution of the Burgers-type equation for temperature-inhomogeneous fluids

6.3.3 Different lengths of a duct with a positive temperature gradient

The third point of interest is a linear temperature distribution with a positive gradient A for different duct lengths. Let us leave the angular frequency ω the same value of 10000 s^{-1} and the complex pressure amplitude is -2000 jPa , the characteristic temperature T_{A} is set to 298.15 K , a temperature gradient A has a positive value of $0.5 \mathrm{~m}^{-1}$. The size of a step length is 0.25 m .

Fig. 19 The solution of the Burgers-type equation for temperature inhomogeneous fluids with a positive temperature gradient $A=0.5 \mathrm{~m}^{-1}$ but different lengths of a duct.

In Fig. 19 can be observed how the wave-profile is gradually distorted.

7 Conclusion

In this bachelor thesis I have studied descriptions of acoustic waves in fluids with spatially variable temperatures, including derivation of one-dimensional model equations.

Analytical solutions of linear model equations for chosen temperature distributions were found. For these solutions transmission and reflection coefficients were calculated. The dependencies of these coefficients on angular frequency were shown in graphs.

In order to describe nonlinear acoustic plane waves for small temperature gradients the Burgers-type equation was derived. The obtained Burgers-type equation was solved numerically in the frequency domain by the fourth-order Runge-Kutta method since the solution is unknown. A numerical code was written in the programming language C. The numerical solutions were used for plotting nonlinear wave-profiles and discussed.

All assignment points were accomplished.

Bibliography

[1] Bednarik M. Nonlinear wave processes in acoustics (in czech). Habilitation work, 2006.
[2] Blackstock D. T. Fundamentals of physical acoustics. USA: John Wiley \& Sons, 2000.
[3] Sujith R. I., Waldherr G. A. and Zinn B. T. "An exact solution for one-dimensional acoustic fields in ducts with an axial temperature gradient". In: Journal of Sound and Vibration 184 (1995), pp. 389-402.
[4] Bednarik M., Cervenka M., Balek R. "Acoustic plane waves in a gas-filled duct with an axial temperature gradient". In: conference proceeding FORUM ACOUSTICUM. Krakow. 2014.
[5] Grimshaw R., Pelinovsky D., Pelinovsky E. "Homogenization of the variable-speed wave equation". In: Wave Motion 47 (2010), pp. 496-507.
[6] Rudenko O. V. and Shvartsburg A. B. "Nonlinear and Linear Wave Phenomena in Narrow Pipes". In: Acoustical Physics 56 (2010), pp. 429-434.
[7] Hamilton M. F., Blackstock D. T. Nonlinear Acoustics. Austin, Texas: Academic Press, 1998.
[8] Jing Y., Cleveland R. O. "Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media". In: The Journal of the Acoustical Society of America 122 (2007), pp. 1352-1364.
[9] Jing Y., Wang T., Clement G. T. "A k-Space Method for Moderately Nonlinear Wave Propagation". In: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 59 (2012), pp. 1664-1673.
[10] Brekhovskikh L. M., Lysanov Yu. P. Fundamental of Ocean Acoustics. New York: Sprinter, 1991.
[11] Press W. H., Teukolsky S. A., Vetterling W. T. Numerical Recipes (3ed). New York: Cambridge University Press, 2007.

Appendix A

Attached CD contents

Matlab calculation scripts. These scripts contain calculations of some complex expressions and generations of graphs represented in the thesis.
Maple calculation script, which holds some calculations from the thesis.
Fourth-order Runge-Kutta numerical method written in the C programming language.
Electronic version of the thesis in PDF.
All Figures from the thesis.

