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Abstract

The present work refers to the mathematical modeling, experimental identification and control
design of a small unmanned indoors quadrotor aircraft, at low translational speeds around the
hovering condition, where the aerodynamic forces on the airframe are disregarded. A Kalman
filter is implemented for state estimation and noise filtering. Linear control techniques such as
PID, LQ as well as modern robust mixed-sensitivity H∞ and µ-synthesis with DK-iteration
are employed and compared with each other in terms of flight trajectory reference tracking
and parametric and model uncertainty.
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Chapter 1

Introduction

The present work is the realization of the graduate student’s special interest on studying
aircraft flight dynamics and control combined with the interest from the Department of Con-
trol Engineering (DCE) of this university in acquiring expertise on miniaturized Unmanned
Aerial Vehicles (UAVs), for future employment in studies of swarm robotics and collective
behavior. It also closely relates to the work of Dvořák [2011], another graduate student at
the department, who was already working on the assembly of such an aircraft for a private
company. In this sense, the author’s work could not only collaborate with his colleague’s,
but also take advantage of the physical real system already built, aiming at comparing and
validating his theoretical and simulation results, whenever feasible.

1.1 Project Goals

A fortunate aspect of this work is that it could rely on extensive previous studies and publica-
tions, of which a brief bibliographic survey is to be presented next. The author’s primordial
goal herewith is hence to obtain a thorough understanding of the system’s behavior whereas
using it as a case study for experimenting with control techniques and other abilities devel-
oped throughout his graduate course.

From the DCE’s side, the main objective was to obtain a complete and as realistic as
possible, yet without unnecessary complexity, simulation model in Matlab/Simulink, with
this dissertation as the main project’s documentation, allowing the immediate further use of
the quadrotor in future studies.

Finally, by means of this work, the author could collaborate with his colleague in the
design and tuning of the high-level control loops, while the latter could focus on practical
implementation issues with the hardware, such as sensor data fusion and signal filtering, as
well as experimenting with different approaches like quaternion-based attitude representation
and control with eigenaxis rotations.

1.2 Bibliographic Survey

In the recent years, especially due to advances in Micro-Electromechanical Systems (MEMS),
electrical energy accumulators, actuators and smaller integrated micro-controlled boards, a
growing number of studies in UAVs such as the quadrotor and related autonomous aerial
robots has been carried out, not only by universities and research institutions for private
civilian applications but also for military purposes, mainly due to the inherent characteristics
of such aircraft, namely high maneuvering at low translational speeds and in small volumes
while being able to carry significant payload, thus making them especially adequate for aerial
surveillance and monitoring tasks.

1



2 CHAPTER 1. INTRODUCTION

The main advantage of rotating-wing over fixed-wing aircraft is the ability of hovering and
omni-directional movement. A drawback is, however, a relatively higher power consumption
during the flight. Even inside the rotating-wing aircraft classification, a quadrotor is much
simpler and easier to build in comparison to a classical helicopter, since the rotors’ rotational
axis is fixed and there are no moving parts, like aerodynamic control surfaces. Nevertheless,
the rotational speed of each rotor needs to be independently controlled in order to achieve
the control goals of such a highly unstable open-loop system, what makes it a challenging
control engineering problem.

As said, extensive literature has been produced in this field of study. Bouabdallah et al.
[2004a] presented a system model with DC motors and, by using the Lyapunov Function’s
non-linear control technique approach for stabilizing the aircraft’s orientation (Euler angles),
compare the real system’s behavior with a respective simulation. Bouabdallah et al. [2004b]
extended their work on the OS4 project as they compared classical PD and PID controllers
for orientation stabilization with modern LQ adaptive optimal control, despite realizing that
the latter one yielded only average results, due to modeling imperfections.

Stepaniak [2008] made a detailed identification work of his built system and model deriva-
tion, besides discussing hardware implementation aspects. Despite not focusing on the control
loops design, whereby classical control theory was used, his work turned out to be one of the
main references hereby used.

Tayebi and McGilvray [2006], on the other hand, performed a thorough and advanced
study on control techniques for attitude stabilization of a quadrotor. It was used quaternions
for attitude representation, Lyapunov stability’s criterion and a PD2 feedback structure, with
which a model-independent PD controller was compared, achieving with both configurations
global asymptotic stability and disturbance rejection in similar fashion. Their experimental
results were obtained from a modified version of the Draganflyer III aircraft.

Kim et al. [2007] made an interesting performance comparison among four control tech-
niques: LQR, LQR with gain scheduling, feedback linearization and sliding mode control.
They experimentally verified that LQR with gain scheduling presented more robustness in
light of modeling uncertainties whereas for an accurately modeled system a better perfor-
mance was achieved with the sliding mode approach.

A meticulous study of usually otherwise disregarded effects such as blade flapping and
propeller modeling was done by Pounds et al. [2004]. In fact, the theoretical model for the
propeller thrust and torque discussed in their paper was employed in this present work. Later
on, Pounds et al. [2006] gave continuity to their work on the X-4 flyer Mark II quadrotor
implementation (Fig. 1.1a) by designing a discrete-time PID control law to their model
including the very fast blade flapping dynamics. The closed-loop behavior, though, turned
out to be poor at higher rotor angular speeds (ω > 450 rad/s), approaching an unstable
behavior, which was attributed to high-frequency noise from the rotors interfering with the
accelerometer readings.

Hamel et al. [2002] employed the non-linear Lyapunov functions and the backstepping
approach allied to quaternion attitude representation for designing non-linear attitude stabi-
lization controllers. Although presenting a minute theoretical study and proof-based math-
ematical derivations, their proposal unfortunately was not accompanied by experimental
results.

Castillo et al. [2004] proposed a real-time non-linear nested saturation control scheme
based on Lyapunov’s stability criterion, where each system state is sequentially stabilized
following a priority rule, hence allowing a wider stability region and therefore more aggressive
maneuvering while maintaining good disturbance rejection capability. Later on, Castillo et al.
[2005] compared the performance of their non-linear control with a linear one such as LQR,
which presents stability issues when the system is taken far away from its operation point
used for the controller design.
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(a) X-4 Flyer Mark II. (b) STARMAC II.

Figure 1.1: Examples of quadrotor implementations found in the literature.

Mart́ınez [2007] performed an extensive identification experimental study on a commercial
Draganfly XPro quadrotor, including blade flapping and torsion investigations besides wind
tunnel tests to identify the aircraft’s aerodynamic characteristics. Since his work didn’t
extend to the design of control loops, its use for this project was limited as another reference
for cross-checking the basics aircraft modeling hereby dealt with.

Voos [2009] applied feedback linearization in a nested control loop structure where the
inner loop contains the attitude dynamics and the outer, the position one. Their experimental
results were obtained also with a Draganflyer real model. However, the dynamics of the DC
motors used in the rotors was not considered in their work.

Hoffmann et al. [2007] focused their study on the aerodynamic effects on the quadro-
tor’s airframe when operating significantly far from the hover regime, at higher translational
speeds, while also considering the very fast dynamics of blade flapping. Their theoretical
results were experimented on the STARMAC II vehicle.

1.3 Commercially Available Quadrotors

Quadrotor implementations and studies do not limit themselves to the academic environ-
ment. Especially in the last decade, several commercially available models have appeared
in the market, with a variety of models stretching from mere entertainment up to serious
applications.

For example, the German company Microdrones GmbH[mic] was established in 2005 and
since then has been developing such UAVs for tasks such as aerial surveillance by police
and firemen forces, inspection services of power lines, monitoring of nature protection areas,
photogrammetry, archeology research, among others. Their smallest model is pictured in Fig.
1.2a and has technical characteristics summarized in table 1.1, illustrating the category of
quadrotors that this work relates to.

Another manufacturer of such aircraft is the Canadian Draganfly Innovations Inc.[dra].
Their quadrotor models portfolio stretches from the Draganflyer X4, with 250 g of payload
capacity up to the Draganflyer X8, illustrated in Fig. 1.2b, featuring a 8-rotor design, with
payload capacity of 1000 g and GPS position hold function.

Still another relevant manufacturer of quadrotors, among other products, is the French
company Parrot SA[par]. Their AR.Drone model, pictures in Fig. 1.2c with a surrounding
protective frame, is comparable in size to the md4-200 of Microdrone, however it can fly
only for approximately 12 minutes, reaching a top speed of 18 km/h. It was designed for
entertainment purposes, including video-gaming and augmented reality, and can be remote-
controlled by an iPhoneR© through a Wi-Fi network. AR.Drone is currently available on
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Typical take-off weight 1000 g
Diameter (between rotor axes) 70 cm
Flight autonomy max. 30 min
Flight radius (500 - 2000) m
Air humidity max. 80 %
Air temperature (0 - 40) oC
Wind speed max. 4 m/s

Table 1.1: Technical characteristics of md4-200 quadrotor from Microdrones.

(a) md4-200 from Microdrone. (b) Draganflyer X8 from
Draganfly Innovations.

(c) AR.Drone from Parrot.

Figure 1.2: Examples of commercially available quadrotors.

amazon.com for approximately US$ 300.

1.4 Document Structure

We start the dissertation in chapter 2 by considering the main moments and forces acting on
the quadrotor, stating some assumptions, briefly presenting coordinate system transformation
and then proposing the mathematical non-linear dynamic model of the quadrotor.

Next, chapter 3 deals with the identification of all modeled system parameters by means
of practical experiments with the real aircraft, executed in collaboration with Dvořák [2011].
This allowed validation of the proposed model and finally lead to the full non-linear and
linearized model with which further work was done.

Chapter 4 shortly presents two ways of how the aircraft’s orientation in Euclidian space
can be assessed, followed by an optimal noise filtering of the sensor readings and state esti-
mation by means of Kalman filtering.

Control design constitutes one of the main topics approached in this work and is presented
in chapter 6. First, a control architecture is proposed and classical PID control is designed,
followed by the optimal LQ-state feedback technique. Robustness to parametric and model
uncertainties is an aspect which the previously mentioned control techniques do not deal with,
therefore mixed-sensitivity H∞ as well as µ-synthesis with DK-itertation based controllers
are designed and discussed.

Finally, chapter 7 concludes this author’s work by highlighting the main results obtained,
proposing some improvements to be done in what has been already achieved as well as
outlining the continuation of this project.

amazon.com


Chapter 2

Dynamic Model

In this chapter, the flight dynamics model of the quadrotor will be derived. We will use a
top-down approach, starting with the overall rigid-body dynamics, investigating the forces
and moments acting on it, and then finally discussing the actuator subsystem (rotor).

2.1 Rigid-Body Dynamics

The first step to achieve the dynamic model of the quadrotor is to define frames of reference,
each with its defined right-handed1 coordinate system, as shown in Figure 2.1. For the body-
fixed one, X,Y and Z are its orthogonal axes with its correspondent body linear velocity

vector ~V =
[
u v w

]b T
and angular rate vector ~Ω =

[
p q r

]b T
. The second one is

an Earth-fixed inertial (navigation) coordinate system, with which initially the body-fixed
coincides. The attitude of the aircraft is assessed by means of successive rotations around
each one of the inertial axes, expressed in terms of the Euler angles φ (roll), θ (pitch) and ψ
(yaw).

Figure 2.1: Quadrotor’s body-fixed and inertial coordinate systems.

In an inertial frame of reference n it is known that the torque (moment) is defined as the
time derivative of the angular momentum

~M
n

,
d~L

dt
=

d

dt

(
~I · ~Ω

)
(2.1)

where ~I is the body’s inertia tensor

~I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

 Ix 0 0
0 Iy 0
0 0 Iz

 (2.2)

1Where the right-hand rule applies for determining the direction of a vector cross-product.

5



6 CHAPTER 2. DYNAMIC MODEL

where the simplification ∀i 6= j ⇒ Iij = 0 applies for a well-conditioned (symmetric) mass
distribution of the aircraft. In plain words, one can think of an experiment where one axis is
freely spinning while the others are still, and a moment applied to the rotating axis generates
a variation of angular speed only on itself and not on the others two. This is assumed to be
the case here.

In order to make the calculations easier and more intuitive, though, it is better to consider
the moments exerted on the quadrotor’s airframe directly in the body-fixed rotating frame.
By doing so, as presented in details by Stevens and Lewis [2003], the Coriollis effect appears
as a second term to be added to (2.1), and considering now ~L = Ix p~ex + Iy q ~ey + Iz r ~ez, it
yields

~M
b

=

(
d~L

dt

)
rot

+ ~Ω× ~L⇐⇒ ~M
b

= ~I · ~̇Ω + ~Ω×
(
~I · ~Ω

)
(2.3)

which is the particular vector form of Euler’s equations. By developing the cross-product
term its algebraic form is found as the set of equations

Mb x = Ix ṗ+ (Iz − Iy) q r
Mb y = Iy q̇ + (Ix − Iz) r p
Mb z = Iz ṙ + (Iy − Ix) p q

(2.4)

which are also referred to as the moment equations. One can note the physical natural sense
in these equations: the simultaneous rotation around two axis will generate a torque around
a third axis, given that the previous causal two axis don’t have the same inertia.

Similarly to the reasoning applied so far to the rotational aspect of the rigid-body dynam-
ics, in the translational case a force is generated in the inertial frame, according to Newton’s
2nd law, as

~F
n

,
d~P

dt
=

d

dt

(
m · ~V

)
(2.5)

where m is the total mass of the quadrotor in whose center the origin of the aircraft’s fixed-
body coordinate system is located. Once again turning to the body-fixed rotating frame and
defining ~P = mu ~ex +mv ~ey +mw ~ez, (2.5) becomes

~F
b

=

(
d~P

dt

)
rot

+ ~Ω× ~P ⇐⇒ ~F = m
(
~̇V + ~Ω× ~V

)
(2.6)

By solving the cross-product, the set of force equations is obtained

Fb x = m (u̇+ q w − v r)
Fb y = m (v̇ + r u− w p)
Fb z = m (ẇ + p v − q u)

(2.7)

We shall now investigate all those moments and forces which act, respectively, on (2.4) and
(2.7). The quadrotor is basically subject to five sources of interactions: gyroscopic effects
from the rotors’ spin, propeller drag torque, thrust, Earth’s gravity and the aerodynamic
forces. Assuming low translational speeds of the quadrotor, however, the latter are very
small and will thus be disregarded henceforth.
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2.2 Rotors

Each of the four rotors comprises a Brushless DC Motor (BLDCM) attached to a two-blade
propeller. The BLDCM differs from the conventional Brushed DC Motor (BDCM) in their
concept essentially in that the commutation of the input voltage applied to the armature’s
circuit is done electronically, whereas in the latter, by a mechanical commutator (brush)
which, as any rotating mechanical device, suffers wear throughout its operation, and as
a consequence, confers the BDCM a significant shorter nominal life time than the newer
BLDCM. Detailed information on these and other electric motors are presented by Krishnan
[2010].

Despite the extra complexity in its electronic switching circuit, the BLDCM presents
several advantages over its counterpart, to name a few: higher torque/weight ratio, less oper-
ational noise, longer lifetime, less generation of electromagnetic interference and much more
power per volume, practically limited only by its inherent heat generation, whose transfer to
the outer environment usually occurs by conduction.

In spite of their performance differences, the BLDCM’s dynamic model can be roughly
approximated by the well-known BDCM’s. Fig. 2.2 shows the basic electrical circuit of such
a motor, where u is the voltage applied to its armature, Ra is the armature’s resistance, La
its inductance, vb = kv ω is the back-electromotive force induced in the armature, kv is the
speed constant and ωa is the angular speed.

Figure 2.2: Basic electric model of a brushed DC motor.

Applying Kirchhoff’s voltage law to the circuit and then the Laplace transform yields

ia =
u− kv ω
La s+Ra

(2.8)

Before considering the mechanical aspect of the rotor, we shall first analyze two effects.

2.2.1 Gyroscopic Effect

For a rotor with positive (clockwise) angular speed, namely j = {1, 3}, considering its ro-
tational frame, which is the same as the quadrotor’s body-fixed one with angular rate ~Ω
relative to the inertial frame, the Coriollis effect appears and the gyroscopic (inertial) mo-
ment is modeled as

~M
b

G j =

(
d~Lj
dt

)
rot

+ ~Ω× ~Lj = ~Ij · ~̇ωj + ~Ω×
(
~Ij · ~ωj

)
(2.9)

where ~Ij is the gyroscopic inertia, namely that of the rotating part of the rotor. By solving
the cross-product it comes

~M
b

G j =

 Ijx ω̇jx
Ijy ω̇jy
Ijz ω̇jz

+

 p
q
r

×
 Ijx ωjx
Ijy ωjy
Ijz ωjz

 =

 Ijx ω̇jx + Ijz ωjz q − Ijy ωjy r
Ijy ω̇jy + Ijx ωjx r − Ijz ωjz p
Ijz ω̇jz + Ijy ωjy p− Ijx ωjx q

 (2.10)
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However, the direction of ~ωj coincides with the Z-axis of the body-fixed coordinate system
whereas all its other components are zero, therefore Ijx = Ijy = 0 and, assuming that the
gyroscopic inertia is the same for all rotors, Ijz = IG, (2.10) is simplified as

MbG jx = IG ωj q

MbG jy = −IG ωj p

MbG jz = IG ω̇j

(2.11)

2.2.2 Air Drag on Propeller

It is known that, as the blades of the propeller rotate in the air, they push it into a specific
direction, in this case downwards, thus producing the thrust/lift force, however not without
being affected by the reaction of the air flow onto them, what is here named as the drag
torque. Once the propeller’s axis of rotation is assumed perfectly aligned with the Z-axis of
the body-fixed coordinate system, the drag torque does not affect the other axes. Assuming
no torsion effect on the rotor, according to Pounds et al. [2004] the drag torque can be
modeled, here again considering the clockwise rotors j = {1, 3}, as

MbD jz = cD ρAR
2 (ωj R)2 = cD ρ π R

5 ω2
j = kD ω

2
j (2.12)

where cD is the non-dimensional drag torque coefficient, ρ
[
kg/m3

]
is the air density, A

[
m2
]

is the area of the propeller disc, R[m] is the propeller radius and kD
[
kg m2

]
is the resulting

dimensional drag torque coefficient.
Now we can finally assemble the mechanical model of the rotor. Let us first consider its

non-linear model. Also, for the sake of notation simplicity, let us drop for a moment the b
frame-of-reference and the j rotor index of the moments and assume the latter as vectors
having non-zero components only on the body-fixed Z-axis DOF, like MbD z = ~MD, else
stated. By assessing the sum of all torques acting on the rotor, namely the electromagnetic
ME = kt ia, the friction MB = Ba ω, the inertial MG as in (2.11) and a generic load torque
ML, and then applying the Laplace transform, it comes∑

M = IG ω̇ = ME −MB −ML ⇒ ω =
kt ia −ML

IG s+Ba
(2.13)

In order to find the linear model, we consider the load torque ML = MD as in (2.12),
whose linearization around ω = ω0 is M ′D = kD ω

2
0 + 2 kD ω0 ∆ω = M ′D0

+ ∆M ′D, employ
∆M ′D0

along with ∆ω = ω − ω0 and ∆ia = ia − ia0 in (2.13), and once again applying the
Laplace transform, it yields∑

M = IG ω̇ = ME −MB −M ′D ⇒ ∆ω =
kt ∆ia

IG s+Ba + 2 kD ω0
(2.14)

Applying (2.8) to (2.14) results in the linearized 2nd order rotor dynamics u→ ω described
by

GRf (s) =
∆ω(s)

∆u(s)
=

kt
IG La

s2 + IGRa+(Ba+2 kD ω0)La
IG La

s+ (Ba+2 kD ω0)Ra+kv kt
IG La

(2.15)

with steady-state (t→∞⇒ s→ 0) gain

γ =
∆ω(s)

∆u(s)

∣∣∣∣
s→0

=
kt

(Ba + 2 kD ω0)Ra + kv kt
(2.16)

around the linearization point determined by
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u0 =
kD Ra
kt

ω2
0 +

BaRa + kv kt
kt

ω0 (2.17)

All torques acting on the rotor are transferred to the aircraft’s airframe by means of the
electromagnetic torque ME generated by the BLDCM. Considering all body-fixed coordinate
system’s components, it is assessed as ~ME = ~MG + ~MD + ~MB, which yields, for rotors
j = {1, 3} and already with the corrected (inverted) sign for evaluation from the aiframe’s
perspective

MbE jx = −IG ωj q
MbE jy = IG ωj p

MbE jz = −
(
IG ω̇j + kD ω

2
j +Ba ωj

) (2.18)

Regarding the other rotors, j = {2, 4}, the sign in (2.18) needs to be changed due to the
inverse rotation direction.

2.2.3 Thrust

The thrust force is generated by the propeller rotation through the viscous air, is used for
both lift and translational purposes and its direction is always aligned with the body-fixed
Z-axis. Once again referring to the work of Pounds et al. [2004], the thrust force for a given
rotor j = 1 . . . 4 can be modeled directly in the body-fixed coordinate system as

Tj = FbT z = −cT ρ π R4 ω2
j = −kT ω2

j (2.19)

Defining la as the lever length of each of the quadrotor’s arms, i.e. the distance taken in
the XY body-fixed plane from the rotor’s rotational axis to the aircraft’s center of mass, and
assuming la to be the same for all arms, the difference in thrust produced by the propellers
in the X-axis defines a moment around the Y , and vice-versa

MbT x = la (T4 − T2)

MbT y = la (T1 − T3)

MbT z = 0

(2.20)

Moreover, considering all rotors, the total thrust force opposite to the aircraft’s weight is

FbT z =

4∑
j=1

Tj = −kT
4∑
j=1

ω2
j (2.21)

2.3 Earth’s Gravity

The interaction of the Earth’s gravitational field and the quadrotor causes its weight force to
act upon it on its center of mass. This is modeled in the inertial (navigation) frame simply
by Newton’s 2nd law as

~F
n

W =
[

0 0 mg
]T

(2.22)

where g = 9.81 m/s2 is the absolute value of Earth’s gravity acceleration. However, this force
needs to be assessed in the body-fixed coordinate system, therefore the need for a coordinate
transformation appears. For the sake of completeness, this will be briefly addressed here,
following Stevens and Lewis [2003].
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2.3.1 Coordinate System Transformation

Let us consider three basic rotations around each one of the body-fixed coordinate axes, as
shown in Fig. 2.3.

(a) X-axis. (b) Y -axis. (c) Z-axis.

Figure 2.3: Basic rotations in the body-fixed frame.

Initially, both coordinate systems are exactly aligned and then the body-fixed is rotated
with respect to the inertial according to the right-hand rule. However, from the body-fixed
point of view, the inertial frame rotates on the other direction (in blue), which shall be here
considered for a transformation from inertial to body-fixed coordinates. Therefore, the vectors
~X, ~Y and ~Z with coordinates

[
x y z

]b T
in the body-fixed frame have their coordinates

changed according to the respective single rotation matrices

RX
b
n (φ) =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 RY
b
n (θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


RZ
b
n (ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.23)

In other words, the rotation matrices map the coordinates of the navigation (inertial)
frame into the body-fixed (rotating) one. It is known that any point in the Euclidian 3D
space can be represented by a sequence of these three basic rotations around the Euler
angles, and the exact same sequence needs to be applied in order to correctly obtain the 3D
rotation. The sequence Rbn Z(ψ)→ Rbn Y (θ)→ Rbn X(φ) is chosen, corresponding to the matrix
multiplication2 Rbn = RX

b
n (φ) · RYb

n (θ) · RZb
n (ψ). The result is

Rbn =

 cos θ cosψ cos θ sinψ − sin θ

− cos θ sinψ+sinφ sin θ cosψ cosφ cosψ+sinφ sin θ sinψ sinφ cos θ

sinφ sinψ+cosφ sin θ cosψ − sinφ cosψ+cosφ sin θ sinψ cosφ cos θ

 (2.24)

It can be proven that for the inverse mapping, i.e. from the body-fixed to the navigation
coordinate system, it holds Rnb = Rb T

n .
Now, the gravity’s force upon the quadrotor can be obtained as

~FbW = Rbn · ~FnW =

 −mg sin θ
mg sinφ cos θ
mg cosφ cos θ

 (2.25)

2Note the multiplication order from the right to the left.
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Assuming that both the quadrotor’s mass and gravitational center coincide, no moment
is generated by its weight force.

2.4 Non-Linear Model

Being already assessed the forces and moments acting upon the quadrotor, its non-linear
model can now be assembled. However, given the assumptions, so far, of the torque and
thrust behaviors, which have not yet been confirmed by identification experiments, we shall
leave the inputs of the model expressed in terms of the thrust Tj and torque Mj generated
by each rotor j = 1 . . . 4. Considering first the moments, we take (2.18), with inverted sign
in order to have it as perceived by the quadrotor’s airframe, and (2.20), and insert them into
the left-hand side of (2.4), while excluding the second term on the right-hand side due to the
assumption Ix ≈ Iy. After rearranging the terms and isolating the angular rates, the moment
equations are obtained

ṗ =
la
Ix

(T4 − T2) +
1

Ix

4∑
j=1

Mjx +
(Iy − Iz)

Ix
q r

q̇ =
la
Iy

(T1 − T3) +
1

Iy

4∑
j=1

Mjy −
(Ix − Iz)

Iy
p r

ṙ =
1

Iz

4∑
j=1

Mjz

(2.26)

whereas by inserting (2.21) and (2.25) into the left side of (2.7) and isolating the translational
accelerations, the complete force equations arise as

u̇ = v r − w q − g sin θ

v̇ = w p− u r + g sinφ cos θ

ẇ = u q − v p+ g cosφ cos θ +
1

m

4∑
j=1

Tj

(2.27)

This model corroborates the intuitive idea we had about the quadrotor’s dynamics in
the first place, as illustrated in Fig. 2.4. Given Tj and Mj produced by each rotor, first
the aircraft attitude is changed according to (2.26), what determines the inner inputs to the
position/altitude dynamics block, corresponding to (2.27). The altitude sub-block, however,
can be directly affected by Tj . This brief analysis will be important for, later on, defining a
control architecture and criteria to be used.

Figure 2.4: Simplified block diagram of the quadrotor’s dynamics.

We shall see in chapter 3, as the system’s parameters will be identified/dimensioned, that
the rotor dynamics is much faster than the airframe attitude one, which in turn is faster than
the airframe position.
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Chapter 3

Model Identification

We shall start by identifying the airframe rigid-body parameters and then move on to the
rotors.

3.1 Airframe

Using a digital scale the aircraft was weighted, resulting in a total mass m = 0.694 kg. The
weight of each single rotor read mr = 0.075 kg. For the sake of simplifying the identification
process and yet seeking a good approximation of the parameters, let us regard the quadrotor’s
inertial structure as two perpendicular rods, corresponding to the arms and X,Y axes of the
body-fixed coordinate system, with one point-mass on each edge, representing the rotor mass,
as depicted in Fig. 3.1.

Figure 3.1: Quadrotor’s airframe and inertial identification scheme.

The arm length measured is la = 0.18 m. All the aircraft’s mass excluding the one of
the rotors is assumed to be homogeneously distributed inside the sphere of radius R = 8 cm,
centered in the origin of the axes. Knowing that the moment of inertia of a solid sphere around
an axis σ is given by Is σ = 2

5msR
2 whereas for a point-mass distant la from the rotation

axis is given by Ir σ = mr l
2
a, and having the sphere mass as ms = m − 4mr = 0.394 kg, the

moment of inertia around axes X and Y , due to their symmetry, is easily calculated as

Ix = Iy = I2
x + I4

x + Is x = I1
y + I3

y + Is y = 2
(
mr l

2
a

)
+

2

5
msR

2

= 5.86864 · 10−3 kg m2
(3.1)

For the Z-axis the four rotors need to be considered, thus

Iz =
4∑
j=1

Ij z + Is z =
4∑
j=1

(
mr l

2
a

)
+

2

5
msR

2 = 10.72864 · 10−3 kg m2 (3.2)

13
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Table 3.1 summarizes the identified parameters for the quadrotor’s airframe, needed later
on for simulation and control design purposes.

Symbol Value Description

m 0.694 kg total aircraft mass
la 0.18 m rotor lever length to aircraft’s CG
Ix = Iy 5.87 · 10−3 kg m2 aircraft’s moment of inertia around X and Y axes
Iz 10.73 · 10−3 kg m2 aircraft’s moment of inertia around Z axis

Table 3.1: Identified quadrotor airframe parameters.

3.2 Rotors

The approach employed towards identification of the rotor’s parameters was, first, to assume
the nominal characteristics from the manufacturer, and then proceed to identify the remaining
parameters, considering the value of the ones already available.

3.2.1 Internal Dynamics

The PJS 3D 550E motor data sheet unfortunately did not provide substantial information
on the BLDCM dynamics, apart from an armature resistance of Ra = 250 mΩ and a nominal
steady-state gain of k∞ = 760 rpm

1 V ≈ 79.59/(V s). It also informed that the maximum arma-
ture current is iamax = 8.5 A, what shall be considered during the control loop design as a
control action constraint. However, most of the parameters still had to be determined via
identification tests.

First, a steady-state torque experiment (ω → M) was executed, whose configuration is
shown in Fig. 3.2.

Figure 3.2: Setup for rotor torque identification experiment.

The quadrotor was placed with its Z-axis perpendicular to the gravity vector ~g (i.e.
parallel to the ground), whereas the DOFs around the other axes were blocked. A rigid lever
with length d was attached to the aircraft’s center of mass and its other end applied to the
scale, so that the torque M caused on the quadrotor’s airframe due to the rotation of a rotor
could be assessed as

M =

(
m−m0

1000

)
| ~g | d = IG ω̇ + kD ω

2 +Ba ω [N m] (3.3)
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where m [g] was the mass reading of the scale, m0 [g] was the offset reading at ω = 0 rad/s
and | ~g |= 9.81 m/s2 is the gravity’s acceleration. The sampled and interpolated curves are
shown in Fig. 3.3. It can be seen that the sampled data adheres very well to a parabolic
function, as theoretically expected. From the interpolation, it was immediately obtained
kD = 1.18 · 10−7 N m s2 and Ba = 1.23 · 10−6 N m s.

Figure 3.3: Rotor torque identification result.

Following, a steady-state speed (u → ω) experiment with propeller was undertaken. In
Fig. 3.4a it can be seen the expected effect of the drag torque damping, reducing the gain as
the operational point (u, ω) increases. It is also noticeable some minimum voltage umin > 0 V,
below which the rotor stops rotating, possibly due to some internal static friction source or
even to the own BLDCM electric driver.

(a) Procedural u→ ω. (b) Artificial ω → u for interpolation.

Figure 3.4: Rotor steady-state experiment in channel u→ ω.

By comparing the rotor steady-state equation as in (2.16) to the interpolated curve as
in Fig. 3.4b, and since Ra and kD were already known, it was obtained umin = 1.25 V,
kt = 3.7 · 10−3 N m/A and kv = 7.8 · 10−3 V s.

The third test performed was a step input response, without propeller and with an inertia
ring attached to the motor shaft, in order to add some known and substantial inertia and
thus make the dynamics slower and easier to be detected. The experiment was executed with
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a sampling rate fs = 100 Hz and its result is shown in Fig. 3.5. Due to the yet fast dynamics
of the rotor, a higher sampling rate should have been used in order to yield more accurate
data to proceed with the identification. However, due to technical difficulties, that was not
possible. Therefore, the last two parameters regarding the rotor dynamics to be identified,
namely the armature inductance La and the rotor inertia IG = Im + Ip, are not expected to
be identified accurately enough hereby.

Figure 3.5: Step input response u→ ω experiment.

Anyhow, by comparing the approximated dynamics from the samples with the theoretical
model of the BLDC motor

ω(s)

u(s)
=

kt
It La

s2 + ItRa+Ba La
It La

s+ BaRa+kv kt
It La

=
264360

s2 + 133, 8 s+ 3115
(3.4)

yielded La = 1.9 mH and It = Im + Ir = 7.53 · 10−6 kg m2. Knowing the ring inertia Ir ≈
7 · 10−6 kg m2, the motor inertia is found to be indeed very small, Im ≈ 5.3 · 10−7 kg m2.
Nevertheless, since the propeller inertia Ip was still not known, it was anyway not possible
to assess IG.

A fourth experiment, consisting of a sequence of voltage steps applied to the rotor, enabled
IG to be detected and fine-tuned until both the model and the real-system response were made
to match as close as possible. The result, presented in Fig. 3.6, is quite satisfactory, and
served as a validation test to the identification done so far.

In order to achieve this optimal matching between real and simulated data, not only
the rotor inertia was identified as IG = 1.5 · 10−5 kg m2 but also a small steady-state gain
adjustment was made by slightly increasing the armature resistance to Ra = 260 mΩ.

3.2.2 Thrust

In order to identify the dependence of thrust T on the rotor speed ω, another steady-state
experiment was performed, this time by applying u and observing T , measured on a digital
scale. The result can be seen in Fig. 3.7a. The thrust curve T (u) can be very well interpolated
by a parabolic function, however with a thrust offset Toff at the zero-speed voltage umin. This
was due to the dead weight of the rotor itself on the scale, which should not be taken into
consideration, therefore yielding the corrected curve in green.

Finally, the function from ω to T was calculated as T (ω) = T (ω(u)), namely by picking
values of (u, ω) in function of Fig. 3.4a, finding the respective (u, T ) in the offset corrected
curve of Fig. 3.7a and then finally assembling the intermediate function (ω, T ) as in Fig.



3.2. ROTORS 17

(a) Input u(t). (b) Output ω(t).

Figure 3.6: Validation test for rotor dynamics identification.

(a) Steady-state dependence u→ T . (b) Calculated dependence ω → T .

Figure 3.7: Results of thrust identification experiment.

3.7b. It can be seen, though, that T (ω) does not adhere sufficiently accurately to a parabolic
function, let alone a pure parabolic one as theoretically foreseen by (2.19), i.e. without the
lower order coefficients. A cubic function,

T (ω) =
3∑
i=0

γi ω
i

T (ω) = −47.7 · 10−3 + 1.3 · 10−3ω − 1.44 · 10−6ω2 + 5.19 · 10−9ω3 [N]

(3.5)

matches much better the experimentally observed thrust behavior, and shall therefore be
used henceforth.

Table 3.2 encloses all other rotor parameters hereby identified.

Once the thrust function is identified, we can calculate the hovering point by finding the
roots of T (u) in Fig. 3.7a for T = mg

4 . Disregarding the negative root, which is of no physical
meaning, it yields (u, ω)hov ≈ (10.1 V; 668 rad/s).
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Symbol Value Description

kD 1.18 · 10−7 N m s2 air drag torque coefficient
Ba 1.23 · 10−6 N m s linear friction torque coefficient
kt 3.7 · 10−3 N m/A electric torque constant
kv 7.8 · 10−3 V s speed constant
La 1.9 · 10−3 H armature impedance
IG 1.5 · 10−5 kg m2 rotor inertia
Ra 260 · 10−3 Ω armature resistance

Table 3.2: Identified rotor parameters.

Having all the parameters of the non-linear rotor model properly identified, a Simulink
block diagram was built, as shown in Fig. 3.8. This model not only outputs the speed ω(t),
but also the angular momentum L(t), the total (electric) torque M(t) and the generated
thrust T (t), which shall be then fed to the quadrotor’s non-linear model in (2.26) and (2.27).

Figure 3.8: Simulink model for non-linear rotor simulation.

3.2.3 Model Simplification

From the rotor identification done so far, the linearized 2nd-order transfer function model
obtained, according to (2.15) is

GRf (s) =
3.724 · 10−3

2.805 · 10−8s2 + 4.197 · 10−6s+ 7.036 · 10−5
(3.6)

with poles λ1 ≈ −130 and λ2 ≈ −19. The first pole is very fast in comparison to the other
one, and thus can be discarded, although being kept its steady-state gain, for the sake of
model simplification, yet without hindering its validity. The simplified model is hence

GRs(s) =
Ks

s+ λs
=

885, 6

s+ 16.7
(3.7)

As can be seen in the step response plots in Fig. 3.9, the simplification with the 1st-order
system still represents sufficiently well the rotor dynamics, and thus shall be used henceforth
for the control system design to come.
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Figure 3.9: Time responses of full 2nd and simplified 1st-order rotor models.

3.3 Identified Quadrotor Dynamics

Once the airframe and rotor parameters have been identified, we can proceed to detail the
intermediate non-linear model presented in section 2.4 in terms of the rotor speeds ωj , and
derive a linearized model for enabling the design of linear controllers later in chapter 6.

3.3.1 Non-linear Model

As verified during the identification tests, the thrust behavior cannot satisfactorily be repre-
sented by a pure parabolic function as in (2.19), but rather as the complete cubic function in
(3.5). Employing this together with the rotor moment in (2.18) yields the moment equations

ṗ =
la
Ix

3∑
i=0

γi
(
ωi2 − ωi4

)
+
IG
Ix
q

4∑
j=1

ωj(−1)j +
(Iy − Iz)

Ix
q r

q̇ =
la
Iy

3∑
i=0

γi
(
ωi3 − ωi1

)
− IG
Iy
p

4∑
j=1

ωj(−1)j − (Ix − Iz)
Iy

p r

ṙ =
1

Iz

4∑
j=1

(
IG ω̇j + kD ω

2
j +Ba ωj

)
(−1)j

(3.8)

and the force equations
u̇ = v r − w q − g sin θ

v̇ = w p− u r + g sinφ cos θ

ẇ = u q − v p+ g cosφ cos θ − 1

m

4∑
j=1

3∑
i=0

γi ω
i
j

(3.9)

3.3.2 Linearized Model

By considering the derivative of the thrust produced by each rotor at its operational speed
ωj0 as Ṫj0 = γ1 + 2 γ2 ωj0 + 3 γ3 ω

2
j0

, the correspondent airframe1 linearized model at the
operational point (p0, q0, r0) is represented by the linearized moment equations

1Disregarding the rotors.
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

∆ṗ =
la

Ix

(
Ṫ20∆ω2 − Ṫ40∆ω4

)
+
IG

Ix

q0 4∑
j=1

∆ωj(−1)j + ∆q
4∑
j=1

ωj0 (−1)j

+
Iy − Iz
Ix

(r0 ∆q + q0 ∆r)

∆q̇ =
la

Iy

(
Ṫ30∆ω3 − Ṫ10∆ω1

)
−
IG

Iy

p0 4∑
j=1

∆ωj(−1)j + ∆p

4∑
j=1

ωj0 (−1)j

− Ix − Iz
Iy

(r0 ∆p+ p0 ∆r)

∆ṙ =
1

Iz

4∑
j=1

[IG ∆ω̇j + (2 kD ωj0 +Ba)∆ωj ] (−1)j

(3.10)

Having also at the operational point (u0, v0, w0) and (φ0, θ0), the linearized force equations
appear as


∆u̇ = v0 ∆r + r0 ∆v − w0 ∆q − q0 ∆w − g cos θ0 ∆θ

∆v̇ = w0 ∆p+ p0 ∆w − u0 ∆r − r0 ∆u+ g cosφ0 cos θ0 ∆φ− g sinφ0 sin θ0 ∆θ

∆ẇ = u0 ∆q + q0 ∆u− v0 ∆p− p0 ∆v − g sinφ0 cos θ0 ∆φ− g cosφ0 sin θ0 ∆θ −
1

m

4∑
j=1

Ṫj0∆ωj

(3.11)

The full linearized aircraft dynamics can be obtained by simply substituting the rotor
dynamics ∆uj → ∆ωj (3.7) into (3.10) and (3.11).



Chapter 4

Attitude Estimation

The aircraft’s attitude with respect to the inertial frame can be represented by the Euler
angles φ(t), θ(t) and ψ(t)1. For its assessment, gyroscopes in a MEMS sensory unit pro-
vide readings of p, q and r in the body-fixed frame. These angular rates cannot be simply
integrated in order to obtain the Euler angles, since the latter are defined in the inertial

(navigation) frame. Therefore a function J : {p, q, r, φ, θ, ψ} →
{
φ̇, θ̇, ψ̇

}
is needed.

4.1 Euler Kinematic Equations

The classical and rigorous full derivation of such a mapping can be found in the literature,
as in Stevens and Lewis [2003], but in short words, similarly as for the Euler angles defined
previously in Fig. 2.3, we can find J−1 by solving the Euler angular rates into the body-fixed
frame by applying the same sequence of rotations defined in section 2.3.1, therefore p

q
r

b

= Rbn 1

 φ̇
0
0

n

+ Rbn 2

 0

θ̇
0

n

+ Rbn 3

 0
0

ψ̇

n

= J−1

 φ̇

θ̇

ψ̇

n

(4.1)

where, given that φ̇ corresponds already to the last rotation, no other needs to be done and so
Rbn 1 = 1. θ̇ is the second and thus still needs to be rotated around X, hence Rbn 2 = Rbn X(φ),
whereas ψ̇ is the very first rotation and consequently Rbn 3 = Rbn X(φ) · Rbn Y (θ) still need to be
applied. Finally, by finding J−1 and taking its inverse, the transformation from body-fixed
to inertial (Euler) angular rates is achieved by φ̇

θ̇

ψ̇

n

=

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0
sinφ

cos θ

cosφ

cos θ


 p
q
r

b

(4.2)

which are known as the Euler kinematic equations.

4.2 Rotation Matrix

Although relatively simple, the classical method for attitude evaluation described by (4.2) is
subject to the known problem of singularity when θ → 90o. Even if we assume that such
conditions are unlikely to happen during operation of the quadrotor, which is quite reasonable
for non-acrobatic applications of the quadrotor, still the computational effort for working
with trigonometric functions is relatively high for the embedded microprocessor onboard
the aircraft. Moreover, eventual and unavoidable approximation errors in the calculation of

1For the sake of notation simplification we shall leave their domain (t) implicit.
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such functions would propagate in time through the integration of the Euler angular rates,
yielding a drift (random walk) in the true values of the Euler angles. Therefore the need of
an alternative, simpler evaluation method arises. The complete and rigorous derivation of
such can be found in Stepaniak [2008], yet, for the sake of clarity, it will be briefly addressed
here as well.

The idea is to extract the Euler angles from the total rotation matrix Rnb while propagating
it through time. Again, Rnb = Rb T

n , which was presented in (2.24), so the Euler angles can
be easily calculated as

φ = arctan

(
Rnb (3, 2)

Rnb (3, 3)

)
θ = − arcsin ( Rnb (3, 1)) ψ = arctan

(
Rnb (2, 1)

Rnb (1, 1)

)
(4.3)

As said, this requires the propagation of the rotation matrix through time, therefore we
shall look for an expression of its time derivative. For a time interval ∆t small enough to be
shorter than the fastest airframe attitude dynamics, we define

Ṙ
n
b = lim

∆t→0

∆ Rnb (t)

∆t
= lim

∆t→0

Rnb (t+ ∆t)− Rnb (t)

∆t
(4.4)

where the rotation decomposition

Rnb (t+ ∆t) = R
n (t+∆t)
n (t) · Rn (t)

b (t) · R
b (t)
b (t+∆t) (4.5)

applies. Since, by definition, there is no rotation in the inertial frame, R
n (t+∆t)
n (t) = I, where I

is the identity matrix. Now, in the body frame, a rotation occured between the time instants
t and t + ∆t is solely due to ∆t, as if the previous body frame had become the navigation
frame in t = 0. Moreover, a rotation backwards in time is calculated by the transposed
matrix of that in forward time, hence

R
b (t)
b (t+∆t) = R

b (t+∆t)T

b (t) = Rb T
n (∆t) = Rnb (∆t) = cos ∆θ cos ∆ψ − cos ∆θ sin ∆ψ+sin ∆φ sin ∆θ cos ∆ψ sin ∆φ sin ∆ψ+cos ∆φ sin ∆θ cos ∆ψ

cos ∆θ sin ∆ψ cos ∆φ cos ∆ψ+sin ∆φ sin ∆θ sin ∆ψ − sin ∆φ cos ∆ψ+cos ∆φ sin ∆θ sin ∆ψ

− sin ∆θ sin ∆φ cos ∆θ cos ∆φ cos ∆θ

 (4.6)

Assuming that in such short ∆t only small angle variations ∆α : {∆φ,∆θ,∆ψ} are
generated, it can be simplified ∆α→ 0⇒ sin ∆α ≈ ∆α and cos ∆α ≈ 1, therefore

R
b (t)
b (t+∆t) =

 1 −∆ψ ∆θ
∆ψ 1 −∆φ
−∆θ ∆φ 1

 (4.7)

Defining ∆Θ =
[

∆φ ∆θ ∆ψ
]T

, (4.7) can be rewritten as

R
b (t)
b (t+∆t) =

 0 −∆ψ ∆θ
∆ψ 0 −∆φ
−∆θ ∆φ 0

+ I = ∆Θ× + I (4.8)

where ∆Θ× is the skew-symmetric cross-product representation of ∆Θ. Inserting this into
(4.5) and the result into (4.4) yields
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Ṙ
n
b = lim

∆t→0

Rnb (t) (∆Θ× + I)− Rnb (t)

∆t
= lim

∆t→0

Rnb (t) ·∆Θ×
∆t

= Rnb (t) lim
∆t→0

∆Θ×
∆t

= Rnb (t)

 0 − lim∆t→0
∆ψ
∆t lim∆t→0

∆θ
∆t

lim∆t→0
∆ψ
∆t 0 − lim∆t→0

∆φ
∆t

− lim∆t→0
∆θ
∆t lim∆t→0

∆φ
∆t 0


= Rnb (t)

 0 −r q
r 0 p
−q p 0

 = Rnb (t) · Ω×

(4.9)

where p, q, r are the body-fixed angular rates read from the MEMS unit. Discretizing (4.9)
produces

Rnb (k + 1) = Rnb (k) · e
∫ T
0 Ω×dt = Rnb (k) · eΩ× ∆t = Rnb (k) · eΘ× (4.10)

Once again assuming a ∆t much smaller2 than the fastest airframe attitude dynamics,
we can approximate eΘ× = I + Θ× and finally the discrete equation of the rotation matrix
propagation through time is obtained as

Rnb (k + 1) = Rnb (k) (I + Θ×) (4.11)

2This assumption becomes valid by using sufficiently high sampling rates from the sensors.
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Chapter 5

Noise Filtering and State
Estimation

In chapter 6, all the control techniques discussed assume that all state variables, or at least
a significant number of them, are available through sensor readings and, moreover, such
measurements are not affected by any noise. When it comes to the implementation on the
physical hardware, such assumptions are not true since usually it is impossible or even not
feasible to measure certain variables of the state vector whereas, for those measured, along
with the pure signal comes noise originated from the sensor - output noise, and possibly even
noise which affects directly the system dynamics, so called process noise, usually as a result
of stochastic disturbances. Hence, in order to achieve an enhanced control performance, such
implementation issues need to be dealt with accordingly. One way to do that is by using a
Kalman filter.

5.1 Kalman Filter Design

Extensive literature on this filtering technique is available. A detailed derivation and study
on this topic was carried out, for example, by Anderson and Moore [1979]. In short words,
though, the Kalman filter is a state observer for the stochastic case, where the system’s
dynamics are subject to a Gaussian zero-mean noise ~v and the outputs also to some Gaussian
zero-mean noise ~e, hence yielding the new system linear model

~̇x = A~x+B ~u+ ~v

~y = C ~x+D~u+ ~e
(5.1)

The filter, whose linear model1 is described in (5.2), can be seen as a Linear Time-Invariant
(LTI) system operating in parallel to the real physical system in order to generate an optimal
estimate ˙̂x of all states whereas compensating for the noise effects, as shown in Fig. 5.1,
where it forms the well-known LQG structure along an LQ-controller.

˙̂x = A x̂+B u+ L (y − C x̂)

ŷ = C x̂
(5.2)

where L is the steady-state Kalman gain given by (5.3) wherein P is the steady-state esti-
mation error covariance obtained by solving the Algebraic Riccati Equation (ARE) in (5.4).

1We drop the~. index for notation simplicity.
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Figure 5.1: LQG composed of continuous-time Kalman Filter and LQ control.

L = P CT R−1 (5.3)

AP + P AT +Q− P CT R−1C P = 0 (5.4)

For the quadrotor, the 3D position ~X can be determined either by Global Positioning
System (GPS)2, for outdoors applications, or some infrared or even vision system for the
indoors case. Assuming the latter one, a sensor output noise standard deviation of σn = 5 cm
is assumed for each component. Other sensor measurements are the angular rates vector ~Ω,
by means of the on-board gyros and the angular speed ωj of each rotor, obtained from the
BLDCM’s driver, possibly through some Hall effect based sensor.

Initially it was assumed that all body-fixed speeds ~V and Euler angles ~Θ would not be
measured in this simulation, but then problems in the design of the Kalman filter LTI system
arose due to non-observability of one mode, namely ψ. Therefore we assume it is measurable
through some magnetic sensor that perceives the orientation of Earth’s magnetic field, for
the outdoors case, or, for the indoors scenario, again with some vision system, which is the

assumption here. The output vector is then ~y =
[
x y z p q ψ r ω1 ω2 ω3 ω4

]T
In addition to the sensor (output) noises, some process noise disturbing the aircraft’s

force equations is assumed, hence affecting ~V and consequently ~X after integration. Table
5.1 summarizes all noise sources and their characteristics.

Type
Affected
variable

Index
Standard
deviation

Process ~v ~V 2,4,6 1 m/s

Output ~e

~X 1 . . . 3 5 cm
~Ω 4,5,7 1 deg/s

ψ 6 2 deg
~ω 8 . . . 11 5 rad/s

Table 5.1: Zero-mean Gaussian-distributed noises acting on quadrotor.

The simulation of the noisy system and experimentation with the Kalman filter to be
presented now will make use of an LQ control which will be approached later on in section
6.2. The effect of such noises on the closed-loop LQ-controlled non-linear model is shown

2Resolution of ≈ 1m might be an issue, though.
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in Fig. 5.2, where the same Degree of Freedom (DOF) reference vector as for Fig. 6.8 and
6.9 was applied. The quite wide oscillations on φ and θ are not due to the noise sources,
but as a consequence of the controller trying to stabilize the aircraft in the desired attitude
reference. Despite these noises, the LQ controller manages to maintain the aircraft stable,
but for more demanding maneuvers, like the ones used for Figs. 6.10 and 6.11, its stability
might be significantly hindered, as it was the case3, motivating the employment of such a
filtering technique.

(a) Process noise measured on ~X. (b) Total noise measured on ~X. (c) Total noise measured on ~Θ.

Figure 5.2: Effect of noises on the LQ-controlled non-linear quadrotor model.

Tuning of the Kalman filter occurs by means of choosing the elements of the diagonal
matrices Qk and Rk in (5.4). In fact, if one knew a priori the exact covariance of the noises
~v and ~e, the best possible tuning would be achieved, by definition, as Qk = E

{
v vT

}
and

Rk = E
{
e eT

}
, with E{g} being the expected value of a random variable g(t). However, both

matrices are taken as relative to each other, and assuming that the precise characteristics of
the noises are not known, the tuning is done by an iterative process of changing the matrix
elements and verifying the filtering results. The bigger Qkii , the faster is the filter on following
the process noise, which is a desired characteristic, but the less output noise from the sensors
is filtered away. On the other hand, by increasing Rkii the opposite is achieved: better output
noise filtering but with slower convergence, i.e. less process noise tracking.

5.2 Filtering Results

For the noise scenario hereby presented, a satisfying filtering was obtained with the settings

Qk = diag
([

1 5000 1 5000 1 5000 1 1 1 1 1 1 1 1 1 1
])

Rk = 50 · diag
([

3 3 3 1 1 2 1 300 300 300 300
]) (5.5)

Having the LQ controller tuned as in (6.12), the Kalman filter was applied to both the
linear and the non-linear models of the aircraft, whose results can be seen in Fig. 5.3.

We can observe that the output noise on ψ is very well filtered, while the oscillatory
behavior of φ and θ was slightly reduced due to a more efficient control action enabled by
the filtering. Noise on ~X was also efficiently filtered out, as illustrated for the component
x in Fig. 5.3b. However, in Fig. 5.3c the real practical issue with the employment of the
Kalman filter on a non-linear system can be verified: due to the system’s non-linearity, the
filtered and estimated states are generated based on a linearized model. In the beginning of
the simulation, when the controller is trying to get the aircraft into the hovering condition,
the linearized model does not apply, which yields the steady-state discrepancy on the filtered

3Even though not only due to the noise, but also because of the system’s non-linearities.
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(a) Linear model ~Θ. (b) Linear model ~X. (c) Non-linear model ~X.

Figure 5.3: Kalman filtering results.

altitude h, when compared to the measured noisy signal. However, for any states on which
the linearization does not depend, as x11 = ψ, such discrepancy problem does not appear4.

Two ways for coping with this issue can be promptly suggested: either the Kalman filter
is calculated at several linearization points, and some switching to the closest model is done
on-line, or the so-called Extended Kalman Filter can be implemented, whose main feature is
precisely to constantly linearize the system, however not without some drawbacks, especially
of not being an optimal estimator and having a higher possibility of divergence if the filter is
not configured to be fast enough. Nevertheless, it is a broadly adopted solution for the case
of non-linear systems, usually yielding satisfactory results.

4The linear model does not depend on a ψ0.



Chapter 6

Control Design

Having the quadrotor model already properly identified, we proceed to the design of its
control loops. In fact, the quadrotor, as an open-loop system, is highly non-linear and
unstable, therefore the need for designing an efficient and reliable control.

The quadrotor can be regarded as a Multiple-Inputs-Multiple-Outputs (MIMO) system
composed of the rotor plus the airframe dynamics, as depicted in Fig. 6.1.

Figure 6.1: Quadrotor’s airframe Gi,j(s) and total Hi,j(s) MIMO system.

All other outputs and/or states such as the Euler angles ~Θ and the translational speed
~V , XY -position ~P and altitude h in the navigation frame can be obtained by manipulating
the fundamental outputs represented in this scheme. The ultimate control goal is to follow a
position ~Pref and altitude href references on the navigation frame. As can be seen from (3.9),
they can be achieved by properly choosing ~Θ. Moreover, as it will be demonstrated next, by
linearizing the quadrotor’s model around the hovering condition, the vertical speed component
w of the body-fixed coordinate system becomes independent of ~Θ, thus depending only on
the total thrust T , which in turn depends on the speed of each rotor. As a consequence, an
extra 4th DOF appears, for the independent altitude control.

Hereby four approaches shall be addressed: first, the classical PID with nested control
loops will be employed, followed by state-feedback LQ-optimal control and then arriving at
modern robustness-oriented control techniques as mixed-sensitivity H∞ and µ-synthesis with
DK-iteration for dealing with parametric and model uncertainties.

6.1 Classical (PID) Control

As it was discussed in chapter 4, the Euler angles can be obtained by properly evaluating the
angular rates ~Ω. These, in turn, are determined by the thrust (hence speed) of each rotor as
well as by their gyroscopic and the Coriollis effect of the airframe. Finally, the speed of each
rotor depends on the armature voltage applied to them. This analysis enables us to propose
the control architecture shown in Fig. 6.2, which handles the four DOFs of the closed-loop
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system: XY -position ~P , altitude h and heading ψ, each respectively represented by the boxes
in colors blue, red and green.

Figure 6.2: Proposed nested classical PID control architecture.

First of all it is important highlighting that the speed control loop refers to the body-fixed
coordinate system whereas the position is resolved in the navigation one, therefore the need
for applying the coordinate system transformation Rbn . This also holds for the altitude and
climb rate control loops.

The tuning of each control loop is achieved by using the root locus method for finding
a stable and desired time (step) response. For such, the quadrotor’s model was linearized
at the hovering situation, namely where (p0, q0, r0) = (0, 0, 0), (u0, v0, w0) = (0, 0, 0) and
(φ0, θ0) = (0, 0). Also, by disregarding the gyroscopic effect as the 2nd term in equations ∆ṗ
and ∆q̇ of (3.10), having the same speed ω0 and consequently the same thrust derivative Ṫ0

for all rotors, and defining the constants α = la Ṫ0
Ix

, β = 2 kD ω0 +Ba and σ = Ṫ0
m , it yields


ṗ = α (∆ω2 −∆ω4)
q̇ = α (∆ω3 −∆ω1)

ṙ = 1
Iz

∑4
j=1 [IG ∆ω̇j + (β +Ba)∆ωj ] (−1)j


u̇ = −g∆θ
v̇ = g∆φ

ẇ = − Ṫ0
m

∑4
j=1 ∆ωj

(6.1)

By applying the Laplace transform to (6.1), considering the rotor dynamics ∆ω = GRs ∆ur

as in (3.7) and defining the output ~Y =
[
u v w p q r

]T
and input vector ~Ur =[

∆ur1 ∆ur2 ∆ur3 ∆ur4
]T

, the MIMO matrix of transfer functions is obtained as

Hi,j(s) = Gi,j(s) ·GRs(s) =



g α
s3

0 −g α
s3

0
0 g α

s3
0 −g α

s3

−σ
s −σ

s −σ
s −σ

s
0 α

s 0 −α
s

−α
s 0 α

s 0

− IG s+β
Iz s

IG s+β
Iz s

− IG s+β
Iz s

IG s+β
Iz s

 ·GRs(s) (6.2)

To tune such system in this configuration with the classical transfer function approach
is not straightforward, since the transfer, input and output poles and zeros have to be con-
sidered. However, an advantageous effect of the linearization done here is the decoupling
of the outputs p and q. Moreover, due to the equality of some elements of Gi,j in (6.2),

by defining a new input vector as ~Uc =
[
uc1 uc2 uc3 uc4

]T
where uc1 = ∆ur2 −∆ur4,

uc2 = ∆ur3 −∆ur1, uc3 = ∆ur2 + ∆ur4 −∆ur1 −∆ur3 and uc4 =
∑4

j=1 ∆uj , a decoupling
also of the inputs is achieved, and the new configuration of the MIMO system is
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Hi,j(s) =



0 − g αKs
s3(s+λs)

0 0
g αKs
s3(s+λs)

0 0 0

0 0 0 − σKs
s(s+λs)

αKs
s(s+λs)

0 0 0

0 αKs
s(s+λs)

0 0

0 0 (IG s+β)Ks
Iz s(s+λs)

0


(6.3)

Now the control problem is simplified by approaching the MIMO system as three inde-
pendent Single-Input-Single-Output (SISO) systems by means of simply solving the system
of control input equations

~Uc = W ~Ur =


0 1 0 −1
−1 0 1 0
−1 1 −1 1
1 1 1 1

 ~Ur ⇒ ~Ur = W−1 ~Uc (6.4)

where uc4 is the output of the climb rate controller, as represented in Fig. 6.2.

6.1.1 Tuning of Control Loops

The first controller to be tuned is the climb rate. Given the integrator in H3,4, a P-controller
would suffice for stabilization and achieving a satisfactory step response. However, this model
only applies precisely at the hovering condition, which is not the case when the Simulink
simulation starts, when all rotors have zero initial speed. Hence, by using a mere P-controller,
a constant offset is propagated between reference and measured climb rate. For solving this,
a PI was tuned as Kw(s) = −12(s+1)

s , whose root locus and step response can be seen in Fig.
6.3, yielding a settling time of approx. 6.7 s. The constraint here was the control action,
which should obey | ∆uc4 |≤ 12, given that the remaining voltage to be applied to each of
the four rotors is approximately 3 V.

(a) Root locus. (b) Step response.

Figure 6.3: Tuning of climb rate controller Kw(s).

The next step was to tune the altitude controller Kh, thus completing the vertical control
(red boxes in Fig. 6.2). For the horizontal level, the tuning started, as usual, by the innermost
loop, the rates controller KΩ. Again, due to an integrator in the plant, a P-controller already
produced satisfactory results. In fact, given the presence of an integrator as part of the
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subplant in every control loop, P-controllers were designed overall in the control system.
Table 6.1 summarizes the setting of such controllers for every loop.

Loop Controller Settling time (s)

Climb rate Kw(s) = −12(s+1)
s 6.7

Altitude (height) Kh(s) = 2 2.29
Angular rates

[
Kp Kq Kr

]
=
[

0.66 0.66 22.4
] [

0.34 0.34 0.34
]

Attitude (angles)
[
Kφ Kθ Kψ

]
=
[

2.85 2.85 7.3
] [

0.7 0.7 0.36
]

Speed
[
Ku Kv

]
=
[
−0.129 −0.129

] [
1.54 1.54

]
Position

[
Kx Ky

]
=
[

0.56 0.56
] [

3.45 3.45
]

Table 6.1: Controller settings for the classical PID architecture.

Once the controllers were found in the 3-SISO systems approach, the respective controller
matrices were assembled for the real MIMO system as

KΩ =

[
Kp 0 0
0 Kq 0
0 0 Kr

]
KΘ =

[
Kφ 0 0
0 Kθ 0
0 0 Kψ

]
KV =

[
0 Kv
Ku 0

]
KX =

[
Kx 0
0 Ky

]
(6.5)

where the output of each control loop k is given by ~Uk = Kk
~Ek with ~E = ~Yref − ~Y being the

control error input.

6.1.2 Simulation and Results

Each control loop was independently tested for verifying its stability and reference tracking
characteristics. However, for the sake of analysis briefness, we shall here focus on the results
of the four closed-loop DOFs previously mentioned.

First, small step references were applied to each DOF channel, whose responses can be
seen in Fig. 6.4. After reaching the hovering condition1 at t ≈ 6 s, a XY -position reference
~Pref = (1, 1) was applied at t = 10 s, resulting in a settling time of ≈ 3.5 s with an overshoot
of ≈ 2%, a very similar performance to the one obtained with the linearized model.

(a) XY -position and altitude. (b) Attitude ~Θ. (c) Control action ~Ur.

Figure 6.4: Step response around linearization point with PID control.

At t = 15 s a heading reference ψref = 15o was applied, resulting in a settling time of ≈ 1 s
with overshoot of ≈ 4%. It can be noticed a very small disturbance on the altitude during
the yawing2 maneuver. This is due to the non-linearity of the thrust function being dealt

1Altitude stabilization at href = 0 m.
2Rotation around the body-fixed Z-axis through a ψ angle.
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by the linear classical controllers. Nevertheless, the closed-loop performance of the system is
quite good. Finally, at t = 20 s a step on the altitude reference href = 1 m is applied. The
settling time is ≈ 3 s, similar to the foreseen during the respective controller tuning.

By observing Fig. 6.4c we note that an upper-limit saturation of the control action occurs
at times during this flight simulation, given that the maximum voltage input to any rotor is
urmax = 12.6 V, especially due to the heading control, which is quite fast. However, for this
flight path reference, no significant performance deterioration is observed.

In order to verify the performance of the linear controllers against the system non-
linearities, the same sequence of maneuvers was applied, yet this time with bigger step
reference magnitudes, as shown in Fig. 6.5. At t = 10 s the new XY -position reference
was ~Pref = (10, 10), resulting in a bit longer settling time (≈ 5 s) as well as a slightly bigger
overshoot (≈ 2.5%). When the bigger step on the heading reference ψref = 150o was ap-
plied, the disturbance caused in the altitude regulation was much bigger, reaching a peak of
≈ 2.6 m, but still being compensated. The yaw angle also successfully followed the reference,
however with a bigger overshoot of ≈ 25.6% and a bit longer settling time of ≈ 2 s.

(a) XY -position and altitude. (b) Attitude ~Θ. (c) Control action ~Ur.

Figure 6.5: Step response further from linearization point with PID control.

Again, we verify control action saturation, this time on both upper and lower limits, as
shown in Fig. 6.5c. Due to the larger step references, the saturation also lasts longer, which
adds up to the model non-linearity in deteriorating the control performance in terms of the
much bigger overshoots observed.

In fact, during the simulation experiments it was observed, for instance, that if the altitude
step reference is even increased to href = 10 m the system becomes unstable. This problem,
however, is significantly minimized if the references are given as ramps rather then steps, as
illustrated in Fig. 6.6, where also output noise on the angular rate sensors is simulated. Also,
for broadening the stability region of the classical linear controllers, if necessary, their gain
could be decreased, despite making the closed-loop system slower. Another way would be
to implement the gain scheduling technique, whereby the controller gains are fine tuned at
specific linearization points (linearization grid) and then an interpolation is executed among
these pre-calculated gains at the current operational point of the system.

Still, for the proposed classical control architecture, the overall closed-loop performance
is satisfactory, especially if one considers that the pilot would be defining a speed reference
to the system, which would then be integrated as a ramp position reference, which in turn is
quite nicely followed, as can be observed in the plots of Fig. 6.6, thus avoiding the instability
threats of large step references. It can also be noted that the control efficiently rejects the
disturbances induced by the noisy sensor readings.
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(a) XY -position and altitude. (b) Attitude ~Θ. (c) Control action ~Ur.

Figure 6.6: Flight trajectory and heading reference tracking with PID control and noisy ~Ω
sensors.

6.2 LQ Control

An appealing alternative for the control of MIMO systems is the linear quadratic regulator,
usually referred to by the abbreviation LQ or even LQR. A detailed study of this topic can
be found in Lewis and Syrmos [1995]. In summary, the LQ is a kind of state-feedback control
that works with the state-space description of the plant

~̇x = A~x+B ~u

~y = C ~x+D~u
(6.6)

The state-feedback matrix3 of gains is determined by the LQ approach as

Klqr(∞) = R−1BT S(∞) (6.7)

where S(∞) = S is the solution of the ARE

0 = AT S + S A− S B R−1BT S +Q (6.8)

which minimizes the linear quadratic cost function (criterion)

J∞ =
1

2

∞∫
0

(
~xT Q~x+ ~uR~u

)
dt (6.9)

considering the infinite horizon situation. For the sake of notation simplicity we shall drop
the ∞ index from now on.

The LQ can be applied as a controller in the sense of not only regulating the system’s
states to the state-space origin (zero), but also for reference tracking. For such, artificial
states need to be created as the integral of the control error, for guaranteeing asymptotic
tracking. This results in augmented A and B matrices of the system in (6.6) for the purpose
of controller design. Before, however, we shall consider the state-space model of the quadrotor,
obtained by linearization at a general operational point defined by (u0, v0, w0) ∈ R3, (φ0, θ0) ∈
R2∧{−π < φ0, θ0 ≥ π}, (p0, q0, r0) ∈ R3 and ωj0 ∈ R ∀j = 1 . . . 4. By defining the state vector

as ~x =
[
x ∆u y ∆v z ∆w ∆φ ∆p ∆θ ∆q ψ ∆r ∆ω1 ∆ω2 ∆ω3 ∆ω4

]T
and the linearization constants as shown in table 6.2, from (3.10) and (3.11) it comes

3Also known as the Kalman gain.
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ωR0
=
∑4
j=1 ωj0 (−1)j αu1 = −g cos θ0 αv1 = g cosφ0 cos θ0 αv2 = −g sinφ0 sin θ0

αw1 = −g sinφ0 cos θ0 αw2 = −g cosφ0 sin θ0 αφ1
= cosφ0 tan θ0 q0 αφ2

= sinφ0
cos2 θ0

q0

αφ3
= sinφ0 tan θ0 αφ4

= − sinφ0 tan θ0 r0 αφ5
= cosφ0

cos2 θ0
r0 αφ6

= cosφ0 tan θ0

αp1 =
IG ωR0

+(Iy−Iz)r0
Ix

αp2 =
(Iy−Iz)q0

Ix
αp3 = − IG q0

Ix
αp4 =

la Ṫ20
+IG q0
Ix

αp5 =
−la Ṫ40

+IG q0
Ix

αθ1 = − sinφ0 q0 αθ2 = cosφ0 αθ3 = − cosφ0 r0

αθ4 = − sinφ0 αq1 = − IG ωR0
+(Ix−Iz)r0
Iy

αq2 = − (Ix−Iz)p0
Iy

αq3 =
−la Ṫ10

+IG p0
Iy

αq4 = − IG p0
Iy

αq5 =
la Ṫ30

+IG p0
Iy

αψ1
= cosφ0

cos θ0
q0 αψ2

= sinφ0 sin θ0
cos2 θ0

q0

αψ3
= sinφ0

cos θ0
αψ4

= − sinφ0
cos θ0

r0 αψ5
= cosφ0 sin θ0

cos2 θ0
r0 αψ6

= cosφ0
cos θ0

αrj =
IG λs−(2 kD ωj0+Ba)

Iz
(−1)j+1 ∀ j = 1 . . . 4 Ṫj0 = γ1 + 2 γ2 ωj0 + 3 γ3 ω2

j0
∀ j = 1 . . . 4

Table 6.2: State-space linearization constants for quadrotor at generic operational point.

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 r0 0 −q0 0 0 αu1 −w0 0 v0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 −r0 0 0 0 p0 αv1 w0 αv2 0 0 −u0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 q0 0 −p0 0 0 αw1
−v0 αw2

u0 0 0 −
Ṫ10
m

−
Ṫ20
m

−
Ṫ30
m

−
Ṫ40
m

0 0 0 0 0 0 αφ1 + αφ4 1 αφ2 + αφ5 αφ3 0 αφ6 0 0 0 0

0 0 0 0 0 0 0 0 0 αp1 0 αp2 αp3 αp4 αp3 αp5
0 0 0 0 0 0 αθ1 + αθ3 0 0 αθ2 0 αθ4 0 0 0 0

0 0 0 0 0 0 0 αq1 0 0 0 αq2 αq3 αq4 αq5 αq4
0 0 0 0 0 0 αψ1

+ αψ4
0 αψ2

+ αψ5
αψ3

0 αψ6
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 αr1 αr2 αr3 αr4
0 0 0 0 0 0 0 0 0 0 0 0 −λs 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −λs 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −λs 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −λs



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

− IG Ks
Iz

IG Ks
Iz

− IG Ks
Iz

IG Ks
Iz

Ks 0 0 0
0 Ks 0 0
0 0 Ks 0
0 0 0 Ks


(6.10)

with C = eye(16) being an identity matrix, assuming all states are directly and with unitary
gain measured, and D = zeros(16, 4) being a 16-4 null matrix.

As previously discussed, the quadrotor dynamics offers four DOFs, namely the three-
dimensional position (XY -position and altitude) plus a heading coordinate (yaw angle).
Therefore, to the 16 states of the model (6.10), we add the 4 new ones

x17 =

∫
(Xref −X)⇒ ẋ17 = x1ref

− x1

x18 =

∫
(Yref − Y )⇒ ẋ18 = x3ref

− x3

x19 =

∫
(Zref − Z)⇒ ẋ19 = x5ref

− x5

x20 =

∫
(ψref − ψ)⇒ ẋ20 = x20ref

− x20

(6.11)
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in order to obtain the augmented system with matrices Ag, Bg with which to design the LQ
controller, whose structure is represented in Fig. 6.7.

Figure 6.7: State-feedback LQ control structure for the quadrotor.

6.2.1 Tuning of the Kalman Gain

Differently from the classical control, where one has several degrees of freedom for tuning
the control loops, such as the control structure (P, PI, PD, PID, . . . ) and the position of
each zero/pole and consequently the steady-state gain, always looking for a resulting stable
feedback-loop which satisfies some time or frequency-domain requirements, the LQ technique
requires only the adjustment of the weighting matrices Q and R in the minimization criterion
(6.9).

Here also, the fundamental hovering operational point was considered for a first tuning of
the feedback matrix Klqr. Q and R are diagonal matrices and can be initially instantiated as
identity matrices. By increasing the weight of each qi,i element, the regulation (or reference
tracking) on that particular state becomes faster, usually requiring a stronger control action,
whereas precisely the penalization of the latter is obtained by increasing the weight of rj,j .
Also, what matters for the tuning is the relative values between both matrices, so we start with
R = eye(2) and, after an iterative process of changing qi,j and checking the time responses,
a satisfactory closed-loop system performance was obtained with

Q = diag
([

0 20 0 20 0 1 10 40 10 40 0 1 0 0 0 0 200 200 20 20
])
· 50

R = eye(2)

(6.12)

which can be seen in the plots of Fig. 6.8.

At time t = 5 s Xref = 1 m was applied, resulting in a settling time of ≈ 5 s with an
overshoot of ≈ 6%. The same was observed for the Y state, whereas for the altitude the
control achieved was a bit faster, with settling time of ≈ 4 s, and with a slightly less overshoot
of ≈ 4.7%. At time t = 20 s ψref = 15o was applied, yielding a settling time of ≈ 4 s and
overshoot of ≈ 4.5%. Concerning the control action, which is the limiting criterion for the
controller tuning, at least when the linearized system alone is considered, the control peak
reached ∆upeak ≈ 1.2 V, considerably below the limit ∆umax = umax − uhov = 12.6− 10.1 =
2.5 [V]. It means that, theoretically, we could push the control action up a bit more, to make
the control faster, but the result would be a more oscillatory response. Later, when applying
the control to the non-linear system, this stronger control could result in a smaller stability
region, which is obviously undesired, so a trade-off between control speed and non-linear
stability has to be met. In fact, as demonstrated in Lewis and Syrmos [1995], if Q is selected
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(a) XY -position and altitude. (b) Attitude ~Θ. (c) Control action ~Ur.

Figure 6.8: LQ control performance on quadrotor’s linearized model.

so that
(
A,
√
Q
)

is observable, then the closed-loop system with Klqr is asymptotically stable.
This, however, does not hold to the non-linear plant, therefore the motivation for avoiding
too strong control actions.

6.2.2 Simulation and Results

The effect of the system’s non-linearities can be seen in the plots of Fig. 6.9, where exactly
the same sequence of DOF references was applied to the system as for the linearized version
in section 6.2.1.

(a) XY-position and altitude. (b) Euler angles. (c) Control action.

Figure 6.9: LQ control performance on quadrotor’s non-linear model.

After reaching the hovering condition, the step references on X and Y are achieved with
practically the same settling times and overshoots, yet temporarily and slightly disturbing
the altitude control, due to the effect of p and q on ẇ in (3.9). Nevertheless, asymptotic
stability was again observed in all states, with ψref being achieved in approximately the same
conditions as in the linear case. Regarding the control action, it also behaved quite similarly
to the linear design case, except for the first 5 seconds, when the hovering condition was
being met.

In order to compare the LQ and PID controllers’ performance with each other, the same
set of DOF references as in Fig. 6.6, including the sensor (output) noise on ~Ω, was applied
to the the LQ-controlled plant. The result is shown in Fig. 6.10. The simulation was
supposed to run until tend = 50 s but at t ≈ 26 s the aircraft went unstable. This proves once
more the instability threat when taking the linear closed-loop control system too far from its
linerization point.

As an attempt to solve this problem, at least for the given maneuver reference, re-tuning
of the LQ controller by experimenting directly on the non-linear model was undertaken.
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(a) XY -position and altitude. (b) Attitude ~Θ.

Figure 6.10: Instability of LQ controller tuning for general maneuver and with noisy ~Ω
sensors.

Nevertheless, after numerous trials, unfortunately no stabilizing controller could be found.
In fact, by analyzing the plots of Fig. 6.10, one can notice that the X and Y trajectories
start to go unstable when ψ → ψref. This leads to the assumption that the conclusion of a
yaw maneuver while a 3D-position is still being tracked reduces the stability of the overall
non-linear closed-loop system. Or, as a weaker assumption, simply the tracking of ψ affects
the oder DOFs when they are occurring simultaneously.

This seems to be the case, as indicate the results shown in Fig. 6.11. There, the 3D ma-
neuver reference remains the same whereas the ramp on ψ was replaced by a step and applied
at t = 40 s so that, when ψ → ψref, all other DOFs had already met their references. As can
be seen, no instability was generated, and the controller performance was comparable to the
one obtained previously with the PID. However, no noise was used in this new simulation. If
the same noise as for the PID in Fig. 6.6 is applied, the system again goes unstable, despite
the separation of the yaw maneuver from the other DOFs.

(a) XY -position and altitude. (b) Attitude ~Θ.

Figure 6.11: Good performance of LQ controller for isolated yaw maneuver.
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Again, this demonstrates the importance of implementing some filtering technique, as
discussed in chapter 5, for conferring more stability to the closed-loop control.

Clearly, the results obtained with the ordinary one-level LQ control, in which all DOF
references are attempted to be controlled at one single loop, are not as good as the ones
obtained with the nested PID control (section 6.1). In fact, a better tuning of the LQ
controller might still be possible to achieve, but the procedure gets quite inefficient since
the tuning of one DOF ends up affecting, usually in a degrading fashion, the others. This
problem does not arise in the nested loops architecture, being the motivation for attempting
its use also with the LQ, especially made possible, in the case of the quadrotor, due to
the its subdivision into attitude and translation subsystems. An attempt to employ such
strategy is depicted in Fig. 6.12. Unfortunately it did not yield better results, possibly due
to implementation/calculation mistakes, leaving room for further investigation.

Figure 6.12: Attempt of nested LQ implementation for the quadrotor.

6.3 Robust Control Techniques

The control techniques employed so far assume that the plant’s model is perfectly known,
i.e. all significant system dynamics is modeled and, moreover, all parameters describing
such dynamics are correctly identified. This is frequently an underestimated issue in control
design, since sometimes modeling the system’s dynamics can be quite a complex task, and
thus many assumptions are made in order to simplify the model and make it feasible to work
with for later stages of system analysis and control design.

This unmodeled dynamics issue appears especially at higher frequencies. However, even
when this is not an issue, running identification tests on the real plant might also be not
straightforward, yielding not precise identified parameters as desired. Nevertheless, although
an initial identification is successful, the plant’s parameters may vary in time as a consequence
of mechanical wear - friction coefficients increase, for example - or even due to changes in
operational conditions, e.g. if a payload device like a camera is attached to the quadrotor’s
airframe, changing its moments of inertia and total mass.

All these model and parameter uncertainties can easily deteriorate the performance of
control loops or even make them go unstable. In the aerospace sector this robustness aspect,
which directly affects stability, is an even more crucial aspect of control design, given the
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human safety and high financial investment usually involved in such applications. Hence the
need for system’s robustness analysis and control design. The theoretical background for the
calculations in the following sections can be found in details in Skogestad and Postlethwaite
[2005].

6.3.1 Mixed-Sensitivity H∞

This is a control technique based on the frequency domain that aims at finding a stable
controller K that minimizes the H∞ norm of some system configuration. In plain words,
the H∞ norm of a SISO system can be thought of as the peak in the frequency domain of
its open-loop transfer function L. For the MIMO case, the peak is to be considered in the
singular values plot, that is, the maximum open-loop amplification from any input to any
output considering all frequencies.

Moreover, the Mixed Sensitivity (MS) term refers to the way in wich the H∞ norm is
to be minimized, namely according to the system’s configuration as shown in Fig. 6.13,
i.e. between the exogenous inputs ~w, which in the case of reference tracking correspond to
the references, and the performance outputs ~z. The tuning parameters are the weighting
filters W1, W2 and W3. Considering the SISO case, as it will be approached henceforth,
W1 defines how the sensitivity transfer function S = 1/(1 + H), between w and u is to be
shaped, a low-pass filter, if we consider that S also corresponds to the channel d→ y where
d is a disturbance acting on the system’s output (w = d) and having a limited bandwidth
ωd. Therefore the shaping of S determines how effectively the closed-loop system will reject
output disturbances.

Figure 6.13: S/K S/T mixed-sensitivity control design configuration for reference tracking.

In its turn, W3 determines the complementary sensitivity function T = H/(1 + H),
representing the channel r → y, is to be shaped. It is related to reference tracking and also
models how a multiplicative uncertainty acts on the system’s input u. This is precisely where
we want to focus in this robustness approach. Given that at low frequencies the system’s
model is usually known, whereas at higher frequencies it grows to high values, W3 is designed
as a high-pass filter. For both W1 and W3 filters, their design must be so that, for any of the
closed-loop transfer functions F after closing the loop with the controller, it obeys

|Wi F |≤ 1⇒| F |≤ 1

|Wi |
(6.13)

which, in plain words, means that the curve of S or T should be below, or at most superpose
itself to the respective filter inverse. Once the filters are designed, the MS H∞ algorithm
can be expressed as finding a stabilizing controller K, over all possible frequencies ω, which
minimizes
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∥∥∥∥∥∥
 W1 S
W2K S
W3 T

∥∥∥∥∥∥
∞

(6.14)

The W2 filter must not necessarily be included in the calculations. When informed, it
defines how the control action K S is to be minimized over the frequency range. This could
be used if the controller obtained with (6.14) would require a bandwidth higher than what
the actuator reaches, therefore W2 would be modeled as a high-pass filter as well. For the
sake of design simplicity though, we shall first attempt a control design without this extra
filter.

One practical aspect to take into consideration when designing the weighting filters is
that the MS H∞ algorithm requires all of them to be proper and stable transfer functions.
Therefore, for the case of W1, one would probably like to have an integrator as pole, in order
to maximize disturbance rejection as much as possible in lower frequencies. In practice, it
needs to be replaced by a very slow pole, also in order to limit the filter’s steady-state gain.

Airframe Uncertainty and Controller Design

As a study-case, let us consider that a camera as payload has been attached to the quadrotor’s
airframe. It can be modeled as a point-mass of mp = 150 g aligned with the body-fixed Z-
axis and distant lp = 11.73 cm of the coordinate system’s origin. This has the effect of
adding ∆Ix = mp l

2
p = 17.6 · 10−3 kg m2 = 3 Ix0 to the moments of inertia around the X

and Y -axes, thus I ′x = I ′y = 4 Ix0 = 23.5 · 10−3kg m2. Such payload scenario is realistic,
since the maximum lift-off mass of the quadrotor is mmax = 1062 g whereas, with the camera
coupled, the aircraft’s total mass becomes m′ = 844 g. Nevertheless, for the sake of analysis
simplification, let us consider first only the effects on the moments of inertia.

With the nested PID control design, the same trajectory reference as used in Fig. 6.6 was
applied, but this time without the ~Ω noises, yet with the increased I ′x, I

′
y. The results can be

seen in the plots of Fig. 6.14. The p and q components of the angular rates controller are

directly affected, as expected, given their tuning dependence on α = la Ṫ0
Ix

of H4,1 and H5,2

(from now on Hnom) in (6.3), and the whole closed-loop system becomes unstable.

(a) XY -position and altitude. (b) Attitude ~Θ. (c) Control action ~Ur.

Figure 6.14: Instability on PID closed-loop system induced by payload coupling.

We first proceed to tune W1 with aid of the template

W1(s) =
s/MS + ωS
s+AS ωS

(6.15)

where MS defines the magnitude in high frequencies. Since we know that oscillations in the
frequency domain imply in oscillations in the time domain response, we choose the usual
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value of MS = 2 ≈ 6 dB. ωS is the desired closed-loop bandwidth. Given that we do not
have information on the disturbance’s bandwidth, we push it as far to the right side as
possible while obeying (6.13), thus ωS = 2.5 rad/s. Finally, AS defines the steady-state gain
at low frequencies: the smaller this parameter is made, the less steady-state control error
e∞ and the more disturbance rejection (attenuation) is obtained. We find enough to choose
AS = 0.001. The resulting 1/W1 and S behavior is presented in Fig. 6.15a, where each blue
curve corresponds to S for a given value of Ix in the interval Ix0 ≤ Ix ≤ 4 Ix0 .

Now we turn to W3, which shall model the parameter uncertainty related to the changes
in Ix, Iy. For this, a relative modeling error E is obtained as

E(s) =
Hvar(s) −Hnom(s)

Hnom(s)
(6.16)

which is also calculated for every variation of Ix, Iy, corresponding to the blue curves in Fig.
6.15b. A priori we could define W3 superposing to the uppermost E(jω) . However, with
this filter we also aim at representing unmodeled dynamics, such that the modeling error
increases at high frequencies. Therefore we use the template

W3(s) =
τ s+ r0

(τ/r∞) s+ 1
(6.17)

where we choose r0 = 0.75 =≈ −2.5 dB of relative uncertainty at steady-state (low frequen-
cies). 1/τ corresponds approximately to the frequency at which the uncertainty reaches 100%,
hence τ = 0.016. Finally, r∞ represents the uncertainty at high frequencies, which can be
made arbitrarily high, but not so much as to make the filter lose its proper condition (pole
at −∞). It proved to be enough r∞ = 10.

(a) 1/W1 (red) and S (blue). (b) W3 and E. (c) 1/W3 and T .

Figure 6.15: Weighting filters for tuning of mixed-sensitivity H∞ controller.

After running the algorithm in Matlab by means of the function mixsyn, it was obtained
a controller of the 4th order, which then replaced Kp and Kq in (6.5). Simulation results with
this robust control technique are shown in Fig. 6.16.

We can see that the constraints (6.13) were obeyed after closing the loop with the H∞
controller, yielding an excellent performance and robustness even in extreme parameter un-
certainty situations, as exemplified in Fig. 6.16b, where I ′x = I ′y = 4 Ix0 and the pure PID
control goes unstable. It is also interesting to observe that only the innermost control loop of
angular rates had to be made robust, since it is directly affected by the uncertainty, whereas
all others remained in the original PID tuning.

The results seem perhaps too good to be true, and, in fact, Fig. 6.16c shows the drawback
of the tuned MS H∞ controller: a quite high frequency behavior on the control action with
10 V ≤ uc ≤ 10.4 V at steady-state. This also happens in the case of the nominal system
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(a) Filters and shaped functions. (b) XY -position and altitude. (c) Control action ~Ur.

Figure 6.16: System performance with mixed-sensitivity H∞ control for I ′x = I ′y = 4 Ix0 .

parameters. Depending on the system, the actuator might not have enough bandwidth for
following such high-frequency switching, and the desired robustness is not possible to be
achieved. Even though in the mathematical model used in this simulation the rotors seemed
to have coped well with the high-frequency content of ur, unmodeled effects such as wire
capacitance may, in practice, hinder the foreseen excellent robustness results obtained via
simulation.

For coping with such an issue, we now employ W2. In theory we would like to have it as
a high-pass filter for penalizing the control action only at higher frequencies, but by doing
so it becomes a hard task for the algorithm to attend all minimization criteria. It turns out
to be enough setting the filter to be a constant, say W2 = 0.1. After re-running the MS
H∞ algorithm, still a controller of order 4 is obtained, but now with a different dynamics
so to avoid the high-frequency behavior on the control action, as can be seen in the plots
of Fig. 6.17, where some frequency peaks around 250 Hz, 380 Hz and 450 Hz were removed,
results obtained also by simulating the closed-loop system with I ′x = I ′y = 4 Ix0 . If W2 is
made smaller, less high-frequency content is damped. On the other hand, the higher W2 is
taken, the less robustness is achieved. For example, for W2 = 1 the closed-loop control goes
unstable for this uncertainty scenario.

(a) Power spectrum of ur1 without
W2.

(b) Power spectrum of ur1 with
W2 = 0.1.

(c) ur1 with W2 = 0.1.

Figure 6.17: Improvement in mixed-sensitivity H∞ control performance with W2.

6.3.2 µ-Synthesis with DK-Iteration

Another modern control technique for taking into consideration model and parameter un-
certainty is the so-called µ-synthesis with DK-iteration. µ is the structured singular value,
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a non-negative function which provides a generalization of the singular value σ̄ of a system,
useful for analyzing robust stability and performance conditions, and is defined as

µ(M) ,
1

min {km | det (I − kmM∆) = 0 for structured ∆, σ̄(∆) ≤ 1}
(6.18)

where ∆ = diag {∆i} is the block-diagonal structured matrix of norm-bounded perturbations
σ̄(∆) ≤ 1, with which uncertainties in the system can be modeled.

Again, detailed explanation on how this control method works can be found in Skogestad
and Postlethwaite [2005]. In general words, though, it combines H∞-synthesis and µ-analysis
and can be summarized in the following algorithm:

1. K-step: synthesize an H∞ controller for the scaled problem, minK ‖ DN(K)D−1 ‖∞
with fixed D(s).

2. D-step: find D(jω) to minimize at each frequency σ̄
(
DND−1(jω)

)
with fixed N .

3. Fit the magnitude of each element of D(jω) to a stable and minimum-phase transfer
function D(s). Go to step 1.

The iterations continue until sufficient performance is achieved or the H∞-norm no longer
decreases. Convergence to a local minimum may happen, however the method works well
in most cases. One drawback is the order of the resulting controller K, which might be
too high, since it is equal to the number of states in the nominal plant G(s), plus that of
the weighting filters, plus twice the number of states in D(s). Therefore, depending on the
case, an order reduction of the synthesized controller K might be necessary to allow practical
implementation.

Rotor Uncertainty and Controller Design

As a study-case for this controller, let us assume now some uncertainty in the rotor. More
precisely, let us consider the case where the rotor inertia can vary up to 300% of the nominal
value, thus IGnom ≤ IG ≤ 4IGnom . The effect is that the rotors become slower4 than what the
pre-tuned control system expects. Nevertheless, this does not affect the XY -position neither
the ψ DOF control, at least for the linear model, since the change in one rotor dynamics is
compensated by the others, as can be inspected in (6.10). For the non-linear model in (3.8),
only minor effects occur in the control of these DOFs. However, in both cases, the h control
is significantly affected. In fact, it was verified that for the case when I ′G = 3.1IGnom , the
non-linear system controller by the PID in section 6.1 goes unstable, as illustrated in Fig.
6.18.

Hence, the need for designing a robust controller also for the altitude control. Again, it
will be attempted to re-tune only the innermost loop of this DOF, namely the climb rate
control with Kw, taking advantage of the nested control architecture. For this, a control
design scheme was proposed as depicted in Fig. 6.19.

First, the augmented plant P needs to be instantiated. Since we are only interested in
the channel uc4 → w, P contains the nominal transfer function of each rotor Gri as in (2.15)

whose output is summed and fed to the transfer function w
ωtot

= Gw(s) = − Ṫ0
sm as in G3,j of

(6.2), with ωtot =
∑4

j=1 ωj .

As for the MS H∞ control, here we also have to define some filters for the control design.
Wp(s) is the performance filter and defines how the minimization of the H∞-norm in the

4Note that not only the IG parameter is changed, but also λs and Ks in (3.7), since they are results of the
first-order approximation of the general second-order model (2.15), in which the poles depend on IG, but not
the steady-state gain.
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(a) XY -position and altitude. (b) Euler angles.

Figure 6.18: Instability in PID-controlled non-linear system induced by I ′G = 3.1IGnom .

channel wr → z is to be carried out. In our case of reference tracking, the signal to be shaped
is the control error e = wr − w, therefore we choose to set this as a low-pass filter, with
aid of the same template (6.15), in order to minimize the error at lower frequencies, where
also eventual perturbations might occur. Again here, all filters must be stable, proper LTI
systems, therefore Wp must have a bounded steady-state gain. Since this control synthesis
has the drawback of not allowing integrators in the design, the greater this gain is made,
the less will be the steady-state control error e∞, therefore we want AS to be small. The
crossover frequency ωS determines how fast the control action is. We cannot push it too
high otherwise uc4 saturates and the closed-loop system goes unstable. Last, MS determines
the filter gain at high frequencies. We leave it as MS = 2 in order to avoid peaks in the
sensitivity function S. After multiple trials, the best setting found for the other parameters
was AS = 10−4 and ωS = 130 rad/s. The behavior of Wp can be seen in the red plots of Fig.
6.20.

The four WIj filters model the parametric uncertainty in the rotors. Here, again, by
varying IG in the proposed interval, a set of relative modeling errors as described by (6.16) is
obtained, and we choose the filter parameters so as to make the filter magnitude curve in the
bode plot to at least limit the set of modeling errors at the top. Again, after multiple tuning
attempts, the desired robustness could only be achieved by adding some extra uncertainty
to the design, i.e. by shifting the crossover frequency of the filter to the left, thus detaching
the filter curve from the relative errors. The author believes this was necessary in order to
somehow include in the calculations the discrepancy of the non-linear model as some model
uncertainty. As expected and shown in Fig. 6.20a, E increases in higher frequencies, so we
set WI as a high-pass filter whose parameters, again using the template (6.17), are r0 = 10−6,
τ = 25 and r∞ = 0.81.

Once having the augmented plant P built and connected to the diagonal-structured un-
certainty matrix ∆, the augmented uncertain plant Punc is obtained and, by running the
Matlab function dksyn, a stabilizing robust controller of the 28th order is found. In Fig. 6.21
the time plots of the closed-loop system for nominal rotor inertia with this new controller can
be seen. Analyzing the altitude control, for the Linear System (LS) there is some significant
oscillation during the settling time of ≈ 5 s, with overshoot of ≈ 30%. For the Non-Linear
System (NLS), the settling time is a bit longer, around 7 s, with a slight bigger overshoot of
≈ 33%. We can observe in Fig. 6.21b a small non-zero steady-state error, given the lack of
an integrator in both the climb rate and altitude control loops. Also, it is noticeable that
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Figure 6.19: Block diagram scheme for synthesis of µ-synthesis with DK-iteration based
controller.

the big oscillations occur due to the step inputs on the reference; when following a ramp,
the oscillations are significantly less. Also, the control action suffers some brief saturation
when the reference changes are applied as well as when the tracking is concluded, but without
major consequences for the control.

Now analyzing the uncertainty scenario of I ′G = 3.1IGnom , as depicted in Fig. 6.22, the
performance in both LS and NLS is deteriorated in terms of oscillations in the reference
tracking and control action saturation. Nevertheless, the important here is that the altitude
control loop remains stable. Concerning the control action, in Fig. 6.22c we see that it suffers
more saturation, however not so critically as to hamper the robust stability achieved.

It can be concluded that this control technique indeed offers the advantages of robust
stability, however no really adequate tuning for the quadrotor could be achieved, at least for
this scenario of IG parametric uncertainty. The oscillations on h deteriorate the nominal and
robust performances, but while trying to eliminate them, the robust stability characteristic
was lost. However, one needs to consider that such uncertainty scenario is quite extreme,
given that IG is not a parameter which is expected to vary with time, i.e. it does not
suffer wear. In any case, other arrangements of P , like choosing output multiplicative or
additive uncertainty for the rotors might produce better results, or perhaps by trying to mix
both climb rate and altitude nested loops into a single one. Hence, possibilities for further
investigation and improvement in this area remain open.
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(a) Wp, WI and E. (b) 1/Wp and S with K.

Figure 6.20: Weighting filters for µ-synthesis with DK-iteration based controller design.

(a) XY -position and h for LS. (b) XY -position and h for NLS. (c) ~Ur for NLS.

Figure 6.21: Performance of µ-synthesis with DK-iteration based climb rate controller in the
altitude control loop for IGnom .

(a) XY -position and h for LS. (b) XY -position and h for NLS. (c) ~Ur for NLS.

Figure 6.22: Performance of µ-synthesis with DK-iteration based climb rate controller in the
altitude control loop for I ′G = 3.1IGnom .
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Chapter 7

Final Considerations

As it could be seen throughout this thesis, the proposed goals of this work were achieved. In
summary, the fundamentals of flight dynamics of the quadrotor aircraft were investigated and
a full mathematical non-linear model was derived using classical mechanics. Furthermore, a
linearized model for a general operational point was also obtained, enabling the later use of
linear control techniques. Following, an experimental identification of some of the system’s
parameters was carried out, like the moments of inertia Ix = Iy,Iz and IG, air drag torque
coefficient kD and thrust polynomial γi. All others, like the linear friction torque coefficient
Ba and armature impedance La were indirectly assessed by mathematical manipulation of
the previously identified parameters with the system’s model. Once the identification was
complete, multiple control techniques were employed and their performances compared with
each other, especially in terms of reference tracking. Among them, robust control techniques
like mixed-sensitivity H∞ and µ-synthesis with DK-iteration were also considered for coping
with parametric and model uncertainty. Finally, all project files were made available to the
author’s supervisor at DCE, thus collaborating for future studies which can rely on the results
already obtained herein.

However, in order to make all these results feasible to be achieved in the time span of
approximately six months, many assumptions and significant simplifications were made. One
of them is the disregard of the aerodynamic drag force acting on the quadrotor airframe when
it translates in the air. For simulation of the system near the hovering condition this is a
reasonable assumption, nevertheless, for more realistic studies, when considering significant
translational speeds of the aircraft, by still disregarding such air drag effect one runs into the
problem of not being able to use the accelerometer readings ~a = (ax, ay, az) together with
data from the gyros in some data fusion algorithm for obtaining the aircraft attitude. The
accelerometer reads a combination of Earth’s gravity ~g and the translational acceleration
~aT . The drag force opposes itself to the thrust force which translates the aircraft. When
steady-state is achieved, i.e. a constant translational speed is met, the Euler angles can be
obtained by measuring the components of the accelerometer readings, which then correspond
solely to ~g. However, while this steady-flight condition has not yet been met, a reasonable
estimation of the attitude can only be obtained if the air drag force is considered in the sum
of all forces and moments acting on the aircraft.

With respect to the real system built by Dvořák [2011], which the identification hereby
made relates to, a discrepancy was identified in the armature current ia. According to
the data sheet of the PJS 3D 550E motor, its maximum value should be 8.5 A, however,
applying umax = 12.6 V to the armature in the identified rotor model yields ≈ 20 A. This
suggests that the rotor parameters do not correspond to the real system’s ones, even though
their combination produces equivalent results in term of outputs (thrust, torque and angular
speed). Therefore the results of this work should still remain valid for immediate application
to the real aircraft. Yet, before doing so, proper discretization of the controllers hereby
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calculated should be done, among other practical implementation considerations.
Another suggestion of future work to be done at this project is to further experiment

with the controllers, especially in terms of disturbance rejection. During the simulations it
was verified that all controllers designed with the different techniques coped well, at least
up to some point, in rejecting disturbances on the output of the control loops, but the
limits of disturbance rejection were not determined. This would be an important issue to
consider before employing the controllers in practical applications with the real aircraft in
environments where, for example, wind is present.

Also, one very important issue when applying the designed controllers to the real system
is the stability, which is not ensured for any operational point, as it is in the case of the
linearized model. However, one way of augmenting the stability bounds of the non-linear
system is by employing the gain scheduling technique, either to the P-controllers of the
nested architecture of Fig. 6.2 as well as to the gains of the LQ in the scheme of Fig. 6.7. By
establishing a scheduling grid, one can tune these controllers at each grid point and then use
some interpolation to find an adaptive controller for the given operational point, with which
one expects to obtain better results in terms of stability and even performance.

One last improvement suggestion for future work is the fragmentation of the LQ-control
structure in Fig. 6.7 into three independent control loops: XY -position, altitude h and
heading ψ. This control loop segmentation is quite straightforward to be implemented when
considering the linearization around the hovering condition.
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Appendix A

Accompanying CD Content

Relevant material developed during the project is made available in a CD, whose structure
is the following:

/Control Folder containing Matlab/Simulink files used for design and test of the control
techniques employed. The rotor as well as the whole aircraft model are found herein as
well;

/Identification Folder containing Matlab/Simulink and identification experiment source
files used for the tasks of model identification;

/Kontakt 2011 Folder containing a slides presentation and poster about this thesis’ work,
elaborated for the Kontakt 2011 event at DCE/FEL/CTU, taken place on 26.05.2011;

attitude control test.avi Short video file demonstrating a practical bench experiment ex-
ecuted by Dvořák [2011] to the real system hereby studied, where the attitude (angles)
control loop is demonstrated, in the context of the nested loops architecture of Fig. 6.2;

flight test.avi Short video showing a test flight executed by Dvořák [2011] on the quadrotor,
on 05.12.2010;

delellis masters thesis.pdf Electronic copy of this Master’s thesis.
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Appendix B

Simulink Diagrams

Here the most relevant Simulink diagrams are shown, for illustration purposes.

Figure B.1: Simulink diagram of nested PID control applied to the quadrotor’s non-linear
model.

Figure B.2: Simulink diagram of LQ control state-feedback assembly.
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Figure B.3: Simulink diagram of MS H∞ controller for p and q in the ~Ω loop.

Figure B.4: Simulink diagram of quadrotor’s non-linear model.
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Figure B.5: Simulink diagram of quadrotor’s non-linear model rigid body dynamics.

Figure B.6: Simulink diagram of quadrotor’s attitude estimation.
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