

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Effectiveness of Scheduling Algorithms Implementation

for Manufacturing Processes

Thesis

Prague, 2009 Author: Jan Zahradník

Acknowledgements

I would like to thank Přemysl Šůcha, who was my supervisor. He provided me with many helpful

suggestions, important advice and constant encouragement during the course of this work.

My special appreciation goes to my parents, who always kept me away from family responsibilities

and encouraged me to concentrate on my study. This work was supported by project CEPOT

(http://www.cepot.cz) and Department of Control Engineering, CTU FEL in Prague.

Abstrakt

Tato práce se zabývá efektivitou algoritmů pro rozvrhování výrobních procesů. Efektivita

implementace rozvhrovacích algoritmů je zkoumána z hlediska výběru programovacího jazyka,

možnosti použití softwarových knihoven pro práci s grafy a s maticemi, a shrnutím obecných zásad

pro psaní efektivního, časově náročného algoritmu. V průběhu práce byly naprogramovány dva

rozvrhovací algoritmy. U těchto algoritmů je zkoumána možnost úpravy pro řešení jiné cílové funkce.

Implementované algoritmy jsou testovány pro obecné i reálné rozvrhovací problémy. Jejich výsledky

jsou porovnány s výsledky jiných algoritmů publikovaných odbornou veřejností.

Abstract

This work deals with efficiency of algorithms for scheduling in manufacturing. Efficiency of

implementation of scheduling algorithms is investigated from the points of view e.g. selection of

programming language, possibility of usage of software libraries for work with graphs and matrices,

and the general recommendations for evolution of efficient, time consuming algorithms. Two

scheduling algorithms were implemented in this work. Furthermore, a possibility of adaptation of

algorithms for problems with another objective function is studied by these algorithms. Implemented

algorithms are tested on general and real scheduling problems. Their results are compared with

results of different algorithms published by science public.

Contents
1. Introduction ..7

Project Scheduling (RCPSP)..8

RCPSP/max ...8

1.1. Related Work...9

1.1.1. Minimizing The Makespan ...9

1.1.2. Total Weighted Tardiness .. 10

1.1.3. Priority Rule ... 11

1.2. Contribution .. 12

2. Problem Statement ... 13

2.1. Task ... 13

2.2. Makespan (schedule length) .. 13

2.3. Tardiness ... 14

2.4. Total Weighted Tardiness .. 14

2.5. Generalized Precedence Constraints (Time-lags) .. 14

2.6. Setup Time .. 15

2.7. Processors ... 15

2.8. Multiprocessor tasks.. 15

2.9. Take-give Resources .. 16

2.10. Job-shop .. 16

2.11. Notation of Scheduling Algorithm .. 16

2.12. Filtered Beam Search ... 16

2.13. Time Symmetry Mapping ... 17

2.14. Disjunctive Graph .. 18

2.15. The Job Sequence on Machines: .. 19

2.16. Bierwirth’s Sequence ... 19

3. Algorithms For Minimizing .. 20

3.1. Iterative Resource Scheduling Algorithm ... 20

3.1.1. IRS Algorithm ... 20

3.1.2. Time Symmetry Mapping Inside Algorithm ... 22

3.2. Filtered beam search algorithm ... 22

3.2.1. Introduction and Basic Concept of Model .. 23

3.2.2. Solution Method .. 24

3.2.3. Adaptation of Algorithm to Our Problem ... 27

3.2.4. Time Symmetric Mapping Inside Algorithm .. 28

3.3. Memetic Algorithm for the Job-shop with Time-lags .. 28

4. An Algorithm For Minimizing .. 31

4.1. Basic Concept (TWT_0) .. 31

4.1.1. Propagation of Due Dates and Weights Between All Tasks ... 32

4.2. Shift Left of Earliest Start (TWT_1) ... 32

4.3. Increase Weight/Decrease Due Date of Tasks .. 33

4.4. Jump over of Tasks (TWT_2) .. 33

4.5. Iteration over Constant (TWT_3) .. 33

4.6. Combination of Methods (TWT_4) ... 34

4.7. Results ... 34

5. Efficiency of Scheduling Algorithms ... 35

5.1. Usage of Correct Programming Language .. 35

5.1.1. Matlab ... 35

5.1.2. C++ .. 36

5.1.3. C# .. 37

5.2. Integer Linear Programming .. 38

5.3. Usage and Suitable Format for Variables ... 38

5.4. Look Ahead Counting Sub-results .. 40

5.5. Usage of Previously Found Results ... 41

6. Experimental Results ... 42

6.1. Instances and Implementation... 42

6.1.1. GEN_INS .. 42

6.1.2. ProGenMax .. 43

6.1.3. Lacquer Production .. 43

6.2. Parameters of IRS algorithm .. 45

6.2.1. Budget Ratio .. 45

6.2.2. Interval Bisection Method .. 45

6.3. Parameters of FBS algorithm ... 47

6.3.1. Filter Width and Beam Width ... 47

6.3.2. Time Limit for Runtime of Algorithm .. 48

6.4. Benchmark of Algorithms .. 48

6.5. Experiments with Time Symmetric Mapping of Instances .. 49

7. Conclusions ... 52

8. References .. 53

9. List of the Figures .. 56

10. Appendix ... 57

7

1. Introduction

The scheduling deals with assigning of tasks to relevant machines (processors) so that a final

schedule satisfies a given constraints. There are optimization methods which result is a time plan

(schedule) determinative time points when and on which processor should be given tasks performed.

A schedule is constructed with respect to given constraints and so that an objective function

(a criterion) is minimized.

The objective function can be, for example, schedule length (a makespan), maximum lateness,

mean flow time, mean weighted tardiness/or earliest, total weighted tardiness etc. Consequently, we

can make many products after the same time, reduce penalty for later or earlier delivery of products

and others. If we have a good scheduling algorithm, we can exactly schedule production on longer

time perspective. In other words, scheduling algorithm is intended to optimize determinate

production process.

Wide scientific public are interested in this branch, international conferences are organized and

scheduling is used in practice of course. These methods are primarily useful in production

optimization, production costs and in transport. Concrete examples can be: lacquer production,

production of rolling ingots, scheduling of school time tables, scheduling of processes for computing

technique, scheduling of transport services etc.

Problem of scheduling algorithms is that they are usually very time consuming. We are often not

able to find a solution in polynomial time. For this reason, different heuristic methods are suggested.

Efficiency of their implementation is studied in this work. How we already said, the scheduling

algorithms are very time consuming. We know from theory, that a big acceleration of hardware does

not imply the same acceleration of the algorithm. It is very important which method is chosen

to solve a scheduling problem, how successfully is this method implemented and under which

programming environment is the algorithm developed. Following questions were examined during

implementation of algorithms. Are all operations by partial calculations needed? Are all partial

calculations needed? Is it not advantageous some data counted contrariwise only once? Etc. Since

the algorithms are predominantly heuristic algorithms, it is necessary to know what influence input

parameters have to results. This work tries to answer on the problems described above.

8

Project Scheduling (RCPSP)

The resource-constrained project scheduling problem (RCPSP) (Brucker and Knust 2005) is a very

general scheduling problem which may be used to model many applications in practice. The objective

is to schedule some tasks (activities) over time such that scarce resource capacities are respected and

a certain objective function is optimized. Examples for resources may be machines, people, rooms,

money or energy, which are only available with limited capacities. As objective functions e.g. the

project duration, the deviation from deadlines or costs concerning resources may be minimized.

The RCPSP may be formulated as follows. Given are tasks and renewable

resources (processors) . A constant amount of units of resource is available

at any time. Task must be processed for time units. During this time period a constant amount

of units of resource is occupied. All parameter are assumed to be integers.

RCPSP/max

The RCPSP/max (Cicirello and Smith 2004, Smith and Pyle 2004) problem can be defined formally

as follows. Define as an instance of RCPSP/max. Let be the set of tasks

. Task is a dummy task representing the start of the project and is

similarly the project end. Each task has a fixed duration , a start-time and a completion-time

 which satisfy the constraint . Let be a set of temporal constraints between task

pairs of the form . The are generalized precedence relations

between tasks. The and are minimum and maximum time-lags between the start times

of pairs of tasks. Let be the set of renewable resources . Each resource has

an integer capacity . Execution of a task requires one or more resources. For each resource

, the task requires an integer capacity for the duration of its execution. An assignment of

start-times to the tasks in is time-feasible if all temporal constraints are satisfied and is resource-

feasible if all resource constraints are satisfied. A schedule is feasible if both sets of constraints are

satisfied. The problem is then to find a feasible schedule with minimum make span where

. We wish to find a set of assignments to such that

. The maximum time-lag constraints are what makes this problem especially

difficult. Particularly, due to the maximum time lag constraints, finding feasible solutions alone to

this problem is NP-Hard (Bartusch, Mohring and Radermacher 1988).

9

1.1. Related Work

The related work for minimizing makespan and total weighted tardiness are presented in this

chapter. This review gives summary of similar scheduling problems.

1.1.1. Minimizing The Makespan

We deal with resource constrained project scheduling problem with change over times and

take-give resources (Hanzálek and Šůcha 2009) in this work. Many similar problems have been

already proposed in literature. These methods and solutions are summarized in following

paragraphs.

Most of exact algorithms are based on branch and bound technique (Brucker, Hilbic and Hurink

1999) but this approach is suitable for problem with less than 100 tasks. An overview of heuristic

approaches is shown in Franck, Neumann and Schwindt (2001) where the authors compare truncated

branch and bound techniques, schedule improvement procedures, priority rule methods and genetic

algorithm for scheduling problems with general temporal and resource constraints. Their detailed

experimental performance analysis compares the different heuristics and shows that large problem

instances with up to 1000 tasks and several resources can be efficiently solved with sufficient

accuracy.

A heuristic algorithm proposed in Smith (2004) combines the benefits of the “squeky wheel”

optimization with an effective conflict resolution mechanism called “bulldozing”. The possibility of

improving on the squeaky wheel optimization by incorporating aspects of genetic algorithm is

suggested in Terada, Vo and Joslin (2006). Another heuristic algorithm Cesta et al. (2002) is based

on constraint satisfaction problem solving. The algorithm is based on the intuition that the most

critical conflicts to be resolved first are those involving tasks with large resource capacity

requirements. A beam search heuristic is presented in Schwindt and Trautmann (2003). The basic

principle is to relax the resource constraints by assuming infinite resource availability. Resulting

resource conflicts are stepwise resolved by introducing precedence relationships among operations

competing for the same resources. This heuristic is applied to a real scheduling problem, i.e.

production of rolling ingots. This problem covers batching machines, renewable resources and

changeover time. A memetic algorithm for the job-shop scheduling problem with minimal and

maximal time-lags is described in Caumond et al. (2007). This problem is modelized as a non-oriented

disjunctive graph and their algorithm is based on a memetic algorithm coupled with a powerful local

search procedure.

Take-give resources were introduced in Hanzálek and Šůcha 2009. Similar types of resources are

described in this paragraph. Scheduling with blocking operations (Mascis and Paccierelli 2002,

Brucker and Kampmeyer 2008) can be seen as a subproblem of scheduling with take-give resources.

Operations are blocking if they must stay on a machine after finishing when the next machine is

occupied by another job. During this stay the machine is blocked for other jobs, i.e. blocking

operations models the absence of storage capacity between machines. On the other hand, there is

10

a more general framework called reservoirs or storage resources (Laborie 2003) usually used to

model limited storage capacity or inventory limits. In this framework each task can replenish or

deplete certain amount of a resource but the resource assignment is not considered. Therefore this

framework cannot deal for example with changeover times on this resource type required in the

lacquer production problem to model mixing vessels cleaning.

1.1.2. Total Weighted Tardiness

There are many algorithms solving problems with Total weighted tardiness (definition is

in Section 2). Few algorithms are described in following paragraphs.

Valente and Alves (2008) created Beam search algorithms for the single machine total weighted

tardiness scheduling problem with sequence-dependent setups (definition of sequence-dependent

setups is in Section 2). ATCS dispatching rule (Lee et al. 1997) is here used for determine priority used

by beam search. The proposed beam search algorithms outperform the ATCS dispatching heuristic,

but if number of tasks increases, fall the difference between these algorithms and ATCS dispatching

heuristic.

Monch et al (2005) attempt to minimize total weighted tardiness on parallel batch machines with

incompatible job families and unequal ready times of the jobs. They propose two different

decomposition approaches. The first approach forms fixed batches, then assign these batches to the

machines using a genetic algorithm, and finally sequences the batches on individual machines. The

second approach first assigns jobs to machines using a genetic algorithm, then forms batches on each

machine for the jobs assigned to it, and finally sequences these batches. For sequencing of the

batches, they consider modifications of the ATC dispatching rule (Vepsalainen and Morton 1987). The

results showed great computation time of these genetic algorithms.

Logendran et al (2007) presented six different search algorithms based on tabu search for

minimizing weighted tardiness. A sequence-dependent unrelated parallel machine scheduling

problem is investigated in this paper. Four different initial solution finding mechanisms, based on

dispatching rules, are also developed in the hope of identifying better quality of initial solutions that

might lead to identifying better quality final solutions. Suitable parameters of tabu algorithm to solve

small, medium and large size problems follow from tests.

Colak and Keha (2008) solved the single machine total weighted tardiness problem by using

integer programming and linear programming based heuristic algorithms. They discuss three

methods (iterated optimization, stepped optimization-forward and stepped optimization-backward)

to form the intervals and different post processing methods. Post processing methods are applied to

the schedule found by ATC rule (Vepsalainen and Morton 1987). These algorithms significantly

improve the solutions given by ATC heuristic.

11

1.1.3. Priority Rule

In following paragraph we discus rules for sequence determination of tasks in which they should

be scheduled.

Vepsalainen and Morton (1987) published a study about priority rules for job shop problems with

total weighted tardiness. This study considers scheduling of machine-constrained job shop with

machines and tasks. Job has operations in a predetermined sequence on machines with

deterministic processing times . is completion time of job . There is a delay

penalty, or weight, of per unit time, charged if job is completed after its due date . This

penalty, assumed to be constant over time, includes customer badwill, cost of lost sales or changed

orders, and rush shipping cost. The objective is to minimize the weighted tardiness of the jobs:

 , where .

Rules in this study were in detail described and collated in tests. From these tests follows that the

best rule for this problem is rule ATC (Apparent Tardiness Cost), which first time published

Rachamadugu and Morton (1981). A little worse results attained rule weighted Convert (Carroll

1965), which is “predecessor” of ATC.

In the ATC heuristic, index is calculated for every unscheduled job at time as follows

where is average processing time of all remaining unscheduled tasks, is a look-ahead

parameter, which is dependent on type of scheduling instance. This parameter is used to control the

rate of discounting and is in detail described in Rachamadugu and Morton (1981). The heuristic

works as follows: we first identify the machine that is available to process tasks at earliest (

denotes the time at which the machine is available). Next, we calculate for all unscheduled

tasks and schedule, at time on machine j, the task that has the highest . The time on the

machine is updated and the procedure is repeated.

Lee et al. (1997) proposed an ATCS (Apparent Tardiness Cost with Setups) rule for a single

machine when there are sequence-dependent setup times between the tasks. Setup time is into

effect when changing from job to job . Park et al. (2000) expanded ATCS rule about next

parameter, which changes determination constants for priority equation. This change improved

results of the objective function by average 6% over Lee et al. (1997) ATCS rule. Unfortunately,

relation between new parameter and others constants is demonstrated only on neural network -

numerical relation is not presented.

Gadkari, Pfund et al. (2007) expand ATCS rule by ready times (ATCSR rule). Pfund,

Balasubramanian et al.(2007) applied ATCSR rule to a problem analogical to ours. Concretely, for

scheduling semiconductor wafer fabrication facilities. The ATCSR index is given by

12

where is index of the last job completed on the machine which just has become free, is the

average of all setup time, is the ready time of job . Parameters and determine the

relative importance of the exponential terms in relation to each other and WSPT term (). These

parameters are in detail described in study (Gadkari, Pfund et al. 2007).

Any of these rules leave out time-lags. To obtaining sequence of tasks in which the have be tasks

scheduled, will be the best to use ATCSR rule.

1.2. Contribution

Two implemented scheduling algorithms are the result of this work. Efficiency of implementation

of algorithm was investigated on these algorithms. General recommendations of implementation of

scheduling algorithms were created from experience with implementation of these algorithms.

The first implemented algorithm is Iterative resources scheduling algorithm (Hanzálek and Šůcha

2009), which will be presented on multidisciplinary international scheduling conference1

(MISTA 2009). I have cooperated to evolution of this algorithm. My task was to transform this

algorithm to C++ and C# programming languages, to investigate efficiency of the implementation and

to extend this algorithm to another objective function.

Filtered beam search algorithm (Schwindt and Trautmann 2003) was implemented to compare

iterative resource scheduling algorithm. This algorithm was primarily modified to our problem and

then it was implemented in Matlab and consecutively it was transformed to C#. The efficiency of the

algorithm implementation was investigated during the implementation too.

The comparison of both algorithms shows their potentialities in application. Moreover, time

symmetric mapping (Hanzálek and Šůcha 2009) was implemented inside the body of both algorithms.

Thank this method we can obtain better results of these algorithms.

This work is organized as follows: Section 2 introduces definitions of basic terminology of

scheduling area for this work. Three scheduling algorithms to minimizing are presented

in Section 3. An adaptation of the algorithm to objective function total weighted tardiness is

described in Section 4. Section 5. presents general recommendations to efficient implementation of

scheduling algorithms. Comparison of both implemented scheduling algorithms is showed in Section

6. and summary of all results is presented in Section 7.

1 http://www.mistaconference.org

13

2. Problem Statement

2.1. Task

Set is set of tasks. Each task in scheduling is characterized of several data

(Blazewicz et al. 2001): Processing time is the time needed process task Ready time (or arrival

time) is the time at which task is ready for processing. Due date specifies a time limit by which

 should be completed. Deadline is a hard real time limit by which task must be completed.

Weight (priority) expresses the relative urgency of . Start time specifies a time in which a task

 started. Completion time is the time when is completed. Completion time we can expressed

as: .

2.2. Makespan (schedule length)

Makespan is defined as a maximum from all completion time .

0

Fig. 1. Properties of task

14

2.3. Tardiness

Tardiness of task is defined as a difference between completion time and due date of task j,

simultaneously Tardiness must be greater or equal than zero.

Total tardiness is defined as , where is number of all tasks.

2.4. Total Weighted Tardiness

Weighted tardiness of task is defined as tardiness of task multiplied by a weight of task .

Similarly as tardiness we define total weighted tardiness as .

2.5. Generalized Precedence Constraints (Time-lags)

A precedence relation with meaning may be generalized (Brucker and Knust

2005) by a start-start relation of the form with an arbitrary integer number . The

interpretation of the relation depends on the sign of :

If , then task cannot start before time units after the start of task . This means that

task does not start before task and is a minimal distance (time-lag) between both starting

times.

If , then the earliest start of is time units before the start of , i.e. cannot start

more than time units later than . If , this means that is a maximal distance

between both starting times.

If holds, the value is also called a positive time-lag or a minimal time-lag . If ,

it is called a negative time-lag or a maximal time-lag .

Positive time-lag Negative time-lag

Fig. 2. Example of a positive time-lag and a negative time-lag

15

2.6. Setup Time

In a scheduling model with sequence-dependent setup times (or sequence dependent change

over time) (Brucker and Knust 2005) the set of all tasks is partitioned into disjoint sets

called groups. Setup time is associated with each pair of group indices.

For each and , if is processed before , then the restriction must be

satisfied. For example, setup times may be used to model changeover times of a machine which

occur when the machine is changed for the production of a different product (e.g. if a painting

machine has to be prepared for a different color).

2.7. Processors

Dedicated processors (Blazewicz et al. 2001) are processors (or resources or machine) which can

process only some type of tasks. Parallel identical processors can process all types of tasks and they

work the same (identical) speed. If the speeds of the processors depend on the particular task

processed, then they are called unrelated processors.

2.8. Multiprocessor tasks

Blazewicz et al. 2001 defined Multiprocessor task follows: We are given a set of tasks of

arbitrary processing times which are to be processed on a set of identical

processors. There are also additional types of resources, , in the system, available in the

amounts of units. The task set is partitioned into subsets,

 being a fixed integer , denoting a set of task each requiring processors and no additional

resources, and

 being a fixed integer , denoting a set of task each requiring processors simultaneously

at most units of resource type .

For example, in manufacturing environments materials, transport facilities, tools, etc. can be

considered as additional resources.

16

2.9. Take-give Resources

Take-give resources (Hanzálek, Šůcha 2005) are needed from the beginning of a task to the

completion of another task.

Set is set of take-give resources. Take-give resource has capacity of

 units such that . Occupation requires units to take-give resource

 during its execution. Occupation starts its execution at , start time of task which takes

a take-give resource, and finishes its execution at , completion time of task which gives

back the take-give resource.

2.10. Job-shop

The job shop problem is one of the classical scheduling problems. In the standard job shop

scheduling problem (Bontridder 2005) a set of jobs and a set of machines are given. Each

machine can handle at most one task at a time. Each job consists of a chain of tasks. Each task has

to be processed on a given machine during a time period of a given length. The purpose is to find

a schedule such that the makespan is minimized.

2.11. Notation of Scheduling Algorithm

We use notation, proposed by Graham and Blazewicz (e.g. Blazewicz et al. 2001), for classification

of scheduling problems. The notation is composed of three fields . They have the following

meaning: The first field describes the processor environment, the second parameter denotes

task and resource characteristic and the third field describes an objective function (an optimality

criterion).

2.12. Filtered Beam Search

Filtered Beam Search (see Neumann et al. 2003, Sect 2.5.) is one method from truncated branch-

and-bound algorithms. This method is based on depth-first search. By and we denote the

integers corresponding to the filter width and the beam width. After the generation of all child nodes

of current node, we order them according to some filter criterion. The first child nodes are

evaluated on the basis of a beam criterion and the best nodes are added to the enumeration tree.

The remaining child nodes are excluded from further consideration.

For hard problem instances, even a beam width of too large. For that reason we choose for

each enumeration from interval randomly.

17

2.13. Time Symmetry Mapping

Time symmetry mapping (Hanzálek and Šůcha 2009) is a method which formulates how to

construct a schedule in backward time orientation. A backward execution of a given schedule of

 problem is illustrated in this section. Basically there are two ways how to

construct the schedule in backward oriented time while satisfying the temporal, resource and take-

give resource constraints. The first way is to change the code of algorithm (re-implement

a scheduling algorithm). The second way is to transform the input data and to run the original

scheduling algorithm. The time symmetry mapping (TSM) deals with transformation of the input

data.

Illustration of the TSM for properties of tasks and for take-give resources is shoved in Fig. 3.

Definitions of TSM for instance of problem is following:

Take-give resources

The longest paths (between tasks)

Changeover times

Processing times

Upper bound of instance

Start times

Fig. 3. Illustration of the time symmetric mapping for properties of tasks and for take-give resources.

j

i

t

t

0

0

h

i

t

t

0

0

j

k

take take

take take

give-back

give-back give-back

give-back

TSM for tasks

TSM for take-give resources

18

2.14. Disjunctive Graph

The disjunctive graph is a graph (Brucker and Knust 2005, Blazewicz et al. 2001)

with vertex set V, a set C of directed arcs (conjunctions) and a set D of undirected arcs (disjunctions).

In connection with the job-shop problem G is defined as follows:

 The set of vertices represent the set of all tasks. Two dummy tasks are added, they are

representing the start and end of a schedule (tasks and).

 The set of conjunctions represents the precedence constraints between consecutive

tasks of the same job. For every two consecutive tasks of the same job there is a directed

arc. This arc is weighted with the processing time of the beginning task. The processing

time of the dummy tasks are equal to zero.

 The set of disjunctions represents the different orders in which tasks on the same

machine may be scheduled. Each two tasks that require the same machine have

disjunctive arc.

- If we do not know order of tasks in schedule these arcs are non-oriented. This graph

is called non-oriented disjunctive graph (see Fig. 4).

- If we know order of tasks in schedule these arc are oriented. They are showed order

in which are tasks execute on the same machine. This graph is called oriented

disjunctive graph (see Fig. 5).

Example:

Instance of job-shop problem:

Job 1:

Number of task 1 2 3

Processing time 5 6 2

Machine 3 2 1

Job 2:

Number of task 4 5

Processing time 3 4

Machine 1 3

Job 3:

Number of task 6 7 8

Processing time 6 2 2

Machine 2 1 3

0

1 2 3

4 5

6 7 8

9

0

0

0

5 6

2

4 3

0

6 2

2

M3

M3

M1

M1

M1 M2

M2

M3

Fig. 4. The non-oriented disjunctive graph for instance job-shop above.

19

M1 J2 (4) J3 (7) J1 (3)

M2 J3 (6) J1 (2)

M3 J1 (1) J2 (5) J3 (8)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 6. The Gantt’s diagram for Fig. 5. The oriented disjunctive graph (one solution) for instance job-shop above.

2.15. The Job Sequence on Machines:

The sequence on machine 1

Number of job J2 J3 J1

Number of task 4 7 3

The sequence on machine 2

Number of job J3 J1

Number of task 6 2

The sequence on machine 3

Number of job J1 J2 J3

Number of task 1 5 8

2.16. Bierwirth’s Sequence

Bierwirth (1995) introduces an alternative representation to job sequence on machines. This

sequence is a sequence of job numbers which are ordered according to theirs start time. The

Bierwirth’s sequence of oriented disjunctive graph above is: J2 J3 J1 J2 J3 J1 J3 J1. This sequence is

called the sequence with repetition too. Bierwirth’s sequences can be efficiently generated by any

greedy algorithm or any iterative method. These sequences can be used as chromosomes in genetic

algorithm.

0

1 2 3

4 5

6 7 8

9

0

0

0

5 6

2

4 3

0

6 2

2

M3

M3

M1

M1

M1 M2

M2

M3 0

0

0

6

5

6

12

Fig. 5. The oriented disjunctive graph (one solution) for instance job-shop above. The bolt text represents

starting times of tasks.

20

3. Algorithms For Minimizing

Three algorithms for minimizing objective function are described in this chapter. The first

one, Iterative Resource Scheduling (IRS) algorithm (Hanzálek and Šůcha 2009) is a priority-rule based

method with unscheduling step where tasks are scheduled successively according to the given priority

rule. An efficiency, implementation and testing of this algorithm is main part of this thesis.

Second one, Filtered Beam Search (FBS) algorithm (Schwindt and Trautmann 2003) is based on

a branch and bound method - Filtered Beam Search method. The last algorithm, Memetic algorithm

(Caumond et al. 2007) is based on genetic algorithm and a powerful local search procedure. After

studying of these algorithms it was decided that FBS algorithm will be implemented and compared

with IRS algorithm. Description of memetic algorithm is retained for illustration of other possibilities

for minimizing objective function .

3.1. Iterative Resource Scheduling Algorithm

Heuristic algorithm for project scheduling with time windows and take-give resources was

published by Hanzálek and Šůcha (2009). The problem that is addressed is motivated by a real

scheduling problem i.e. a lacquer production (Behrmann et al. 2005). They extend classical resource

constrained project scheduling by a take-given resources (see Section 2.9). This problem which solve

IRS algorithm can be denoted by . Moreover, they discussed how to construct

a schedule in backward time orientation and they define as the time symmetry mapping (see Section

2.13). Heuristic algorithm IRS for the problem with take-give resources is described in the following

section.

3.1.1. IRS Algorithm

The iterative resource scheduling algorithm (IRS), based on the iterative modulo scheduling

algorithm (Rau 2000), is described in this section. The meaning of interval bisection method used

in this algorithm is described in the first paragraph. The function which tries to find

a feasible schedule is described in the second paragraph.

Algorithm IRS tries to find a feasible schedule with schedule . The schedule length C is

determined by interval bisection method from interval . An upper bound denotes

an upper bound of schedule length (see Brucker 1999). Similarly, denotes a lower bound of

21

schedule length. If the feasible schedule is found by the function , the tasks are

shifted to the left side in function shiftLeft(S) and upper bound is decreased .

Contrariwise, if the feasible schedule is not found, then the lower bound is updated as follows

.

IRS ()

Calculate

Calculate /* longest path from to */

While do

If is feasible THEN

Else

End

End

End

 While do

 calculate ,

 /* Rotate of instance - TSM */

 End

 Return

End

Function foundSchedule tries to found a feasible schedule in

scheduling steps. The parameter is an input parameter of the algorithm and it is the

ratio of maximum number of activity scheduling steps to the number of tasks . This parameter is

usually equal to 2 (see Section 6.2.1). Function constructs a schedule according to the

priority of tasks (vector). Priority of task is given by the longest path from task to the

latest task in the schedule (so called dummy task, see definition of RCPSP/max in Section 1). Task

with highest priority, which was not scheduled yet, is chosen for scheduling. The earliest and the latest

start time of the task, and respectively, are calculated for this task. Function

22

finds the first such that there are no conflicts on the resources. If there is no such

then is determined according to whether task was scheduled once. If the task is being scheduled

for the first time, then otherwise where is the previous start time of

task . Function schedule the task at . Conflicting tasks, with respect to temporal or

resource constraints, are unscheduled.

3.1.2. Time Symmetry Mapping Inside Algorithm

TSM (see Section 2.13) is method which defines how to construct a schedule in backward time

orientation. This method is used in two ways in this work. An instance is reversed before start of

algorithm and this reversed instance is input parameter of algorithm. Thus IRS algorithm is not

modified. Second way is to use TSM inside of IRS algorithm.

Reversion of schedule inside IRS algorithm works at follows. We execute the algorithm several

scheduling iterations with the original (forward) problem and then we use TSM and the same number

of scheduling steps with backward time orientated instance. IRS algorithm created the schedule

according to a vector of priorities. This vector must be calculated for both orientation of the problem.

Thus we have two vectors of priorities, one for original problem and one for problem obtained by TSM.

 The final schedule is scheduled “from both sides” (several scheduling steps from the front and several

scheduling steps from behind).

This method can “release” some tasks and then IRS algorithm can resolved some complicated

instances. The best number of scheduling steps after which is suitable to reverse the instance was not

found out. The instance was reversed after 16, 32, 64 scheduling steps.

3.2. Filtered beam search algorithm

Algorithm published in Schwindt and Trautmann (2003) (Scheduling the production of rolling

ingots: industrial context, model, and solution method) was chosen to benchmark algorithm IRS.

Solution is based on the branch-and-bound algorithm, concretely filtered beam search method (see

Section 2.12). They created a scheduling algorithm for a real scheduling problem, rolling ingots

production. Rolling ingots are starting material for the rolling of sheet, foil and strip, which are mainly

used in the automotive, packaging, printing and construction industries. This algorithm is dedicated to

solve this manufacturing problem only. In this section we describe the algorithm and then we discuss

an adaptation of the algorithm to a more general scheduling problem.

23

3.2.1. Introduction and Basic Concept of Model

The production flow is showed in Fig. 7. In a potroom (a melting furnace), the ingredients

composing the alloy are smelted in an elecrolytical process. Several alternative potrooms are available.

Several casting unit belong to each potroom. Each casting unit is created of mold and stool-cap. The

mold determines the cross-section of the ingot. Stoll-cap closes the bottom of the mold at the start of

the casting process. Casting units are separated basely maximum cast length, which implies that not

every ingot cannot be produced on each casting units. Casting system has casting units with the same

length only. After the casting process, the ingot stays in the casting unit for cooling for a while.

All ingots produced within one casting are of the same alloy and same length. The casting has to be

started and completed at the same time for all casting units of a casting system. When an ingot with

a different cross-section is performed, the mold of the casting unit has to be changed. The changeover

can be performed only when any casting is in process.

Fig. 7. Rolling ingots product flow.

Production order for ingots is characterized by their alloy and length, the production scheduling

problem consists of computing a feasible production schedule with minimal makespan. In scheduling

terminology we can describe production of individual ingots as jobs. Each job consists of the three

operations (tasks). Task corresponds to melting in potroom, corresponds to changeover of the

mold and corresponds to casting plus cooling in casting unit. Each task has different processing time

and uses different resources. This is showed in Fig. 8. The job is described as task-on-node network.

The arcs correspond to time lags between tasks. The jobs may be performed in alternative casting

systems, for that reason we define modes. Then mode describe on which casting system is a job

executed.

Potroom 1

Ingot
Stool

cap

Casting

unit 1
Mold 1

Ingot
Stool

cap

Casting

unit 2
Mold 1

Potroom 2

Ingot
Stool

cap

Casting

unit 3
Mold 2

Ingot
Stool
cap

Casting

unit 4
Mold 2

Ingot
Stool

cap

Casting

unit 5
Mold 2

Casting
system 1

Casting
system 2

Melting Casting Cooling

24

Fig. 8. Operations of job

3.2.2. Solution Method

Feasible solution must satisfy following constraints:

 The necessity to select a mode for each job

 The limited capacity of the renewable resources

 The requirement that operations running in parallel on batching machines must be of the same

batching type and must be started jointly

 The need for changeover operations with sequence-dependent durations.

If we relax all those constraints, the remaining problem consists of scheduling all tasks subject to

the temporal constraints. This temporal scheduling problem represents a longest path problem in task-

on-node network. The solution may be infeasible if there are jobs for which no mode has been

selected so far or one of the resource constraints may not be met. In first case we assign a mode to

some job whose mode has not been fixed yet. The second case is resolved by introducing suitable time

lags to task-on-node network.

Fig. 9. Resolving capacity and allocation conflicts.

Conflicts Resolving

Casting, cooling
Changeover

t 0

Melting

melting casting cooling

Batch machine (potroom)

Changeover resource (casting)

unit))
Allocatable resource (mold)

T1
T2

t 0

T1 T2

t 0

T1 T2

t 0

T1 T2

t

t 0

t 0

T3 T4

T1 T2 T3 T4

T3 T4 T1 T2
0

Allocatable resource

Renewable resource

25

Resource capacity and allocation conflicts resolving is showed in Fig. 9. Capacity conflict may be

resolved when shift the start of task up to the completion of task (or reverse) by introducing the

positive time lag (or). Allocation conflicts may be resolved similarly. In this case

we shift allocation task behing operation by introducing positive time lag (or reverse).

Changeover conflicts can be removed by new positive time lag or reverse

 (see Fig. 10.).

Fig. 10. Resolving changeover conflicts.

Batching machine conflicts are shoved in Fig. 11. The first case shoves two tasks which belong to

different batching types () but require the same batching machine. This problem can be

resolved similarly as capacity conflict. In second case shoves two task which belong to the same

batching types () but start time is smaller then (). When are two tasks which

belong to the same batching types, than those task must start together or must start in another batch.

Fig. 11. Resolving batching conflicts.

t 0

T1
T2

t 0

T1

T2

t 0

T1
T2

t 0

T1
T2

t

T1
T2

t 0

T1
T2 0

Conflicts Resolving

Batching machine

resource

Batching machine

T1 T2

t 0

T1 T2

t 0

T1 T2

t 0

Conflicts Resolving

Changeover between two tasks

26

Now can be described the filtered beam search procedure (see Section 2.2.12) for this problem.

The algorithm first enumerates number of conflicts for each task. Tasks are sorted by number of

conflicts. Tasks which have batch conflict are favored and tasks which have changeover conflict are

penalized. Subsequently, is chosen tasks with minimal number of conflicts. For those best cases

we resolve conflicts, find the longest paths and calculate the Total Displacement. Total Displacement

TD = , where is number of tasks, is a vector of start times tasks source node, is

vector start times tasks new (resolved) node. Filter width is equal 3 for all instances. For nodes

with minimal total displacement is procedure repeated. Even a beam width of is too large for

hard problem instances. Let denote the integer random variable where is uniformly

distributed in interval and for , for and for

. Search continues until feasible solution is found. Pseudocode of the algorithm is shown below:

Main (Instance, Alpha, Beta)

 S = the longest path between all tasks and source dummy task

 x = assign modes

 FBS (S, x)

End

/* Recursive procedure */

FBS (S, x):

allConflicts = Find conflicts between tasks /* - Make favorable for tasks which have

 * batch conflict

 * - Make handicap for tasks which have

 * changeover conflict */

If allConflicts is empty

 If Cmax(S) < CmaxBest

 Cmax best = Cmax(S)

 Start time best = S

 Modes best = x

 End

Return

End

conflicts = choose Alpha conflicts from allConflicts with minimal number of conflicts

For each C from Conflicts do

R (S’, x’) = Resolve conflict (C) /* add positive time lag or assign mode and

 * find the longest path for all tasks */

TD = Total Displacement between S’ and S

 End do

R = Choose Beta resolved case with minimal Total Displacement from R

For each r from R do

/* Rotate of instance - TSM */

FBS (S’, x‘)

End do

End

27

3.2.3. Adaptation of Algorithm to Our Problem

Our problem is different from problem described in Schwindt and Trautmann (2003). However, we

can adapt this algorithm easily. Now we will describe differences between both algorithms. Our

problem uses neither batch machine nor modes. For that reason, we can omit these constraints.

In reverse, multiprocessor tasks is not considered in Schwindt and Trautmann (2003). It is not

problem because searching of multiprocessor conflicts may be performed separately like searching of

one processor conflicts. Then we must verify all processors which belong to one task. For example, we

have a task which must be performed on three processors. Then we must check that are not any

conflict on any of the three processors.

Changeover time between two is applied in case both tasks are performing on the same processor

only. Thus we must keep information about processors assignment. If we find two tasks on the same

processor at the same time, we have two possibilities to resolve it. We can assign one task on another

(free) processor or we can add positive time lags between tasks (in the same way like in paper). We

assign all tasks on the first processor at the beginning of the algorithm. Note if we would propose

suitable processors assignment at the beginning of the algorithm, can we have less conflicts at the

beginning of the algorithm.

Conflicts on batch machine are advantage and conflicts of changeover time are disadvantage

in original algorithm. We do this similarly. Take-give resources conflicts are resolved at first and

conflicts with changeover times are resolved at last.

Incremental Algorithm (distance matrix , arc from to with weight)

If

Return // Arc produces cycles with positive length

End

For each from

If

End

End

Return // Return updated distance matrix

There are many algorithms for enumeration longest path in task-on-node network. We chosen an

incremental algorithm presented by Bartusch et al. (1988). This algorithm (see above) update distance

matrix when adding some arc (from node to node with weight) to the network. Moreover,

it finds out if adding arc produce cycle of positive length or not. Time complexity of this algorithm

is , where is number of nodes. We must compute distance matrix from task-on-node network

at the beginning of algorithm. For this problem we use well known Floyd-Warshall algorithm.

28

3.2.4. Time Symmetric Mapping Inside Algorithm

The TSM (see Section 2.13) inside FBS algorithm is used in the similarly way as in the IRS algorithm

(see Section 3.1.2). In this case the problem is not reversed after several scheduling steps, but it is

reversed after several resolved conflicts. The instance is reversed before creating new children in

solution tree. For backward orientation of instance the different conflicts are found and hence the

algorithm can found different solution of problem. From our tests follow, that the instance is

advantageous reversed after 10, 20, 50 resolved conflicts.

3.3. Memetic Algorithm for the Job-shop with Time-lags

Algorithm published by Caumond et al. 2007 (A memetic algorithm for the job-shop with time-lags)

was chosen to benchmark algorithm IRS. This paper addresses the job-shop scheduling problem with

minimal and maximal time-lags (see Section 2). The algorithm is based on a memetic algorithm and

a powerful local search procedure. The problem is modelized as a non-oriented disjunctive graph (see

Section 2). Since a job sequence on machines is generated, it is possible to obtain an oriented

disjunctive graph. A Bellman like longest path algorithm permits to compute the earliest completion

time of the last operation: the makespan. The makespan denotes the completion time of the last

operation. Individual parts of this algorithm are described in next paragraphs.

A solution is an oriented disjunctive graph. The arcs between operations of jobs which use the same

machines define the operations sequence on machines. Bierwirth sequence (Bierwirth 1995) is used in

algorithm as alternative representation of job sequence on machines. Bierwirth’s sequences represent

chromosomes in genetic search process.

Unfortunately there exist inconsistent oriented disjunctive graphs which contain positive cycle

length. The positive cycles in the graph are due to incorrect orientation of edges in arc but also due to

negative arcs in the graph. When no positive cycle exists in the graph, a Bellman like longest path

algorithm permits to determine the start time of each task.

Positive cycle can be efficiently detected during the longest path algorithm run. Thanks to

Bierwirth’s sequence, cycles positive length are only due to maximal time-lags and not to incorrect

operation sequence on machines (incorrect disjunctions between operations on one machine are not

possible). The main problem is to determine which maximal time-lags must be removed from the

graph to obtain a graph without positive cycles. This problem solve following algorithm:

Procedure Evaluate_A_Sequence:

Evaluate the Bierwirth’s sequence without maximal time-lags in graph.

For = 1 to do

 Checked the maximal time-lags of operation

Evaluate the Bierwirth’s sequence with the maximal time-lags

which have been checked

29

Completion time of the last operation

 if (there is positive cycle in the graph) then

 Unchecked the maximal time-lag of operation

 End if

 End do

In algorithm is number of operations in Bierwirth’s sequence , is the number of time-lags

which must be unchecked (removed from graph) to obtain a graph without cycle and is

completion time of a Bierwirth’s sequence.

The function defines a cost for each Bierwirth’s sequence . If

and are chosen such , is strict hierarchic function which

affects a value to Bierwirth’s sequence with the following properties:

 A Bierwirth’s sequence without unchecked maximal time-lags has a lower cost than any

Bierwirth’s sequence with unchecked maxima time-lags.

 if two Bierwirth’s sequence have unchecked maximal time-lags, then the Bierwirth’s

sequence with the lowest number of unchecked maximal time-lags has the lowest cost.

The procedure Evaluate_A_Sequence is a greedy procedure because it unchecks the last checked

maximal time-lags when a cycle is detected.

How was it already said, the Bierwirth’s sequences are considered as a chromosomes. These

chromosomes have two properties: chromosomes can be efficiently evaluated with respect to their

sequence; two chromosomes can hold to the same oriented disjunctive graph. The fitness of the

chromosome is evaluated by function which is described above. Feasible chromosome is

chromosome with (graph with no cycle).

Initial population is created by priority dispatching rules generation (a heuristic) and by random

chromosome generation. The main reason to combine heuristic chromosomes and random

chromosomes in the initial population is to obtain a great diversity. The heuristic generation is based

on the framework folly described in Caumond et al. 2005.

The crossover is based on the GOX crossover first introduced by Bierwirth 1995. The main

characteristic of this crossover is to preserve the relative order of tasks. Note, that a child obtained

after crossover of two feasible parents, may not be feasible.

The mutation is here realized by local search. Local search is based on an exchange of two tasks in

machine-block. A machine-block is a sequence of tasks of the same job processed consecutively. We

consider these sequences as sequences of machine-block on a critical path (the longest path). The

better solution can be obtained by exchanging one task at the end of one block with another one

at the beginning of the next block. This new sequence is transformed into a chromosome and a new

cost evaluated.

Memetic algorithm has few parameters:

 mni maximal number of iterations

 np maximal number of unproductive iteration before a restart

 nc number of chromosomes in population

 pm local search probability

 nm maximal number of iterations during local search

 pr percent of population

30

 The Algorithm selects two chromosomes to undergo crossover and mutation. The resulting child

replaces one existing chromosome in population. The GOX crossover is applied to two chromosomes

and one child is selected at random. The child undergoes a local search with probability pm (local

search probability). If is not the fitness of the child the duplicate, the child will be mutated and

productive iteration counted. If is the fitness of the child the duplicate, the child will be not mutated

and this iteration is an unproductive one. When the maximal number of unproductive iterations is

reached (np), the algorithm experienced a restart by replacing pr percent of population (pr) by random

generated chromosomes. Note that the best chromosome cannot be mutated during a restart and so

the best chromosome is preserved. The memetic algorithm stop when the maximal number of

iterations (mni) is reached or the lower bound is reached. The block scheme of the algorithm is in Fig.

12.

Interface

Mutation (Local search)

Longest path

algorithm

Best solution

One solution with

the lowest cost

Bierwirth

sequence

(the chromosome)

Instance and

parameters

Oriented

disjunctive graph

Non oriented

disjunctive graph

Test and remove

positive cycle length

Initial population

GOX crossover

Fig. 12. The block scheme of alternative algorithm.

31

4. An Algorithm For Minimizing

An algorithm for minimizing Total Weighted Tardiness (definition is in Section 2.4.) is described in

this section. Basic idea was modified IRS algorithm (Hanzálek, Šůcha 2009) for minimizing this function.

IRS algorithm stayed the same out of following parts. I. Priority of tasks (vector priority) is counted

with the ATCSR rule. This priority rule for minimizing TWT is described in detail in Section 1.1.3.

II. Modified algorithm not iterate over interval . A new schedule (output parameter from

foundSchedule function) is analyzed and parameters of instance or parameters of ATCSR rule are

changed in the next iterates.

Some methods were suggested for solution of this problem and their results were compared with

optimal schedules. Optimal schedules were found out by ILP. Independent versions of algorithm were

created for each of methods. The algorithm was created for problem for simplicity.

For this reason, the ATC rule is sufficient

Methods are described in detail in the followings paragraphs. Summarize of results all methods is

presented in the end of this chapter.

4.1. Basic Concept (TWT_0)

ATC Rule determines the priorities of tasks for scheduling so that the objective function TWT is

minimizing. The calculation of priorities is always started before selection of task which should be

scheduled. Thus, the calculation of ATC indexes is started in loop function foundSchedule in IRS

algorithm. All parameters for calculation of ATC index are parameters of task. The constant is

calculated from parameters of whole instance. This constant is described in Park, Kim, Lee (2000) in

detail.

The input instance must include set of due dates and weights for all tasks. It is important to right

calculate of ATC rule, but this is not guarantee in all cases. For this reason, these instances must be

adapted. This action is introduced as propagation of due dates and weights between all tasks and is

described in next subsection. All successors version of algorithm include this basic concept.

32

4.1.1. Propagation of Due Dates and Weights Between All Tasks

Propagation set due dates and weights of the tasks which have not this values set. Due date for

task is counted as follows

where is the longest path from task to task . If then do not exist any path from to .

If then the due date for this task is not set.

Weight of task is counted as mean weight of tasks, which are successors of task (if the path

 exist). Propagation of due dates and weights is shoved in Fig. 13.

Fig. 13. Propagation of due date and weight .

4.2. Shift Left of Earliest Start (TWT_1)

Analysis of schedule and iteration are introduced in this version of algorithm. Schedule found by

function foundSchedule is evaluated by criterial function (). The task with the biggest penalty

may be found. Earliest start of this task is decreased by next entrance to foundSchedule function.

These actions correspond to one iteration of algorithm. If feasible schedule is found then the biggest

penalize task will be decreased again. New earliest start for tasks is counted as follows

the variable describe number of unexecuted iterations. It means, the more is executed of

iterations (is decreased) the more is decreased new earliest start of the biggest penalize task.

Our tests showed that 8 iteration of algorithm is sufficient. Comparison with optimal solutions is

showed at the end of this chapter.

1

2

3

4

Input set of tasks

 1 2 3 4

 2 5 4 3

 9 10 15

 0 10 5 5

New set of tasks

 1 2 3 4

 2 5 4 3

 9 10 15

 7 10 5 5

33

4.3. Increase Weight/Decrease Due Date of Tasks

This method is based on increase of weight and decrease of due date for tasks which are the most

penalize. This modification of properties of tasks produces the bigger priority for these tasks. This

method can be effective, but estimate of these changes is not easy. If the change of these properties is

small then priorities will be the same. If the change of these properties is too big then the algorithm

will go to invalid way. Border between these extremes was not found. The results of this method were

wrong and therefore they are not shoved in the comparison.

4.4. Jump over of Tasks (TWT_2)

Tasks which have the biggest penalize are scheduled before the rest of the tasks in this method.

Concretely, it is allowed for these tasks be scheduled although they have smaller priorities. Order tasks

for scheduling is different than in basic concept-exactly according to ATC rule. Because of it, a total

penalize can be smaller. Number of jumped tasks increase for the biggest penalize task. This number

represents how much of task with the higher priorities can be jumped. This method is presented on

a simple example (Table 1).

Table 1

Comparsion of order tasks for scheduling obtain by jump task method.

Task 1 2 3 4 5

 2,54 0.65 8,44 0,23 15,3

Order tasks for scheduling 3 2 4 1 5

Jump over of tasks 0 0 2 0 0

New order tasks for scheduling 4 3 2 1 5

4.5. Iteration over Constant (TWT_3)

This method is inspired by article Park, Kim et al. (2000). Constant is not counted from

parameters of instance, but constant is chosen from the recommend interval. The algorithm is running

several times, each time with different constant from recommend interval. It is simple to extend our

algorithm by this method. This constant may be changed by the calling method foundSchedule. This

method shows that counting constant from instance is not a robust solution.

34

4.6. Combination of Methods (TWT_4)

The last method unites two best methods only, Iteration over Constant and Jump Tasks. The

TWT_3 is started at the beginning. During its execution the best constant is found. Then TWT_2

method (with found constant) is started.

4.7. Results

All methods were tested on the same instances and compared with the optimal solution (found by

ILP). Thus, comparison is accurate. These results are summarized in Table 2. We can see that

difference objective function between IRS algorithm and optimal solution is smallest for methods

Iteration over Constant (TWT_3) and its modification (TWT_4).

Table 2

Comparison of IRS algorithms and ILP for Total Weighted Tardiness

objective function.

Difference objective function between IRS and ILP [%]

 tasks [-] TWT_0 TWT_1 TWT_2 TWT_3 TWT_4

5 12,9 11,9 4 2,5 1,3

10 23,6 20 16,6 11,8 9,7

15 33,9 28,9 25,1 16,9 14,5

But it is obvious that all methods have a common problem. For increased number of task is

difference between optimal solution and solution found by these methods increase even more. From

results is obvious that adapted IRS algorithm is not appropriate to solve the objective function .

35

5. Efficiency of Scheduling Algorithms

Methods which can increase the efficiency of scheduling algorithms are described in this section.

There is no a right general technique for writing an efficient code for scheduling algorithm.

Implementation of algorithms is always depended on the given situation and on the requirement

algorithm. But it is necessary to realize what the algorithm will solve, how will be able to extend and

for what kind of problems the algorithm is determined. It is important to realize which part of the

algorithm must be optimized (in term of code). The code profilers can help to this aim. Furthermore,

a consecutive implementation of one scheduling algorithm in two different programming languages is

contributing too. Mistakes can be found, code is thought over again and problem is seen from

different point of view. Examples and general recommendations, which were registered

implementation of scheduling algorithms, are described in this section.

5.1. Usage of Correct Programming Language

The scheduling algorithms are very time-consuming. There are many of algorithms which can find

an optimal solution but there are not fast computers and their software environment which would find

solution in tolerable time for hard problems. However, between programming languages and their

usage are differences. Programming languages (and their advantages) which were used in this work

are described in this section.

5.1.1. Matlab

“MATLAB - The Language of Technical Computing” is a high-level development environment for

technical computing. This language is popular for fast and simple work with matrices, data handling

and transparent evolution of algorithms. Add-on toolboxes (collections of special-purpose MATLAB

functions, available separately) extend the MATLAB environment to solve particular classes of

problems. We use Torsche Scheduling Toolbox as a support for development and verification

of algorithms.

36

Torsche Scheduling Toolbox

TORSCHE Scheduling Toolbox for Matlab1 is a freely (GNU GPL) available toolbox. This toolbox can

be used for a complex scheduling algorithms design and verification. Graphs and schedules can be

created and printed very easily with Torsche. Basic scheduling and graph algorithms are implemented

in this toolbox too. Torsche is developed at the Czech Technical University in Prague, Faculty of

Electrical Engineering, Department of Control Engineering.

5.1.2. C++

C++ is a very popular programming language. The following advantages are important for us. This

programming language is very fast. Licenses are no required for algorithms development in C++. The

Programs implemented in this language can be compiled for different platforms. Many of libraries are

accessible for this language. For these reasons, C++ was chosen as one of the programming language

for final implementation of scheduling algorithms. Because work with matrices is somewhat

complicated in C++, BOOST library and STL library were used. Many methods, which work with

matrices and vectors, are implemented in these libraries. Small documentation was created for much

using operations. This documentation describes transferring function from Matlab to C++.

STL (Standard Template Library)

STL2 is a generic collection of class templates and algorithms that allow programmers to easily

implement standard data structures like vectors, lists, queues and stacks.

BOOST

The Boost C++ Libraries3 is a collection of many libraries that extend the functionality of C++. We

used Graph and uBlas libraries for this work. They are generic classes, in the same sense as the

Standard Template Library (STL). The Graph library is a generic interface that allows access to a graph's

structure and basic graph algorithms. uBLAS provides matrix and vector classes as well as basic linear

algebra routines. The uBLAS covers the usual basic linear algebra operations on vectors and matrices:

addition and subtraction of vectors and matrices and multiplication with and the like.

1
 http://rtime.felk.cvut.cz/scheduling-toolbox

2
 http://www.sgi.com/tech/stl

3 http://www.boost.org

37

5.1.3. C#

C# is a programming object oriented language designed around 1999 or 2000 by Anders Hejlsberg

at Microsoft. C# is intended to be a simple, modern, general-purpose, object-oriented programming

language. C#, in contrast to C++, include strong type checking, array bounds checking, detection of

attempts to use uninitialized variables, source code portability, and automatic garbage collection.

These aspects escalated robustness, durability and programmer productivity.

Extended libraries for work with matrices and graphs are available for C# too. Math.NET Iridium1

and dnAnalytics2 are similar libraries as BOOST (C++) as well QuickGraph3 is similar library as Graph

(C++) libraries. But basic equipment C# is sufficient to these requirements and for that reason there is

no need to use these libraries. Besides, when we implemented algorithm with extended libraries we

concentrated primarily on the exact transcript of algorithm from Matlab to C# (or C++). Furthermore,

extended libraries must be installed to computer, their versions must be verified and their wrong

application can lead to decrease of performance of scheduling algorithms.

Fig. 14. Runtime comparison of IRS algorithm which is implemented in different programming languages.

There are many discussions between programmers that C# is a slower programming language then

C++. For that reason both programming languages were compared. A runtime comparison of algorithm

IRS which is implemented in different programming languages is showed In Fig. 14. It is seen that C++

and C# solve the same problems in the similar time. On the other hand, Matlab is much slower then

C++ and C#.

For all these reasons it was decided that for final implementation C# programming language will be

used.

1
 http://mathnet.opensourcedotnet.info

2
 http://www.codeplex.com/dnAnalytics

3 http://www.codeplex.com/quickgraph

0

5

10

15

20

25

10 60 110 160 210 260M
e

an
 r

u
n

ti
m

e
 o

f
al

go
ri

th
m

 IM
S

[s
]

Number of tasks [-]

Matlab C++ C#

38

5.2. Integer Linear Programming

Integer Linear Programming (ILP) is not a programming language but a mathematical method for

optimization of an objective function, subject to constraints formed by linear inequalities. Some

scheduling problem can be described as linear inequality constraints. This description is sometimes

simple as any scheduling algorithm and extra solution acquire by ILP is an optimal solution.

Unfortunately, these methods are usable for small instances only. ILP is a favorite method and there

are exist many solvers for this problem. The time comparison of ILP solvers is in Fig. 15. ILP problem

formulation is used to find optional solutions for small instances in this work.

Fig. 15. Time comparison of ILP solvers from page: http://scip.zib.de/.

5.3. Usage and Suitable Format for Variables

They are many ways how variables can be stored and how with data can be manipulated. Some

examples which can lead to improved work with data are shoved in this section.

When reading of data or pass variables between function is often repeated, runtime of algorithm

can increase. If some variables are created as global variables, this effect may be defeated. Global

variables can be profitably applied to often repeated calling of a function or to a recursive routine for

example. Similarly, place for allocation of variables must be right chosen. Even we should think

whether all of used variables are needed or not. Comparison of algorithm, where the rules described

above were aplicated, is shoved in Fig. 16. Apropos, we find out that using extended libraries can lead

to degradation of efficiency during aplicated this rules. For that reason it was decided that this libraries

will not used in final implementation of algorithms.

39

Fig. 16. Time comparison of algorithm with wrong allocating of variable (imss_xxxxx_0) and algorithm where

were dressed using of variables (imss_xxxxx_1).

 Data are often stored in matrixes or vectors in scheduling. Matrix which has very few elements is

shoved in Fig. 17 (presuppose, zero elements are not important for us). Reading of all elements of this

matrix takes steps, where is number of rows and is number of columns in the matrix. If so

called sparse matrix is created from this matrix, the number of steps will be decreased for reading of

all elements. Sparse matrix in our example have size , where is number of records in the original

matrix. The first column corresponds to indexes of rows in the original matrix, the second columns

corresponds to indexes of columns in the original matrix and the third column corresponds to values

from the original matrix. This sparse matrix is read in steps. Similar matrix was used for

representation the take-give resources in FBS algorithm.

Fig. 17. A matrix and corresponding sparse matrix.

Next example shows that variable can be used not only as store of values. The variables can express

state of algorithm too. A matrix is used by two of ways in our example. An original matrix is used in

the first case and a transposed matrix is used in other case. A Program branching (if or case condition)

can be an onus in the most time critical part of algorithm. This situation can be resolved as follows.

Instead of two matrices with size (original matrix and transposed matrix), we define one matrix

with size . The values are addressed by three indexes in new matrix: (from to) is index

of row, (from to) is index of column and (or) represent matrix from which is read. One

global variable is sufficient to address a right matrix. This method was used in FBS algorithm.

0

5

10

15

20

25

30

100 150 200 250 300 350 400

R
u

n
ti

m
e

o
f

al
go

ri
th

m
 [s

]

Number of tasks [-]

imss_xxxxx_1 imss_xxxxx_0

40

5.4. Look Ahead Counting Sub-results

Look ahead counting sub-results (or constants) are useful methods for acceleration of algorithm.

If we want make any partial calculations in a loop (or in repeated calling of function) then it is faster

this partial calculations count at first and then enter into the loop (if it is possible). It can be said

generally, what was counted once needn’t be counted again. If a function has not many of

inputs/outputs parameters, it is possible to count all results (for all of inputs) before. A table can be

used instead of the function. Similar example will be shoved in the following paragraph.

The objective of our function is to verify whether two tasks are overlapped or not. Two tasks are

overlapped when both tasks are performed in the same time on the same processor.

If each task is performed on one processor only, the verification is trivial, i.e. we can compare

numbers of processors only. When the numbers are the same, it can be verified whether tasks are

performed in the same time. Contrariwise, when the numbers of the processors are different, it is not

needed to compare whether the tasks are overlapped.

Indexes of task Dedicated processors

1 1, 3, 4, 5

2 1, 4

3 2, 3, 5

4 3, 5

Fig. 18. Table of dedicated processors and matrix which shows where tasks have the same processors.

But when multiprocessors task are considered, verification whether two tasks are on the same

processor is complicated now. We must verify whether both of tasks have at least one same processor.

If they have, it can be verified whether tasks are performed in the same time. The numbers each of

processor of first task must be compared with the number each of processor of the second task.

The more processors have a task the slower verification is.

It is advantageous to create a matrix, which keeps information about the tasks that are processed

on the same processor. Such matrix is shoved in Fig. 18. Indexes of rows and columns are accorded to

indexes of tasks. The values are accorded to information whether tasks are processed on the same

processor or not, 1 or 0. The same matrix is used in algorithms IRS and FBS.

41

5.5. Usage of Previously Found Results

Usage of previously found results can be very useful method. Runtime of algorithm can be

decreased, but also an objective function can be better. Three examples, using previously found

results, are shoved in the following paragraphs.

Computation of arithmetic mean is the simplest example, but using of previously found results can

be well shoved on this example. If we want to count the arithmetic mean repeatedly (e.g. values are

stepwise increased) then it can be counted in two ways. A) All values must be available and arithmetic

mean can be repeatedly counted them, according to the following formula

or B) The better formula can be used:

We need count neither the sum of all values nor store these values in this case. We need to know

only previous mean and number of values. This formula was used in IRS algorithm (TWT objective

function).

This example is similar to the first example. The longest paths between all tasks were necessary

counted repeatedly. The Bellman-Ford algorithm (see e.g. Brucker P., Knust S. 2005) was used to solve

this problem initially. This algorithm requires time, where and are the number of tasks

and the number of time lags respectively. Bellman-Ford algorithm is a relatively fast algorithm,

however, the shortest paths are always counted from the algorithm beginning. This algorithm was

replaced by an incremental algorithm Bartusch et al. (1988). Incremental algorithm updates distance

matrix in . Incremental algorithm is faster than Bellman-Ford algorithm since it uses previous

results. This algorithm is described in Section 3.2.3 in detail.

How previously results can be used to improve an objective function is described in this paragraph.

Heuristic algorithm IRS schedules tasks stepwise according to their priorities, i.e. from the task with

the highest priority till the task with the smallest priority. The priority of task is determined according

to the distance between this task and the latest (dummy) task in graph of precedence constraints.

These priorities are counted at the beginning of the algorithm. The instance can be infeasible because

sequence in which tasks were scheduled was wrong. The information, which tasks were removed from

the schedule the most often, is stored during the algorithm running. If the original priorities of tasks

are changed for the benefit of the most unscheduled tasks and the algorithm is started again, then

a feasible schedule can be found. Thanks to this method it can be found more feasible schedules.

42

6. Experimental Results

Experimental results of IRS and FBS algorithms are discussed in this chapter. Instances which are

used to benchmark of the algorithms are presented in the Section 6.1. The Sections 6.2. and 6.3. show

the influence of set of parameters of algorithms on their results. Benchmark of both algorithms is

shoved in section 6.4. and the experiments with time symmetry mapping are presented at the end

of this chapter.

6.1. Instances and Implementation

Basic concept of all algorithms was implemented in Matlab. After that, the algorithms were

transferred to C#, while the objective was the code efficiency (see Chapter 5). Both algorithms were

compiled as COM Components under C#. All experiments were performed on Intel Pentium 1.66 GHz,

2 GB RAM.

Three types of instances were used to benchmark IRS and FBS algorithms. Generator of instances

GEN_INS (Hanzálek and Šůcha 2009) was used for evolution and basic benchmark of algorithms. This

generator allows transparently set many parameters of instance. The finally experiments were

performed on standard instances generated by ProGenMax1 and instances of a lacquers production

(Behrmann et al. 2005).

6.1.1. GEN_INS

Generator GEN_INS was developed at the Czech Technical University in Prague, Faculty of Electrical

Engineering, Department of Control Engineering. This generator creates the instances for

 problem. The parameters and typically set of generator are shoved below.

Number of tasks

Maximal processing time 12

Number of positive time lags (edges with positive weight) 3* /2

Number of negative time lags (edges with negative weight) /2

1 http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html

43

Maximal weight of positive time lags 15

Maximal weight of negative time lags 40

Maximal changeover time 8

Maximum of dedicated processors 2

Maximal number of multiprocessor tasks 2

Maximal capacity of processors 8

Number of take-give resources 3

Maximal number of groups of take-give resources 2

Maximal capacity of take-give resources 2

6.1.2. ProGenMax

ProGenMax generator is accessible on web site1 of Universität Karlsruhe (TH) - Institute for

Economic Theory and Operations Research. The instances generated by ProGenMax are used to

benchmark different scheduling algorithms. These instances are stored in packages, each package

includes 90 instances. For each instance are available value of the best result () and name of

 which found this result: BB: Branch-and-bound algorithm, AM: Approximation method,

FB: Filtered Beam Search, PR: Multi-Pass Priority-Rule Method, TS: Tabu Search, GA: Genetic

Algorithm. Our experiments were preformed on packages UBOxxx (where xxx means number of tasks

 in one instance) for problem.

6.1.3. Lacquer Production

Lacquer production (Behrmann et al. 2005) is a real production scheduling problem. Lacquer

production can be described as a project scheduling problem with general temporal constraints,

resource constraints and take-give resource ().

Production line produces three different lacquers, universal lacquer (), metallic lacquer (met)

and bronze lacquer (bro). Each lacquer has different manufacturing process and used different

resources, see Fig. 19. Each instance for scheduling is determined by number of individual lacquer.

1 http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax

44

Fig. 19. Manufacturing process of lacquer production.

?

1058

311

441

395

1323

240

Mixing vessel A

Laboratory

Dose spinner

Filling station

?

1058

311

441

395

1323

Mixing vessel A

Laboratory

Dose spinner

Filling station

705

240

Bronze Dose

spinner
Bronze mixer

353

360

Dispersing line

>360

?

1542

2939

441

1437 311

662

1587

240

Disperser

Filling station

Dose spinner

Laboratory

Mixing vessel B

0-240

Metallic lacquer

Bronze lacquer

Uni lacquer

Parallel identical res:
 Dose spinner

 Filling station

Take-give res:

 Mixing vessel A

 Mixing vessel B

Dedicated res:

 Disperser

 Dispersing line

 Bro mixer

 Bro dose spinner

Unresticted res:

 Laboratory

45

6.2. Parameters of IRS algorithm

Influence of algorithm parameter Budget Ratio and interval bisection method on the results found

by iterative resource search algorithm is shoved and discussed in the next subsections.

6.2.1. Budget Ratio

The parameter is the ratio of the maximum number of activity scheduling steps to

the number of tasks . Influence of this parameter on the runtime of algorithm and number of feasible

schedules is shown in Fig. 20. This experiment was performed on 90 benchmark instances UBO100

(with =100). From the experiments follow that reasonable compromise between computation time

and quality of the resulting schedule is usually achieved with .

Fig. 20. Influence of Budget Ratio on the runtime of algorithm and number of feasible schedules.

6.2.2. Interval Bisection Method

Interval bisection method (binary search algorithm) is used, for example, for searching

an approximate solution of equations or sampling of signals in electrotechnics. It is assumed that the

values are sorted (in decreasing or increasing line) in the interval. The binary search method is base

on verifying whether wanted value is greater than or less than middle of interval. Lower or upper

bound of interval is changed to value of middle interval according previous result. The cycle is

repeated until wanted value is not found. Time complexity of this method is , where is the

number of values in the interval (interval on which searching is used). For comparison, time complexity

of linear search is .

Earlier version of IRS algorithm IRS evaluates lower and upper bound for given

instance at first and then findSchedule function is called for all values from interval until

a feasible solution is found. Estimated is an input parameter for findSchedule function.

However, the interval is different for each instance. Mean runtime of IRS is dependent on

0

1

2

3

4

5

6

7

8

1 1,5 2 2,5 3 3,5 4

M
ea

n
 C

P
U

 T
im

e
[-

]

Budget Ratio [-]

35

40

45

50

55

60

65

70

75

1 1,5 2 2,5 3 3,5 4

N
u

m
b

er
 o

f
fe

as
ib

le
 s

ch
ed

u
le

s
[-

]

Budget Ratio [-]

46

time when feasible solution is found (see Table 3). If the instance is not feasible then the function

findSchedule is called for all values from . For that reasons binary search method is used in IRS

algorithm for found the best

Table 3

Comparison IRS algorithm with binary search of estimate and with linear search of .

50 feasible instances 50 unfeasible instances Common difference of

 tasks [-]
Runtime of IRS with

bisection method [s]

Runtime of basic

IRS algorithm [s]

Runtime of IRS with

bisection method [s]

Runtime of basic

IRS algorithm [s]
Mean (Cmax1-Cmax0) [%]

50 0,002 0,005 0,002 0,015 1,3

100 0,010 0,029 0,012 0,112 1,1

200 0,061 0,190 0,068 0,834 1,8

300 0,185 0,548 0,202 2,750 2,2

400 0,417 1,116 0,453 6,395 8,6

500 0,861 2,282 0,922 13,102 1,3

100 instances were generated for each number of tasks. Values are mean from all values.

But there is one problem here. IRS algorithm has not equalization of feasibility on interval .

It is not true that the function findSchedule finds always a feasible schedule from some . It means for

as that binary search can lead to worst results. However, results are very good whereas acceleration of

algorithm is huge (see Fig. 21 and Table 3).

Fig. 21. The time comparison of algorithm IRS with binary search of and algorithm IRS with linear search

of .

0

0,5

1

1,5

2

50 100 150 200 250 300 350 400 450 500

R
u

n
ti

m
e

o
f

al
go

ri
th

m
s

[s
]

Number of tasks [-]

Binary Search of Cmax Linear Search of Cmax

47

6.3. Parameters of FBS algorithm

Influence of algorithm parameters filter width and beam width on the results found by filtered

beam search algorithm is shoved and discussed in the following subsections.

6.3.1. Filter Width and Beam Width

Efficiency of filtered beam search method is discussed in this section. FBS algorithm has two main

parameters, the filter width and the beam width . Both parameters have direct impact to the

objective function and runtime of the algorithm too.

Filter width corresponds to the number of candidates which can be added to the tree of result. The

more of candidates are evaluated by beam criterion the better candidate can be chosen to add to tree

of result. Of course, evaluation more candidates cost much time. Comparison result for different filter

width is shoved in Table 4. On the basis the results in Table 4, it was decided that filter width for

next testing.

Table 4

Comparison of result for different filter width for fbsm_xxxxx algorithm is shoved in table.

 tasks
[-]

Mean
Time [s]

Mean
[-]

Feasible
schedules [-]

 tasks
[-]

Mean
Time [s]

Mean
[-]

Feasible
schedules [-]

8 0,26 53,11 114 6

10 5,07 60,8 110 6

8 0,21 53,08 114 5

10 3,41 60,84 110 5

8 0,16 53,08 114 4

10 1,93 60,81 110 4

8 0,11 53,08 114 3

10 0,96 60,94 109 3

8 0,07 53,2 111 2

10 0,43 60,59 101 2

Values in table are mean from measurement of 200 instances.

Beam width has similarly impact to results as filter width. Beam width determines number of new

nodes in the result tree. Then Beam width determines the state space of algorithm. Of course, optimal

solution of instance can be found easily if state space is bigger. Simultaneously, the runtime of

algorithm grows up with the state space. Comparison between the constant beam width and the

randomly evaluated beam width is shoved in Table 5. From the table follows that results of the

algorithm are dependent on its set. The algorithm runtime, with chosen from interval

randomly, is much smaller then algorithm with . For this reason is not used for bigger

instance.

48

Table 5

Comparison the constant beam width and the randomly evaulated beam width.

 (randomly)

 tasks [-

]

Mean Time

[s]

Mean

[-]

Feasible

schedules [-]

Mean

Time [s]

Mean

[-]

Feasible

schedules [-]

12 0,10 69,33 105 0,01 69,69 104

15 4,61 78,27 100 0,02 77,91 94

20 46,68 86,17 90 3,15 85.40 89

Values in table are mean from measurement of 200 instances.

6.3.2. Time Limit for Runtime of Algorithm

State space of tree of results can be reduced by algorithm parameter beam width . But runtime of

algorithm is enormously increased for bigger instances. For that reason, maximal runtime of the

algorithm is the next input parameter of FBS algorithm. This limit is usually 60 second. Influence of this

parameter on the results is shoved in Table 6.

Table 6

Infuence of maximal runtime of FBS algorithm to results.

 tasks
[-]

Mean Time
[s]

Mean
 [-]

Feasible
schedules [-]

Max
Runtime [s]

 tasks
[-]

Mean Time
[s]

Mean
 [-]

Feasible
schedules [-]

Max
Runtime [s]

12 0,048 69,5 105 1

15 0,180 78,6 100 1

12 0,093 69,5 105 10

15 0,739 78,3 100 10

12 0,097 69,3 105 60

15 2,089 78,0 100 60

12 0,097 69,3 105

15 4,614 78,3 100

Values in table are mean from measurement of 200 instances.

6.4. Benchmark of Algorithms

Comparison of FBS algorithm and IRS algorithm on ProGenMax instances is shoved in Table 7. From

results follow that FBS algorithm reaches worse results than IRS algorithm. The number of feasible

schedules found by FBS algorithm is very decreasing for instances with more taks. Algorithm FBS

needed often the full time limit of runtime algorithm to find feasible schedules (60 second), but time

limit was for many instances too small.

Generally, IRS algorithm reaches better results than FBS algorithm. Runtime of algorithm is small,

number of feasible schedule is not critically decreasing (with gowning number of tasks) and even mean

 is smaller than mean .

49

Table 7

Comparison of FBS algorithm and IRS algorithm on ProGenMax instances.

FBS IRS ProGenMax

Package
 tasks
[-]

Mean
Time [s]

Mean
 [-]

Feasible
schedules [-]

Mean
Time [s]

Mean
 [-]

Feasible
schedules [-]

Mean

 [-]
Feasible

schedules [-]

UBO 10 10 0,127 50,3 69 0,043 49,4 73 51,9 73

UBO 20 20 15,323 94,0 62 0,136 91,3 62 104,1 70

UBO 50 50 50,654 201,5 53 0,769 182,8 61 188,7 73

UBO 100 100 56,148 339,1 23 3,141 307,1 62 362,9 78

Each package includes 90 instances.

Comparison of FBS algorithm and IRS algorithm on Lacquer production instances is presented

in Table 8. Contrary to the previous results FBS algorithm is usable for scheduling of large instances

too. It flows from base of FBS algorithm. FBS algorithm resolve conflicts for tasks with take-give

resources at first and then it resolve of conflicts between tasks. In other words, FBS algorithm

approximately schedules individual lacquers at first and then precisely schedules individual tasks.

By comparison both algorithms, it can be seen that they have similar results. Runtime of algorithm

IRS grows for a large order of lacquer, but the runtime is still in the bounds.

Table 8

Comparison of FBS algorithm and IRS algorithm on Lacquer production instances.

Orders
 tasks [-]

FBS IRS

uni met bro CPU Time [s] [-] CPU Time [s] [-]

2 2 2 46 0,08 17 610 0,08 21 398

5 5 5 115 57,66 48 665 0,58 49 255

10 10 10 230 60,03 98 871 5,14 94 562

15 15 15 345 60,04 147 729 17,42 148 391

20 20 20 460 60,07 196 246 51,7 187 841

One instance was generated and tested for each order.

6.5. Experiments with Time Symmetric Mapping of Instances

In order to improve the solution while using the same heuristic algorithms we use the time

symmetry mapping to find a new feasible solution and to improve the objective function ().

If we want to create a schedule in backward time orientation, we use TSM to instance before start of

an algorithm and then this (reversed) instance is input parameter of the algorithm. Thus the same

algorithm is used to schedule for forward and backward time orientation of the problem (Hanzálek and

Šůcha 2009).

Time symmetric mapping is used differently in this work too. TSM is implemented inside the body

of the algorithms. Algorithms schedule several steps with the forward orientation of the problem and

several steps with the backward orientation of the problem. Description of the implementation of TSM

IRS and FBS algorithm is presented in Section 3.1.2 and 3.2.4.

50

Influence of time symmetric mapping to results of FBS and IRS algorithm is showed in Table 9 and

Table 10. Instances generated by ProGenMax generator was used as a benchmark. Number of feasible

schedules found (feasibility), difference and runtime of the algorithm are compared in the tables.

The best results of different algorithms, which are enclosed to instances ProGenMax, are showed in

the column with label . The difference is calculated as difference between found solutions

and the corresponding best solutions. Thus, found solutions are compared with the best solutions on

these instances. Next columns of the table show results of FBS and IRS algorithm for the original

problem (F forward), for the problem obtained by TSM (BW backward) before start of the algorithms

and for TSM implemented inside the body of the algorithms (AXX). A value XX correspond to number

of scheduling steps after which instance is reversed. Columns F+BW and ALL include the best results

for the original problem + for problem obtained by TSM before the start of the algorithm respectively

the best results from all five methods of TSM usage. Results of TSM for FBS algorithm and IRS

algorithm application are described in next two paragraphs.

Table 9

Influence of time symmetric mapping to results of FBS algorithm.

Feasibility [-]

Package Best F BW A10 A20 A50 F+BW ALL

UBO100 78 23 21 16 18 23 28 37

Difference [%]

Package F BW A10 A20 A50 F+BW ALL

UBO100 0 9,4 7,7 13,0 13,1 11,6 8,6 11,1

Mean CPU Time [s]

Package Best F BW A10 A20 A50
 UBO100 max 100 50,96 54,53 58,77 56,43 53,75
 Each package includes 90 instances. For detail see Table 14.

We can see that influence of TSM to feasibility of FBS algorithm is not visible immediately (see

Table 9). Only one variant of usage of TSM (A50) found the same number of feasible schedules as the

scheduling without TSM. But when we observe the results in detail in Table 13, we can see that each

variant finds out feasible solutions for different instance. Thus when we count these different results

(see summarize columns F+BW and ALL), we get 5 respectively 14 new feasible solutions thanks to

the TSM. Difference and other is bigger for TSM implemented inside FBS algorithm than for

basic variants of experiments. The FBS algorithm was tested on instances with 100 task only.

The reason were the bad results of FBS algorithm (too small number of feasible solutions and relatively

big).

The influence of TSM to results of IRS algorithm is presented in Table 10. We can see similar effect

of TSM on results as in FBS algorithm. Number of feasible solutions is bigger and increases for

TSM used inside the algorithm. But IRS algorithm finds much more feasible results, results with smaller

 and with smaller runtime of algorithm than FBS algorithm. Moreover, IRS algorithm found 10

better schedules than best results from package UBO500, see Table 15. From tests of both algorithms

51

follows that TSM has no influence on runtime of the algorithms. The runtime is similar even if the TSM

is implemented inside the algorithms.

These tests show that TSM is simple method how we can get more feasible solutions with smaller

objective function with the same (or a little modified) algorithm. If we want use this method

in practice, we must repeatedly run the algorithm for different set of TSM (in the same way as in the

tests above). The total runtime of the algorithm would be bigger of course. But if we would use,

for example, a computer with more processors, we would get results in the same time.

Table 10

Influence of time symmetric mapping to results of IRS algorithm.

Feasibility [-]

Package Best F BW A16 A32 A64 F+BW ALL

UBO100 78 62 71 72 70 69 73 75

UBO500 79 59 61 57 60 60 63 64

Difference [%]

Package F BW A16 A32 A64 F+BW ALL

UBO100 0 3,3 5,3 7,4 6,9 6,2 3,7 4,1

UBO500 0 1,2 1,0 2,3 2,8 2,3 1,3 1,6

Mean CPU Time [s]

Package F BW A16 A32 A64
 UBO100 max 100 3,44 3,76 2,39 2,57 2,81
 UBO500 max 500 60,1039 68,3965 72,76 67,78 65,23
 Each package includes 90 instances. For detail see Table 13 and Table 15.

52

7. Conclusions

Two scheduling algorithms were implemented in this work. These algorithms are capable to solve

general and real scheduling instances for problem . The scheduling algorithms

are very time consuming and therefore implementation of these algorithms was concentrated

on the code efficiency.

Iterative resources scheduling algorithm (IRS) reaches very good results on all tested types of

instances. This algorithm is able to find very good results in short time on general and real scheduling

problems. IRS algorithm is able to schedule large instances. Instances with 500 tasks are tested in this

work, instances with 1000 was tested in Hanzálek and Šůcha 2009. IRS algorithm reaches comparable

results (in some cases even better) as the best results of algorithms, which were tested on the

standard benchmarks for problem (ProGenMax instances). This algorithm will be

presented on multidisciplinary international scheduling conference (MISTA 2009).

Two scheduling algorithms based on different principles were chosen to benchmark IRS algorithm.

After studying these algorithms, it was decided that filtered beam search algorithm (Schwindt and

Trautmann 2003) will be implemented. This algorithm was created for real scheduling problem, rolling

ingots production. FBS algorithm did not reach very good results on the general instances. But this

algorithm was partially comparable for scheduling of real scheduling problem, e.g. lacquer production.

Filtered beam search method is based on the depth-first search. The tree of solution is growing rapidly

with number of resources conflicts and resources conflicts is growing rapidly with number of tasks

in instance. For that reason runtime of FBS algorithm is too large and results are worse.

On the basis of skills with implementation of these algorithms was created a set of general

recommendations how to implement efficient scheduling algorithms. These recommendations were

presented on real examples.

Moreover, IRS algorithm was modified to minimize another objective function, i.e. total weighted

tardiness. But this adaptation was stopped in the process of evolution, because IRS algorithm is not

very suitable for minimization of total weighted tardiness.

Further, influence of time symmetric mapping (TSM) to results was investigated in this work. TSM

was tested outside and inside the body of both algorithms. This method was showed to be very useful.

We can obtain new feasible solutions or solutions with smaller objective function thanks to this

method. Moreover, TSM is relatively simple method and for its usage it is not needed editing

algorithms or only very little.

53

8. References

Bartusch, M.; Mohring, R. H.; and Radermacher, F. J. (1988), Scheduling project networks with

resource constraints and time windows. Annals of OR 16:201–240.

Behrmann G., Brinksma Ed, Hendriks M., Mader A. (2005). Production scheduling by reachability

analysis – a case study. Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), page

140.1. IEEE Computer Society Press, 2005.

Bierwirth C. (1995), A generalized permutation approach to jobshop scheduling with genetic

algorithms. OR Spektrum 1995; 17:87–92.

Blazewicz J., Ecker K. H., Pesh E., Schmidt G., Weglarz J. (2001), Scheduling Computer and

Manufacturing Processes. Second edition, Springer.

De Bontridder, K. M. J. (2005). Minimizing total weighted tardiness in a generalized job shop. Journal of

Scheduling 8: 479–496, 2005

Brucker P., Knust S. (2005). Complex scheduling, Springer. ISBN: 13978-3-540-29545-7

Brucker P., Hilbig T., Hurink J. (1999). A branch and bound algorithm for a single-machine scheduling

problem with positive and negative time-lags. Discrete Applied Mathematics, 94(1-3):77-99, May

1999.

Brucker P., Kampmeyer T. (2008). Cyclic job shop scheduling problems with blocking. Annals of

Operations Research, 159(1):161-181, 2008.

Carroll, D. C., (2005), Heuristic Sequencing of Jobs with Single and Multiple Components, Ph.D. Thesis,

Sloan School of Management, MIT

Caumond A, Lacomme P, Tchernev N. (2005), Feasible schedules generation with an extension of the

Giffler and Thomson algorithm for the job-shop with timelags. In: International conference on

industrial engineering and system management, Marrakech-Morocco, 2005.

Caumond A., Lacomme P., Tchernev N. (2007), A memetic algorithm for the job-shop with time-lags,

Computers & Operations Research 35 (2008), 2331-2356.

Cesta A., Oddi A., Smith S. F. (2002). A constraint-based method for project scheduling with time

windows. Journal of Heuristics, 8(1):109-136, 2002.

54

Cicirello V. A., S. F. Smith (2004), Heuristic Selection for Stochastic Search Optimization: Modeling

Solution Quality by Extreme Value Theory. Springer-Verlag Berlin Heidelberg, M. Wallace (Ed.): CP

2004, LNCS 3258, pp. 197–211.

Colak, A. B., Keha, A. B. (2007). Interval-indexed formulation based heuristic for single machine total

weighted tardiness problem. Computers & Operations Research, August2008, Author’s Accepted

Manuscript.

Frank B., Neumann K., Schwindt Ch. 2001. Truncated branch-and-bound, schedule-construction, and

schedule-improvement procedures for resource-constrained project scheduling. OR Spektrum,

23(3):297-324, August 2001.

Gadkari, A., Pfund, M. E., Fowler, J. W., & Chen, Y. (2007). Scheduling jobs on parallel machines with

setup times and ready times, Computers & Industrial Engineering 54 (2008) 764–782

Hanzálek Z., Šůcha P. (2009). Time symmetry of Project Scheduling with with Time Windows and Take-

given Resources. Multidisciplinary International Scheduling Conference, Dublin, 2009.

Laborie P. (2003). Algorithms for propagating resource constraints in ai planning and scheduling:

existing approaches and new results. Artif. Intell., 143(2):151-188, 2003.

Lee, Y.H., Bhaskaran, K. and Pinedo, M. (1997). A Heuristic to Minimize the Total Weighted Tardiness

with Sequence Dependent Setups. IIE Transactions, Volume 29, Issue 1 January 1997 , pages 45 -

52.

Logendran, R., McDonell, B., Smucker, B. (2006). Scheduling unrelated parallel machines with

sequence-dependent setups. Computers & Operations Research 34 (2007) 3420-3438.

Mascis A., Pacciarelli D. (2002). Job-shop scheduling with blocking and no-wait constraints. European

Journal of Operational Research, 143(3):498-517, 2002.

Monch, L., Balasubramanian, H., Fowler, J. W., Pfund, M. E. (2004). Heuristic scheduling of jobs on

parallel baatch machina with incompatible job families and unequal ready times. Computers &

Operations Research 34 (2005) 2731-2750.

Neumann, K., Schwindt, C., Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce

Resources. Springer, Berlin, ISBN 3540401253.

Park, Y., Kim, S., Lee, Y. H. (2000). Scheduling jobs on parallel machines applying neuralnetwork and

heuristic rules. Computers & Industrial Engineering 38 (2000) 189-202.

Pfund, M. E., Balasubramanian, H. J., Fowler, W., Mason, S. J., Rose, O. (2007). A multi-criteria

approach for scheduling semiconductor wafer fabrication facilities. Published online: 27

November 2007, Springer Science+Business Media, LLC 2007.

55

Rachamadugu, R. V., Morton, T. E. (1981). Myopic Heuristics for the Single Machine Weighted

Tardiness Problem.Graduate School of Industrial Administration, Carnegie-Mellon University,

Working Paper #28-81-82.

Rau, B. R. (2000). Iterative modulo scheduling. PROGRES 2000 Workshop on Embedded Systems,

Utrecht, The Netherlands, 2000.

Schwindt, C. and Trautmann, N. (2003), Scheduling the production of rolling ingots: industrial context,

model, and solution method. International Transactions in Operational Research, res. 10 (2003)

547-563.

Smith, T. B., Pyle, J. M. (2004), An Effective Algorithm For Project Scheduling With Arbitrary Temporal

Constraints. In: Proceedings of the 19th National Conference on Artificial Intelligence, 2004.

Terada J., Vo H., Joslin D., Combining genetic algorithms with squeaky wheel optimization.

In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation,

pages 1329-1336, New York, NY, USA, 2006.

Valente, J., Alves, R. (2008), Beam search algorithms for the single machine total weighted tardiness

scheduling problem with sequence-dependent setups. Computer & Operations Research 35 (2008)

2388-2405.

Vepsalainen, A., Morton, T. (1987). Priority rules for job shops with weighted tardiness costs.

Management science, Vol. 33. No. 8. August 1987

56

9. List of the Figures

Fig. 1. Properties of task .. 13

Fig. 2. Example of a positive time-lag and a negative time-lag .. 14

Fig. 3. Illustration of the time symmetric mapping for properties of tasks and for take-give resources. 17

Fig. 4. The non-oriented disjunctive graph for instance job-shop above. .. 18

Fig. 6. The Gantt’s diagram for Fig. 5. The oriented disjunctive graph (one solution) for instance job-

shop above.. 19

Fig. 5. The oriented disjunctive graph (one solution) for instance job-shop above. The bolt text

represents starting times of tasks. ... 19

Fig. 7. Rolling ingots product flow. ... 23

Fig. 8. Operations of job .. 24

Fig. 9. Resolving capacity and allocation conflicts. ... 24

Fig. 10. Resolving changeover conflicts. ... 25

Fig. 11. Resolving batching conflicts. .. 25

Fig. 12. The block scheme of alternative algorithm. ... 30

Fig. 13. Propagation of due date and weight . .. 32

Fig. 15. Runtime comparison of IRS algorithm which is implemented in different programming

languages. ... 37

Fig. 14. Time comparison of ILP solvers from page: http://scip.zib.de/... 38

Fig. 16. Time comparison of algorithm with wrong allocating of variable (imss_xxxxx_0) and algorithm

where were dressed using of variables (imss_xxxxx_1). ... 39

Fig. 17. A matrix and corresponding sparse matrix. .. 39

Fig. 18. Table of dedicated processors and matrix which shows where tasks have the same processors.

 ... 40

Fig. 19. Manufacturing process of lacquer production. .. 44

Fig. 20. Influence of Budget Ratio on the runtime of algorithm and number of feasible schedules. 45

Fig. 21. The time comparison of algorithm IRS with binary search of and algorithm IRS with

linear search of . .. 46

file:///F:\Prace\diplomka\diplomka\diplomka13.docx%23_Toc229997433
file:///F:\Prace\diplomka\diplomka\diplomka13.docx%23_Toc229997434
file:///F:\Prace\diplomka\diplomka\diplomka13.docx%23_Toc229997436
file:///F:\Prace\diplomka\diplomka\diplomka13.docx%23_Toc229997438
file:///F:\Prace\diplomka\diplomka\diplomka13.docx%23_Toc229997438
file:///F:\Prace\diplomka\diplomka\diplomka13.docx%23_Toc229997444

57

10. Appendix

Table 11

Data to Fig. 14.

 Mean runtime of algorithm IRS [s]

 tasks [-] Matlab C++ C#

10 0,23 0,01 0,01

50 7,49 0,18 0,08

100 46,62 1,45 0,98

150 --- 4,76 3,69

250 --- 22,85 22,97

100 instances were generated for each number

of task and values are mean from all values.

Table 12

Data to Fig. 16.

 tasks [-]
Runtime of algorithm

imss_xxxxx_1 [s]

Runtime of algorithm

imss_xxxxx_0 [s]

100 0,03 0,23

200 0,20 2,64

300 0,60 11,46

400 1,23 28,86

100 instances were generated for each number of tasks.

Values are mean from all values.

58

Table 13

Time Symmetric Mapping inside of FBS algorithm

Instance Algorithm
 [-]

Instance Algorithm
 [-]

F BW A10 A20 A50 F BW A10 A20 A50

1 BB inf inf inf inf inf inf 46 FB 283 inf inf inf inf inf

2 BB inf inf inf inf inf inf 47 FB 302 inf inf 401 inf inf

3 BB inf inf inf inf inf inf 48 AM 433 inf inf inf inf inf

4 FB 429 inf inf inf inf inf 49 FB 203 inf inf 274 inf inf

5 BB inf inf inf inf inf inf 50 FB 269 inf inf inf inf inf

6 BB inf inf inf inf inf inf 51 BB 272 inf 321 inf inf inf

7 GA 447 inf inf inf inf inf 52 BB 304 326 323 330 339 353

8 FB 435 inf inf inf inf inf 53 BB 177 210 182 inf inf inf

9 BB inf inf inf inf inf inf 54 BB 352 366 366 inf inf 374

10 GA 522 inf inf inf inf inf 55 AM 247 261 269 inf 266 308

11 GA 263 inf inf inf inf inf 56 AM 288 inf 302 inf 305 329

12 FB 224 inf inf inf inf inf 57 BB 356 inf 411 inf 415 422

13 GA 180 inf inf inf inf inf 58 BB 317 330 317 319 330 319

14 FB 206 inf inf inf inf inf 59 AM 256 inf inf inf inf inf

15 BB 275 inf inf inf inf inf 60 FB 188 225 237 inf 224 253

16 FB 144 inf inf inf inf inf 61 BB 680 inf inf inf inf inf

17 BB 287 inf inf inf inf inf 62 BB 540 inf inf inf inf inf

18 BB 306 inf inf inf inf 346 63 BB inf inf inf inf inf inf

19 FB 200 inf inf inf inf inf 64 TS 538 inf inf inf inf inf

20 FB 209 inf inf inf inf inf 65 GA 451 inf inf 585 inf inf

21 AM 262 317 322 339 332 337 66 BB inf inf inf inf inf inf

22 BB 492 522 523 538 538 536 67 TS 459 inf inf inf inf inf

23 BB 269 inf inf inf 311 inf 68 BB 540 inf inf 631 662 inf

24 AM 192 inf 221 inf inf inf 69 BB inf inf inf inf inf inf

25 BB 194 226 inf 240 inf 229 70 GA 422 inf inf inf inf inf

26 BB 178 204 204 inf inf 197 71 BB 514 inf inf inf inf inf

27 BB 225 inf inf inf inf inf 72 BB inf inf inf inf inf inf

28 BB 240 269 261 inf inf 261 73 BB 414 inf 466 inf inf inf

29 BB 284 306 284 inf inf 293 74 BB 255 inf inf inf inf inf

30 BB 196 244 inf inf 223 inf 75 BB 534 inf inf inf inf inf

31 BB inf inf inf inf inf inf 76 AM 411 inf 455 451 inf inf

32 GA 485 inf inf inf inf inf 77 TS 351 inf inf inf inf inf

33 GA 435 inf inf inf inf inf 78 BB 412 inf inf inf inf inf

34 GA 488 inf inf inf inf inf 79 TS 483 inf inf inf inf inf

35 BB inf inf inf inf inf inf 80 BB 503 inf inf inf inf 552

36 BB 457 inf inf inf inf inf 81 BB 453 480 inf 491 542 473

37 TS 453 inf inf inf inf inf 82 BB 571 inf 596 591 593 590

38 GA 483 inf inf inf inf inf 83 FB 243 262 283 inf 303 272

39 GA 462 605 inf 631 664 625 84 BB 237 inf inf inf 291 282

40 AM 504 inf inf inf inf inf 85 BB 497 502 503 520 526 512

41 PR 363 421 inf inf inf inf 86 BB 531 inf inf 577 inf inf

42 FB 359 inf inf inf inf inf 87 AM 368 inf inf inf inf inf

43 AM 359 inf inf inf inf inf 88 BB 402 428 457 inf inf 468

44 BB 491 inf inf inf inf inf 89 BB 374 409 385 inf inf 437

45 BB 407 inf inf inf inf inf 90 BB 476 480 479 517 500 inf

Instances are from package UBO100. Time limit of runtime of FBS algorithm was set on 60 second.

59

Table 14

Time Symmetric Mapping inside of IRS algorithm

Instance Algorithm
 [-]

Instance Algorithm
 [-]

F BW A16 A32 A64 F BW A16 A32 A64

01 BB inf inf inf inf inf inf 46 FB 283 321 333 333 340 346

02 BB inf inf inf inf inf inf 47 FB 302 313 312 347 361 333

03 BB inf inf inf inf inf inf 48 AM 433 447 450 451 442 450

04 FB 429 452 486 497 481 535 49 FB 203 207 203 207 203 215

05 BB inf inf inf inf inf inf 50 FB 269 304 295 inf 308 303

06 BB inf inf inf inf inf inf 51 BB 272 inf 286 305 306 312

07 GA 447 inf 471 531 482 482 52 BB 304 304 304 304 304 304

08 FB 435 452 453 471 456 482 53 BB 177 177 177 177 177 177

09 BB inf inf inf inf inf inf 54 BB 352 352 352 352 352 352

10 GA 522 inf inf inf inf inf 55 AM 247 247 247 247 247 247

11 GA 263 281 352 272 284 293 56 AM 288 294 289 294 291 291

12 FB 224 249 235 284 inf 258 57 BB 356 374 364 374 374 374

13 GA 180 189 inf 187 197 201 58 BB 317 317 317 317 317 317

14 FB 206 209 229 221 229 230 59 AM 256 256 256 257 256 256

15 BB 275 275 275 275 275 278 60 FB 188 190 188 189 188 188

16 FB 144 159 165 190 172 166 61 BB 680 inf 705 728 726 727

17 BB 287 287 287 287 287 287 62 BB 540 inf 588 606 inf inf

18 BB 306 307 306 306 306 306 63 BB inf inf inf inf inf inf

19 FB 200 inf 234 302 284 292 64 TS 538 578 584 590 586 594

20 FB 209 inf 245 243 257 226 65 GA 451 496 501 495 503 504

21 AM 262 262 262 262 262 262 66 BB inf inf inf inf inf inf

22 BB 492 500 508 508 510 504 67 TS 459 inf inf inf inf inf

23 BB 269 269 269 269 269 272 68 BB 540 569 579 558 590 562

24 AM 192 192 197 192 192 204 69 BB inf inf inf inf inf inf

25 BB 194 194 194 194 194 195 70 GA 422 438 478 457 462 479

26 BB 178 178 178 178 178 178 71 BB 514 529 547 537 542 542

27 BB 225 231 244 254 288 254 72 BB inf inf inf inf inf inf

28 BB 240 240 240 240 240 240 73 BB 414 427 477 448 inf inf

29 BB 284 284 284 284 284 284 74 BB 255 inf 306 296 300 295

30 BB 196 196 196 196 196 196 75 BB 534 546 536 538 536 538

31 BB inf inf inf inf inf inf 76 AM 411 419 426 425 430 432

32 GA 485 inf inf 572 597 inf 77 TS 351 384 371 394 391 393

33 GA 435 inf 494 561 579 inf 78 BB 412 424 453 435 440 437

34 GA 488 inf inf 563 inf inf 79 TS 483 485 515 507 510 508

35 BB inf inf inf inf inf inf 80 BB 503 529 523 539 538 520

36 BB 457 inf inf 546 557 584 81 BB 453 455 458 466 470 474

37 TS 453 500 497 510 509 501 82 BB 571 582 569 590 579 579

38 GA 483 553 540 698 535 inf 83 FB 243 244 243 247 243 243

39 GA 462 487 512 531 555 508 84 BB 237 237 237 237 237 237

40 AM 504 inf inf inf inf inf 85 BB 497 501 501 502 500 501

41 PR 363 376 384 382 388 370 86 BB 531 539 533 532 532 531

42 FB 359 inf 376 399 404 368 87 AM 368 372 390 392 393 395

43 AM 359 372 380 inf 396 409 88 BB 402 408 402 409 407 413

44 BB 491 inf 548 inf inf 551 89 BB 374 374 374 374 374 374

45 BB 407 439 435 415 429 431 90 BB 476 477 477 477 477 477

Instances are from package UBO100.

60

Table 15

Time Symmetric Mapping inside of IRS algorithm

Instance Algorithm
 [-]

Instance
Algorith

m

 [-]

F BW A16 A32 A64 F BW A16 A32 A64

1 BB inf inf inf inf inf inf 46 AM 821 821 821 821 821 821

2 GA 2353 inf inf inf inf inf 47 GA 1512 1423 1412 1413 1412 1425

3 GA 2045 inf inf inf inf inf 48 GA 1181 inf inf inf 1508 inf

4 TS 2774 inf inf inf inf inf 49 GA 1209 inf 1383 inf inf inf

5 BB inf inf inf inf inf inf 50 BB 1326 1326 1326 1326 1326 1326

6 GA 2558 inf inf inf inf inf 51 AM 1223 1223 1223 1223 1223 1223

7 BB inf inf inf inf inf inf 52 BB 1109 1109 1109 1109 1109 1109

8 GA 2212 inf inf inf inf inf 53 BB 1029 1029 1029 1029 1029 1029

9 BB inf inf inf inf inf inf 54 BB 825 825 825 825 825 825

10 GA 2366 inf inf inf inf inf 55 AM 1153 1153 1153 1153 1153 1153

11 AM 589 589 589 589 589 589 56 BB 976 976 976 976 976 976

12 BB 1101 1101 1101 1400 1101 1101 57 BB 1238 1238 1238 1238 1238 1238

13 AM 1424 1430 1424 1430 1430 1427 58 BB 1314 1314 1314 1314 1314 1314

14 GA 1130 inf inf inf inf inf 59 BB 1060 1060 1060 1060 1060 1060

15 GA 683 669 669 669 669 669 60 BB 1067 1067 1067 1104 1102 1072

16 GA 982 931 931 931 931 931 61 GA 2175 2327 2382 2447 2452 2493

17 PR 1122 1122 1128 1128 1128 1128 62 GA 2962 3272 inf 3390 3451 3335

18 TS 978 965 965 998 1107 969 63 BB inf inf inf inf inf inf

19 GA 1084 inf inf inf inf inf 64 GA 2160 2276 2311 2445 2416 2448

20 GA 1027 inf 1058 inf inf 1174 65 BB inf inf inf inf inf inf

21 BB 717 717 717 717 717 717 66 GA 3167 inf inf inf inf inf

22 BB 983 983 983 983 983 983 67 GA 2905 inf inf inf inf inf

23 AM 848 848 848 848 848 848 68 GA 2337 2565 inf inf inf inf

24 BB 1107 1107 1107 1107 1107 1107 69 GA 2459 2487 2540 2593 2585 2599

25 BB 1027 1027 1027 1027 1027 1027 70 GA 2123 inf inf inf inf inf

26 BB 804 804 804 804 804 804 71 GA 1343 1289 1278 1299 1302 1313

27 BB 749 749 749 749 749 749 72 FB 1437 1431 1429 1431 1433 1433

28 BB 913 913 913 913 913 913 73 GA 1925 inf 1970 inf 2054 2053

29 BB 893 893 893 893 893 893 74 GA 2459 inf 2500 inf 2489 2501

30 BB 792 792 792 792 792 792 75 BB 976 976 977 976 976 976

31 BB inf inf inf inf inf inf 76 GA 2077 2100 2100 2099 2099 2108

32 BB inf inf inf inf inf inf 77 FB 1047 1043 1045 1049 1049 1049

33 GA 2343 inf inf inf inf inf 78 FB 2011 2048 2088 inf inf 2098

34 BB inf inf inf inf inf inf 79 TS 1727 1752 1751 1748 1754 1749

35 BB inf inf inf inf inf inf 80 GA 1462 1539 1464 1539 1559 1593

36 GA 2211 2316 2355 2449 2447 2447 81 BB 1164 1164 1164 1164 1164 1164

37 GA 2318 inf inf inf inf inf 82 BB 1238 1238 1238 1238 1238 1238

38 TS 2575 inf inf inf inf inf 83 AM 1849 1873 1880 1877 1877 1876

39 BB inf inf inf inf inf inf 84 BB 936 936 937 936 938 936

40 GA 2628 inf inf inf inf inf 85 BB 1418 1418 1418 1418 1418 1418

41 TS 1243 1218 1214 1231 1233 1227 86 BB 1420 1420 1420 1420 1420 1420

42 FB 1038 1069 1051 1064 1268 1051 87 AM 1276 1274 1273 1276 1274 inf

43 TS 1354 1332 1333 1338 1366 1343 88 BB 1300 1300 1300 1300 1300 1300

44 AM 801 801 801 801 801 801 89 BB 1419 1419 1419 1419 1419 1419

45 BB 1088 1088 1088 1088 1088 1088 90 BB 1062 1062 1062 1062 1062 1062

Instances are from package UBO500.

