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Abstrakt 

Tato práce se zabývá efektivitou algoritmů pro rozvrhování výrobních procesů. Efektivita 

implementace rozvhrovacích algoritmů je zkoumána z hlediska výběru programovacího jazyka, 

možnosti použití softwarových knihoven pro práci s grafy a s maticemi, a shrnutím obecných zásad 

pro psaní efektivního, časově náročného algoritmu. V průběhu práce byly naprogramovány dva 

rozvrhovací algoritmy. U těchto algoritmů je zkoumána možnost úpravy pro řešení jiné cílové funkce. 

Implementované algoritmy jsou testovány pro obecné i reálné rozvrhovací problémy. Jejich výsledky 

jsou porovnány s výsledky jiných algoritmů publikovaných odbornou veřejností.  

 

 

 

Abstract 

This work deals with efficiency of algorithms for scheduling in manufacturing. Efficiency of 

implementation of scheduling algorithms is investigated from the points of view e.g. selection of 

programming language, possibility of usage of software libraries for work with graphs and matrices, 

and the general recommendations for evolution of efficient, time consuming algorithms. Two 

scheduling algorithms were implemented in this work. Furthermore, a possibility of adaptation of 

algorithms for problems with another objective function is studied by these algorithms. Implemented 

algorithms are tested on general and real scheduling problems. Their results are compared with 

results of different algorithms published by science public. 
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1. Introduction 

The scheduling deals with assigning of tasks to relevant machines (processors) so that a final 

schedule satisfies a given constraints. There are optimization methods which result is a time plan 

(schedule) determinative time points when and on which processor should be given tasks performed. 

A schedule is constructed with respect to given constraints and so that an objective function 

(a criterion) is minimized.  

The objective function can be, for example, schedule length (a makespan), maximum lateness, 

mean flow time, mean weighted tardiness/or earliest, total weighted tardiness etc. Consequently, we 

can make many products after the same time, reduce penalty for later or earlier delivery of products 

and others. If we have a good scheduling algorithm, we can exactly schedule production on longer 

time perspective. In other words, scheduling algorithm is intended to optimize determinate 

production process.  

Wide scientific public are interested in this branch, international conferences are organized and 

scheduling is used in practice of course. These methods are primarily useful in production 

optimization, production costs and in transport. Concrete examples can be: lacquer production, 

production of rolling ingots, scheduling of school time tables, scheduling of processes for computing 

technique, scheduling of transport services etc.  

Problem of scheduling algorithms is that they are usually very time consuming. We are often not 

able to find a solution in polynomial time. For this reason, different heuristic methods are suggested. 

Efficiency of their implementation is studied in this work. How we already said, the scheduling 

algorithms are very time consuming. We know from theory, that a big acceleration of hardware does 

not imply the same acceleration of the algorithm. It is very important which method is chosen 

to solve a scheduling problem, how successfully is this method implemented and under which 

programming environment is the algorithm developed. Following questions were examined during 

implementation of algorithms. Are all operations by partial calculations needed? Are all partial 

calculations needed? Is it not advantageous some data counted contrariwise only once? Etc. Since 

the algorithms are predominantly heuristic algorithms, it is necessary to know what influence input 

parameters have to results. This work tries to answer on the problems described above.  
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Project Scheduling (RCPSP)  

The resource-constrained project scheduling problem (RCPSP) (Brucker and Knust 2005) is a very 

general scheduling problem which may be used to model many applications in practice. The objective 

is to schedule some tasks (activities) over time such that scarce resource capacities are respected and 

a certain objective function is optimized. Examples for resources may be machines, people, rooms, 

money or energy, which are only available with limited capacities. As objective functions e.g. the 

project duration, the deviation from deadlines or costs concerning resources may be minimized. 

The RCPSP may be formulated as follows. Given are  tasks  and  renewable 

resources (processors) . A constant amount of  units of resource is available 

at any time. Task  must be processed for  time units. During this time period a constant amount 

of  units of resource  is occupied. All parameter are assumed to be integers. 

 

 

 

RCPSP/max  

The RCPSP/max (Cicirello and Smith 2004, Smith and Pyle 2004) problem can be defined formally 

as follows. Define  as an instance of RCPSP/max. Let  be the set of tasks 

. Task  is a dummy task representing the start of the project and  is 

similarly the project end. Each task  has a fixed duration , a start-time  and a completion-time 

 which satisfy the constraint . Let  be a set of temporal constraints between task 

pairs  of the form . The are generalized precedence relations 

between tasks. The  and  are minimum and maximum time-lags between the start times 

of pairs of tasks. Let  be the set of renewable resources . Each resource  has 

an integer capacity . Execution of a task  requires one or more resources. For each resource 

, the task requires an integer capacity  for the duration of its execution. An assignment of 

start-times to the tasks in  is time-feasible if all temporal constraints are satisfied and is resource-

feasible if all resource constraints are satisfied. A schedule is feasible if both sets of constraints are 

satisfied. The problem is then to find a feasible schedule with minimum make span  where 

. We wish to find a set of assignments to  such that 

. The maximum time-lag constraints are what makes this problem especially 

difficult. Particularly, due to the maximum time lag constraints, finding feasible solutions alone to 

this problem is NP-Hard (Bartusch, Mohring and Radermacher 1988).  
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1.1. Related Work 

The related work for minimizing makespan and total weighted tardiness are presented in this 

chapter. This review gives summary of similar scheduling problems. 

 

 

 

1.1.1. Minimizing The Makespan 

We deal with resource constrained project scheduling problem with change over times and 

take-give resources (Hanzálek and Šůcha 2009) in this work. Many similar problems have been 

already proposed in literature.  These methods and solutions are summarized in following 

paragraphs.  

Most of exact algorithms are based on branch and bound technique (Brucker, Hilbic and Hurink 

1999) but this approach is suitable for problem with less than 100 tasks. An overview of heuristic 

approaches is shown in Franck, Neumann and Schwindt (2001) where the authors compare truncated 

branch and bound techniques, schedule improvement procedures, priority rule methods and genetic 

algorithm for scheduling problems with general temporal and resource constraints. Their detailed 

experimental performance analysis compares the different heuristics and shows that large problem 

instances with up to 1000 tasks and several resources can be efficiently solved with sufficient 

accuracy.  

A heuristic algorithm proposed in Smith (2004) combines the benefits of the “squeky wheel” 

optimization with an effective conflict resolution mechanism called “bulldozing”. The possibility of 

improving on the squeaky wheel optimization by incorporating aspects of genetic algorithm is 

suggested in Terada, Vo and Joslin (2006). Another heuristic algorithm Cesta et al. (2002) is based 

on constraint satisfaction problem solving. The algorithm is based on the intuition that the most 

critical conflicts to be resolved first are those involving tasks with large resource capacity 

requirements. A beam search heuristic is presented in Schwindt and Trautmann (2003). The basic 

principle is to relax the resource constraints by assuming infinite resource availability. Resulting 

resource conflicts are stepwise resolved by introducing precedence relationships among operations 

competing for the same resources. This heuristic is applied to a real scheduling problem, i.e. 

production of rolling ingots. This problem covers batching machines, renewable resources and 

changeover time.  A memetic algorithm for the job-shop scheduling problem with minimal and 

maximal time-lags is described in Caumond et al. (2007). This problem is modelized as a non-oriented 

disjunctive graph and their algorithm is based on a memetic algorithm coupled with a powerful local 

search procedure.  

Take-give resources were introduced in Hanzálek and Šůcha 2009. Similar types of resources are 

described in this paragraph. Scheduling with blocking operations (Mascis and Paccierelli 2002, 

Brucker and Kampmeyer 2008) can be seen as a subproblem of scheduling with take-give resources. 

Operations are blocking if they must stay on a machine after finishing when the next machine is 

occupied by another job. During this stay the machine is blocked for other jobs, i.e. blocking 

operations models the absence of storage capacity between machines. On the other hand, there is 
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a more general framework called reservoirs or storage resources (Laborie 2003) usually used to 

model limited storage capacity or inventory limits. In this framework each task can replenish or 

deplete certain amount of a resource but the resource assignment is not considered. Therefore this 

framework cannot deal for example with changeover times on this resource type required in the 

lacquer production problem to model mixing vessels cleaning.  

 

 

 

1.1.2. Total Weighted Tardiness 

There are many algorithms solving problems with Total weighted tardiness (definition is 

in Section 2). Few algorithms are described in following paragraphs. 

Valente and Alves (2008) created Beam search algorithms for the single machine total weighted 

tardiness scheduling problem with sequence-dependent setups (definition of sequence-dependent 

setups is in Section 2). ATCS dispatching rule (Lee et al. 1997) is here used for determine priority used 

by beam search. The proposed beam search algorithms outperform the ATCS dispatching heuristic, 

but if number of tasks increases, fall the difference between these algorithms and ATCS dispatching 

heuristic. 

Monch et al (2005) attempt to minimize total weighted tardiness on parallel batch machines with 

incompatible job families and unequal ready times of the jobs. They propose two different 

decomposition approaches. The first approach forms fixed batches, then assign these batches to the 

machines using a genetic algorithm, and finally sequences the batches on individual machines. The 

second approach first assigns jobs to machines using a genetic algorithm, then forms batches on each 

machine for the jobs assigned to it, and finally sequences these batches. For sequencing of the 

batches, they consider modifications of the ATC dispatching rule (Vepsalainen and Morton 1987). The 

results showed great computation time of these genetic algorithms. 

Logendran et al (2007) presented six different search algorithms based on tabu search for 

minimizing weighted tardiness. A sequence-dependent unrelated parallel machine scheduling 

problem is investigated in this paper. Four different initial solution finding mechanisms, based on 

dispatching rules, are also developed in the hope of identifying better quality of initial solutions that 

might lead to identifying better quality final solutions. Suitable parameters of tabu algorithm to solve 

small, medium and large size problems follow from tests. 

Colak and Keha (2008) solved the single machine total weighted tardiness problem by using 

integer programming and linear programming based heuristic algorithms. They discuss three 

methods (iterated optimization, stepped optimization-forward and stepped optimization-backward) 

to form the intervals and different post processing methods. Post processing methods are applied to 

the schedule found by ATC rule (Vepsalainen and Morton 1987). These algorithms significantly 

improve the solutions given by ATC heuristic.  
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1.1.3. Priority Rule 

In following paragraph we discus rules for sequence determination of tasks in which they should 

be scheduled.  

Vepsalainen and Morton (1987) published a study about priority rules for job shop problems with 

total weighted tardiness. This study considers scheduling of machine-constrained job shop with  

machines and  tasks. Job  has  operations in a predetermined sequence on machines with 

deterministic processing times .  is completion time of job . There is a delay 

penalty, or weight, of  per unit time, charged if job  is completed after its due date . This 

penalty, assumed to be constant over time, includes customer badwill, cost of lost sales or changed 

orders, and rush shipping cost. The objective is to minimize the weighted tardiness of the jobs:  

 , where .  

Rules in this study were in detail described and collated in tests. From these tests follows that the 

best rule for this problem is rule ATC (Apparent Tardiness Cost), which first time published 

Rachamadugu and Morton (1981). A little worse results attained rule weighted Convert (Carroll 

1965), which is “predecessor” of ATC.  

In the ATC heuristic, index  is calculated for every unscheduled job at time  as follows 

 

where is average processing time of all remaining unscheduled tasks,  is a look-ahead 

parameter, which is dependent on type of scheduling instance. This parameter is used to control the 

rate of discounting  and is in detail described in Rachamadugu and Morton (1981). The heuristic 

works as follows: we first identify the machine  that is available to process tasks at earliest (  

denotes the time at which the machine is available). Next, we calculate  for all unscheduled 

tasks and schedule, at time  on machine j, the task that has the highest . The time  on the 

machine is updated and the procedure is repeated. 

Lee et al. (1997) proposed an ATCS (Apparent Tardiness Cost with Setups) rule for a single 

machine when there are sequence-dependent setup times between the tasks. Setup time  is into 

effect when changing from job  to job . Park et al. (2000) expanded ATCS rule about next 

parameter, which changes determination constants for priority equation. This change improved 

results of the objective function by average 6% over Lee et al. (1997) ATCS rule. Unfortunately, 

relation between new parameter and others constants is demonstrated only on neural network - 

numerical relation is not presented.  

Gadkari, Pfund et al. (2007) expand ATCS rule by ready times (ATCSR rule). Pfund, 

Balasubramanian et al.(2007) applied ATCSR rule to a problem analogical to ours. Concretely, for 

scheduling semiconductor wafer fabrication facilities. The ATCSR index is given by  
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where  is index of the last job completed on the machine which just has become free,  is the 

average of all setup time,  is the ready time of job . Parameters  and  determine the 

relative importance of the exponential terms in relation to each other and WSPT term ( ). These 

parameters are in detail described in study (Gadkari, Pfund et al. 2007). 

Any of these rules leave out time-lags. To obtaining sequence of tasks in which the have be tasks 

scheduled, will be the best to use ATCSR rule.   

 

 

 

1.2. Contribution 

Two implemented scheduling algorithms are the result of this work. Efficiency of implementation 

of algorithm was investigated on these algorithms. General recommendations of implementation of 

scheduling algorithms were created from experience with implementation of these algorithms.  

The first implemented algorithm is Iterative resources scheduling algorithm (Hanzálek and Šůcha 

2009), which will be presented on multidisciplinary international scheduling conference1 

(MISTA 2009). I have cooperated to evolution of this algorithm. My task was to transform this 

algorithm to C++ and C# programming languages, to investigate efficiency of the implementation and 

to extend this algorithm to another objective function.  

Filtered beam search algorithm (Schwindt and Trautmann 2003) was implemented to compare 

iterative resource scheduling algorithm. This algorithm was primarily modified to our problem and 

then it was implemented in Matlab and consecutively it was transformed to C#. The efficiency of the 

algorithm implementation was investigated during the implementation too. 

The comparison of both algorithms shows their potentialities in application. Moreover, time 

symmetric mapping (Hanzálek and Šůcha 2009) was implemented inside the body of both algorithms. 

Thank this method we can obtain better results of these algorithms. 

This work is organized as follows: Section 2 introduces definitions of basic terminology of 

scheduling area for this work. Three scheduling algorithms to minimizing  are presented 

in Section 3. An adaptation of the algorithm to objective function total weighted tardiness is 

described in Section 4. Section 5. presents general recommendations to efficient implementation of 

scheduling algorithms. Comparison of both implemented scheduling algorithms is showed in Section 

6. and summary of all results is presented in Section 7.  

                                                             
1 http://www.mistaconference.org 
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2. Problem Statement 

2.1. Task 

Set  is set of  tasks. Each task in scheduling is characterized of several data 

(Blazewicz et al. 2001): Processing time  is the time needed process task  Ready time (or arrival 

time)  is the time at which task  is ready for processing. Due date  specifies a time limit by which 

 should be completed. Deadline  is a hard real time limit by which task  must be completed. 

Weight (priority)  expresses the relative urgency of . Start time  specifies a time in which a task 

 started. Completion time  is the time when is  completed. Completion time we can expressed 

as:  . 

 

 
 

 

 

2.2. Makespan (schedule length) 

Makespan   is defined as a maximum from all completion time .  

 

 

  

 

0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Properties of task 
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2.3. Tardiness 

Tardiness  of task  is defined as a difference between completion time and due date of task j, 

simultaneously Tardiness must be greater or equal than zero.  

 

 

  

Total tardiness is defined as , where  is number of all tasks. 

 

 

2.4. Total Weighted Tardiness 

Weighted tardiness  of task  is defined as tardiness of task  multiplied by a weight of task .   

 

Similarly as tardiness we define total weighted tardiness as . 

 

2.5. Generalized Precedence Constraints (Time-lags)  

A precedence relation  with meaning  may be generalized (Brucker and Knust 

2005) by a start-start relation of the form  with an arbitrary integer number . The 

interpretation of the relation  depends on the sign of : 

If , then task  cannot start before  time units after the start of task . This means that 

task  does not start before task  and  is a minimal distance (time-lag) between both starting 

times. 

If , then the earliest start of  is  time units before the start of , i.e.  cannot start 

more than  time units later than . If , this means that  is a maximal distance 

between both starting times. 

If  holds, the value is also called a positive time-lag or a minimal time-lag . If , 

it is called a negative time-lag or a maximal time-lag .  

 

 

 

 

 

 

 

 

 

Positive time-lag Negative time-lag 

 

 

Fig. 2. Example of a positive time-lag and a negative time-lag 
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2.6. Setup Time 

In a scheduling model with sequence-dependent setup times (or sequence dependent change 

over time) (Brucker and Knust 2005) the set of all tasks is partitioned into  disjoint sets  

called groups. Setup time  is associated with each pair  of group indices. 

For each and , if  is processed before , then the restriction  must be 

satisfied. For example, setup times may be used to model changeover times of a machine which 

occur when the machine is changed for the production of a different product (e.g. if a painting 

machine has to be prepared for a different color). 

 

 

2.7. Processors  

Dedicated processors (Blazewicz et al. 2001) are processors (or resources or machine) which can 

process only some type of tasks. Parallel identical processors can process all types of tasks and they 

work the same (identical) speed. If the speeds of the processors depend on the particular task 

processed, then they are called unrelated processors. 

 

 

2.8. Multiprocessor tasks 

Blazewicz et al. 2001 defined Multiprocessor task follows: We are given a set  of tasks of 

arbitrary processing times which are to be processed on a set  of  identical 

processors. There are also additional types of resources, , in the system, available in the 

amounts of  units. The task set  is partitioned into subsets,  

    

 being a fixed integer , denoting a set of task each requiring  processors and no additional 

resources, and  

 being a fixed integer , denoting a set of task each requiring  processors simultaneously 

at most  units of resource type . 

For example, in manufacturing environments materials, transport facilities, tools, etc. can be 

considered as additional resources.  
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2.9. Take-give Resources 

Take-give resources (Hanzálek, Šůcha 2005) are needed from the beginning of a task to the 

completion of another task.  

Set  is set of  take-give resources. Take-give resource  has capacity of 

 units such that . Occupation  requires   units to take-give resource 

 during its execution. Occupation  starts its execution at , start time of task which takes 

a take-give resource, and finishes its execution at , completion time of task which gives 

back the take-give resource. 

 

 

2.10. Job-shop 

The job shop problem is one of the classical scheduling problems. In the standard job shop 

scheduling problem (Bontridder 2005) a set of  jobs and a set of  machines are given. Each 

machine can handle at most one task at a time. Each job consists of a chain of  tasks. Each task has 

to be processed on a given machine during a time period of a given length. The purpose is to find 

a schedule such that the makespan is minimized. 

 

 

2.11. Notation of Scheduling Algorithm 

We use notation, proposed by Graham and Blazewicz (e.g. Blazewicz et al. 2001), for classification 

of scheduling problems. The notation is composed of three fields . They have the following 

meaning: The first field  describes the processor environment, the second parameter  denotes 

task and resource characteristic and the third field  describes an objective function (an optimality 

criterion).  

 

 

2.12. Filtered Beam Search 

Filtered Beam Search (see Neumann et al. 2003, Sect 2.5.) is one method from truncated branch-

and-bound algorithms. This method is based on depth-first search. By  and  we denote the 

integers corresponding to the filter width and the beam width. After the generation of all child nodes 

of current node, we order them according to some filter criterion. The first  child nodes are 

evaluated on the basis of a beam criterion and the best  nodes are added to the enumeration tree. 

The remaining child nodes are excluded from further consideration.  

For hard problem instances, even a beam width of  too large. For that reason we choose for 

each enumeration  from interval  randomly. 
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2.13. Time Symmetry Mapping 

Time symmetry mapping (Hanzálek and Šůcha 2009) is a method which formulates how to 

construct a schedule in backward time orientation. A backward execution of a given schedule of 

 problem is illustrated in this section. Basically there are two ways how to 

construct the schedule in backward oriented time while satisfying the temporal, resource and take-

give resource constraints. The first way is to change the code of algorithm (re-implement 

a scheduling algorithm). The second way is to transform the input data and to run the original 

scheduling algorithm. The time symmetry mapping (TSM) deals with transformation of the input 

data.  

Illustration of the TSM for properties of tasks and for take-give resources is shoved in Fig. 3. 

Definitions of TSM for instance of  problem is following:  

 

Take-give resources    

The longest paths (between tasks)   

Changeover times    

Processing times    

Upper bound of instance   

Start times     

 
Fig. 3. Illustration of the time symmetric mapping for properties of tasks and for take-give resources. 
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2.14. Disjunctive Graph 

The disjunctive graph  is a graph (Brucker and Knust 2005, Blazewicz et al. 2001) 

with vertex set V, a set C of directed arcs (conjunctions) and a set D of undirected arcs (disjunctions). 

In connection with the job-shop problem G is defined as follows: 

 The set  of vertices represent the set of all tasks. Two dummy tasks are added, they are 

representing the start and end of a schedule (tasks  and ).  

 The set  of conjunctions represents the precedence constraints between consecutive 

tasks of the same job. For every two consecutive tasks of the same job there is a directed 

arc. This arc is weighted with the processing time of the beginning task. The processing 

time of the dummy tasks are equal to zero. 

 The set  of disjunctions represents the different orders in which tasks on the same 

machine may be scheduled. Each two tasks that require the same machine have 

disjunctive arc.  

- If we do not know order of tasks in schedule these arcs are non-oriented. This graph 

is called non-oriented disjunctive graph (see Fig. 4).  

- If we know order of tasks in schedule these arc are oriented. They are showed order 

in which are tasks execute on the same machine. This graph is called oriented 

disjunctive graph (see Fig. 5). 

Example: 

Instance of job-shop problem: 

 

Job 1: 

Number of task 1 2 3 

Processing time 5 6 2 

Machine 3 2 1 

 

Job 2: 

Number of task 4 5 

Processing time 3 4 

Machine 1 3 

 

Job 3: 

Number of task 6 7 8 

Processing time 6 2 2 

Machine 2 1 3 

 

 

 

0 

1 2 3 

4 5 

6 7 8 

9 

0 

0 

0 

5 6 

2 

4 3

0 

6 2 

2 

M3 

M3 

M1 

M1 

M1 M2 

M2 

M3 

Fig. 4. The non-oriented disjunctive graph for instance job-shop above. 
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M1 J2 (4)    J3 (7)     J1 (3)  

M2 J3 (6) J1 (2)    

M3 J1 (1) J2 (5) J3 (8)     
                

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

 

Fig. 6. The Gantt’s diagram for Fig. 5. The oriented disjunctive graph (one solution) for instance job-shop above. 

 

2.15. The Job Sequence on Machines: 

The sequence on machine 1 

Number of job J2 J3 J1 

Number of task 4 7 3 

 

The sequence on machine 2 

Number of job J3 J1 

Number of task 6 2 

 

The sequence on machine 3 

Number of job J1 J2 J3 

Number of task 1 5 8 

 

2.16. Bierwirth’s Sequence 

Bierwirth (1995) introduces an alternative representation to job sequence on machines. This 

sequence is a sequence of job numbers which are ordered according to theirs start time. The 

Bierwirth’s sequence of oriented disjunctive graph above is: J2  J3  J1  J2  J3  J1  J3  J1. This sequence is 

called the sequence with repetition too. Bierwirth’s sequences can be efficiently generated by any 

greedy algorithm or any iterative method. These sequences can be used as chromosomes in genetic 

algorithm. 
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Fig. 5. The oriented disjunctive graph (one solution) for instance job-shop above. The bolt text represents 

starting times of tasks. 
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3. Algorithms For Minimizing  

Three algorithms for minimizing objective function are described in this chapter. The first 

one, Iterative Resource Scheduling (IRS) algorithm (Hanzálek and Šůcha 2009) is a priority-rule based 

method with unscheduling step where tasks are scheduled successively according to the given priority 

rule. An efficiency, implementation and testing of this algorithm is main part of this thesis. 

Second one, Filtered Beam Search (FBS) algorithm (Schwindt and Trautmann 2003) is based on 

a branch and bound method - Filtered Beam Search method. The last algorithm, Memetic algorithm 

(Caumond et al. 2007) is based on genetic algorithm and a powerful local search procedure. After 

studying of these algorithms it was decided that FBS algorithm will be implemented and compared 

with IRS algorithm. Description of memetic algorithm is retained for illustration of other possibilities 

for minimizing objective function .  

 

 

 

3.1. Iterative Resource Scheduling Algorithm 

Heuristic algorithm for project scheduling with time windows and take-give resources was 

published by Hanzálek and Šůcha (2009). The problem that is addressed is motivated by a real 

scheduling problem i.e. a lacquer production (Behrmann et al. 2005). They extend classical resource 

constrained project scheduling by a take-given resources (see Section 2.9). This problem which solve 

IRS algorithm can be denoted by . Moreover, they discussed how to construct 

a schedule in backward time orientation and they define as the time symmetry mapping (see Section 

2.13). Heuristic algorithm IRS for the problem with take-give resources is described in the following 

section.  

 

 

 

3.1.1. IRS Algorithm 

The iterative resource scheduling algorithm (IRS), based on the iterative modulo scheduling 

algorithm (Rau 2000), is described in this section. The meaning of interval bisection method used 

in this algorithm is described in the first paragraph. The function  which tries to find 

a feasible schedule is described in the second paragraph.  

Algorithm IRS tries to find a feasible schedule with schedule . The schedule length C is 

determined by interval bisection method from interval . An upper bound  denotes 

an upper bound of schedule length (see Brucker 1999). Similarly,  denotes a lower bound of 
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schedule length. If the feasible schedule  is found by the function , the tasks are 

shifted to the left side in function shiftLeft(S) and upper bound is decreased . 

Contrariwise, if the feasible schedule is not found, then the lower bound is updated as follows 

.  

 

 

IRS ( ) 

  

Calculate  

  

Calculate    /* longest path from  to  */ 

 

While  do 

  

If  is feasible THEN 

  

  

  

Else 

  

End 

  

End 

End 

 

  

   

 

 While  do 

   

  calculate ,  

   

   

  /* Rotate of instance - TSM */ 

    

 End 

 Return  

End 

 

Function foundSchedule tries to found a feasible schedule in  

scheduling steps. The parameter  is an input parameter of the algorithm and it is the 

ratio of maximum number of activity scheduling steps to the number of tasks . This parameter is 

usually equal to 2 (see Section 6.2.1). Function  constructs a schedule according to the 

priority of tasks (vector ). Priority of task  is given by the longest path from task  to the 

latest task in the schedule (so called dummy task, see definition of RCPSP/max in Section 1). Task 

with highest priority, which was not scheduled yet, is chosen for scheduling. The earliest and the latest 

start time of the task,  and  respectively, are calculated for this task. Function  
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finds the first  such that there are no conflicts on the resources. If there is no such  

then  is determined according to whether task  was scheduled once. If the task is being scheduled 

for the first time, then  otherwise  where  is the previous start time of 

task . Function  schedule the task at . Conflicting tasks, with respect to temporal or 

resource constraints, are unscheduled.  

 

 

 

3.1.2. Time Symmetry Mapping Inside Algorithm 

TSM (see Section 2.13) is method which defines how to construct a schedule in backward time 

orientation. This method is used in two ways in this work. An instance is reversed before start of 

algorithm and this reversed instance is input parameter of algorithm. Thus IRS algorithm is not 

modified. Second way is to use TSM inside of IRS algorithm.  

Reversion of schedule inside IRS algorithm works at follows. We execute the algorithm several 

scheduling iterations with the original (forward) problem and then we use TSM and the same number 

of scheduling steps with backward time orientated instance. IRS algorithm created the schedule 

according to a vector of priorities. This vector must be calculated for both orientation of the problem. 

Thus we have two vectors of priorities, one for original problem and one for problem obtained by TSM. 

 The final schedule is scheduled “from both sides” (several scheduling steps from the front and several 

scheduling steps from behind).  

This method can “release” some tasks and then IRS algorithm can resolved some complicated 

instances. The best number of scheduling steps after which is suitable to reverse the instance was not 

found out. The instance was reversed after 16, 32, 64 scheduling steps.  

 

 

 

 

3.2. Filtered beam search algorithm 

Algorithm published in Schwindt and Trautmann (2003) (Scheduling the production of rolling 

ingots: industrial context, model, and solution method) was chosen to benchmark algorithm IRS. 

Solution is based on the branch-and-bound algorithm, concretely filtered beam search method (see 

Section 2.12). They created a scheduling algorithm for a real scheduling problem, rolling ingots 

production. Rolling ingots are starting material for the rolling of sheet, foil and strip, which are mainly 

used in the automotive, packaging, printing and construction industries. This algorithm is dedicated to 

solve this manufacturing problem only. In this section we describe the algorithm and then we discuss 

an adaptation of the algorithm to a more general scheduling problem.   
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3.2.1. Introduction and Basic Concept of Model 

The production flow is showed in Fig. 7. In a potroom (a melting furnace), the ingredients 

composing the alloy are smelted in an elecrolytical process. Several alternative potrooms are available. 

Several casting unit belong to each potroom. Each casting unit is created of mold and stool-cap. The 

mold determines the cross-section of the ingot. Stoll-cap closes the bottom of the mold at the start of 

the casting process. Casting units are separated basely maximum cast length, which implies that not 

every ingot cannot be produced on each casting units. Casting system has casting units with the same 

length only. After the casting process, the ingot stays in the casting unit for cooling for a while. 

All ingots produced within one casting are of the same alloy and same length. The casting has to be 

started and completed at the same time for all casting units of a casting system. When an ingot with 

a different cross-section is performed, the mold of the casting unit has to be changed. The changeover 

can be performed only when any casting is in process.  

 

 
Fig. 7. Rolling ingots product flow. 

 

Production order for ingots is characterized by their alloy and length, the production scheduling 

problem consists of computing a feasible production schedule with minimal makespan. In scheduling 

terminology we can describe production of individual ingots as jobs. Each job consists of the three 

operations (tasks). Task  corresponds to melting in potroom,  corresponds to changeover of the 

mold and  corresponds to casting plus cooling in casting unit. Each task has different processing time 

and uses different resources. This is showed in Fig. 8. The job is described as task-on-node network. 

The arcs correspond to time lags between tasks. The jobs may be performed in alternative casting 

systems, for that reason we define modes. Then mode describe on which casting system is a job 

executed.  
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Fig. 8. Operations of job 

 

3.2.2. Solution Method 

Feasible solution must satisfy following constraints:  

 The necessity to select a mode for each job 

 The limited capacity of the renewable resources 

 The requirement that operations running in parallel on batching machines must be of the same 

batching type and must be started jointly 

 The need for changeover operations with sequence-dependent durations.  

 

If we relax all those constraints, the remaining problem consists of scheduling all tasks subject to 

the temporal constraints. This temporal scheduling problem represents a longest path problem in task-

on-node network. The solution may be infeasible if there are jobs for which no mode has been 

selected so far or one of the resource constraints may not be met. In first case we assign a mode to 

some job whose mode has not been fixed yet. The second case is resolved by introducing suitable time 

lags to task-on-node network. 

 
Fig. 9. Resolving capacity and allocation conflicts.  
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Resource capacity and allocation conflicts resolving is showed in Fig. 9. Capacity conflict may be 

resolved when shift the start of task  up to the completion of task  (or reverse) by introducing the 

positive time lag  (or ). Allocation conflicts may be resolved similarly. In this case 

we shift allocation task  behing operation  by introducing positive time lag  (or reverse). 

Changeover conflicts can be removed by new positive time lag  or reverse 

 (see Fig. 10.).   

 

 
Fig. 10. Resolving changeover conflicts. 

 

Batching machine conflicts are shoved in Fig. 11. The first case shoves two tasks which belong to 

different batching types ( ) but require the same batching machine. This problem can be 

resolved similarly as capacity conflict. In second case shoves two task which belong to the same 

batching types ( ) but start time  is smaller then  ( ). When are two tasks which 

belong to the same batching types, than those task must start together or must start in another batch.  

 
Fig. 11. Resolving batching conflicts. 
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Now can be described the filtered beam search procedure (see Section 2.2.12) for this problem. 

The algorithm first enumerates number of conflicts for each task.  Tasks are sorted by number of 

conflicts. Tasks which have batch conflict are favored and tasks which have changeover conflict are 

penalized. Subsequently, is chosen  tasks with minimal number of conflicts. For those  best cases 

we resolve conflicts, find the longest paths and calculate the Total Displacement. Total Displacement 

TD = , where  is number of tasks,  is a vector of start times tasks source node,  is 

vector start times tasks new (resolved) node. Filter width  is equal 3 for all instances. For  nodes 

with minimal total displacement is procedure repeated. Even a beam width of  is too large for 

hard problem instances. Let  denote the integer random variable where  is uniformly 

distributed in interval  and  for ,  for  and  for 

. Search continues until feasible solution is found. Pseudocode of the algorithm is shown below: 

 

Main (Instance, Alpha, Beta) 

 S = the longest path between all tasks and source dummy task 

 x = assign modes 

 

 FBS (S, x) 

End 

 

/* Recursive procedure */ 

FBS (S, x): 

allConflicts = Find conflicts between tasks  /* - Make favorable for tasks which have 

        *   batch conflict 

       * - Make handicap for tasks which have  

       *   changeover conflict */ 

If allConflicts is empty 

  If Cmax(S) < CmaxBest 

   Cmax best = Cmax(S) 

   Start time best = S 

   Modes best = x 

  End 

Return 

End 

 

conflicts = choose Alpha conflicts from allConflicts with minimal number of conflicts 

 

For each C from Conflicts do 

R (S’, x’) = Resolve conflict (C) /* add positive time lag or assign mode and 

     * find the longest path for all tasks */ 

TD = Total Displacement between S’ and S 

 End do 

  

R = Choose Beta resolved case with minimal Total Displacement from R 

For each  r from R do 

/* Rotate of instance - TSM */ 

FBS (S’, x‘) 

End do  

End 
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3.2.3. Adaptation of Algorithm to Our Problem 

Our problem is different from problem described in Schwindt and Trautmann (2003). However, we 

can adapt this algorithm easily. Now we will describe differences between both algorithms. Our 

problem uses neither batch machine nor modes. For that reason, we can omit these constraints.  

In reverse, multiprocessor tasks is not considered in Schwindt and Trautmann (2003). It is not 

problem because searching of multiprocessor conflicts may be performed separately like searching of 

one processor conflicts. Then we must verify all processors which belong to one task. For example, we 

have a task which must be performed on three processors. Then we must check that are not any 

conflict on any of the three processors. 

Changeover time between two is applied in case both tasks are performing on the same processor 

only. Thus we must keep information about processors assignment. If we find two tasks on the same 

processor at the same time, we have two possibilities to resolve it. We can assign one task on another 

(free) processor or we can add positive time lags between tasks (in the same way like in paper). We 

assign all tasks on the first processor at the beginning of the algorithm. Note if we would propose 

suitable processors assignment at the beginning of the algorithm, can we have less conflicts at the 

beginning of the algorithm.   

Conflicts on batch machine are advantage and conflicts of changeover time are disadvantage 

in original algorithm. We do this similarly. Take-give resources conflicts are resolved at first and 

conflicts with changeover times are resolved at last.  

 

Incremental Algorithm (distance matrix , arc from  to  with weight ) 

 

If     

Return   // Arc produces cycles with positive length 

End 

 

For each  from  

If  

  

End 

End 

 

Return   // Return updated distance matrix  

 

There are many algorithms for enumeration longest path in task-on-node network. We chosen an 

incremental algorithm presented by Bartusch et al. (1988). This algorithm (see above) update distance 

matrix  when adding some arc  (from node  to node  with weight ) to the network. Moreover, 

it finds out if adding arc  produce cycle of positive length or not. Time complexity of this algorithm 

is , where  is number of nodes. We must compute distance matrix from task-on-node network 

at the beginning of algorithm. For this problem we use well known Floyd-Warshall algorithm.  
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3.2.4. Time Symmetric Mapping Inside Algorithm 

The TSM (see Section 2.13) inside FBS algorithm is used in the similarly way as in the IRS algorithm 

(see Section 3.1.2). In this case the problem is not reversed after several scheduling steps, but it is 

reversed after several resolved conflicts. The instance is reversed before creating new children in 

solution tree. For backward orientation of instance the different conflicts are found and hence the 

algorithm can found different solution of problem. From our tests follow, that the instance is 

advantageous reversed after 10, 20, 50 resolved conflicts.  

 

 

 

 

3.3. Memetic Algorithm for the Job-shop with Time-lags 

Algorithm published by Caumond et al. 2007 (A memetic algorithm for the job-shop with time-lags) 

was chosen to benchmark algorithm IRS. This paper addresses the job-shop scheduling problem with 

minimal and maximal time-lags (see Section 2). The algorithm is based on a memetic algorithm and 

a powerful local search procedure. The problem is modelized as a non-oriented disjunctive graph (see 

Section 2). Since a job sequence on machines is generated, it is possible to obtain an oriented 

disjunctive graph. A Bellman like longest path algorithm permits to compute the earliest completion 

time of the last operation: the makespan. The makespan denotes the completion time of the last 

operation. Individual parts of this algorithm are described in next paragraphs.  

A solution is an oriented disjunctive graph. The arcs between operations of jobs which use the same 

machines define the operations sequence on machines. Bierwirth sequence (Bierwirth 1995) is used in 

algorithm as alternative representation of job sequence on machines. Bierwirth’s sequences represent 

chromosomes in genetic search process.  

Unfortunately there exist inconsistent oriented disjunctive graphs which contain positive cycle 

length. The positive cycles in the graph are due to incorrect orientation of edges in arc but also due to 

negative arcs in the graph. When no positive cycle exists in the graph, a Bellman like longest path 

algorithm permits to determine the start time of each task.  

Positive cycle can be efficiently detected during the longest path algorithm run. Thanks to 

Bierwirth’s sequence, cycles positive length are only due to maximal time-lags and not to incorrect 

operation sequence on machines (incorrect disjunctions between operations on one machine are not 

possible). The main problem is to determine which maximal time-lags must be removed from the 

graph to obtain a graph without positive cycles. This problem solve following algorithm: 

 

Procedure Evaluate_A_Sequence: 

Evaluate the Bierwirth’s sequence without maximal time-lags in graph. 

 

For = 1 to  do 

 Checked the maximal time-lags of operation  

Evaluate the Bierwirth’s sequence with the maximal time-lags 

which have been checked 
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Completion time of the last operation 

  if (there is positive cycle in the graph) then 

     

   Unchecked the maximal time-lag of operation  

  End if 

 End do 

 

In algorithm  is number of operations in Bierwirth’s sequence ,  is the number of time-lags 

which must be unchecked (removed from graph) to obtain a graph without cycle and  is 

completion time of a Bierwirth’s sequence. 

The function  defines a cost  for each Bierwirth’s sequence . If  

and  are chosen such ,  is strict hierarchic function which 

affects a value to Bierwirth’s sequence with the following properties: 

 A Bierwirth’s sequence without unchecked maximal time-lags has a lower cost than any 

Bierwirth’s sequence with unchecked maxima time-lags. 

 if two Bierwirth’s sequence have unchecked maximal time-lags, then the Bierwirth’s 

sequence with the lowest number of unchecked maximal time-lags has the lowest cost. 

The procedure Evaluate_A_Sequence is a greedy procedure because it unchecks the last checked 

maximal time-lags when a cycle is detected. 

How was it already said, the Bierwirth’s sequences are considered as a chromosomes. These 

chromosomes have two properties: chromosomes can be efficiently evaluated with respect to their 

sequence; two chromosomes can hold to the same oriented disjunctive graph. The fitness of the 

chromosome is evaluated by function  which is described above. Feasible chromosome is 

chromosome with  (graph with no cycle). 

Initial population is created by priority dispatching rules generation (a heuristic) and by random 

chromosome generation. The main reason to combine heuristic chromosomes and random 

chromosomes in the initial population is to obtain a great diversity. The heuristic generation is based 

on the framework folly described in Caumond et al. 2005. 

The crossover is based on the GOX crossover first introduced by Bierwirth 1995. The main 

characteristic of this crossover is to preserve the relative order of tasks. Note, that a child obtained 

after crossover of two feasible parents, may not be feasible. 

The mutation is here realized by local search. Local search is based on an exchange of two tasks in 

machine-block. A machine-block is a sequence of tasks of the same job processed consecutively. We 

consider these sequences as sequences of machine-block on a critical path (the longest path). The 

better solution can be obtained by exchanging one task at the end of one block with another one 

at the beginning of the next block. This new sequence is transformed into a chromosome and a new 

cost evaluated.  

Memetic algorithm has few parameters: 

 mni maximal number of iterations 

 np maximal number of unproductive iteration before a restart 

 nc number of chromosomes in population 

 pm local search probability 

 nm maximal number of iterations during local search     

 pr percent of population 
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  The Algorithm selects two chromosomes to undergo crossover and mutation. The resulting child 

replaces one existing chromosome in population. The GOX crossover is applied to two chromosomes 

and one child is selected at random. The child undergoes a local search with probability pm (local 

search probability). If is not the fitness of the child the duplicate, the child will be mutated and 

productive iteration counted. If is the fitness of the child the duplicate, the child will be not mutated 

and this iteration is an unproductive one. When the maximal number of unproductive iterations is 

reached (np), the algorithm experienced a restart by replacing pr percent of population (pr) by random 

generated chromosomes. Note that the best chromosome cannot be mutated during a restart and so 

the best chromosome is preserved. The memetic algorithm stop when the maximal number of 

iterations (mni) is reached or the lower bound is reached. The block scheme of the algorithm is in Fig. 

12. 
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Fig. 12. The block scheme of alternative algorithm.  
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4. An Algorithm For Minimizing  

An algorithm for minimizing Total Weighted Tardiness (definition is in Section 2.4.) is described in 

this section. Basic idea was modified IRS algorithm (Hanzálek, Šůcha 2009) for minimizing this function. 

IRS algorithm stayed the same out of following parts. I. Priority of tasks (vector priority) is counted 

with the ATCSR rule. This priority rule for minimizing TWT is described in detail in Section 1.1.3. 

II. Modified algorithm not iterate over interval . A new schedule (output parameter from 

foundSchedule function) is analyzed and parameters of instance or parameters of ATCSR rule are 

changed in the next iterates.  

Some methods were suggested for solution of this problem and their results were compared with 

optimal schedules. Optimal schedules were found out by ILP. Independent versions of algorithm were 

created for each of methods. The algorithm was created for  problem for simplicity. 

For this reason, the ATC rule is sufficient  

 

Methods are described in detail in the followings paragraphs. Summarize of results all methods is 

presented in the end of this chapter.  

 

 

 

4.1. Basic Concept (TWT_0) 

ATC Rule determines the priorities of tasks for scheduling so that the objective function TWT is 

minimizing.  The calculation of priorities is always started before selection of task which should be 

scheduled. Thus, the calculation of ATC indexes is started in loop function foundSchedule in IRS 

algorithm. All parameters for calculation of ATC index are parameters of task. The constant  is 

calculated from parameters of whole instance. This constant is described in Park, Kim, Lee (2000) in 

detail.  

The input instance must include set of due dates and weights for all tasks. It is important to right 

calculate of ATC rule, but this is not guarantee in all cases. For this reason, these instances must be 

adapted. This action is introduced as propagation of due dates and weights between all tasks and is 

described in next subsection. All successors version of algorithm include this basic concept.  
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4.1.1. Propagation of Due Dates and Weights Between All Tasks 

Propagation set due dates and weights of the tasks which have not this values set. Due date  for 

task  is counted as follows 

 

where  is the longest path from task  to task . If  then do not exist any path from  to . 

If  then the due date for this task is not set.  

Weight  of task  is counted as mean weight of tasks, which are successors of task  (if the path 

 exist). Propagation of due dates and weights is shoved in Fig. 13. 

 
Fig. 13. Propagation of due date  and weight . 

 

 

 

 

4.2. Shift Left of Earliest Start (TWT_1) 

Analysis of schedule and iteration are introduced in this version of algorithm. Schedule found by 

function foundSchedule is evaluated by criterial function ( ). The task with the biggest penalty 

may be found. Earliest start of this task is decreased by next entrance to foundSchedule function. 

These actions correspond to one iteration of algorithm. If feasible schedule is found then the biggest 

penalize task will be decreased again. New earliest start  for tasks  is counted as follows 

 

the variable  describe number of unexecuted iterations. It means, the more is executed of 

iterations (  is decreased) the more is decreased new earliest start of the biggest penalize task.  

Our tests showed that 8 iteration of algorithm is sufficient. Comparison with optimal solutions is 

showed at the end of this chapter.  
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4.3. Increase Weight/Decrease Due Date of Tasks 

This method is based on increase of weight and decrease of due date for tasks which are the most 

penalize. This modification of properties of tasks produces the bigger priority for these tasks. This 

method can be effective, but estimate of these changes is not easy. If the change of these properties is 

small then priorities will be the same. If the change of these properties is too big then the algorithm 

will go to invalid way. Border between these extremes was not found. The results of this method were 

wrong and therefore they are not shoved in the comparison.   

 

 

 

4.4. Jump over of Tasks (TWT_2) 

Tasks which have the biggest penalize are scheduled before the rest of the tasks in this method. 

Concretely, it is allowed for these tasks be scheduled although they have smaller priorities. Order tasks 

for scheduling is different than in basic concept-exactly according to ATC rule. Because of it, a total 

penalize can be smaller. Number of jumped tasks increase for the biggest penalize task. This number 

represents how much of task with the higher priorities can be jumped. This method is presented on 

a simple example (Table 1).  

  

Table 1  

Comparsion of order tasks for scheduling obtain by jump task method. 

Task  1 2 3 4 5 

 2,54 0.65 8,44 0,23 15,3 

Order tasks for scheduling 3 2 4 1 5 

Jump over of tasks 0 0 2 0 0 

New order tasks for scheduling 4 3 2 1 5 

 

 

 

4.5. Iteration over Constant  (TWT_3) 

This method is inspired by article Park, Kim et al. (2000). Constant  is not counted from 

parameters of instance, but constant is chosen from the recommend interval. The algorithm is running 

several times, each time with different constant from recommend interval. It is simple to extend our 

algorithm by this method. This constant may be changed by the calling method foundSchedule. This 

method shows that counting constant  from instance is not a robust solution.  
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4.6. Combination of Methods (TWT_4) 

The last method unites two best methods only, Iteration over Constant  and Jump Tasks. The 

TWT_3 is started at the beginning. During its execution the best constant  is found. Then TWT_2 

method (with found constant ) is started. 

 

 

 

4.7. Results 

All methods were tested on the same instances and compared with the optimal solution (found by 

ILP). Thus, comparison is accurate. These results are summarized in Table 2. We can see that 

difference objective function between IRS algorithm and optimal solution is smallest for methods 

Iteration over Constant  (TWT_3) and its modification (TWT_4).  

 

Table 2 

Comparison of IRS algorithms and ILP for Total Weighted Tardiness 

objective function. 

 
Difference objective function between IRS and ILP [%] 

 tasks [-] TWT_0 TWT_1 TWT_2 TWT_3 TWT_4 

5 12,9 11,9 4 2,5 1,3 

10 23,6 20 16,6 11,8 9,7 

15 33,9 28,9 25,1 16,9 14,5 

 

But it is obvious that all methods have a common problem. For increased number of task is 

difference between optimal solution and solution found by these methods increase even more. From 

results is obvious that adapted IRS algorithm is not appropriate to solve the objective function . 
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5. Efficiency of Scheduling Algorithms  

Methods which can increase the efficiency of scheduling algorithms are described in this section. 

There is no a right general technique for writing an efficient code for scheduling algorithm. 

Implementation of algorithms is always depended on the given situation and on the requirement 

algorithm. But it is necessary to realize what the algorithm will solve, how will be able to extend and 

for what kind of problems the algorithm is determined. It is important to realize which part of the 

algorithm must be optimized (in term of code). The code profilers can help to this aim. Furthermore, 

a consecutive implementation of one scheduling algorithm in two different programming languages is 

contributing too. Mistakes can be found, code is thought over again and problem is seen from 

different point of view. Examples and general recommendations, which were registered 

implementation of scheduling algorithms, are described in this section.  

 

 

 

 

5.1. Usage of Correct Programming Language 

The scheduling algorithms are very time-consuming. There are many of algorithms which can find 

an optimal solution but there are not fast computers and their software environment which would find 

solution in tolerable time for hard problems. However, between programming languages and their 

usage are differences. Programming languages (and their advantages) which were used in this work 

are described in this section. 

 

 

5.1.1. Matlab 

“MATLAB - The Language of Technical Computing” is a high-level development environment for 

technical computing. This language is popular for fast and simple work with matrices, data handling 

and transparent evolution of algorithms. Add-on toolboxes (collections of special-purpose MATLAB 

functions, available separately) extend the MATLAB environment to solve particular classes of 

problems. We use Torsche Scheduling Toolbox as a support for development and verification 

of algorithms. 
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Torsche Scheduling Toolbox 

TORSCHE Scheduling Toolbox for Matlab1 is a freely (GNU GPL) available toolbox. This toolbox can 

be used for a complex scheduling algorithms design and verification. Graphs and schedules can be 

created and printed very easily with Torsche. Basic scheduling and graph algorithms are implemented 

in this toolbox too. Torsche is developed at the Czech Technical University in Prague, Faculty of 

Electrical Engineering, Department of Control Engineering. 

 

 

5.1.2. C++ 

C++ is a very popular programming language. The following advantages are important for us. This 

programming language is very fast. Licenses are no required for algorithms development in C++. The 

Programs implemented in this language can be compiled for different platforms. Many of libraries are 

accessible for this language. For these reasons, C++ was chosen as one of the programming language 

for final implementation of scheduling algorithms. Because work with matrices is somewhat 

complicated in C++, BOOST library and STL library were used. Many methods, which work with 

matrices and vectors, are implemented in these libraries. Small documentation was created for much 

using operations. This documentation describes transferring function from Matlab to C++.  

 

 

STL (Standard Template Library) 

STL2 is a generic collection of class templates and algorithms that allow programmers to easily 

implement standard data structures like vectors, lists, queues and stacks.  

 

 

BOOST 

The Boost C++ Libraries3 is a collection of many libraries that extend the functionality of C++. We 

used Graph and uBlas libraries for this work. They are generic classes, in the same sense as the 

Standard Template Library (STL). The Graph library is a generic interface that allows access to a graph's 

structure and basic graph algorithms. uBLAS provides matrix and vector classes as well as basic linear 

algebra routines. The uBLAS covers the usual basic linear algebra operations on vectors and matrices: 

addition and subtraction of vectors and matrices and multiplication with and the like. 

 

 

 

 

 

 

                                                             
1
 http://rtime.felk.cvut.cz/scheduling-toolbox 

2
 http://www.sgi.com/tech/stl 

3 http://www.boost.org 
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5.1.3. C# 

C# is a programming object oriented language designed around 1999 or 2000 by Anders Hejlsberg 

at Microsoft. C# is intended to be a simple, modern, general-purpose, object-oriented programming 

language. C#, in contrast to C++, include strong type checking, array bounds checking, detection of 

attempts to use uninitialized variables, source code portability, and automatic garbage collection. 

These aspects escalated robustness, durability and programmer productivity.  

Extended libraries for work with matrices and graphs are available for C# too. Math.NET Iridium1 

and dnAnalytics2 are similar libraries as BOOST (C++) as well QuickGraph3 is similar library as Graph 

(C++) libraries. But basic equipment C# is sufficient to these requirements and for that reason there is 

no need to use these libraries. Besides, when we implemented algorithm with extended libraries we 

concentrated primarily on the exact transcript of algorithm from Matlab to C# (or C++). Furthermore, 

extended libraries must be installed to computer, their versions must be verified and their wrong 

application can lead to decrease of performance of scheduling algorithms. 

 

 
Fig. 14. Runtime comparison of IRS algorithm which is implemented in different programming languages. 

 

There are many discussions between programmers that C# is a slower programming language then 

C++. For that reason both programming languages were compared. A runtime comparison of algorithm 

IRS which is implemented in different programming languages is showed In Fig. 14. It is seen that C++ 

and C# solve the same problems in the similar time. On the other hand, Matlab is much slower then 

C++ and C#. 

For all these reasons it was decided that for final implementation C# programming language will be 

used. 

 

                                                             
1
 http://mathnet.opensourcedotnet.info 

2
 http://www.codeplex.com/dnAnalytics 

3 http://www.codeplex.com/quickgraph 
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5.2. Integer Linear Programming 

Integer Linear Programming (ILP) is not a programming language but a mathematical method for 

optimization of an objective function, subject to constraints formed by linear inequalities. Some 

scheduling problem can be described as linear inequality constraints. This description is sometimes 

simple as any scheduling algorithm and extra solution acquire by ILP is an optimal solution. 

Unfortunately, these methods are usable for small instances only. ILP is a favorite method and there 

are exist many solvers for this problem.  The time comparison of ILP solvers is in Fig. 15. ILP problem 

formulation is used to find optional solutions for small instances in this work. 

 

Fig. 15. Time comparison of ILP solvers from page: http://scip.zib.de/. 

 

 

 

5.3. Usage and Suitable Format for Variables 

They are many ways how variables can be stored and how with data can be manipulated. Some 

examples which can lead to improved work with data are shoved in this section. 

When reading of data or pass variables between function is often repeated, runtime of algorithm 

can increase. If some variables are created as global variables, this effect may be defeated. Global 

variables can be profitably applied to often repeated calling of a function or to a recursive routine for 

example. Similarly, place for allocation of variables must be right chosen. Even we should think 

whether all of used variables are needed or not. Comparison of algorithm, where the rules described 

above were aplicated, is shoved in Fig. 16. Apropos, we find out that using extended libraries can lead 

to degradation of efficiency during aplicated this rules. For that reason it was decided that this libraries 

will not used in final implementation of algorithms. 
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Fig. 16. Time comparison of algorithm with wrong allocating of variable (imss_xxxxx_0) and algorithm where 

were dressed using of variables (imss_xxxxx_1).  

 

 Data are often stored in matrixes or vectors in scheduling. Matrix which has very few elements is 

shoved in Fig. 17 (presuppose, zero elements are not important for us). Reading of all elements of this 

matrix takes  steps, where  is number of rows and  is number of columns in the matrix. If so 

called sparse matrix is created from this matrix, the number of steps will be decreased for reading of 

all elements. Sparse matrix in our example have size , where  is number of records in the original 

matrix. The first column corresponds to indexes of rows in the original matrix, the second columns 

corresponds to indexes of columns in the original matrix and the third column corresponds to values 

from the original matrix. This sparse matrix is read in  steps. Similar matrix was used for 

representation the take-give resources in FBS algorithm. 

 

 

Fig. 17. A matrix and corresponding sparse matrix. 

 

Next example shows that variable can be used not only as store of values. The variables can express 

state of algorithm too. A matrix is used by two of ways in our example.  An original matrix is used in 

the first case and a transposed matrix is used in other case. A Program branching (if or case condition) 

can be an onus in the most time critical part of algorithm. This situation can be resolved as follows. 

Instead of two matrices with size  (original matrix and transposed matrix), we define one matrix 

with size . The values are addressed by three indexes in new matrix:  (from  to ) is index 

of row,  (from  to ) is index of column and  (  or ) represent matrix from which is read. One 

global variable is sufficient to address a right matrix. This method was used in FBS algorithm.  
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5.4. Look Ahead Counting Sub-results 

Look ahead counting sub-results (or constants) are useful methods for acceleration of algorithm. 

If we want make any partial calculations in a loop (or in repeated calling of function) then it is faster 

this partial calculations count at first and then enter into the loop (if it is possible). It can be said 

generally, what was counted once needn’t be counted again. If a function has not many of 

inputs/outputs parameters, it is possible to count all results (for all of inputs) before. A table can be 

used instead of the function. Similar example will be shoved in the following paragraph. 

The objective of our function is to verify whether two tasks are overlapped or not. Two tasks are 

overlapped when both tasks are performed in the same time on the same processor.  

If each task is performed on one processor only, the verification is trivial, i.e. we can compare 

numbers of processors only. When the numbers are the same, it can be verified whether tasks are 

performed in the same time.  Contrariwise, when the numbers of the processors are different, it is not 

needed to compare whether the tasks are overlapped.  

 

 

Indexes of task Dedicated processors 

1 1, 3, 4, 5 

2 1, 4 

3 2, 3, 5 

4 3, 5 

 

 

Fig. 18. Table of dedicated processors and matrix which shows where tasks have the same processors. 

 

But when multiprocessors task are considered, verification whether two tasks are on the same 

processor is complicated now. We must verify whether both of tasks have at least one same processor. 

If they have, it can be verified whether tasks are performed in the same time. The numbers each of 

processor of first task must be compared with the number each of processor of the second task. 

The more processors have a task the slower verification is.  

It is advantageous to create a matrix, which keeps information about the tasks that are processed 

on the same processor. Such matrix is shoved in Fig. 18. Indexes of rows and columns are accorded to 

indexes of tasks. The values are accorded to information whether tasks are processed on the same 

processor or not, 1 or 0. The same matrix is used in algorithms IRS and FBS. 
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5.5. Usage of Previously Found Results 

Usage of previously found results can be very useful method. Runtime of algorithm can be 

decreased, but also an objective function can be better. Three examples, using previously found 

results, are shoved in the following paragraphs. 

Computation of arithmetic mean is the simplest example, but using of previously found results can 

be well shoved on this example. If we want to count the arithmetic mean repeatedly (e.g. values are 

stepwise increased) then it can be counted in two ways. A) All values must be available and arithmetic 

mean can be repeatedly counted them, according to the following formula 

 

or B) The better formula can be used: 

 

We need count neither the sum of all values nor store these values in this case. We need to know 

only previous mean and number of values. This formula was used in IRS algorithm (TWT objective 

function). 

This example is similar to the first example. The longest paths between all tasks were necessary 

counted repeatedly. The Bellman-Ford algorithm (see e.g. Brucker P., Knust S. 2005) was used to solve 

this problem initially. This algorithm requires  time, where  and  are the number of tasks 

and the number of time lags respectively. Bellman-Ford algorithm is a relatively fast algorithm, 

however, the shortest paths are always counted from the algorithm beginning. This algorithm was 

replaced by an incremental algorithm Bartusch et al. (1988). Incremental algorithm updates distance 

matrix in . Incremental algorithm is faster than Bellman-Ford algorithm since it uses previous 

results. This algorithm is described in Section 3.2.3 in detail. 

How previously results can be used to improve an objective function is described in this paragraph. 

Heuristic algorithm IRS schedules tasks stepwise according to their priorities, i.e. from the task with 

the highest priority till the task with the smallest priority. The priority of task is determined according 

to the distance between this task and the latest (dummy) task in graph of precedence constraints. 

These priorities are counted at the beginning of the algorithm. The instance can be infeasible because 

sequence in which tasks were scheduled was wrong. The information, which tasks were removed from 

the schedule the most often, is stored during the algorithm running. If the original priorities of tasks 

are changed for the benefit of the most unscheduled tasks and the algorithm is started again, then 

a feasible schedule can be found. Thanks to this method it can be found more feasible schedules.  
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6. Experimental Results 

Experimental results of IRS and FBS algorithms are discussed in this chapter. Instances which are 

used to benchmark of the algorithms are presented in the Section 6.1. The Sections 6.2. and 6.3. show 

the influence of set of parameters of algorithms on their results. Benchmark of both algorithms is 

shoved in section 6.4. and the experiments with time symmetry mapping are presented at the end 

of this chapter.  

 

 

 

6.1. Instances and Implementation 

Basic concept of all algorithms was implemented in Matlab. After that, the algorithms were 

transferred to C#, while the objective was the code efficiency (see Chapter 5). Both algorithms were 

compiled as COM Components under C#. All experiments were performed on Intel Pentium 1.66 GHz, 

2 GB RAM. 

Three types of instances were used to benchmark IRS and FBS algorithms. Generator of instances 

GEN_INS (Hanzálek and Šůcha 2009) was used for evolution and basic benchmark of algorithms. This 

generator allows transparently set many parameters of instance. The finally experiments were 

performed on standard instances generated by ProGenMax1 and instances of a lacquers production 

(Behrmann et al. 2005).  

 

 

6.1.1. GEN_INS 

Generator GEN_INS was developed at the Czech Technical University in Prague, Faculty of Electrical 

Engineering, Department of Control Engineering. This generator creates the instances for 

 problem. The parameters and typically set of generator are shoved below. 

 

Number of tasks      

Maximal processing time 12 

Number of positive time lags (edges with positive weight) 3* /2 

Number of negative time lags (edges with negative weight) /2    

                                                             
1 http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html 
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Maximal weight of positive time lags 15        

Maximal weight of negative time lags 40 

Maximal changeover time 8 

Maximum of dedicated processors 2 

Maximal number of multiprocessor tasks 2 

Maximal capacity of processors 8 

Number of take-give resources 3 

Maximal number of groups of take-give resources 2 

Maximal capacity of take-give resources 2 

 

 

 

6.1.2. ProGenMax 

ProGenMax generator is accessible on web site1 of Universität Karlsruhe (TH) - Institute for 

Economic Theory and Operations Research. The instances generated by ProGenMax are used to 

benchmark different scheduling algorithms. These instances are stored in packages, each package 

includes 90 instances. For each instance are available value of the best result ( ) and name of 

 which found this result: BB: Branch-and-bound algorithm, AM: Approximation method, 

FB: Filtered Beam Search, PR: Multi-Pass Priority-Rule Method, TS: Tabu Search, GA: Genetic 

Algorithm. Our experiments were preformed on packages UBOxxx (where xxx means number of tasks 

 in one instance) for  problem.  

  

 

 

6.1.3. Lacquer Production 

Lacquer production (Behrmann et al. 2005) is a real production scheduling problem. Lacquer 

production can be described as a project scheduling problem with general temporal constraints, 

resource constraints and take-give resource ( ).  

Production line produces three different lacquers, universal lacquer ( ), metallic lacquer (met) 

and bronze lacquer (bro). Each lacquer has different manufacturing process and used different 

resources, see Fig. 19. Each instance for scheduling is determined by number of individual lacquer.  

 

 

 

 

 

 

 

                                                             
1 http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax 
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Fig. 19. Manufacturing process of lacquer production.  
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6.2. Parameters of IRS algorithm 

Influence of algorithm parameter Budget Ratio and interval bisection method on the results found 

by iterative resource search algorithm is shoved and discussed in the next subsections.   

 

 

6.2.1. Budget Ratio 

The parameter  is the ratio of the maximum number of activity scheduling steps to 

the number of tasks . Influence of this parameter on the runtime of algorithm and number of feasible 

schedules is shown in Fig. 20. This experiment was performed on 90 benchmark instances UBO100 

(with =100). From the experiments follow that reasonable compromise between computation time 

and quality of the resulting schedule is usually achieved with . 

 
Fig. 20. Influence of Budget Ratio on the runtime of algorithm and number of feasible schedules. 

 

 

6.2.2. Interval Bisection Method 

Interval bisection method (binary search algorithm) is used, for example, for searching 

an approximate solution of equations or sampling of signals in electrotechnics. It is assumed that the 

values are sorted (in decreasing or increasing line) in the interval. The binary search method is base 

on verifying whether wanted value is greater than or less than middle of interval. Lower or upper 

bound of interval is changed to value of middle interval according previous result. The cycle is 

repeated until wanted value is not found. Time complexity of this method is , where  is the 

number of values in the interval (interval on which searching is used). For comparison, time complexity 

of linear search is .  

Earlier version of IRS algorithm IRS evaluates lower and upper bound   for given 

instance at first and then findSchedule function is called for all values from interval until 

a feasible solution is found. Estimated  is an input parameter for findSchedule function.  

However, the interval  is different for each instance. Mean runtime of IRS is dependent on 
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time when feasible solution is found (see Table 3). If the instance is not feasible then the function 

findSchedule is called for all values from . For that reasons binary search method is used in IRS 

algorithm for found the best   

 

Table 3 

Comparison IRS algorithm with binary search of estimate  and with linear search of . 

 
50 feasible instances 50 unfeasible instances Common difference of  

 tasks [-] 
Runtime of IRS with 

bisection method [s] 

Runtime of basic 

IRS algorithm [s] 

Runtime of IRS with 

bisection method [s]  

Runtime of basic 

IRS algorithm [s] 
Mean (Cmax1-Cmax0) [%] 

50 0,002 0,005 0,002 0,015 1,3 

100 0,010 0,029 0,012 0,112 1,1 

200 0,061 0,190 0,068 0,834 1,8 

300 0,185 0,548 0,202 2,750 2,2 

400 0,417 1,116 0,453 6,395 8,6 

500 0,861 2,282 0,922 13,102 1,3 

100 instances were generated for each number of tasks. Values are mean from all values. 

 

But there is one problem here. IRS algorithm has not equalization of feasibility on interval .  

It is not true that the function findSchedule finds always a feasible schedule from some . It means for 

as that binary search can lead to worst results. However, results are very good whereas acceleration of 

algorithm is huge (see Fig. 21 and Table 3). 

 

 
Fig. 21. The time comparison of algorithm IRS with binary search of  and algorithm IRS with linear search 

of .  
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6.3. Parameters of FBS algorithm 

Influence of algorithm parameters filter width and beam width on the results found by filtered 

beam search algorithm is shoved and discussed in the following subsections.   

 

 

6.3.1. Filter Width and Beam Width 

Efficiency of filtered beam search method is discussed in this section. FBS algorithm has two main 

parameters, the filter width  and the beam width . Both parameters have direct impact to the 

objective function and runtime of the algorithm too.  

Filter width corresponds to the number of candidates which can be added to the tree of result. The 

more of candidates are evaluated by beam criterion the better candidate can be chosen to add to tree 

of result. Of course, evaluation more candidates cost much time. Comparison result for different filter 

width is shoved in Table 4. On the basis the results in Table 4, it was decided that filter width  for 

next testing. 

 

Table 4 

Comparison of result for different filter width  for fbsm_xxxxx algorithm is shoved in table.  

 tasks 
[-] 

Mean 
Time [s] 

Mean   
[-] 

Feasible 
schedules [-]  

 
 tasks 
[-] 

Mean 
Time [s] 

Mean   
[-] 

Feasible 
schedules [-]  

8 0,26 53,11 114 6 

 
10 5,07 60,8 110 6 

8 0,21 53,08 114 5 

 
10 3,41 60,84 110 5 

8 0,16 53,08 114 4 

 
10 1,93 60,81 110 4 

8 0,11 53,08 114 3 

 
10 0,96 60,94 109 3 

8 0,07 53,2 111 2 

 
10 0,43 60,59 101 2 

Values in table are mean from measurement of 200 instances. 

 

Beam width  has similarly impact to results as filter width. Beam width determines number of new 

nodes in the result tree. Then Beam width determines the state space of algorithm. Of course, optimal 

solution of instance can be found easily if state space is bigger. Simultaneously, the runtime of 

algorithm grows up with the state space. Comparison between the constant beam width and the 

randomly evaluated beam width is shoved in Table 5. From the table follows that results of the 

algorithm are dependent on its set. The algorithm runtime, with  chosen from interval  

randomly, is much smaller then algorithm with . For this reason  is not used for bigger 

instance.  
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Table 5 

Comparison the constant beam width and the randomly evaulated beam width. 

 

  (randomly) 

 tasks [-

] 

Mean Time 

[s] 

Mean   

[-] 

Feasible 

schedules [-] 

Mean 

Time [s] 

Mean  

[-] 

Feasible 

schedules [-] 

12 0,10 69,33 105 0,01 69,69 104 

15 4,61 78,27 100 0,02 77,91 94 

20 46,68 86,17 90 3,15 85.40 89 

Values in table are mean from measurement of 200 instances. 

 

 

6.3.2. Time Limit for Runtime of Algorithm 

State space of tree of results can be reduced by algorithm parameter beam width . But runtime of 

algorithm is enormously increased for bigger instances. For that reason, maximal runtime of the 

algorithm is the next input parameter of FBS algorithm. This limit is usually 60 second. Influence of this 

parameter on the results is shoved in Table 6.  

 

Table 6 

Infuence of maximal runtime of FBS algorithm to results. 

 tasks 
[-] 

Mean Time 
[s] 

Mean 
  [-] 

Feasible 
schedules [-] 

Max 
Runtime [s] 

 

 tasks 
[-] 

Mean Time 
[s] 

Mean 
  [-] 

Feasible 
schedules [-] 

Max 
Runtime [s] 

12 0,048 69,5 105 1 
 

15 0,180 78,6 100 1 

12 0,093 69,5 105 10 
 

15 0,739 78,3 100 10 

12 0,097 69,3 105 60 
 

15 2,089 78,0 100 60 

12 0,097 69,3 105  
 

15 4,614 78,3 100  

Values in table are mean from measurement of 200 instances. 

 

 

 

6.4. Benchmark of Algorithms 

Comparison of FBS algorithm and IRS algorithm on ProGenMax instances is shoved in Table 7. From 

results follow that FBS algorithm reaches worse results than IRS algorithm. The number of feasible 

schedules found by FBS algorithm is very decreasing for instances with more taks. Algorithm FBS 

needed often the full time limit of runtime algorithm to find feasible schedules (60 second), but time 

limit was for many instances too small.  

Generally, IRS algorithm reaches better results than FBS algorithm. Runtime of algorithm is small, 

number of feasible schedule is not critically decreasing (with gowning number of tasks) and even mean 

 is smaller than mean .   
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Table 7 

Comparison of FBS algorithm and IRS algorithm on ProGenMax instances.  

 
FBS IRS ProGenMax 

Package 
 tasks 
[-] 

Mean 
Time [s] 

Mean 
  [-] 

Feasible 
schedules [-] 

Mean 
Time [s] 

Mean 
  [-] 

Feasible 
schedules [-] 

Mean 

 [-] 
Feasible 

schedules [-] 

UBO 10 10 0,127 50,3 69 0,043 49,4 73 51,9 73 

UBO 20 20 15,323 94,0 62 0,136 91,3 62 104,1 70 

UBO 50 50 50,654 201,5 53 0,769 182,8 61 188,7 73 

UBO 100 100 56,148 339,1 23 3,141 307,1 62 362,9 78 

Each package includes 90 instances.  

 

Comparison of FBS algorithm and IRS algorithm on Lacquer production instances is presented 

in Table 8. Contrary to the previous results FBS algorithm is usable for scheduling of large instances 

too. It flows from base of FBS algorithm. FBS algorithm resolve conflicts for tasks with take-give 

resources at first and then it resolve of conflicts between tasks. In other words, FBS algorithm 

approximately schedules individual lacquers at first and then precisely schedules individual tasks.  

By comparison both algorithms, it can be seen that they have similar results. Runtime of algorithm 

IRS grows for a large order of lacquer, but the runtime is still in the bounds.  

 

Table 8 

Comparison of FBS algorithm and IRS algorithm on Lacquer production instances. 

Orders 
 tasks [-] 

FBS IRS 

uni met bro CPU Time [s]   [-] CPU Time [s]   [-] 

2 2 2 46 0,08 17 610 0,08 21 398 

5 5 5 115 57,66 48 665 0,58 49 255 

10 10 10 230 60,03 98 871 5,14 94 562 

15 15 15 345 60,04 147 729 17,42 148 391 

20 20 20 460 60,07 196 246 51,7 187 841 

One instance was generated and tested for each order.  

 

 

 

6.5. Experiments with Time Symmetric Mapping of Instances 

In order to improve the solution while using the same heuristic algorithms we use the time 

symmetry mapping to find a new feasible solution and to improve the objective function ( ). 

If we want to create a schedule in backward time orientation, we use TSM to instance before start of 

an algorithm and then this (reversed) instance is input parameter of the algorithm. Thus the same 

algorithm is used to schedule for forward and backward time orientation of the problem (Hanzálek and 

Šůcha 2009).  

Time symmetric mapping is used differently in this work too. TSM is implemented inside the body 

of the algorithms. Algorithms schedule several steps with the forward orientation of the problem and 

several steps with the backward orientation of the problem. Description of the implementation of TSM 

IRS and FBS algorithm is presented in Section 3.1.2 and 3.2.4. 
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Influence of time symmetric mapping to results of FBS and IRS algorithm is showed in Table 9 and 

Table 10. Instances generated by ProGenMax generator was used as a benchmark. Number of feasible 

schedules found (feasibility), difference  and runtime of the algorithm are compared in the tables.  

The best results of different algorithms, which are enclosed to instances ProGenMax, are showed in 

the column with label . The difference  is calculated as difference between found solutions 

and the corresponding best solutions. Thus, found solutions are compared with the best solutions on 

these instances. Next columns of the table show results of FBS and IRS algorithm for the original 

problem (F forward), for the problem obtained by TSM (BW backward) before start of the algorithms 

and for TSM implemented inside the body of the algorithms (AXX). A value XX correspond to number 

of scheduling steps after which instance is reversed. Columns F+BW and ALL include the best results 

for the original problem + for problem obtained by TSM before the start of the algorithm respectively 

the best results from all five methods of TSM usage. Results of TSM for FBS algorithm and IRS 

algorithm application are described in next two paragraphs.  

 

Table 9 

Influence of time symmetric mapping to results of FBS algorithm. 
 
Feasibility [-] 

Package Best F BW A10 A20 A50 F+BW ALL 

UBO100 78 23 21 16 18 23 28 37 

 
Difference  [%] 

Package  F BW A10 A20 A50 F+BW ALL 

UBO100 0 9,4 7,7 13,0 13,1 11,6 8,6 11,1 

 
Mean CPU Time [s] 

Package Best F BW A10 A20 A50 
  UBO100 max 100 50,96 54,53 58,77 56,43 53,75 
  Each package includes 90 instances. For detail see Table 14.  

 

 

We can see that influence of TSM to feasibility of FBS algorithm is not visible immediately (see 

Table 9). Only one variant of usage of TSM (A50) found the same number of feasible schedules as the 

scheduling without TSM. But when we observe the results in detail in Table 13, we can see that each 

variant finds out feasible solutions for different instance. Thus when we count these different results 

(see summarize columns F+BW and ALL), we get 5 respectively 14 new feasible solutions thanks to 

the TSM. Difference  and other  is bigger for TSM implemented inside FBS algorithm than for 

basic variants of experiments. The FBS algorithm was tested on instances with 100 task only. 

The reason were the bad results of FBS algorithm (too small number of feasible solutions and relatively 

big ). 

The influence of TSM to results of IRS algorithm is presented in Table 10. We can see similar effect 

of TSM on results as in FBS algorithm. Number of feasible solutions is bigger and  increases for 

TSM used inside the algorithm. But IRS algorithm finds much more feasible results, results with smaller 

 and with smaller runtime of algorithm than FBS algorithm. Moreover, IRS algorithm found 10 

better schedules than best results from package UBO500, see Table 15. From tests of both algorithms 
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follows that TSM has no influence on runtime of the algorithms. The runtime is similar even if the TSM 

is implemented inside the algorithms.  

These tests show that TSM is simple method how we can get more feasible solutions with smaller 

objective function with the same (or a little modified) algorithm. If we want use this method 

in practice, we must repeatedly run the algorithm for different set of TSM (in the same way as in the 

tests above). The total runtime of the algorithm would be bigger of course. But if we would use, 

for example, a computer with more processors, we would get results in the same time. 

 

Table 10 

Influence of time symmetric mapping to results of IRS algorithm. 
 

Feasibility [-] 

Package Best F BW A16 A32 A64 F+BW ALL 

UBO100 78 62 71 72 70 69 73 75 

UBO500 79 59 61 57 60 60 63 64 
 

Difference  [%] 

Package  F BW A16 A32 A64 F+BW ALL 

UBO100 0 3,3 5,3 7,4 6,9 6,2 3,7 4,1 

UBO500 0 1,2 1,0 2,3 2,8 2,3 1,3 1,6 

 
Mean CPU Time [s] 

Package  F BW A16 A32 A64 
  UBO100 max 100 3,44 3,76 2,39 2,57 2,81 
  UBO500 max 500 60,1039 68,3965 72,76 67,78 65,23 
  Each package includes 90 instances. For detail see Table 13 and Table 15. 

 

 

 

  



52 
 

 

7. Conclusions 

Two scheduling algorithms were implemented in this work. These algorithms are capable to solve 

general and real scheduling instances for problem . The scheduling algorithms 

are very time consuming and therefore implementation of these algorithms was concentrated 

on the code efficiency.  

Iterative resources scheduling algorithm (IRS) reaches very good results on all tested types of 

instances. This algorithm is able to find very good results in short time on general and real scheduling 

problems. IRS algorithm is able to schedule large instances. Instances with 500 tasks are tested in this 

work, instances with 1000 was tested in Hanzálek and Šůcha 2009. IRS algorithm reaches comparable 

results (in some cases even better) as the best results of algorithms, which were tested on the 

standard benchmarks for  problem (ProGenMax instances). This algorithm will be 

presented on multidisciplinary international scheduling conference (MISTA 2009).  

Two scheduling algorithms based on different principles were chosen to benchmark IRS algorithm. 

After studying these algorithms, it was decided that filtered beam search algorithm (Schwindt and 

Trautmann 2003) will be implemented. This algorithm was created for real scheduling problem, rolling 

ingots production. FBS algorithm did not reach very good results on the general instances. But this 

algorithm was partially comparable for scheduling of real scheduling problem, e.g. lacquer production. 

Filtered beam search method is based on the depth-first search. The tree of solution is growing rapidly 

with number of resources conflicts and resources conflicts is growing rapidly with number of tasks 

in instance. For that reason runtime of FBS algorithm is too large and results are worse.  

On the basis of skills with implementation of these algorithms was created a set of general 

recommendations how to implement efficient scheduling algorithms. These recommendations were 

presented on real examples.  

Moreover, IRS algorithm was modified to minimize another objective function, i.e. total weighted 

tardiness. But this adaptation was stopped in the process of evolution, because IRS algorithm is not 

very suitable for minimization of total weighted tardiness.  

Further, influence of time symmetric mapping (TSM) to results was investigated in this work. TSM 

was tested outside and inside the body of both algorithms. This method was showed to be very useful. 

We can obtain new feasible solutions or solutions with smaller objective function thanks to this 

method. Moreover, TSM is relatively simple method and for its usage it is not needed editing 

algorithms or only very little.  
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10. Appendix 

 

 

Table 11 

Data to Fig. 14.  

 Mean runtime of algorithm IRS [s] 

 tasks [-] Matlab C++ C# 

10 0,23 0,01 0,01 

50 7,49 0,18 0,08 

100 46,62 1,45  0,98 

150 --- 4,76  3,69 

250 --- 22,85 22,97 

100 instances were generated for each number 

of task and values are mean from all values. 

 

 

 

 

Table 12 

Data to Fig. 16. 

 tasks [-] 
Runtime of algorithm 

imss_xxxxx_1 [s] 

Runtime of algorithm  

imss_xxxxx_0 [s] 

100 0,03 0,23 

200 0,20 2,64 

300 0,60 11,46 

400 1,23 28,86 

100 instances were generated for each number of tasks. 

Values are mean from all values. 
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Table 13 

Time Symmetric Mapping inside of FBS algorithm 

Instance Algorithm  
 [-] 

Instance Algorithm  
 [-] 

F  BW A10 A20 A50 F  BW A10 A20 A50 

1 BB inf inf inf inf inf inf 46 FB 283 inf inf inf inf inf 

2 BB inf inf inf inf inf inf 47 FB 302 inf inf 401 inf inf 

3 BB inf inf inf inf inf inf 48 AM 433 inf inf inf inf inf 

4 FB 429 inf inf inf inf inf 49 FB 203 inf inf 274 inf inf 

5 BB inf inf inf inf inf inf 50 FB 269 inf inf inf inf inf 

6 BB inf inf inf inf inf inf 51 BB 272 inf 321 inf inf inf 

7 GA 447 inf inf inf inf inf 52 BB 304 326 323 330 339 353 

8 FB 435 inf inf inf inf inf 53 BB 177 210 182 inf inf inf 

9 BB inf inf inf inf inf inf 54 BB 352 366 366 inf inf 374 

10 GA 522 inf inf inf inf inf 55 AM 247 261 269 inf 266 308 

11 GA 263 inf inf inf inf inf 56 AM 288 inf 302 inf 305 329 

12 FB 224 inf inf inf inf inf 57 BB 356 inf 411 inf 415 422 

13 GA 180 inf inf inf inf inf 58 BB 317 330 317 319 330 319 

14 FB 206 inf inf inf inf inf 59 AM 256 inf inf inf inf inf 

15 BB 275 inf inf inf inf inf 60 FB 188 225 237 inf 224 253 

16 FB 144 inf inf inf inf inf 61 BB 680 inf inf inf inf inf 

17 BB 287 inf inf inf inf inf 62 BB 540 inf inf inf inf inf 

18 BB 306 inf inf inf inf 346 63 BB inf inf inf inf inf inf 

19 FB 200 inf inf inf inf inf 64 TS 538 inf inf inf inf inf 

20 FB 209 inf inf inf inf inf 65 GA 451 inf inf 585 inf inf 

21 AM 262 317 322 339 332 337 66 BB inf inf inf inf inf inf 

22 BB 492 522 523 538 538 536 67 TS 459 inf inf inf inf inf 

23 BB 269 inf inf inf 311 inf 68 BB 540 inf inf 631 662 inf 

24 AM 192 inf 221 inf inf inf 69 BB inf inf inf inf inf inf 

25 BB 194 226 inf 240 inf 229 70 GA 422 inf inf inf inf inf 

26 BB 178 204 204 inf inf 197 71 BB 514 inf inf inf inf inf 

27 BB 225 inf inf inf inf inf 72 BB inf inf inf inf inf inf 

28 BB 240 269 261 inf inf 261 73 BB 414 inf 466 inf inf inf 

29 BB 284 306 284 inf inf 293 74 BB 255 inf inf inf inf inf 

30 BB 196 244 inf inf 223 inf 75 BB 534 inf inf inf inf inf 

31 BB inf inf inf inf inf inf 76 AM 411 inf 455 451 inf inf 

32 GA 485 inf inf inf inf inf 77 TS 351 inf inf inf inf inf 

33 GA 435 inf inf inf inf inf 78 BB 412 inf inf inf inf inf 

34 GA 488 inf inf inf inf inf 79 TS 483 inf inf inf inf inf 

35 BB inf inf inf inf inf inf 80 BB 503 inf inf inf inf 552 

36 BB 457 inf inf inf inf inf 81 BB 453 480 inf 491 542 473 

37 TS 453 inf inf inf inf inf 82 BB 571 inf 596 591 593 590 

38 GA 483 inf inf inf inf inf 83 FB 243 262 283 inf 303 272 

39 GA 462 605 inf 631 664 625 84 BB 237 inf inf inf 291 282 

40 AM 504 inf inf inf inf inf 85 BB 497 502 503 520 526 512 

41 PR 363 421 inf inf inf inf 86 BB 531 inf inf 577 inf inf 

42 FB 359 inf inf inf inf inf 87 AM 368 inf inf inf inf inf 

43 AM 359 inf inf inf inf inf 88 BB 402 428 457 inf inf 468 

44 BB 491 inf inf inf inf inf 89 BB 374 409 385 inf inf 437 

45 BB 407 inf inf inf inf inf 90 BB 476 480 479 517 500 inf 

Instances are from package UBO100. Time limit of runtime of FBS algorithm was set on 60 second.  
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Table 14 

Time Symmetric Mapping inside of IRS algorithm 

Instance Algorithm  
 [-] 

Instance Algorithm  
 [-] 

F BW A16 A32 A64 F BW A16 A32 A64 

01 BB inf inf inf inf inf inf 46 FB 283 321 333 333 340 346 

02 BB inf inf inf inf inf inf 47 FB 302 313 312 347 361 333 

03 BB inf inf inf inf inf inf 48 AM 433 447 450 451 442 450 

04 FB 429 452 486 497 481 535 49 FB 203 207 203 207 203 215 

05 BB inf inf inf inf inf inf 50 FB 269 304 295 inf 308 303 

06 BB inf inf inf inf inf inf 51 BB 272 inf 286 305 306 312 

07 GA 447 inf 471 531 482 482 52 BB 304 304 304 304 304 304 

08 FB 435 452 453 471 456 482 53 BB 177 177 177 177 177 177 

09 BB inf inf inf inf inf inf 54 BB 352 352 352 352 352 352 

10 GA 522 inf inf inf inf inf 55 AM 247 247 247 247 247 247 

11 GA 263 281 352 272 284 293 56 AM 288 294 289 294 291 291 

12 FB 224 249 235 284 inf 258 57 BB 356 374 364 374 374 374 

13 GA 180 189 inf 187 197 201 58 BB 317 317 317 317 317 317 

14 FB 206 209 229 221 229 230 59 AM 256 256 256 257 256 256 

15 BB 275 275 275 275 275 278 60 FB 188 190 188 189 188 188 

16 FB 144 159 165 190 172 166 61 BB 680 inf 705 728 726 727 

17 BB 287 287 287 287 287 287 62 BB 540 inf 588 606 inf inf 

18 BB 306 307 306 306 306 306 63 BB inf inf inf inf inf inf 

19 FB 200 inf 234 302 284 292 64 TS 538 578 584 590 586 594 

20 FB 209 inf 245 243 257 226 65 GA 451 496 501 495 503 504 

21 AM 262 262 262 262 262 262 66 BB inf inf inf inf inf inf 

22 BB 492 500 508 508 510 504 67 TS 459 inf inf inf inf inf 

23 BB 269 269 269 269 269 272 68 BB 540 569 579 558 590 562 

24 AM 192 192 197 192 192 204 69 BB inf inf inf inf inf inf 

25 BB 194 194 194 194 194 195 70 GA 422 438 478 457 462 479 

26 BB 178 178 178 178 178 178 71 BB 514 529 547 537 542 542 

27 BB 225 231 244 254 288 254 72 BB inf inf inf inf inf inf 

28 BB 240 240 240 240 240 240 73 BB 414 427 477 448 inf inf 

29 BB 284 284 284 284 284 284 74 BB 255 inf 306 296 300 295 

30 BB 196 196 196 196 196 196 75 BB 534 546 536 538 536 538 

31 BB inf inf inf inf inf inf 76 AM 411 419 426 425 430 432 

32 GA 485 inf inf 572 597 inf 77 TS 351 384 371 394 391 393 

33 GA 435 inf 494 561 579 inf 78 BB 412 424 453 435 440 437 

34 GA 488 inf inf 563 inf inf 79 TS 483 485 515 507 510 508 

35 BB inf inf inf inf inf inf 80 BB 503 529 523 539 538 520 

36 BB 457 inf inf 546 557 584 81 BB 453 455 458 466 470 474 

37 TS 453 500 497 510 509 501 82 BB 571 582 569 590 579 579 

38 GA 483 553 540 698 535 inf 83 FB 243 244 243 247 243 243 

39 GA 462 487 512 531 555 508 84 BB 237 237 237 237 237 237 

40 AM 504 inf inf inf inf inf 85 BB 497 501 501 502 500 501 

41 PR 363 376 384 382 388 370 86 BB 531 539 533 532 532 531 

42 FB 359 inf 376 399 404 368 87 AM 368 372 390 392 393 395 

43 AM 359 372 380 inf 396 409 88 BB 402 408 402 409 407 413 

44 BB 491 inf 548 inf inf 551 89 BB 374 374 374 374 374 374 

45 BB 407 439 435 415 429 431 90 BB 476 477 477 477 477 477 

Instances are from package UBO100. 
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Table 15 

Time Symmetric Mapping inside of IRS algorithm 

Instance Algorithm  
 [-] 

Instance 
Algorith

m 
 

 [-] 

F BW A16 A32 A64 F BW A16 A32 A64 

1 BB inf inf inf   inf  inf inf 46 AM 821 821 821 821 821 821 

2 GA 2353 inf inf   inf  inf inf 47 GA 1512 1423 1412 1413 1412 1425 

3 GA 2045 inf inf   inf  inf inf 48 GA 1181 inf inf   inf 1508 inf 

4 TS 2774 inf inf   inf  inf inf 49 GA 1209 inf 1383  inf  inf inf 

5 BB inf inf inf   inf  inf inf 50 BB 1326 1326 1326 1326 1326 1326 

6 GA 2558 inf inf   inf  inf inf 51 AM 1223 1223 1223 1223 1223 1223 

7 BB inf inf inf   inf  inf inf 52 BB 1109 1109 1109 1109 1109 1109 

8 GA 2212 inf inf   inf  inf inf 53 BB 1029 1029 1029 1029 1029 1029 

9 BB inf inf inf   inf  inf inf 54 BB 825 825 825 825 825 825 

10 GA 2366 inf inf   inf  inf inf 55 AM 1153 1153 1153 1153 1153 1153 

11 AM 589 589 589 589 589 589 56 BB 976 976 976 976 976 976 

12 BB 1101 1101 1101 1400 1101 1101 57 BB 1238 1238 1238 1238 1238 1238 

13 AM 1424 1430 1424 1430 1430 1427 58 BB 1314 1314 1314 1314 1314 1314 

14 GA 1130 inf inf   inf  inf inf 59 BB 1060 1060 1060 1060 1060 1060 

15 GA 683 669 669 669 669 669 60 BB 1067 1067 1067 1104 1102 1072 

16 GA 982 931 931 931 931 931 61 GA 2175 2327 2382 2447 2452 2493 

17 PR 1122 1122 1128 1128 1128 1128 62 GA 2962 3272 inf  3390 3451 3335 

18 TS 978 965 965 998 1107 969 63 BB inf inf inf   inf  inf inf 

19 GA 1084 inf inf   inf  inf inf 64 GA 2160 2276 2311 2445 2416 2448 

20 GA 1027 inf 1058  inf  inf 1174 65 BB inf inf inf   inf  inf inf 

21 BB 717 717 717 717 717 717 66 GA 3167 inf inf   inf  inf inf 

22 BB 983 983 983 983 983 983 67 GA 2905 inf inf   inf  inf inf 

23 AM 848 848 848 848 848 848 68 GA 2337 2565 inf   inf  inf inf 

24 BB 1107 1107 1107 1107 1107 1107 69 GA 2459 2487 2540 2593 2585 2599 

25 BB 1027 1027 1027 1027 1027 1027 70 GA 2123 inf inf   inf  inf inf 

26 BB 804 804 804 804 804 804 71 GA 1343 1289 1278 1299 1302 1313 

27 BB 749 749 749 749 749 749 72 FB 1437 1431 1429 1431 1433 1433 

28 BB 913 913 913 913 913 913 73 GA 1925 inf 1970  inf 2054 2053 

29 BB 893 893 893 893 893 893 74 GA 2459 inf 2500  inf 2489 2501 

30 BB 792 792 792 792 792 792 75 BB 976 976 977 976 976 976 

31 BB inf inf inf   inf  inf inf 76 GA 2077 2100 2100 2099 2099 2108 

32 BB inf inf inf   inf  inf inf 77 FB 1047 1043 1045 1049 1049 1049 

33 GA 2343 inf inf   inf  inf inf 78 FB 2011 2048 2088  inf  inf 2098 

34 BB inf inf inf   inf  inf inf 79 TS 1727 1752 1751 1748 1754 1749 

35 BB inf inf inf   inf  inf inf 80 GA 1462 1539 1464 1539 1559 1593 

36 GA 2211 2316 2355 2449 2447 2447 81 BB 1164 1164 1164 1164 1164 1164 

37 GA 2318 inf inf   inf  inf inf 82 BB 1238 1238 1238 1238 1238 1238 

38 TS 2575 inf inf   inf  inf inf 83 AM 1849 1873 1880 1877 1877 1876 

39 BB inf inf inf   inf  inf inf 84 BB 936 936 937 936 938 936 

40 GA 2628 inf inf   inf  inf inf 85 BB 1418 1418 1418 1418 1418 1418 

41 TS 1243 1218 1214 1231 1233 1227 86 BB 1420 1420 1420 1420 1420 1420 

42 FB 1038 1069 1051 1064 1268 1051 87 AM 1276 1274 1273 1276 1274 inf 

43 TS 1354 1332 1333 1338 1366 1343 88 BB 1300 1300 1300 1300 1300 1300 

44 AM 801 801 801 801 801 801 89 BB 1419 1419 1419 1419 1419 1419 

45 BB 1088 1088 1088 1088 1088 1088 90 BB 1062 1062 1062 1062 1062 1062 

Instances are from package UBO500. 
 


