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Abstract

Space research is currently in a trend of using smaller satellites in coop-
eration to achieve the same results of larger, and more expensive, single
satcllites. Not only that, satellites in formation cnable new possibilitics, like
taking measurements from plasma from different points at the same time,
thus creating a more complete 3D profile. Though formation flying has sev-
eral advantages in terms of reducing costs and production time, it increases
the requirements in control strategies not only for the spacecraft alone but
also to coordinate their relative formation structure. Those less expensive
and faster deployable satellites are usually less rigid than their larger coun-
terparts; therefore they pose new challenges in spacecraft and formation
flight control. This thesis investigates the effects of flexible satellites in the
relative dynamics of single and formation flying satellite. It proposes a way
of planning an optimal, minimum fuel, trajectory with linear programming,
and design an LQR controller for the satellites to follow this trajectory. The
system response to input shaped and unshaped reference signal is compared
for the flexible satellite with linear and nonlinear actuators.
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Chapter 1

Introduction

In the early era of space research, the first satellites were considerably stiff
and could be regarded as rigid bodies [1]. More recently, by using lighter and
more flexible materials, it became necessary to investigate this increasing
fexibility, and consequential vibration, to obtain a more faithful model of
the satellite. By mitigating those vibrations, it is possible to increase the
precision of the satellite's orbit and attitude, and even increase the available
time for on-board instruments. There are several approaches to minimise
structural vibrations [2]:

e installing dedicated hardware to isolate or dissipate the vibration;

e installing sensors and actuators to create a classic feedback control
technique to attenuate the vibration;

e schedule vibration sensitive tasks to periods after all vibration has
been dissipated.

Any combination of the above approaches will lead to losses in either
fuel, due to the increased satellite’s mass; or usage time, when vibration
takes too long to settle before it is under acceptable level for certain tasks
- e.g. using optical instrumentation like space telescopes, which require a
perfectly still subject-to-lens (pointing) attitude.

The two most common and stronger sources of vibration are flexible
appendages, like the solar panels in Figure 1.1, and liquid sloshing [1]. Figure
1.1 is an example of how flexible appendages could bend when the rockets
are on.

1.1 Motivation

The original motivation for this work was [3]. It was when I first came
across the problem of flexibility in spacecrafts and saw it together with the
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Figure 1.1: Satellite with flexible solar panels in a translational manoeuvre.

interesting topic of formation flying. However, Biediger [3] makes some over-
simplified assumptions and provides some exaggerated simulations that lead
to deflexions on the flexible appendage (the spacecraft used is asymmetric)
of over 100°. It was the idca of my supcrvisor, Prof. Hurik, to try to
reproduce those results and then extend that work where it was lacking.

Another major part of this work, the trajectory planning with Linear
Programming, came during the initial researching process on formation fly-
ing. Tillerson made a good document [4] on the topic, and my development
on it were motivated from his results.

1.2 Thesis Overview

Due to organisational matters and other issues, the total time for this the-
sis, between the topic definition and the delivery of this document, took
no longer than three months. For this reason, many details concerning the
topics addressed here had to be overlooked. I chose a fast paced approach,
dealing with a few subjects that are related to formation flying, input shap-
ing and flexible spacecrafts. The chapters are relatively short, and I believe
that addressing any of them in-depth would be a complete project on its
ow1.

Chapter 1: this introduction. Provides a brief explanation on the motiva-
tion behind this work and the organisation of this report.

Chapter 2: flexible spacecraft dynamics. Explains some concepts in orbital
and attitude dynamics and then shows the modelling of the flexible
spacecraft.

Chapter 3: input shaping with posicast control. Explains the theory of
posicast control — the first developed input shaping.

Chapter 5: trajectory planning with Linear Programming and LQR con-
troller design. Presets a method to determine optimal, minimum fuel,
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trajectories for spacecraft manoeuvres and later develops an LQR con-
troller to make the spacecraft track this predetermined trajectory.

Chapter 6: merges the theories presented so far. Presents the complete
simulations (with flexible spacecrafts in a formation cluster) and com-
pares the performance of the satellites using and not using input shap-
ing.

Chapter T: concludes this work. Briefly debates the topics covered in this
thesis and proposes an extension of this work.

The more relevant m-code and Simulink@® models used in the simulations
are available at hitp://www.kosmopolita.org/Masters/.



Chapter 2

Spacecraft Dynamics

The spacecraft dynamics is divided in:

Orbit Dynamics: the movement of the spacecraft around a much larger
and heavier body, described by the three Keplerian laws and ;

Attitude Dynamics: the rotations about the three spacecraft axis: roll,
piteh and yaw.

The effects of vibration is more pronounced in the latter, but since this
work focuses on relative orbit dynamics and formation flight, I will present
the modelling of the flexible spacecraft relevant to translational (orbital)
dynamics.

2.1 Spacecraft Model

Before any simulation can take place, we first need a model of the non-
rigid satellite. The main reasons for using a model, like testing control
strategies without the high costs of working with the actual satellites, or even
prototypes, should be quite evident. Some other less pronounced reasons are
worth pointing [5]:

e every good regulator of a system must include, explicitly or implicitly,
a model of that system, i.e. success in the regulation of the system
implies that a sufficiently similar model must first be built;

o model-based control is superior to non-model-based control.

Several techniques can be used to obtain the equations governing the
dynamics of the flexible satellite. This can be a very difficult task to accom-
plish, but some methods allow to express this motion very efficiently and yet
pursue the goal of obtaining a simplified model that adequately represents
the real structure. Lagrange-Euler’s is a well structure method to model
dynamic systems.
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Figure 2.1: Simplified satellite model with flexible appendages.

2.1.1 Lagrange-Euler Formulation

Lagrange-Euler formulation is based on the energy flow in a system. It
subtracts the total potential energy P from the total kinetic energy K, in
the system, the Lagrangian function

L=K.—P. (2.1)
From this we can derive the forces and torques (7) by using the Lagrange
equation
d [OL oL
e — SR ——— T, (22)
dt \ 99 dq

where g = [g1 g2 ... gn)7 is the set of generalised coordinates for a system
with n degrees of freedom.

Consider now the model in Figure 2.1, a discretised version of the model
in Figure 1.1, where a force F, from the thrusters, is applied to change the
translational velocity of the satellite. The development here is made for
a pair of symmetric appendages — commonly the case for solar panels. In
this model, both panels are modelled as cantilevers with a discrete mass mao
attached with a distance [ from the satellite’s body (mass m;).

The point masses mg are interconnected by torsion springs of torsion
coefficient %, which represents the rigidity of the solar panels, expressed in
terms of its natural frequency as [6]

k

T g
ma

(2.3)

The dissipation of this vibration is due to internal frictions of the ap-
pendages, when they are moving, and can be related to the damping co-
efficient ¢ as [6]

_ka 1

ey 24
(=2 (24)
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where k4 is the mechanical dissipative constant. According to [1], all strue-
tural materials have some inherent damping, so the open-loop resonant poles
are stable, not just critically stable.

For the satellite in Figure 2.1the total kinetic energy is

]Ce = K:el + 2K:e2

i (2.5)
= a?nlﬂ;] + Maly.

But the appendage constrains ms to rotate around its fixation point, so
9 = 21 — Isind, (2.6a)
g = @1 — Ol cos b, (2.6b)

and (2.5) can be rewritten as
_ 1 .4 2
Ka = S + mo(d; — Ol cos 6)”. (2.7)

For this approximation, the kinetic energy on the axis perpendicular to
F' and parallel to the panels is nil, what would happen in reality if the solar
panels are perfectly symmetric.

The total potential energy will be solely the energy stored in the torsion
spring with a torsion coefficient k, as

P=2p,=2 (%kaﬁ)

(2.8)
= B85
The damping force is proportional to the deflection rate:
D = k4b. (2.9)

The generalised coordinates being selected as (z1,6), so the Lagrange equa-

tions for this system are
d ( &C) aL F

dt \ 9y dxy (2.10)
4oLy oL _ .5
dt \ a0 09 -
with the Lagrangian
1 3 i
L= §m15;% + ma(dy — 0l cos0)? — k6> (2.11)
For small deformations on the appendages:
sinf =~ 6, (2.12a)

cosf ~ 1, (2.12b)
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and (2.11) can be simplified as

1 ;

£= gmli'% + ma(d — 01)% — k62, (2.13)
Thus,
g—‘c = mydy + 2mad; — 2mabl, (2.14a)
L
— (—) md - 2mad; — 9'm26'l (2.14b)
8'11 0, (2.14¢)
% = —2mail + 2’:’??,29.52, (2.1‘1(1)
i (Z—j) = —2mail + 2m2é£2, (2.146)
oL
-2 2.14

50 = k8, (2.14f)

substituting in (2.10) yields

E1(m1 + 2ma) — ngf}l =l

- ; 2.15
—2ma il -+ 27?126’12 + 2kgf 4+ 2860 =0 ( )

Finally, solving (2.15) for # and 8 yields the equations of motion for this

system:
. (F L 2 w) (2.16)
My {
and 7 5 )
0=——— — (kab+ kb — 2.17
Imy (hat + k) (m1£2 3 mglz) L

with x the position of the satellite’s body in the same direction of the propul-
sion force F, and @ the deflection angle of the solar panels.

2.2 Propulsion System

Though some degree of approximations does not invalidate the spacecraft

model it is important to have a general knowledge of the workings of a

propulsion system when designing a control strategy that uses it as an ac-

tuator. The force of an individual rocket engine comes from the propellant,

which is ejected at high speeds. This force can be calculated from the ve-

locity of the expelled mass and the rate of expelled mass in the relation
dm, dm

F=Ve— +A(Pe_Pa):VéfE:

= (2.18)
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74} 15 ms
Tis‘d 10 ms
MIB | 30-40 mN-s

Table 2.1: Typical characteristics for a 10-N bipropellant thruster

where V, is the exhaust velocity, A, is the area of the nozzle, P, and P, are
exhaust and ambient pressures (respectively), V. is the effective exhaust
velocity and dm/dt is the rate of propellant mass being expelled [6].

The propulsion system can change both translatory and angular veloci-
ties of a spacecraft. Its principle is the same when producing force or torque
to the spacecraft, but generally different actuators are used for each situation
since different characteristics arc required for cach task. When changing the
linear velocity of the satellite larger periods of propulsion are needed than
when changing the angular velocity in attitude control manoeuvres. Also,
proportional gas jets are much more difficult to build than on-off thrust en-
gines [1], and the latter is more frequently used. This nonlinearity must be
kept in mind when developing a control strategy for the spacecraft that uses
on-off rockets.

From the control perspective, the actuator characteristics of major con-
cern are:

e the thrust level F
o the specific impulse I;;

e the minimum impulse bit MIB: the minimum amount of impulse it
can deliver in an on-off cycle;

e the maximum number of activations;

o the starting time T;: time it takes the thruster to reach 90% of its
nominal force;

o the shutdown time T4 time it takes the thruster to have zero output
after an off command; and

o the total impulse [, Fdt.

The total impulse often dictates the life expectancy of a satellite, so saving
fuel on the manoeuvres is of paramount importance. The other characteris-
tics are treated as nonlinear constraints in the simulations. As an example,
Table 2.1 [6] lists typical values for a 10 N bipropellant thruster.
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my | 50 kg

ma | 1.5 kg
! 1m
wn | Brad/s
¢ | 0.003

Table 2.2: Spacecraft parameters

-1.5

=25
-3r

4
-4

120

time [s]

Figure 2.2: Panels deflection during a translation manoeuvre.

2.3 Vibration Effects on Orbital Manoeuvres

Table 2.2 lists the spacecraft parameters considered throughout this work.
The selected wy, and ¢ values are typical for solar panels.

Figure 2.2 shows the deflection of the panels when a thrust of 40 N is
applied to the satellite for 50 s. It is visible from the graph that if the
thruster was on long enough the deflection of the panels would converge to
a small negative angle. Depending on the moment the thruster is shut off
the oscillations can be even more aggravated. Since ( is small, the panels
take a long time before they stop oscillating.

Figure 2.3 shows the difference between the desired position (considering
a point of mass system, m; + 2my) and the position of the flexible satellite.
This difference is relatively small, sitting below 2.5 mm. Though this can be
disregarded in most situations, for more precision critical applications, like
the Laser Interferometer Space Antenna (LISA) satellite formation, where
the relative positions between satellites should have accuracies under 1 mm,
those oscillations can considerably reduce the available time for this satellite
cluster to perform its data measurements.
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Figure 2.3: Relative position between a fictional rigid body model and the
flexible satellite.

2.4 Command Modulation

Simply by modulating the thruster’s command it is possible to drastically
reduce the effects of the vibration mode in the appendages. This command
modulation can be treated as an input shaper — in the broad sense, anything
that modifies (shapes) a signal can be regarded as an input shaper, though
a more specific kind will be treated from Chapter 3 and onwards.

Figure 2.4 is a simple example of how the vibration can be attenuated.
It compares shaped and unshaped responses of the rate of angular deviation
f. The values for the modulated pulses width were found numerically.

The drawbaclks of such approach can be seen in Figure 2.5. Input shaping
usually delays the system response — in this case, a change in the satellite’s
velocity. The length of this delay is exactly the addition of the initial and the
final pulse, a total of 406 ms, a minor drawback for most applications, spe-
cially when regarding the sooner availability of the satellite for more precise
operations since its position has virtually no oscillation after a manceuvre
using shaped thrusts. A closer inspection of this is presented in Figure
2.6, that shows the difference between the unshaped and shaped velocity’s
output of the same orbital manoeuvre. It is worth noting that there is no
increase in fuel consumption for equivalent manoeuvres with and without
command shaping,

Though the values used for this simulation are theoretical, they fall in the
range of typical values for real satellites. When considering the feasibility
of such approach, mainly the thruster’s limitations should be considered,
so the question is whether it can perform pulses with the required width.
In a situation where four of the thrusters presented in Table 2.1 could be
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Figure 2.4: Angular deflection rate of the solar panels.
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Figure 2.6: Difference between velocities during an unshaped and a shaped
orbit manoeuvre.

used (one in each corner of one of the satellite’s side, a somewhat common
configuration that can also use the same thrusters for attitude manoeuvres),
for a total of 40 N as in the simulations performed here, the limitations of
the thruster would not pose any major problems for the shaped commands,
where the smallest pulse was of 203 ms.

2.5 Optimal Control

[t is quite natural to assume that an area that implements high-end tech-
nologies, such as space research, would not rely on something as simple as
the open-loop design presented so far. Among several other possibilities, it
is quite common to use optimal control for spacecraft manoeuvres.

In optimal control the goal is to minimise some cost function

J(to) = ¢(z(T), T) + / ' L{z(t), u(t), t)dt (2.19)

Jig

in the interval [tp,T]. Since the problem consists in also minimising the
states a redefinition of the state variables is usually required such that

W(x(T),T) =0. (2.20)
Therefore, the optimal control problem is to find some optimal input »*(t)
that minimises (2.19).
2.5.1 Minimum-time

This section deals briefly with minimum-time manoeuvres, as an introduc-
tion to the more usual minimum-fuel optimal control problem. As an exam-
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Leader Follower

Fallower's
Desired Position

P P, . DU A i o ‘—d'“ﬂ-‘

50m

Figure 2.7: Same-orbit leader-follower trajectory.

ple, consider a satellite that has to position itself in a reference to another
spacecraft. We wish to keep both satellites apart in a fixed distance with the
same speed. In a leader-follower configuration, the follower would be solely
responsible for this task, performing all the control effort. In this example,
a satellite approaching another satellite is required to maintain a 10 m dis-
tance from the leader, and the control set to start when they are 50 m apart,
like illustrated in Figure 2.7. For now, I will disregard the movements in the
other axes. The complete, 3-D relative dynamics, is presented in Chapter 4.

Using the leader as the reference to define the control variable, (2.20)
can be written as

_ (@lT) —2p(T) — 20

P(2(T), T) u(T) — vy (T)

=0. (2.21)
Since the reference is the leader spacecraft, its velocity v; and position z;
are, obviously, zero. So it is a question of bringing the follower’s velocity vy
to zero, and position it 20 m behind the leader, when z; + 10 would be also
Zero.

In minimum-time problems, using an on-off actuator requires a bang-
bang control — when the controller switches between its extremes, always
working with the actuators at its maximum output, or off. Though this
makes the problem more challenging, it is more realistic and also when vi-
bration is more accentuated due to the step-shaped input, since it excites
more the vibrational modes in the spacecraft. If possible to use proportional
control, the vibrations could be attenuated in a variety of ways. This, of
course, would not necessarily produce minimum time and/or fuel consump-
tion optimal solutions. In minimum time, the cost function (2.19) is reduced

to
T

J(to) = [ dt, (2.22)

]

with T not fixed (it should be as small as possible).
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Figure 2.8: States trajectories in minimum time bang-bang unshaped con-
trol.

Figure 2.8 presents the solution for this problem with

|30
:’LU'_' 4 H

which means that the spacecraft is 4 m/s faster than the leader and 30 m
distant from reaching the desired position. The controller then brings the
spacecraft to the desired position, 20 m behind the leader, and its speed
to the same as the leader's in the shortest possible time. The actuator’s
response sign corresponds to which thruster is on: 40 N for when the thrust
is on the same direction of the leader’s tangential velocity (considering its
orbit around the Earth); -40 N when the thrust is against its orbital velocity.

The effects of input shaping are clearly observed for this scenario. In fact,
the results of the same manoceuvre with shaped input, in Figure 2.9, show
that the delay caused by input shaping makes it impractical for this kind
of optimal solution. A more sophisticated approach, even for a time/fuel
optimal control, would change the control profile of a bang-off-bang of a
given number of switches to another profile with more switches. This is
quickly addressed by Singh and Singhose in [7] and it is a nontrivial solution.
In fact, the name optimal is somewhat misleading - the solution is optimal
for the weights selected for (2.19) and for the selected profile with its fixed
number of switches. Here is presented a simple modulation just to illustrate
the effects of the delay caused by the shaper.

Velocity, for this kind of reference change, will always settle no matter
what the delay from input shaping is, only the settling time will vary. Un-
fortunately, positioning does not share the same fate. As for the oscillations,
a closer look in the system’s response (Figure 2.10) indicates significant lev-
els for both speed and position oscillations. A comparison between both
shaped and unshaped responses for the solar panels deflection (Figure 2.11)
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Figure 2.9: State trajectories in minimum time bang-bang shaped control.

0.25 T T 5 T 5 i3 T T T —
0z H . f —Poslien|m] | |
4 \ - - -Thrust
g .15 o
/ Y !
§ ool .‘" \: 1 .
E ‘ ;
3 oosr / ‘\\‘ ; /’\‘“ /\Y‘ \:
3 g NPT
'E-uns-— / = ‘ i \_/ "/ _/ H
£ i ‘F : 1
o o 1IN -
H . ; ,
@ _q.15 'i . !
| ; '
oz} : '
| .f 1
0255 1B H a o 20 ] S = T 25
Time[s]

Figure 2.10: Closer inspection of the states trajectories on a bang-bang
unshaped control.

validates the results obtained previously — the input shaper manages to keep
the vibration in acceptable values throughout the whole manoeuvre. But
another drawback from this input shaper becomes obvious: it cannot modify
command pulses that are shorter than twice the shaper’s pulse.
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Chapter 3
Input Shaping

Simply put, input shaping consists in converting a reference signal of a
system (an actuator or a plant), like in the generalised structure presented
in Figure 3.1. A pre-filter can be regarded as an input shaper, for instance.

Historically, input shaping dates from the late 1950s, with Smith’s posi-
cast control [8, 9]. Its limitations, high sensitivity to modelling errors, were
soon discovered and the field didn’t become very active until the article Pre-
shaping Command Inputs to Reduce System Vibration by Singer and Seering
was published in 1990" [11].

3.1 Posicast Control

Posicast control splits the reference signal into two parts. So, for a step
reference, the single step is replaced by two steps that added together equal
the original step, like the example in Figure 3.1. The size of the steps, and
the delay before introducing the second step are derived from the system
dynamics. The theory is quite simple and compact. Consider the second
order system in the general polynomial form

w2

82 4 2€w,s + w2’ L

H(s) =

"This article is referenced as the ariginal work in robust shaping in all literature I came
across. However, they had already published about this topic in the paper [10], from 1988.

I

Figure 3.1: Input shaping of a step reference signal.

17
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Figure 3.2: Step response for a lightly damped system.

An underdamped system with { = 0.2 and a natural frequency w, = 2r
rad/s would have the step response presented in Figure 3.2. The correspond-
ing damped natural frequency is

Wy = Wy 1— 4:2: (32)

thus, wg = 6.16 rad/s or 0.9798 Hz. From control literature [12], the peak
time, when the system reaches 1 + 4, is

and the overshoot is

§=e™VI-¢ << (3.4)

In most applications, this oscillatory behaviour is undesirable and, quite
often, unacceptable. Posicast control offers a simple and yet elegant solution
to this by preshaping the system’s reference. This shaper is given by the
function 1 + P(s), with

Pls) =

T (e7t* —1). (3.5)
The term e~'»* represents a delay of ty seconds. Hence, posicast operates
by “holding” a part of the reference signal, represented by ¢/(1 + §), and
then “releasing” this signal after ¢, seconds, when the expression e~'r* — 1
becomes zero and 1+ P(s) = 1. Figure 3.3 shows the system response for
the shaped reference. This new reference is the original step convolved with
1+ P(s). As with virtually any technique, cancelling the vibration does
not come without a cost. Posicast, like any other vibration cancelling input

Ceské vysaké uleni technicke v Praze
FAKULTA ELEKTROTECHNICKA
Katedra fidici techniky
121 35 Praha 2, Karlovo nam.13

Tel.: 224922372, Fax: 2249186486 @
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Figure 3.4: Block diagram of the posicast shaper.

shaper, induces a system delay. From Figure 3.3 is clear that the rise time?
takes longer for the shaped system than for the unshaped.

The transcendental function e~ may be approximated by a rational
function of two polynomials of order p in the numerator and order ¢ in the
denominator, known as the (p, q) Pad¢ approzimant [12]. In block diagrams,
e~'r® is the transport delay with ¢, s delay, and the posicast shaper can be
constructed as in Figure 3.4.

*The definition of rise time varies but, typically, is the time it takes for the output to
reach 90% of the step height.



Chapter 4

Formation Flying

Formation of satellites involves two or more satellites in active, real-time,
cooperation. As opposed to constellation of satellites, where each satellite
maintains itself in its own frame, formation flying requires the maintenance
of a relative frame between the satellites. For instance, a constellation could
be treated as individual orbital adjustments of several independent satel-
lites, a case like the NAVSTAR. constellation of 24 satellites for the Global
Positioning System, which are separately controlled from Earth.

4.1 Formation Flying Missions

Formation flying usually involves several satellites that perform the task of a
single larger satellite. This application is fairly recent! but several missions
are planned for launch in the next following years. Table 4.1 [14]lists ESA’s
(alone or in cooperation with other agencies) planned missions for the next
years. Apart from those, and the missions that are already deployed, there
are several other missions planned by other space agencies such as NASA
(e.g. Constellation-X Observatory) and SSC (e.g. PRISMA).
"The mission requirements can be divided into:

science requirements: the specifications from the virtual instrument that
the satellite cluster should perform (e.g. orbit parameters, pointing
precision);

engineering requirements: which are derived from the requirements and
constraints defined by the science requirements (e.g. relative distance
precision, orbit considerations for positioning and maintenance).

The importance of formation flight for science is that it enables new
technologies that would be unfeasible (or even impossible) by using a single

'The precursor of formation fight is Earth Observing-1, launched on November 2000,
that flew one minute behind Landsat 7 covering the same ground track in a leader-follower
formation [13].
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Mission Mass Launch year
name [kg] (Projected)
LISA Pathfinder 470 2009
SWARM 1000 2009
PROBA-3 150 2009
MAX 200 2010
XEUS undefined 20154
NIRI (DARWIN) 500 2015+

Table 4.1: ESA’s future formation flying missions

satellite. From the engineering point the benefits are modularity (failure
of one of the satellites doesn’t, necessarily, compromise the whole mission);
design of smaller, less complex, satellites; faster deployment after detailed
definition, which possibilitates using off-the-shelf technologies; and other
cost-related benefits. The major drawbacks are the increase in communica-
tion and spacecraft control requirements.

4.2 Relative Motion

Describing the spacecraft dynamics with a rotational frame, as depicted in
Figure 4.1, offers a more elegant way to study several problems in space
dynamics. For instance, the inspection of small deviations from an ideal
orbit caused by perturbations such as drag force and third body perturba-
tions; relative motion between two or more spacecraft in nearby orbits; the
rendezvous problem and others. The development offered here follows [13],
with some modifications. Alternative solutions are treated in several works,
though variations from the one presented here seem to be dominant. To
mention a couple, [15] proposes linearised equations for relative motion that
take into account disturbing forces caused by Earth’s oblateness, known as
Jo disturbance. (Other J,, coefficients are at least 400 times smaller than
Jy and are usually neglected [6].) The effects of the common assumptions
made in this kind of analysis — namely neglecting gravitational perturba-
tions and circular orbit assumption - is studied in [16]. Results presented
there and in other similar works can be used to improve the generalisations
made here. The following development leads to Hill’s linearised equations
for relative motion, which are used to describe the spacecraft relative dy-
namics through the remainder of this work. One can extend the analysis
done with Hill's equations to other models without any major setbacks.
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Figure 4.1: Rotating coordinate frame with origin at rer for a satellite
cluster.

4.2.1 Relative Equations of Motion

The two-body equation of motion

e Tj
I = _l*'*e;:%‘ + £, (4.1)
1
defines the motion of an 4-th satellite orbiting Earth. f; accounts for any
external forces being it disturbances or control inputs. Assume r,o¢ for the
reference spacecraft (or an ideal orbit), with unperturbed motion (fref = 0);
and r; for a chaser spacecraft with a driving force f; described by

Fref = _#err_eg: (4.2a)
Tref
7 = _,ueg__g + . (4.2b)

The local coordinate frame (Figure 4.1) defines x as the axis along ryer;
¥y is along the direction of the spacecraft’s velocity; and z, normal to the zy
plane, completes the triad (z,y, z), with its origin at the reference space-
craft’s centre of mass, or in an ideal point mass orbit. The absolute position
for each spacecraft can be written in terms of the referential position vector
rref = [Frey 0 0]7 and the relative position vector p; = [z y 2]T as

Ti = Tref + Pi, (4.3)
which, from (4.2b), gives

Tref + P

— . 4.4
”rref + Pi”s ' ( )

Iy = —He
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Writing the relative position, in (4.3), as a difference between the orbit
in study and the reference orbit p; = r; — reor, the second derivative with
respect to the inertial frame yields

or

. Tref Tref + Pi :|
iPi= - + fj. 4.5

P He [7'ref3 ”rref + P't”‘a ' ( )
The subscript / to the left indicates the derivative is with respect to the
inertial frame. By using the transport theorem ;3; can be expressed with
respect to the Local Vertical/Local Horizontal (rotating) coordinate frame,
represented by the subscript R, as [13, 17]

1P:=n Pi +20 xg pi + 6 x p;+6 x (6 x p;), (4.6)

where @ = [0 0 6]7; and its first and second derivatives provide the angular
velocity and acceleration, respectively. Now, expanding the cross products
in (4.6) gives

& i j k ijk 0 i j k
= |§| +2]|0 0 4|+ |0 0 |+ (0| x [0 0 @
| Z ] ly: Ty =z 4 T W =z
E j 91} k
= |j| +2] 6d 09,
2] 03;93,0

with [i j k]=[x/a y/y 2z/z], and thus

& — 205 — By — 622
Pi= |4+ 203 + 6z — 0%y | . (4.7)
3

This, together with (4.5) form the base for the nonlinear equations of relative
motion
Lo, Brep bl ;
2 eeettp:ll Y |y |
=pe| e |TW|E|+0|= - ly|. (4.8)
0

HE~HH

ref+0i "

(83
[y
=

_ Z
[Irrae+o: ||

This equation is referred to as the True Model as it accounts for nonlin-
earities and orbit eccentricity. The solution depends on the classical orbit
parameters (a,e,i,Q,w,d), where

w (or @: is the angular velocity;
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Figure 4.2: Elliptic orbit.

n: is the mean motion n = /e /a® (n = @ for circular orbits);
a: is the semimajor azvis a = (rq +1,)/2;

ret is the apoapsis, or apogee for Earth orbiting spacecrafts;
rpt is the periapsis, or perigee for Earth orbiting spacecrafts;
e: is the ecceniricity e = (1o — rp)/(Ta + 71p);

12 is the orbit inclination, the angle between the orbital plane and the equa-
torial plane;

§2: is the right ascension of the ascending node, the angle in the equatorial
plane that separates the node line (where the orbital and the equatorial
plane intersect) from the vernal equinoz direction T

B: is the true anomaly, the angle between the major axis pointing the peri-
apsis and rpef.

Figure 4.2 provides a quick reference for some of those parameters.
Then, in orbit parameters,

P
el = e e 4.9¢
fref 1+ecost (2:3a)
. h
6= (4.9h)
5"'ref

where p = h? /1, and h is the magnitude of the specific angular momentum
h = r x v. For elliptic orhits

p=a(l—¢e?, (4.10a)

h = v/a(1l—e2)pe. (4.10b)
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Thus, (4.9) becomes

_a(l—é?)
ref = T ¥ ecos 0" (2L
. 2
§— L Tecosd) (4.11b)

e (1—e2)32
The term

Izret + pil|* = [(rres +2)% + 42 + 23/
= (rfey + 2rrerz + 912,

can be linearised for relatively small values of p; and, after a Taylor expan-
sion, (4.4) can be written as

. Tref + P4 r
= #e%pt |:1 - 3P: (’I‘ refz):| -+ fi + O(p?) (412)
ref ref
Since, from (4.5),
. r .
Pi= nulc‘;_EE — T,
"rref

substituting ¥; and arranging the equations yields

Py = ’“‘23 [—pi +3 (r"*f .p,-) r“f} + £ 4+ O(pd). (4.13)

Tref Tref Tref

From the arrangement of the rotating axis, as seen in Figure 4.1, and
considering the property of the LHLV frame

1
Tref _ 0
Tref 0 ’
(4.13) becomes
" 2
pi=he |l (414)
7
ref | —z
Substituting in (4.7) gives
e ‘2 ] "
R e O e 0 20 0] [#] [f
pl=| 0 -f= 0 llyl+ |20 0 of [g|+ ]|k,
Z 0 0 —e | |2 0 0 0] [2 [z
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which, with the results in (4.11), writing in terms of @ is defined as the
state-space equations

i] [0 2ttt +d o i 0 i 7
. L 0 0 0 0 0
¥l _ —26 —f 0 - Ilca('l(—le_io_s)ﬂ)s 0 0
y 0 g 1 0 0 0
% 0 0 0 0 0 ke a( 1(—1c_ ‘3:_5)?23
EL 0 0 0 0 1 0 |
@] 1 0 0] 1 0 0]
e 000 o 000
v+ 1o 00 zv+838 s (015
2l oo 1| b 00 1|
2] [0 0 0 0 0 0]

where u are the control inputs and w are the disturbances.

4.2.2 Hill’s Equations

Based on (4.15), the convenient Hill's (or Clohessy-Wiltshire) equations are
derived under two assumptions:

1. the distance between the chaser and the rotational frame centre, p, is
relatively small;

2. the reference orbit is circular (Figure 4.3).

The first assumption was already necessary to obtain (4.12). If a more com-
plete, nonlinear, simulation is needed, (4.8) with its 10 states accounts for
nonlinearities, but the challenge becomes modelling appropriate dynamics
for all the states while by using Hill's equations the dynamics can be defined
as a compact LTI system. The effects and consequences of those assumptions
are well presented in [16].

Circular orbits are, in fact, a special case of elliptic orbit where:

g=0,
§ i jnue
@ = Tref,

e=20.
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Figure 4.3: Relative coordinate frame for spacecraft formation. R, is Earth’s
radius; & is the leader orbit’s height; ryer is the leader’s orbit radius, assumed
a circular orbit with constant radius R. + h; rg is the follower’s orbit radius;
and p is the relative distance between the satellites, p = rf — rpes-

Hence, (4.15) becomes

m [0 3n2 2 0 0 O @ Uz wy,

& 1 0O 0 00 0 T Q 0

g _|-2n 0 0 0 0 O i Uy Wy

31=1o o 100 ofly]TlolT]o (%:16)

g 0 0 0 00 —n?||:z . W,

| 2 | L 0 0 0 01 0] [z | 0] | 0]

Or, in terms of its components,

& — 2ng — 3n’z = fy, (4.17a)
i+ 2ni = fy, (4.17b)
E+n?z=7., (4.17¢)

defined as

x, radial motion: same direction from the centre of the Earth to the rel-
ative coordinate’s origin;

¥, in-track motion: same direction from leader’s velocity. If x and z are
both zero, it can be interpreted as how far behind (or ahead) the
follower is from the leader;

z, cross-track motion: perpendicular to the reference orbit plane. Can
be interpreted as the deviations from the orbit plane.
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From (4.17) it can be observed that the radial and in-track motion are
coupled, but are both independent from the cross-track motion.

4.2.3 Unperturbed Motion

A possible configuration for a satellite cluster is to maintain a constant dis-
tance between the spacecrafts with the least possible effort. In theory, bodies
with the same shape in the same orbit should experience equal perturbations
and the motion is perfectly described by Hill's equations. Considering no
input, one needs to find a configuration that would maintain the spacecrafts

separated by
d=+/a2+y?+ 22 (4.18)

For spacecrafts in the same orbital plane z = 0.
To find a solution for this problem, (4.16) can be decomposed into
radial/in-track dynamics

i 0 3n? 2n 0] [4
T 1 0 0 0] |a
gl |-2n 0 0 0] |y +1 w18)
i 0 0 1 0fly
and cross-track dynamics
£ 0 —n?| [z
b

For unperturbed motion, f = 0 in both equations.

More generally, a desirable configuration could require that the formation
sustains the same relative positions after a complete orbital period, a drift-
Jfree configuration. Another simpler example would be the chaser to maintain
the exact same orbit from the leader with a small time delay (or advance),
where y would be constant.

The free force solution for the system (4.19) [13]

& = —¢insin(nt + o), (4.21a)
T = ¢y cos(nt + &) + ca, (4.21h)
3
§ = —2¢cincos(nt+ a) — S nes, (4.21c)
3
y = —2¢; sin(nt + a) — E'IICgt + 3, (4.21d)

and for the cross-track system (4.20)

% = —cnsin(nt + 3), (4.22a)
z = ccos(nt + ), (4.22b)

where ¢, ¢;, @ and [ are integration constants.
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Passive aperture

The free force solution in (4.19) is an ideal scenario for a satellite cluster since
it requires no fuel to maintain the satellites in a relative periodic motion.
The solutions to (4.19) are several; some well-known, same plane, are

&0 = —2ny, (4.23a)
o = n% (4.23b)

Those allow a relative elliptic motion around the reference point. Figure
4.4 shows some examples of relative motion with the passive apertures from
(4.23).

If yo # 0, all others nil, the satellite maintains a fixed distance behind
or in front of the reference. The other configurations in Figure 4.4 create an
elliptical motion relative to the reference orhit.

Passive apertures benefit from the natural orbit dynamics to maintain
the satellites in a relative periodic position without external forces. Since the
satellites are in very similar orbits, if they have similar aerodynamics their
drag forces will be roughly the same and very little effort will be needed to
maintain the cluster in formation. Constant distances, described by (4.18),
can be achieved by with a circular aperture, though this would require the
satellites to be in separate orbital planes since only with motion in the x-y
plane it is not possible to achieve a circular passive aperture. A constant
separation is also possible with small values for the in-track y distance.
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Chapter 5

Orbital Control

When it comes to orbital control, all scenarios fall into two categories:
1. orbit insertion; and
2. orbit maintenance;

or variants of those. Orbit insertion encompasses all major orbital ma-
noeuvres — deployment in some initial parking orbit, orbit transfer, orbit
rendezvous, etc. The task is to position the spacecraft in the desired orbit,
being it its original deployment or even when deorbiting the spacecraft at the
end of its mission. Orbit maintenance takes into account minor translation
changes, usually to compensate for disturbances that deviate the satellite
from its planned orbit.

Fuel, among all factors that could end a satellite’s mission!, is the main
element when determining a spacecraft’s life span. No doubt, any control
strategy used should take into account measures to minimise fuel consump-
tion, consequently extending the spacecraft life cycle. Therefore, the cate-
gories above can be redefined as:

1. finding an optimal minimum fuel consumption trajectory to bring the
satellite to a desired position, with a desired velocity, at a given time
t < oo; and

2. keeping the satellite in a desired orbit spending as less fuel as possible.

For the first, a possible approach is to use Linear Programming, ex-
plained in Section 5.1.1. For the second one, it is a matter of designing an
appropriate controller that minimises the control effort, such as a Linear
Quadratic Regulator (LQR), explained in Section 5.3.

'A description of the space environment and its hazards (e.g. solar panel degradation,
atomic oxygen attack, atmospheric drag, etc.) can be found in [18].

31
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5.1 Trajectory Planning

Defining an optimal trajectory consists in finding the velocity changes to be
performed and at which time intervals to execute those changes. The more
straightforward solutlon of shifting the spacecraft to the desired relative
position and velocity is unlikely to be a fuel-efficient solution in a formation
configuration. In most times, it is interesting to take advantage of the free
force orbit dynamics and shift the velocity in well defined intervals of time.
For a single spacecraft, when only its absolute position is regarded, there
may be not too many possibilities and the manoeuvre could be covered with
a Hohmann Transfer or a One-Tangent Burn. In formation flying, or even
for the rendezvous problem, the possibilities are innumerable.

5.1.1 Linear Programming

Linear Programming (LP) has well established algorithms to solve problems
like the one fore-mentioned. Several software packages are available, both
licensed and open-source, that can handle LP and its variants.

Of course we cannot simply defined the velocity shift in the trajectory
expecting any spacecraft to be able to perform such changes. The magni-
tude of those shifts needs to be limited according to the limitations of the
spacecraft’s propulsion system. LP also encompasses those restrictions by
defining linear constraints.

Formally, the definition of an LP problem is to minimise a vector x,
weighted by another vector ¢”, obeying a set of constraints. It has the
general form [19]

min ¢l subject to Ar =10
¥ (5.1)

Gz < h,

where G € R™*™ and A € ®WP*™,

Several problems can be formulated as an LP problem. The question is
how to define the variable involved. x needs to represent all inputs from £y
to the final time T. Naturally, the system described in (4.16) needs to be
discretised. A dynamic system can be written as

% = Ax(t) + Bu(t), (5.2a)

¥ = Cx(t) + Du(t). (5.2b)

If the inputs changes only at the discrete intervals kT and the measurements

are also sampled with a sampling rate 1/T, the continuous system in (5.2)
corresponds to the discrete dynamic system

x(k+ 1) = Aax(k) + Bau(k), (5.3a)

y(k) = Cax(k) + Dqu(k), (5.3b)
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where
T
Ag=e?T, By= (/ eATdT) B, C4=C and Dy=D.
JO

To adequate (5.3) as an LP problem, we need to find the unforced final
state zn, at the time instant NT, given the system starts with some initial
state zp at ky. This is done using the state transition matriz [20]

B(k, ko) = Aa(k — DAa(k —2)... Ag(ky). (5.4)

with ®(kg, ko) = L. The complete system evolution, at any k-step is defined
as

k—1
x(k) = ®(k,ko)xo + Y ®(k,m + 1)Ba(m)u(m), (5.5a)
m=kq
k=1
y(k) = Ca(k)®(k, ko)xo + Ca(k) D ®(k,m + 1)Ba(m)u(m) + Da(k)u(k).
m=kp

(5.5b)

By making Cq =1 and Dy = 0, the system output will correspond to
the system states y(%) = x(k). The first element on the right-hand side in
(5.5a), @(k, ko)xo, can be derived from (5.4), prior to the solution of u(k).
This latter needs to be described in a single vector that accounts for all the
inputs in the interval [kp, V], such that (5.1) can be redefined as

min ¢! u subject to Aporttpor = yn — Ca(N)2(N, ko)ig
Utot (56)

bl < U < bu,
where
e Ay defined by
Aot = [Cd(N)@(N, ko + I)Bd(r’i,‘g) Od(N)@(N, ko + Q)Bd(ko + 1)
CUNYB(N,N = 1)Ba(N = 2)  Ca(N)D(N, N)Ba(N — 1)
Ca(N)2(N, N + 1)By(N)],
(6.7)

is the full state transition matrix that contains all the state transitions
for cach k-step k e [k, N];

e Uy defined by
[ u(ko) ]
’U,(k[) + 1)

Uigt = (5.8)

w(N - 2)
u(N —1)
L u(V)
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is the complete input vector that contains all k-inputs;
e ¢ is a weighting vector;
o b are the lowest values (lower boundary) the input u,, can take;
o b, are the highest values (upper boundary) the input u,; can take;

e yv is the desired final output (usually the state) where the system
should be at the time instant (V — k)T’

o ®(N,Fky)xo is the unperturbed initial-state system response, would be
the final state if u(k + 1) = u(k) = 0 for V& € [ko, N — 1;

e ®(k+1,k) is defined in (5.4);
e 1p is the initial state.

Since those variable will always be matrices or vectors, I will drop the stan-
dard notation using bold characters to describe matrices (in bold capital
letters) or vectors (in bold lower-case letters) in LP formulations like the
one in (5.6).

The constraints in (5.6) can be summarised as the final output

N
y(N) = Ca(N)®(N, ko)xo + »_ [Ca(N)B(N,m + 1)Bg(m)]u(m). (5.9)
m=kp

This equation is valid for any causal system, so ®(k,k+ 1) = 0 Vk. In
fact, this can be regarded as an artifice to keep the indexes in simulations
somewhat organised. Therefore, the last input u(N) can be ignored without
any consequences, though if the LP is properly formulated they should be
always zero anyway.

The dimensions for this LP’s matrix and vectors are dependent on four
factors:

1. the sampling frequency 1/7" considered in the discretisation;

2. the number n; of states in the system;

3. the number n, of inputs to the system;

4. the time fx allowed for the trajectory to be concluded.
They relate to each other as:

o the number of steps N ~ E,f};

o Ay € BT

© C, Utoat, blg bu emmXI;

Geské vysoké uieni technické v Praze
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e Ly, TN, YN € Rraxl,
u(k) € Rrex;

Bk +1,k) € Rrex™
@(ko,kg) e ER""XH";

o m = (N + 1)n,.

In a linear time-invariant (LTI) system, Agq(k + 1) = Aq(k) VE and can
be simply written as Ayq. The same is valid for the other system matrices By,
Cq and Dg. The latter was already disregarded in the formulation above,
but one can follow an analogous procedure to derive an LP formulation
including the Dy matrix. For instance, [4] provides an interesting survey on
trajectory planning and gives a formulation with this consideration. This
preliminary formulation presented here is based from [4].

Now, considering that the output arc the measured states, x(k) = y(k)
and Cq4 = I, for an LTT system, (5.7) can be simplified as

A =[AT'By AT?By ... AlBs AYBy 0], (5.10)
and (5.9) becomes
Y(N) = yn = Ag"x0 + Atorthior. (5.11)
And last, the LP formulation in (5.6) becomes

min el subject to ApoiUior = Ty — Aév 0
Utat (5.12)
b < Upgt < bvn

Further considerations on convex optimality

Often, in optimisation, the minimum is regarded as min, f(z) — —oo in-
stead of ming f(z) — 0. The latter is what we are trying to find here,
for no matter if the commands are reverse or forward, any command will
translate in energy consumption. Unfortunately LP provides solutions of
the first type. To overcome this obstacle, which is not really a limitation or
drawback for many other applications, we need to reformulate the problem
in way that it will provide a solution of the type min,,,, ¢Z 0 — 0.

Tillerson [4] proposes, as explained in [19], to extend the equality matrix
and the input vector as

Aen:t = [Atat - Atot]: (513)

and .
ot

Uprt = s (514)
Uyt
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with Ao defined in (5.7) and
Utor = Uppy — Uggy- (5.15)

The input constraints are defined as the maximum velocity shift that are
feasible at any given step.

I preferred a more straightforward approach, if the LP solver allows, in
redefining the B matrix in (4.16) and the input u(t) as

100 -1 0 0
000 0 0 0
010 0 =1 0|, ., S

Bee =10 g0 0 o0 ofl% W w w u u]. (519
001 0 0 -1
000 0 o o]

with wf, wh, u} the inputs that induce a velocity change in the positive
direction of the rotational coordinate system and u, Uy, u; induce velocity
changes in the reverse direction of the coordinate system. For satellites that
have pairs of thrusters in the axis but with opposite direction this approach
allows a direct command for each thruster {(or a set of thrusters with the
same direction) instead of interpreting positive commands as one direction
and negative commands as its reverse. The inputs are then bounded as
0 < ut) £ Fmas(t). u(t) is used here to distinguish from u(k) used in
the discretised system since the extended By will be different from (5.16).
Kmax(t) is the maximum velocity shift (impulse) possible at a given time.

Both approaches, with the extended equality constraint matrix A..
or the extended system matrix Beyt, produce similar results solution and
computationally-wise — the number of variables for the LP computing to
find are the same.

5.1.2 Optimal Trajectory Planning

Now we can use the formulations from Section 5.1.1 with the system derived
in Section 4.2.2. As an example, we could consider using Hill's equation,
defined in (4.16), to solve a rendezvous problem. The spacecraft starts at
some initial position 2y and has to reach the reference orbit, when zy =
0 0 0 0 0 0)7,atagiven time ty. Figure 5.1 presents the trajectory
of a spacecraft that was given two orbital periods to achieve the desired
position. Table 5.1 lists the parameters for this simulation. The cross-track
2 initial and final positions and speed are nil, so the spacecraft remains in
the desired orbital plane throughout the whole manoeuvre.

These types of plot provide an interesting insight to relative motion.
Figure 5.1 shows the evolution of the spacecraft’s position and speed during
the manoeuvre, and Figures 5.2 and 5.3 show the satellite dynamics in time,
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Retativa irajectory Helative velocity
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Figure 5.1: Spacecraft trajectory projected on the zy-plane during two or-
bital periods in a rendezvous problem. The cross marks represent one step
each, the relative trajectory plot is the trajectory from the satellite as seen
from the reference orbit, v indicates the direction of the reference orbit
velocity. The velocity plot shows the satellite’s velocity progress for the du-
ration of the manoeuvre. It can be compared with the trajectory plot to
interpret the complete states evolution.

xop | [—30 4000 60 — 20000 0 0]
T 10s

a R, + 5000 lon

tr 201 min

N 2416

Table 5.1: Parameters for the rendezvous simulation in Figure 5.1



CHAPTER 5. ORBITAL CONTROL 38

Radial states and input
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Figure 5.2: Radial satellite dynamics in a rendezvous problem.

with u; = u; —uy, j = {w,y}. The satellite is behind (in term of in-track
position) the desired position and to the right (further from the orbit’s
centre). The resulting optimal trajectory increases the satellite’s in-track
velocity and also increases its relative radial velocity. The speed changes
are more evident on the early stages of the manoeuvre, and then only minor
shifts are noticed at the end. This is indicated by how spaced the cross
marks are at the beginning of the orbit shift. It is worth pointing that a
shift in speed does not necessarily has to be induced by an active input,
the natural orbital dynamics with its state coupling induces unforced shifts
in the orbit dynamics. Figure 5.4 shows the unperturbed states dynamics.
Since those initial states are not a solution for the force free equations (4.21)
listed in Section 4.2.3, the satellite will drift away from the desired orbit.
After only two orbital periods, the satellite drifts almost 5000 km away from
the reference orbit.

Actuator limitations

In real-world applications, rarely ever the actuator have the characteristics
required to reproduce the signals plotted in Figures 5.2 and 5.3, i.e. un-
limited slew rate, high precision and unlimited output. Moreover, rocket
thrusters usually accept on-off commands, as explained in Section 2.2, spe-
cially the ones used in larger translational changes, like orbital (re)allocation.
Those require higher thrust levels than usually required in orbit mainte-
nance.

The first limitation can be accommodated by placing constraints in the
inequality defined in the general LP formulation (5.1), Gz < h. Slew rate
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In-track states and input
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Figure 5.3: In-track satellite dynamics in a rendezvous problem.
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Figure 5.4: Unperturbed satellite’s relative dynamics.
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is how fast the actuator can shift or, in discrete systems, how much it can
vary from one step to another. This is expressed as

_3;:(1.'.& S Uj(k- + l)uj(-lﬂ) S S;ate’ (517)

or, in the inequality matrix format, as

-10 0 0 001 0 ... 0
0 -1 0 0 00O0 1 0
S =

6 0 ... -1 000 0 0 1

- (5.18)
-1 I ... 0

- I
0 -I I

The dimension of the identity matrices I will be the same as the inputs’,
and one {—I, I} pair shall be needed for each k" step in the trajectory for
each constraint. The inequality for this is defined in the LP formulation as

11111113 subject to Aportgor = TN — AdN 20

to

orate

Sz
rate
¥

Srate

[_SS] Utor < b: (5.19)

bl S Utgt S bu-

Naturally, the boundaries can be also defined inside the inequality matrix
G.

This is an interesting aspect of Linear Programming. By extending the
inequality matrix, several input constraints can be defined, giving LP a cer-
tain level of modularity. There are limitations, of course, and one is how to
define constraints for binary inputs, needed for on-off actuators. This could
be formulated, instead, in an Integer Programming (IP) problem. Again,
there are several software tools capable of performing this computation, but
the convex optimisation offered by LP is no longer guaranteed. Another issue
is that IP {or 0-1 Programming), is much more computationally demand-
ing than LP, for it if defined without restrictions in terms of branching, it
could expand up to 2" nodes, n the number of variables. For the rendezvous
example just presented, this would represent 2968 nodes!
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Figure 5.5: Mapping the velocity impulses into thrust pulses.

There are workarounds to avoid this exponential growth. A branching
strategy could be defined, or the problem could be structured for dynaemic
programming. This first appeared in the 1940s, and is based on R. E. Bell-
man’s principle of optimality [21]:

An optimal policy has the property that no matter what the
previous decision (i.e., controls) have been, the remaining deci-
sions must constitute an optimal policy with regard to the state
resulting from those previous decisions.

With this concept, instead of doing a search through all possible combi-
nations, at every new node created, an optimality policy is tested. In that
way, the number of nodes grows linearly instead of exponentially. Lewis
and Syrmos [21] provide a good introduction on dynamic programming. A
cowmplete optimal strategy could make use of all those techniques, in a com-
promise between performance, computational requirements and similarities
to real systems.

Velocity shifts to thrust conversion

An option to proceed with LP and yet fulfil the thruster’s on-off constraint
is to convert the velocity shifts in thrusts. The solution for the optimal
minimum fuel trajectory given by the LP formulations in (5.6) or, more
specifically, (5.19) provides the velocity shifts that need to occur at each
step. Now what we need is to map the velocity impulses to thrust pulses,
as outlined in Figure 5.5.

The procedure is:

1. calculate how long the thruster needs to be on to perform the change
in velocity defined by the magnitude of its impulses;

2. find the centre of each impulse and place the centre of each pulse on
the same position, this removes the delays caused by this conversion;

3. round the pulses to fit the new input vectors, so the smaller are the
steps of the thrust pulses compared to the step of the calculated im-
pulses (sampling period in Figure 5.5), the better is the approximation.
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This approach is quite limited, though. Apart from the errors caused
by the approximations, for very small values of Aw, the pulses will also be
very short, possibly shorter than the minimum impulse bit (Section 2.2).
To obtain the Av impulses, the model also needs to be discretised con-
sidering the impulse response approximation instead of the more common
Zero-Order-Holder.

5.2 Trajectory Tracking

The open-loop trajectory planned in Section 5.1 hardly seems a safe ap-
proach. Especially when considering the hours-long manoeuvres that in-
volves an change. A small deviation from the original trajectory could rep-
resent thousands of kilometres of error at the final state. The velocity shifts
Aw or even the accelerations defined for the optimal trajectory would toler-
ate no errors from the actuators. It is necessary to create a feedback control
structure and it seems natural to assume that the optimal trajectory defined
in Section 5.1 is a good place to start defining a complete feedback control
strategy for orbital manoeuvres.

5.2.1 LQR Controller Design

Section 2.5 briefly described some concepts from optimal control. The Lin-
ear Quadratic Regulator (LQR) is a special case in optimal control theory.
The reasoning behind choosing to use an LQR controller is that it is quite
straightforward to implement and many software packages contain tools to
design it fast and effectively. Before choosing it I had tried to tune a con-
troller by hand. After a few hours without success on tuning the controller,
changing to an LQR proved to be a reasonable and effortless option.
It consists in minimising a quadratic cost function

1 r 1 [T o7 T
J(to) = 5% (T)S(T)rz:(T)+§f (" Qz +u” Ru)dt (5.20)
to

for the general linear system
(t) = Ax(t) + Bu(t). (5.21)

(2.19), defined previously, is a more general format of the cost function in
(5.20). The weighting matrices @ and R are selected by the control engineer,
roughly dictating how much effort should be made to minimise the states
in z or the inputs in w. All matrices in (5.20) are assumed to be positive
semi-definite or positive definite as

S(T) >0, Q >0, R>0, all symmetric
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Linear system:

a(k+1) = Aga(k) + Bau(k) (5.24)
Cost function:
N-1
%mT(N)S(N)m(N) r %E @ (k) Qx(k) + uT(W)Ru(k))  (5.25)

Riccati equation:

S(k) = AT[S(k+1) = S(k+1)Ba(BYS(k+1)Ba+ R) ' BT S(k +1)]Ag +Q
(5.26)

Kalman gain:
K(k)=(BIS(k+1)Bs+R)'BYS(k+1)4s+Q (5.27)
Optimal input:
u(k) = —K(k)x(k) (5.28)

Table 5.2: Discrete linear quadratic optimal regulator

and, usually, diagonal matrices. S(t) is the solution to the Riccati equation
—S(t) = ATS(t) + S(t)A— SH)BR'BTS(t) +Q, t<T. (5.22)
The optimal control input is then defined as
u(t) = —R™' BT S(t)a(t)
or, in terms of the Kalman gain
K(t)=R1BTS(1),
u(t) = —K(t)x(t). (5.23)

The discrete counterparts of (5.20)-(5.23) are defined in Table 5.2 [21].
Both sets of equations are presented since this works uses interchangeably
continuous and discrete systems, unless in situations where is mandatory
to use a discretised system like in the LP formulation presented in Section
5.1.2.

In LTT systems, with slow varying reference signal, (5.22) can be approx-
imated to a limiting solution S(co) when S(t) converges for t < T'. Thus,
S(t) = 0, and the Algebraic Riccati Equation (ARE) is defined as

0=ATS+S5A-SBR'BTS +qQ. (5.29)
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Figure 5.6: LQ regulator.
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Figure 5.7: Simulated trajectory for a satellite tracking an optimal minimum
fuel trajectory.

The suboptimal gain then becomes
K(20) = R7'B"5(c0). (5.30)

There are several configurations that can make use of those equations to
set a LQR controller. The one adopted here is depicted in Figure 5.6. More
complex structures would include a compensator and some other filters, but
the design here is being kept as general as possible to be able to include
extensions at any step defined through this work. For the LQR controller
used here, the requirements are that it adequately follows the trajectory,
without major specifications in performance. Figure 5.7 shows the minimum
fuel trajectory (originally presented in Figure 5.1) and how the satellite
follows it. For this simulation, it was considered an on-off thruster with the
same parameters used originally in Chapter 2 and defined in Table 2.2.

The satellite follows the reference trajectory almost perfectly. The small
deviations are due to the smoother trajectory that the satellite takes. This
happens because of the values selected for the weighting matrix @, a diagonal
matrix with equal elements. By keeping it much smaller than the values in
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R, the minimisation in (5.20) makes a much larger effort to keep the control
inputs small than to minimise the states, in this case redefined to be the
tracking error. For all the simulations, the elements in @ were tens or
hundreds of time smaller than the elements in R. The system could be
forced to have a tighter tracking performance, but that would represent a
much pgreater fuel expenditure.

Also, the tracking performance will be dependent on the actuator con-
straints. The nonlinearities considered in this simulation was a dead-zone,
so the actuator doesn’t constantly shift on and off; and a signum function,
of the form

f(z) = signum(z)

flz)= { 0 for 2=0
1 for x>0,

multiplied by the actuator gain, i.e. the thrust. With a dead zone in the
interval [—0.1 0.1], the system behaved accordingly and the control effort
was rather small, as seen in Figure 5.8. The most effort is at the beginning
of the manoeuvre, then later only small adjustments are made to keep the
satellite in the desired trajectory.

The complete control designed in this chapter followed the guidelines
for linear systems and then stretched for the nonlinear case. Certainly, not
the most appropriate design but its results were suitable for the purpose
here. Nonlinearities are very particular to each system and a more in-depth
analysis would drift from the higher level approach that I am trying to
proportionate in this work. The exact, or statistical, characteristics of each
actuator would have to be derived from experimentation. Then it would
be a matter of modelling it and trying with different parameters — e.g. the
dead zone interval.

5.3 Orbit Maintenance

Orbit maintenance should require only small active velocity shifts. Main-
taining a satellite cluster in formation, in a passive aperture, requires even
less interference from the satellite systems, only to avoid one of the satellites
to drift away from the formation. The challenges in orbit maintenance can
be divided in two parts:

e maintaining the cluster in formation, in the desired structure required
to accomplish the scientific mission; and

e keeping the whole platform in the desired orbit, no matter what the
reference point is.



CHAPTER 5. ORBITAL CONTROL 46

0| T T T T T T T 1

30 — radial
—h-trad

300 as0 400

200
tima {min]

Figure 5.8: Control effort for the rendezvous manoeuvre.

The importance of each will dictate the amount of effort expended in keeping
each frame — the relative or the absolute.

Input shaping of the reference would be of little use on formation keeping
— there is no shift in the reference signal — and, henceforth, is left aside
in this thesis. The amount of thrust would be so small and so would be
the vibrations and its consequences. There are increasingly researches on
formation keeping without using rocket thrusters. For example, [22] uses
hybrid propulsion using coulomb and electrostatic forces in the order of mN
to keep the relative formation.



Chapter 6

Vibration Analysis and
Simulations

This chapter evolves from the analysis presented in Chapters 3 and 4. It has
the purpose of presenting general guidelines on how to extend the system
to include the dynamics of the flexible satellite. I allowed myself a certain
level of abstraction for no matter how deep is the analysis, the points raised
here will be the same:

e how to extend the rigid satellite dynamics to include flexible modes;
e how vibration affects relative motion; and

o present how input shaping affects the performance of linear and non-
linear systems.

The first abstraction is to consider the vibration modes in only one di-
rection. Say the satellite counts only with a pair of on-off thrusters, and
has to perform the same rendezvous manoeuvre provided in the example in
Chapter 4. Instead of rotating the satellite to align the thruster with the
direction of the velocity shifts Av, we could benefit from the coupling in
Hill's equation for relative motion and bring the satellite to the reference
frame’s origin only by applying active inputs in just one of the axis. From
Figure 5.8 makes more sense to select the axis where the control effort is
smaller, in radial motion; or simulate both and compare the fuel costs.

For that, the LP problem needs to be redefined for a pair of inputs,
(uf,uz) or (ut,u;). Matrix Bey for the same orbital plancs (no cross-
track motion), in (5.16), becomes

Bext =

[“ﬂ : (6.1)

e B e i e B

47
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and the analogous for in-track motion would have 1 and —1 in the third line.

Figure 6.1 compares the trajectories (planned and simulated for non-
linear actuators) for only radial or in-track inputs. The control effort for
both plots can be seen in Figure 6.2. The trajectory using solely thrust in
the radial direction, for this example, needs much more intervention than if
using only in-track thrusts. In fact, it is marginally stable for the first case
- the values for the LQR controller had to be more conservative than the
previous example in Chapter 4. The total radius for the manoeuvre is also
much larger, and the amount of fuel necessary to perform this rendezvous
is over 10 times greater if only radial thrusts were used instead of in-track
thrusts.
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6.1 Extended Flexible System

Now, I will extend the system matrices to accommodate also the vibration
modes. The flexibility analysed here is the one derived in Section 2.1.1
though a complete system, with all three motions and with a full description
of the flexibility in all spacecraft axis, is easily extendible from this analysis.
The resulting system, with just one flexible mode on each axis, would need
12 state variables.
Disregarding the cross-track motion, which is decoupled from the radial /in-

track plane, and considering flexible modes only in the in-track axis provides
the system in state-space description

k= Ax+ Bu
* i (6.2)
y = Cx + D,
with the system matrices defined as
[0 3% 2n 0 0 0 1
i 0 0 0 0 0
~2n 0 0 0 2y 2k
my my
2 1 2 1
0 0 0 0 —ki(Ze+iln) —*(Zr+an)
L0 0 0 0 1 0 ]
m1-|%2m2 0
0 0
0 1
B= 0 A (6.3b)
i
0 =
= 0 0 ~d
C=1 (6.3¢)
D= (6.3d)

B, in (6.3b), could be defined with solely the second column, if there is no
input in the radial axis.

6.1.1 Vibration Damping for Linear Actuators

The system in described by (6.3), is an abstraction. In any real system, there
will be flexible modes in all axes, and depending on the sort of actuator and
how the satellite’s attitude evolves in time, a time varying system description
would be required for a more accurate system. That is very particular to
each system and will not be treated here. This development can be used for
other systems, not just satellite motion.
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I will make use of the posicast control presented in Section 3.1. This
implementation is merely illustrative, so I make no considerations on ro-
bustness, the most noticeable deficiency of posicast shapers. More complex
shapers are addressed in the several works from Singhose and/or Singer
(e.g. [23, 24, 25]). Besides, in linear systems, one interesting aspect of input
shaping is that its parameters are only dependent on the flexible modes, so
modelling errors in parameters that do not affect the flexible modes also do
not affect the input shaper effectiveness.

For the open-loop system, the posicast parameters, § and ¢,, are only
defined by the flexible appendage characteristics, described by the spring’s
torsion coeflicient £ and damping from internal frictions kg; with

k

=4/— 6.4
wn =4 (6.4)

and ¥
(= —zixfﬁzmg. (6.5)

tp and & are obtained from (3.3) and (3.4), respectively. For the feedback
structure depicted in Figure 6.3, ( and w, (and, consequently, ¢, and §)
need to be derived from the new system poles. It is well known that the
open-loop poles are the eigenvalues from matrix A, as

p=eig(A).
Considering the system in Figure 6.3, (6.2) can be rewritten as
X =Ax+Bu
= Ax + BKe
= Ax + BK(r — Cx)
= (A - BKC)x + BKr,

(6.6)

where r is the reference states trajectory and K is the [Kalman| gain from
the LQR controller. Hence, the poles are

p = eig(A — BKC),

from where the damping ratio ¢ and natural frequency w;, can be obtained
by expanding the characteristic equation

(5 —pi)(s —97) = 8 + 2(wn + wy,

with (p;, p) the complex conjugates of interest. The necessary equations
are summarised on Table 6.1. Depending on the system, there will be more
complex pairs than just one. Even Hill's equation has some slow oscillating
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Figure 6.3: Block diagram for the feedback system with the input shaper.

states

e

a

Complex conjugate poles:

(s+pi)(s+p]) = (8 + Cwn — jwag)(s + (wn + jwg) =0

6.7
= (s + (wa)® +wi =0 53
with solutions
g ”Cwﬂ :*:jwd
wq = Im(s)
‘= Re?(s)
~ V Re¥(s) + w?
Overshoot:
§ = e~mEIVI-C (6.8)
Peak time:
T
s 9
= (6.9)
Posicast shaper:
= e ] 1
1+ P(s)=1+ 5= —1) (6.10)

Table 6.1: Equations for posicast control
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states x [ 29y 6 6]
initial states xg | [-30 4000 60 -20000 0 0]
final states (desired) TN 000000

final time 17 24200 s

torsion coefficient k 37.5 kg.rad?.s2
damping constant (friction) Ay 0.045 kg.rad’.s

Table 6.2: Simulation parameters for the flexible satellite

overshoot 4 | 0.9902
peak time ¢, | 0.6103 s

Table 6.3: Posicast parameters for the closed-loop system

mode. It is up to the control engineer to select which poles cause the un-
wanted oscillations and design a shaper that suppresses them. One posicast
shaper is needed for each pair of complex poles. Hence, one set of parame-
ters (overshoot ¢ (3.4) and peak time t, (3.3)) is obtained from each pair of
conjugate poles.

The equations on Table 6.1 are just general guidelines. System zeros
would have effect on the system damping factor ¢ and, consequently, on the
damped frequency wy. For the system in (6.6), there are no zeros that affect
the last state, the flexible appendages deflection 6. Hence, the results from
Table 6.1 hold for this system.

Simulations

For the simulations, the flexible appendages parameters are the same pre-
viously used (Table 2.2) and are repeated here in Table 6.2, which also lists
the simulation parameters. Table 6.3 lists the corresponding posicast pa-
rameters, calculated from Table 6.1, for the system depicted in Figure 6.3.

One more consideration is necessary before the actual simulations can
take place. Because of its structure (Figure 6.3), the delay operator e~
needs to be initialised to some non-nil value in order to keep the error e
small. In other words, the terms inside the parentheses in (6.10) should
cancel, i.e. e7'* = 1. If the posicast is constructed as the block diagram in
Figure 3.4, the transport delay block should be initialised in order to cancel
the posicast P(s) node, approximating the delay as

e~ g

for t<t 6.11
°1+56 & (6.11)
where z are the system initial states. When ¢ > t,, though, the system has
already evolved to different values from the initial conditions, and when the
delay block shifts from the initialised values in (6.11) to r(t — t5)d/(1 + 9)
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there is a fast drop in e which induces more oscillation than if the system
was unshaped.

This is reflected in the & and ¢ responses in Figure 6.1.1. During the
first 100 s, before the abrupt change in the thruster’s output rate, the vi-
brations for the unshaped response are smaller. Later, when the posicast
reaches a regular operational regime, the vibrations in the shaped system
decrease greatly and there are virtually no oscillations after 250 s. Posicast
removes all the undesirable flexible modes from the system. In this case,
the vibration levels are very small with and without input shaping due to
the controller response, that tries to minimise the control effort throughout
all the manoeuvre. By changing the LQR weighting matrices, Q and R, to
a more aggressive stance forcing the LQR to minimise the states over the
inputs produces the results seen in Figure 6.5. The posicast control still
performs as desired, but the control effort is too great. This proves that the
input shaper is effective for even high levels of oscillation.

The delay induced by the posicast is seen in Figures 6.6 and 6.7, that
shows the respectives shaped and unshaped references and trajectories for
the initial second of the rendezvous manceuvre. In the shaped system,
the controller only starts acting after the time delay f, has passed. For
this initial second, the states from both shaped and unshaped simulations
overlap. They only slightly drift apart from the unshaped desired trajectory,
but those plots are interesting to note how large is the difference between
the references.

For the remaining part of the manoceuvre, the tracking performance is as
expected from the previous results in Chapter 5. With the exception of the
vibration, both shaped and unshaped systems behave similarly, and only
a slight difference in the fuel consumption is noticed, the shaped system
consuming less. The delay persists even when the system reaches its steady-
state, but the states difference is, at most, on the order of 10~7 - i.e.,
the states from the unshaped system are no more than 10=7 (m or m/s)
closer to the final reference than the states from the shaped system. So the
final states are practically the same for both shaped and unshaped systems,
their difference being smaller than the steady-state error (that can be easily
removed with a set of integrators at the error signal). Figure 6.8 shows the
final states for the in-track variables.

For this simulation, the shaped and unshaped references are equal at
the end of the manoeuvre. This might not be the case in several different
scenarios and the time delay could represent an inconvenient. One way to
overcome it is to start the manoeuvre ¢, s before the planned time. Another
way is to define the delay in the posicast shaper dynamically. As the states
progress to the end of the manoeuvre the control effort becomes smaller!,

"This is generally true for passive apertures, but can differ a lot depending on the
initial conditions and desired final states.
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Figure 6.4: Angular rate deflection in the beginning of the manoeuvre.
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Figure 6.5: Angular rate deflection in the beginning of the manoeuvre with
increased states weighting matrix @ and decreased control weighting matrix

R in the LQR controller.
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Figure 6.6: Shaped and unshaped references and radial states trajectories
for the first second of the rendezvous manoceuvre.
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Figure 6.7: Shaped and unshaped references and in-track states trajectories
for the first second of the rendezvous manoceuvre.
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Figure 6.8: Shaped and unshaped references and in-track states at the end
of the manoeuvre.

and so the source of the vibrations becomes smaller and the time delay can
be safely decreased. The first option is more general, though.

The rendezvous manoeuvre from Chapter 5 was maintained here just to
emphasise the differences between the different configurations for each sim-
ulation. Other simulations with different initial and final states were per-
formed, and they produced similar results in the aspects illustrated through-
out this work. This next section also makes use of the same rendezvous opti-
mal trajectory planned with the LP formulated in Section 5.1.1. It extends
the development made in this section to the nonlinear system explained at
the end of Section 5.2.1.

6.1.2 Vibration Damping for Nonlinear Actuators

As Singer simply put [26, 10]: “no general statement can be made regarding
the application of the new technique [input shaping] to nonlinear systems
since each nonlinearity poses unique problems”. In other words, the system-
atic development done here with posicast control or some other pole-zero
cancelling technique is no longer valid for nonlinear systems. Mathematical
rigour needs to be replaced by numerical techniques.

Some articles offer more rigorous treatments for nonlinear systems of the
on-off type like the one treated here [7]. They make use of bang-bang or
bang-off-bang control to find minimum time or minimum fuel, respectively,
and extend it with the pole-zero cancelling method to mitigate the vibra-
tions. This offers a very interesting solution if the system performs satisfac-
torily under a restricted number of actuator switches — in bang-bang/bang-
off-bang control the designer has to define a specific number of switches that
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Figure 6.9: Angular deflection in the beginning of the manoeuvre with a
nonlinear on-off actuator.

the actuator will perform for each change of reference.

What if it simply works? By using the same parameters from Table 6.3
for the posicast shaper the system performs substantially better. For the
same initial 250 s, the plots for the linear actuator in Figures 6.1.1 and
6.5, the oscillations are reduced and the controller shifts significantly less,
as the plots in Figure 6.9 show. In fact, there is almost a 10% decrease in
the fuel consumption in the satellite following the shaped reference. Cer-
tainly, this result does not reflect an effective gain in this system since the
LQR controller was projected for a linear actuator and fine tuning it would
probably produce less expressive results. But this shows that input shaping
can potentially have interesting side effects other than just smoothing the
undesirable oscillations.

Another aspect from this type of nonlinearity [on-off], is that the os-
cillations are now much more prominent. This is because of the shape of
the actuator output that enters the system. The hard edged, squared-like,
thrust bursts that come from the actuator excites several modes from the
system. The thrust pulses can be decomposed as a sum of sine waves of
frequency w, 3w, 5w, ..., where w is the frequency of the pulse; or, more
generally, the inverse of the pulse width. With the several pulses that are
scen from Figure 6.9, it is very likely that one of the decomposed frequencies
will match (or be very close to) those of the oscillating modes of the system.
Hence, vibration can be much more inconvenient when dealing with step
and square wave inputs.

For the tracking performance, the system with shaped reference had
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Figure 6.10: Relative motion with on-off actuators.

no significant degradation when compared to the unshaped system (Figure
6.10).

The plots in Figure 6.10 are in the order of kilometres so it is quite hard
to notice the differences between the shaped and unshaped trajectories. A
reconfiguration of a passive aperture, described by (4.23), is presented in
Figure 6.11, and the detail of the final resulting orbit is detailed in Figure
6.12. The shaped and unshaped references practically overlap on this fi-
nal configuration, the shaped reference having a slightly smaller diameter
compared to the unshaped. This was already expected, from the results
presented by Biediger [3], and can be seen in Figure 6.13.

6.1.3 Final Considerations

Input shaping (IS), though easily implemented for linear systems, is not as
elegant for nonlinear systems. Unless the designer is willing to sacrifice the
flexibility of an LQR (or operationally similar controller) by using a bang-
off-bang control design, with a restricted number of actuator commands,
an input shaper for nonlinear systems would have to be designed for each
different manoeuvre.

The small delay caused by the shaper can be decreased dynamically. In
that way, the shaped trajectory reaches the end of the manoeuvre with the
same states of the unshaped trajectory. The effects of using a dynamic delay
and the benefits of IS for different manoeuvres can be seen in Table 6.6. It
compares:
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Figure 6.13: Radial error for the shaped reference induced by the shaper’s
delay. The two lines on the left are the final calculated trajectories approach-
ing the final position before entering the new passive aperture configuration.
The remaining lines on the right are the final relative motion passive tra-
jectories. The shaped radius is slightly smaller than the unshaped, on the
order of 107°.

e the quadratic mean vibration, given by

(6.12)

with NV the total number of steps for the simulation, and i the i** step

of the simulation;

e the root mean squared error (RMSE) of the satellite positioning (z,y),
given by

N

; 2

ERMSE = | 77 ) \/(37}'= — 22 + (3 — v)?, (6.13)
f=1

with (z7,y?) the optimally determined positions and (z;,;) the sim-
ulated positions; and

e the fuel consumption, in terms of total velocity shifts }  Aw, through-
out the manoceuvre;

for several unshaped and shaped trajectories, with and without dynamically
decreasing the delay of the shaper.

The manoeuvres parameters, initial state xg and final state xpn, and
the final state error ey is displayed in Table 6.4, for simulations with a
linear actuator, and Table 6.5, for simulations with nonlinear actuators.
The length for all manoeuvres is the same — 10 min — and the initial and
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| s/c # | symbol | [0 o o yo] J [En 2n v yn] |
I A | [050-1000 0] | [-250 0 0 -50]
IT a | [50n00-100] | [0-25 50n 0]
I11 BV [0 -50 100n 0] [100n 0 0 50]
IV > | [50n00100] | [025-50n 0]

Table 6.7: Initial and final states in a cluster reconfiguration with a quarter
of an orbital period for the manoeuvre

final states were selected at will, just to provide some variety and establish
some conclusions.

The next section investigates the effects of vibrations presented so far
for a satellite cluster regarding their relative positions.

6.2 Multiple Satellites in Formation

To keep the trajectories of the independent satellites in a more comprehen-
sive fashion, I will consider the satellite model first proposed in Chapter 5,
with actuators in both z and y directions. The flexible mode in considered
only in the y direction, as described in Section 6.1.

I will consider now a reconfiguration of a cluster with four satellites.
They are required to decrease the diameter of their passive aperture, their
original and final positions listed in Table 6.7. The free force motion of their
original positions and their calculated trajectories are displayed in Figure
6.14. The spacecrafts move clockwise around the reference point, and their
initial positions are indicate by the symbols in Table 6.7.

Another manoeuvre, more fuel efficient, would make use of the orbital
dynamics and give the cluster a full orbital period for the reconfiguration.
This manoeuvre can be seen in Figure 6.15, and the initial and final (desired)
states are listed in Table 6.8. The fourth column, the desired final state, is
half the initial state displayed on the third column, of the initial states. The
necessary velocity shifts, Av, are reduced by over 95% when compared to
the same manoeuvre if given only a quarter of an orbital period.. Just for
some insight on the importance of how much time the spacecrafts are given
to reach the desired states, Table 6.9 lists the normalised fuel costs for the
same initial and final states from Table 6.8 with different periods to perform
the manoeuvre.

6.2.1 Effects of Flexibility in the Relative Distances

The relative distance between the satellites, similar to (4.18) is given by

dij = /(s — 252 + (g — )2 (6.14)
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Figure 6.14: Free force motion and optimal trajectories for a four satellite
cluster reconfiguration. For the free force, the satellites motion were sim-
ulated for 3000 s, or 50 min. For the minimum fuel trajectory planning
the spacecrafts were given a quarter of an orbital period to reach their new
orbits.
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Figure 6.15: Optimal trajectory for the four satellite cluster reconfiguration
with a full orbital period. The radial and in-track axes are shifted in this
figure, so the centre of the reference orbit is downwards and the reference
point is moving to the right on the inertial coordinate plane (gy..5).
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| s/c # [ symbol [ [éo =0 o y0] | [En v Un YN] |

I A [0 50 -100n 0] | [0 25 -50n 0]
11 a | [-60n00-100] | [-25u 0 0 -50]
I | v | [0-50100n0] | [0-2550n 0]
IV > | [50n00100] | [25n 0 0 50]
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Table 6.8: Initial and final states in a cluster reconfiguration with a full
orbital period

duration fuel cost, s/c I & III | fuel cost, s/c I & IV
(orbital period) (normalised Aw) (normalised Awv)
1/8 240 416
1/4 78.9 62.6
1/2 18.7 7.52
1 1.00 1.00
2 0.960 0.762
4 0.960 0.762
8 0.960 0.762

Table 6.9: Normalised fuel costs for different trajectory durations

with i and j the satellite index (d;; = 0 for i = j, the same satellite). Since
this simulation considers four satellites, the distances make a combination of
six possibilities. Keeping track of those distances is paramount for a forma-
tion flying mission — the cooperation of each satellite in the cluster is more
dependent on their relative positions than on their absolute (inertial) posi-
tions. This section investigates the effects of vibration on the four satellite
cluster just presented.

The distances between the satellites are defined as in Figure 6.16. Figure
6.17 shows the distances between satellite I and the other three satellites —
di2, di3 and dy4. The unshaped (optimal) and the shaped desired (reference)
trajectories overlap in this graph, making them indistinguishable.

A comparison of the performance for this manoeuvre for shaped and
unshaped trajectories is presented in Tables 6.10, 6.12 and 6.13: Table 6.10
lists the Av cost for the length of the orbital shift, one orbital period of
1207.9 s; Table 6.12 lists the quadratic mean vibration, given by; Table 6.13
lists the root mean squared error (RMSE), given by

N
1
ERMSE = \I N ) (df; — dig)?, (6.15)
i=1

with dj; the desired (from the estimated optimal trajectories) distance and
d;; the simulated distance.
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Figure 6.16: Definition of the relative distances between the four satellites.
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Figure 6.17: Simulated distances between satellite I and satellites II, ITI and
IV.
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| satellite | T | TI [ II | IV |
unshaped | 1.8113 | 2.8679 | 1.8113 | 2.8679
shaped | 0.4528 | 0.1509 | 0.4528 | 0.1509

Table 6.10: Total Aw cost, in m/s, for cluster reconfiguration with a nonlin-
ear actuator

| satellite | I | I [ I | IV |
unshaped [ 0.0495 [ 0.0847 | 0.0495 | 0.0847
shaped | 0.0519 | 0.0848 | 0.0519 | 0.0848

Table 6.11: Total Av cost, in m/s, for cluster reconfiguration with a linear
actuator

| satellite [ T [ II [ T [ IV |
unshaped | 0.5520 | 0.6257 | 0.5520 | 0.6257
shaped | 0.3934 | 0.4260 | 0.3934 | 0.4260

Table 6.12: Quadratic mean vibration (in terms of 8,,,, in °/s) for the four
satellites during the manoeuvre

| segment | dip [ dis | du | dog [ day | das |
unshaped | 0.0098 | 0.0137 | 0.0093 | 0.0093 | 0.0148 | 0.0098
shaped 0.0094 | 0.0144 | 0.0107 | 0.0107 | 0.0146 | 0.0094

Table 6.13: Root mean squared error of the simulated trajectories
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The results from Table 6.10 look quite promising. One must have in
mind, though, that those are exaggerations of a not fully analysed nonlinear
system. In fact, in the linear system, disregarding the actuator constraints,
the results are slightly worse in terms of fuel savings when using IS, as
seen frou Table 6.11, and there are no significant improvements in reducing
the vibration. That certainly changes for different manoeuvres, as already
seen in Table 6.6, and also changes for different Kalman gains in the LQR
controller.



Chapter 7

Conclusion and Future
Prospects

[ am yet to see an engineering work that is absolutely complete. There
is always room for improvements. A compromise between time, costs and
goals will decide when to conclude a work. I end this task by summarising
the main points I wanted to show.

Vibration in spacecraft is often overlooked. The simple simulations in
Chapter 2 already show that flexibility can be quite a problem in satellite
control. Input shaping is a cheap, and yet powerful, technique to mitigate
vibration. It could even represent savings in fuel, as the results in Chapter
6 show. However it would be precipitated to conclude this without further
research. However, from my understanding, the energy that is dissipated in
the flexible appendages needs a source: the fuel. A first proposal for a future
work would be to investigate this more carefully and also experimentally.

This document addressed several topics that could be researched more
in-depth, individually or in conjunction with another subject. Hopefully,
this document provided some brief guidelines in:

o flexible spacecraft modelling;

e input shaping theory;

formation flying theory;

e linear programming theory; and

effects of flexibility on orbital manoeuvres and formation flying.

The latter, I believe, was inconclusive. To properly investigate the effects of
vibration in formation flying a few more items should be considered:

e the positioning sensing system (with some knowledge of its noise char-
acteristics);

71
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e the complete propulsion system; and
e the attitude dynamics.

This complete model could lead to some important conclusions for formation
flying strategies. My goal, considering the time span of this project, was to
give some initial insights on this matter.
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