Bachelor Thesis

Czech Technical University in Prague

Faculty of Electrical Engineering Department of Cybernetics

Spanning Tree Coverage Algorithm on Large Spaces for Multi-UAV Systems

Jan Chleboun

Supervisor: Tiago Pereira do Nascimento Field of study: Cybernetics and Robotics May 2022

Acknowledgements

I would like to thank my supervisor, Prof. Tiago Pereira do Nascimento, Ph.D., for regular consultations and all the great advice. I would also like to express my gratitude for help with hardware experiments to Ing. Daniel Heřt, Ing. Jiří Horyna, M.Sc. Parakh Manoj Gupta, and M.Sc. Akash Chaudhary. My thanks also go to the whole Multi-Robot Systems Group for making the thesis possible and for providing me the hardware necessary to realize the real world experiments. I am also very grateful for the unlimited support and advice from my friends (especially Daniel Kubišta and Jiří Jirák) and my family.

Declaration

I declare that the presented work was developed independently and that I have listed all sources of information used within it in accordance with the methodical instructions for observing the ethical principles in the preparation of university theses.

Prague, 16. May 2022

Abstract

Abstrakt

In this work, the Improved Artificially Weighted Spanning Tree Coverage (IAW-STC) and the Cycle Growing With Event Partitioning (CGWEP) algorithms are proposed. These novel approaches are suitable for the exploration of environments with cluttered regions, where unexpected obstacles can appear. In order to solve these problems, a smoothing algorithm together with an online replanner to avoid unexpected detected obstacles is proposed. Experiments are carried out in simulation and on real drones. The algorithms are then compared and conclusions are deduced.

Keywords: exploration, spanning tree, UAV, trajectory planning, trajectory smoothing

Supervisor: Tiago Pereira do Nascimento

V této práci jsou navrženy algoritmy Improved Artificially Weighted Spanning Tree Coverage (IAWSTC) a Cycle Growing With Event Partitioning (CGWEP). Tyto nové přístupy jsou vhodné pro prohledávání prostorů se známými překážkami, kde se mohou objevit také nečekané překážky. Pro vyřešení tohoto problému je také navržen algoritmus pro vyhlazování trajektorií a algoritmus přeplánování při detekci neočekávaných překážek. Byly provedeny simulační experimenty spolu s experimenty na opravdových dronech. Algoritmy jsou porovnány a zhodnoceny.

Klíčová slova: průzkum, dron, plánování trajektorií, vyhlazování trajektorií

Překlad názvu: Algoritmus pro průzkum velkých prostorů pomocí skupiny kooperujících dronů

Contents

1 Introduction	1
1.1 Objective	2
1.2 Contributions	3
2 Related Works	5
3 Problem Formulation	7
3.1 Definitions	7
3.2 Environment Representation	10
4 Exploration	13
4.1 Environment Partitioning	13
4.1.1 Proposed Approach	14
4.2 Trajectory Generation	17
4.2.1 Spanning Tree Coverage Algorithm	18
4.2.2 Cycle Growing Algorithm	20
4.3 Resulting Path Planning Algorithms	22
4.4 Time Complexity	24

5 Trajectory Smoothing	27
5.1 Trajectory Smoothing Using Leas Squares Solution	t 28
5.1.1 The Mathematical Principle .	28
5.1.2 Performance	32
6 Online Obstacle Detection And Avoidance	35
6.1 Dynamic Obstacles	36
6.2 Static Obstacles not Known Beforehand	36
6.3 Replanning	36
7 Implementation	39
7.1 Used Programming Languages and Environments	d 39
7.2 Numerical Values of Constants and Parameters	d 40
8 Quantitative Tests	41
8.1 Environment Partitioning Improvement	41
8.2 Path Planning Algorithm Comparison	42
8.3 Trajectory Smoothing Evaluation	43

9 Simulation Experiments	45
9.1 Environment	45
9.2 Results	46
9.2.1 Exploration Experiment	46
9.2.2 Replanning	47
10 Hardware Experiments	49
10.1 Hardware description	49
10.2 Results	50
11 Conclusions	53
11.1 Final Conclusion	53
11.2 Future Work Proposition	54
A Acronyms	55
B Bibliography	57
C Project Specification	61

vi

Figures	5.2 Distance $d_{mid,i}$ for various turns 30
1.1 Unmanned Aerial Vehicles (UAVs) used by the MRS group 1 1	5.3 The relation of distance $d_{mid,i}$ and angle between $v_i, v_{i+1} \dots \dots 31$
4.1 The original and improved environment partitioning - in (a) and (b) both versions perform almost identically on the same world, however, in (d) the improved version produces subregions with no overlaps as opposed to the original version (c)	 5.4 The meaning of the μ parameter - smoothed trajectories differ less from the original trajectory for higher values of μ
on the same world	6.1 Static and dynamic obstacles 35
4.2 The merging 194.3 World which cannot be	8.1 The dependency of redundancy ratio and equality ratio on number of drones and world size 42
preprocessed with <i>2l-grid</i> <i>approximation</i> , because it would result in a world full of obstacles 20 4.4 The results of the Spanning Tree	8.2 The dependency of length increase ratio and turn intensity on the p and μ parameters
Coverage algorithm	
 4.5 The phases of the Cycle Growing algorithm	 9.1 The simulation environment 45 9.2 Improved Artificially Weighted Spanning Tree Coverage (IAWSTC) algorithm in simulation 46
Artificially weighted Spanning TreeCoverage (IAWSTC) and CycleGrowing With EnvironmentPartitioning (CGWEP) algorithmsfor three drones.26	9.3 Cycle Growing With Environment Partitioning (CGWEP) Algorithm in simulation
5.1 The meaning of the p parameter - with higher values of p , more points	9.4 Replanning experiment ² before unexpected obstacle detection 48
are inserted into the trajectory, which leads to smoother turns	9.5 Replanning experiment after unexpected obstacle detection 48

vii

10.1 One of the Unmanned Aerial Vehicles (UAVs) used in the	
experiment 49)
10.2 The aerial view of the	
environment 50)
10.3 Improved Artificially Weighted Spanning Tree Coverage (IAWSTC)	
algorithm on real Unmanned Aerial	
Vehicles (UAVs) ³ 51	_
10.4 Cycle Growing With Environment Partitioning (CGWEP) Algorithm on	
real Unmanned Aerial Vehicles	1
(OAVS)	L

Tables

3.1 Left hand rule action priority table	e 9
7.1 Values of used constants and parameters	40
8.1 The quantitative tests of the environment partitioning algorithm	42
8.2 The quantitative tests of the path planning algorithms	43
8.3 The quantitative tests of the trajectory smoothing algorithm	44

Chapter 1

Introduction

In recent years Unmanned Aerial Vehicles (UAVs) also known as *drones* are gaining popularity due to their ability to perform various complex tasks. Such tasks can be, for example, transport of small objects [10], historical building documentation [24], surveillance [9], asset inspection [7], and so on. A typical UAV is a small lightweight helicopter with four rotors, such as the one in Figure 1.1. The biggest strength of an UAV is its agility, size, and price, whereas the biggest weakness is short battery life (approximately 20 minutes). In most applications, groups consisting of multiple UAVs are used, which is possible due to the affordability of such robots.

Figure 1.1: UAVs used by the MRS group ¹

For every application where the UAVs move, a path planning algorithm is needed that generates the individual trajectories. Such an algorithm is

¹Source: http://mrs.felk.cvut.cz/projects/gacr-swarm-ii

1. Introduction

the main focus of this work. This work focuses on a decentralised version of the algorithm, which ensures equal distribution of computational load and no dependency on a central unit. The algorithm consists of two parts: first, the explored environment is split into subregions corresponding to individual drones, and second, a trajectory for each drone is created such that its corresponding subregion is covered. For the environment partitioning, the approach from [8] was used as a starting point and modified for better performance.

The trajectories can be generated in 3D space or in 2D space, meaning that the UAV's height remains fixed. This thesis focusses on the latter approach, as it can be advantageous in large areas such as meadows or deserts because neglecting the third dimension significantly saves computational resources. This approach is suitable for tasks such as object localisation or search and rescue missions, where the terrain is scanned from a fixed height. A widely used path planning algorithm is the Spanning Tree Coverage (STC) algorithm [12], [8]. This popular algorithm works really well when certain conditions are met, however, there are some disadvantages of this approach which are overlooked quite often. In this work, the algorithm was implemented, an alternative approach was designed, and the two algorithms were compared.

When initial suitable trajectories are found, it is common that they contain rough turns, which makes it hard for the UAV to track the trajectory accurately. For this reason, a smoothing algorithm is used. There are plenty trajectory smoothing algorithms already, but in this work a new method is proposed based on the least squares solution of a system of linear equations, whose biggest advantage is its simplicity.

1.1 Objective

The main objective of this thesis is to develop an algorithm for the exploration of large environments with known obstacle maps. This thesis aims to:

- 1. Implement the Artificially Weighted Spanning Tree Coverage (AWSTC) algorithm from [8]
- 2. Propose an improved version of the AWSTC algorithm with less redundancy of coverage
- 3. Design an alternative algorithm for environment exploration and compare it to the AWSTC algorithm

1.2. Contributions

- 4. Propose a new trajectory smoothing method
- 5. Implement real time detection of unexpected obstacles and replanning
- 6. Perform simulation and real world experiments

1.2 Contributions

The contributions of this thesis are:

- The Improved Artificially Weighted Spanning Tree Coverage (IAWSTC) algorithm, which is the improved version of the AWSTC algorithm from [8], with less redundancy and with the ability to handle unexpected obstacles
- 2. The Cycle Growing With Environment Partitioning (CGWEP) algorithm, which can be used as an alternative to the IAWSTC or AWSTC algorithms
- 3. The Trajectory Smoothing Using Least Squares Solution (TSULSS) approach, which can be used for fast smoothing of long trajectories

Chapter 2

Related Works

There are many works that focus on area coverage using multiple UAVs. In [8] the environment is divided into cells as follows:

$$C_u = \{c_i \mid c_i \in C, c_i \cap A = \emptyset, c_i \cup O = \emptyset\},\$$

where A is the area with obstacles O sampled with equal cells C. The coverage problem is then treated as an optimisation problem

$$\min \max \|P_i\|,$$

s.t. $\bigcup_{i=1}^{N} P_i = C_u,$

where P_i is the spanning tree constructed for the ith agent and N is the number of agents. The AWSTC algorithm is then proposed to find a suitable solution. All cells are iteratively assigned score by each agent, and the agents take turns and pick cells. After this, the individual spanning trees are reorganized and converted into trajectories, which are then smoothed using Bézier curves. In this thesis, their work was implemented, modified in order to reduce the redundancy of the resulting trajectories, and an alternative algorithm was proposed.

Another approach is presented in [23], where the task is solved using *game theory* optimizing energetic efficiency of communication between agents. The problem is decomposed into two subproblems: coverage maximization and power control. These subproblems are then solved using a spatial adaptive play-based algorithm. Unlike the distributed algorithms considered in this thesis, the coverage algorithm uses a command centre, which means that it is centralised.

2. Related Works

In [15], the environment is represented as a polygon, then decomposed into multiple subpolygons where a simple trajectory with a minimal number of turns can be easily generated and, finally, the individual trajectories are connected. Only one UAV is used in [15], but the same approach could be applied for multiple UAVs. In [15], neither static nor dynamic obstacles are considered. Another approach to exploring polygonal environments, which generates very similar trajectories, is the Geometric Vector Algorithm proposed in [16].

A similar approach to the one used in this thesis for constructing spanning trees for the coverage problem can be found in [1], however, there is no further mention of the trajectory generation from the spanning trees found this way.

In [17] two approaches with similar results are proposed - The Coverage with Route Clustering algorithm represents the free area as a graph using *boustrophedon cellular decomposition algorithm* and then formulates the path finding problem as *MinMax k-Chinese postman problem*. The other proposed algorithm, named Coverage with Area Clustering decomposes the problem into coverage problems of multiple similar subareas.

A more practical point of view is adopted in [2], where real-world factors such as maximum flight time, setup time, and battery state of UAVs are taken into account. The coverage problem is solved in two steps. A graph, where the vertices represent geographic coordinates, is constructed in a way that a single UAV would cover the area optimally in terms of cover time. After this a mixed integer linear programming problem is solved.

In [20] the coverage problem is solved to perform post-earthquake mapping. The operation bases are also taken into account, which means that the algorithm must also decide which bases to open and assign each drone an operation base. The problem is described by a minimax objective function.

In [9] the task of finding objects of interest in a specified area is tackled. This surveillance problem is treated as a multivehicle variant of the Dubins travelling salesman problem with neighbours and solved with unsupervised learning. This approach is computationally inexpensive and is further improved by reparameterization with the use of Bézier curves.

Chapter 3

Problem Formulation

The main goal of this chapter is to describe the problem in depth and to lay out the necessary terminology which is needed for accurate descriptions of the algorithms. Please note that some of the definitions arised solely for the purposes of this work and should not be mistaken for official terminology in use.

3.1 Definitions

Definition 3.1. Agent is an instance of a robot (UAV) taking part in the task.

Definition 3.2. Cell is a square cutout of 2D space. It can be divided into four **subcells** with equal dimensions. The **coordinates** of a *cell* are the coordinates of its center. A *cell* is considered **explored** after the *agent* passes through its center or through the centres of all its *subcells*. A *cell* is **unexplored** if it is not *explored*.

Definition 3.3. Region is a continuous (meaning no *cell* is isolated) set of *cells.* Its subsets are **subregions**.

Definition 3.4. Environment is the area where the task is performed. The goal is to explore the environment fully.

Definition 3.5. Environment representation is a *region* which fully describes the *environment*.

Definition 3.6. Obstacle is a representation of an object in physical space that prevents the UAV from entering a certain area. An *agent* can never

3. Problem Formulation

visit a *cell* which contains an *obstacle*. A *cell* with an *obstacle* is considered *explored* at the moment the agent obtains the first information about the *obstacle*.

Definition 3.7. Trajectory is a sequence of points in space. When the drone **tracks** a trajectory, it flies through each point the *trajectory* consists of.

Definition 3.8. Euclidean distance of *cells* C_1, C_2 is a metric defined as:

$$d_{C_1,C_2} = \sqrt{\left(x_{C_1} - x_{C_2}\right)^2 + \left(y_{C_1} - y_{C_2}\right)^2},\tag{3.1}$$

where x_{C_1}, y_{C_1} are the coordinates of the first *cell* and x_{C_2}, y_{C_2} are the coordinates of the second *cell*.

Definition 3.9. Manhattan distance of cells C_1, C_2 is a metric defined as:

$$D_{C_1,C_2} = |x_{C_1} - x_{C_2}| + |y_{C_1} - y_{C_2}|, \qquad (3.2)$$

where x_{C_1}, y_{C_1} are the coordinates of the first *cell* and x_{C_2}, y_{C_2} are the coordinates of the second *cell*.

Definition 3.10. Cells C_1, C_2 are neighbour cells if

$$D_{C_1,C_2} = \mathrm{CS},\tag{3.3}$$

where D_{C_1,C_2} is the Manhattan distance of cells C_1, C_2 and CS is the length of a side of a *cell*.

Definition 3.11. Cells C_1, C_2 are diagonal neigbour cells if

$$d_{C_1,C_2} \le \text{CD},\tag{3.4}$$

where d_{C_1,C_2} is the Euclidean distance of cells C_1, C_2 and CD is the length of a diagonal of a cell. Each neighbour cell is also a diagonal neighbour cell, but the opposite does not apply.

Definition 3.12. Exploration status of a cell is the information whether the *cell* is *explored* or *unexplored* and whether it contains an *obstacle*.

Definition 3.13. Merging is a process in which the *environment representation* is divided into blocks and then each block is replaced by a single cell which shares the *exploration status* with the original block. Each block consists of four cells with the same *exploration status*, where each pair of cells are *neighbour cells*. *Merging* can be performed only on certain *environments*.

Definition 3.14. Surrounding cycle is an oriented graph consisting of *cells* and edges. An edge can connect *cell* C_1 and *cell* C_2 only if C_1 and C_2 are *neighbour cells*. The most important property of the *surrounding cycle* of a region S_i is that no *unexplored* cell $C_j \in S_i$ can be outside of the *surrounding cycle*.

Definition 3.15. Left hand rule is a way of navigation inside an *environment* representation where we consider a virtual agent A_v which is represented by its position in the *environment representation* and by its heading $h_{A_v} \in \{\text{left, right, up, down}\}$. The left hand rule is used when the A_v decides what

• • • • • 3.1. Definitions

action to perform. The priority of actions depends on the current *heading* of A_v . The action with highest priority among all feasible actions is chosen. We can see the action priority table for the *left hand rule* in Table 3.1.

The set hand rate action priority table						
Heading of A	Action with	Action with	Action with	Action with		
$ $ neading of A_v	priority 4	priority 3	priority 2	priority 1		
right	up	right	down	left		
down	right	down	left	up		
left	down	left	up	right		
up	left	up	right	down		

Table 3.1: Left hand rule action priority table

Definition 3.16. Redundancy ratio describes the redundancy of coverage. It is calculated as follows:

$$\zeta_r = \frac{\sum_{i=1}^{N} \operatorname{card} \left(S_i\right)}{\operatorname{card}(E_{free})},\tag{3.5}$$

where N is the number of agents, $\operatorname{card}(S_i)$ is the number of cells in the *i*-th region S_i and $\operatorname{card}(E_{free})$ is the number of cells from the *environment* representation which do not contain an obstacle.

Definition 3.17. Equality ratio describes how much the sizes of subregions corresponding to the individual agents differ. It is calculated as follows:

$$\zeta_e = \frac{\max_{i \in \{1, \dots, N\}} \operatorname{card} (S_i)}{\frac{1}{N} \operatorname{card} (E_{free})},$$
(3.6)

where N is the number of agents, card (S_i) is the number of cells in i-th region S_i and card (E_{free}) is the number of cells from the *environment representation* that do not contain an obstacle.

Definition 3.18. Length ratio describes the redundancy of a trajectory. It is calculated as follows:

$$\zeta_e = \frac{\text{length}(\tau)}{\text{card}(S_i) CS},\tag{3.7}$$

where length (τ) is the length of trajectory τ , CS is the cell size and card (S_i) is the number of cells in i-th region S_i .

Definition 3.19. Curvature ratio describes the curvature of a trajectory. It is calculated as follows:

$$\zeta_c = \frac{\sum_{i=1}^{M-2} \left| \arccos\left(\frac{v_i \cdot v_{i+1}}{|v_i| |v_{i+1}|}\right) \right|}{\operatorname{length}\left(\tau\right)},\tag{3.8}$$

where length (τ) is the length of the trajectory τ , M is the number of points $P_1, \ldots, P_M \in \tau$ and v_i, v_{i+1} are calculated as follows:

$$v_i = P_{i+1} - P_i, (3.9)$$

$$v_{i+1} = P_{i+2} - P_{i+1}. (3.10)$$

To extend this definition for closed trajectories, we append points $P_{M+1} = P_1$ and $P_{M+2} = P_2$ to the end of the trajectory, but we exclude those auxiliary points from the length calculation.

Definition 3.20. Length increase ratio describes how much the length of a trajectory increases due to trajectory smoothing. It is calculated as follows:

$$\zeta_i = \frac{\text{length}(\tau_s)}{\text{length}(\tau)},\tag{3.11}$$

where length (τ) is the length of the original trajectory τ and length (τ_s) is the length of the smoothed trajectory τ_s .

Definition 3.21. Turn intensity describes the smoothness of turns in a trajectory. The greater the turn intensity, the sharper the turns are. It is calculated as follows:

$$\zeta_t = \frac{\sqrt{\sum_{i=1}^{M-2} \left(\arccos\left(\frac{v_i \cdot v_{i+1}}{|v_i| |v_{i+1}|}\right) \right)^2}}{M-2}, \quad (3.12)$$

where M is the number of points $P_1, \ldots, P_M \in \tau$ and v_i, v_{i+1} are calculated as follows:

$$v_i = P_{i+1} - P_i \tag{3.13}$$

$$v_{i+1} = P_{i+2} - P_{i+1} \tag{3.14}$$

To extend this definition for closed trajectories, we append points $P_{M+1} = P_1$ and $P_{M+2} = P_2$ to the end of the trajectory.

3.2 Environment Representation

For the purpose of this work, the *environment representation* from [8] was adopted. The height is fixed, meaning that in 3D the environment is a plane with a constant vertical coordinate. This plane is divided into *cells*.

Path planning in this environment representation consists of two steps.

• Finding regions S_i , where $i \in \{1, 2, ..., N\}$ and N is the number of *agents*, such that

$$\bigcup_{i=1}^{N} S_i = E_{free}$$

where E_{free} is a subset of the *environment representation* consisting of cells $C_j, j \in \{1, 2, ..., M\}$, where M is the number of cells that do not contain an obstacle.

• Generating a *trajectory* for each subregion S_i such that all the *cells* in S_i are *explored* and the last *cell* of the trajectory is equal to the first *cell* of the *trajectory*. The latter condition is suitable for applications such as surveillance, where the *trajectory* is tracked multiple times consecutively.

Chapter 4

Exploration

The main goal of the exploration process is to divide the *environment representation* to *subregions* corresponding to individual *agents* and generate *trajectories* such that each *subregion* is fully covered. Preferably, the differences of lengths of the resulting trajectories should be minimal, which ensures efficient coverage.

4.1 Environment Partitioning

In the environment partitioning part of the AWSTC algorithm from [8] the *agents* take turns, iteratively evaluate all suitable *cells*, and then pick the one with the highest calculated score and mark it as *explored*. This process ends when all *cells* in the area of interest are marked as *explored*. The original evaluation formula (4.1) taken over from [8] consists of three terms $E_j^a, E_{j,k}^b, E_j^c$. Here $E_{i,j}$ is the score of the *j*th cell evaluated by the *i*th robot and N is the number of robots used for the task:

$$E_{i,j} = E_j^a + \sum_{k=1,k\neq i}^N E_{j,k}^b + E_j^c.$$
 (4.1)

The first term E_j^a describes the distance of the evaluated cell from the centre of inertia of the unexplored area. This ensures that cells on the border of the unexplored area have higher scores. It is calculated as follows:

$$E_j^a = \sigma_a \left(|x_i - x_{ce}| + |y_i - y_{ce}| \right), \tag{4.2}$$

where $\sigma_a > 0$ is a constant, x_i, y_i are the coordinates of the evaluated cell and x_{ce}, y_{ce} are the coordinates of the centre of inertia of the environment.

The second term $E_{j,k}^b$ describes the distance of the *j*th cell from the region S_k belonging to the kth agent. This term increases the score of cells that are far away from the other UAVs. It is calculated as follows ¹:

$$E_{j,k}^{b} = \sigma_{b} \min_{[x_{i}, y_{i}] \in S_{k}} \left(|x_{i} - x_{j}| + |y_{i} - y_{j}| \right),$$
(4.3)

where $\sigma_b > 0$ is a constant, x_j, y_j are the coordinates of the evaluated cell and x_i, y_i are the coordinates of the cells belonging to the region S_k belonging to the *k*th agent.

The third term E_j^c describes the exploration status (*explored* / *unexplored*) of the *j*th cell. It decreases the score of already explored cells. It is calculated as follows:

$$E_j^c = \begin{cases} 0 & \text{for unexplored cells} \\ -\mathcal{E}_M & \text{for explored cells,} \end{cases}$$
(4.4)

where $\mathcal{E}_M > 0$ is a large constant.

The Environment partitioning algorithm is described again in Algorithm 1.

4.1.1 Proposed Approach

In order to improve the behaviour of the AWSTC algorithm, the formula (4.1) used for evaluation of the feasible cells was modified to:

$$E_{i,j} = E_j^a + \sum_{k=1,k\neq i}^N E_{j,k}^b + E_{j,m}^c + E_{i,j}^d.$$
(4.5)

¹In [8] this term is defined vaguely using a term $d_{i,k}$ that the authors define as $d_{i,k}$ is the Euclidean distance between the *i*th cell and the *k*th agent', but the formula they use corresponds to the Manhattan distance, and it is also not clear what they meant by 'distance between cell and agent'. Therefore, we assumed it is the Manhattan distance between the evaluated cell and *k*th agent's region and that they accidentally used d^2 instead of *d* in the formulas, but our interpretation might not be what the authors originally meant. However, the behaviour of the algorithm with such corrections matched the behaviour documented in the article much more closely than the other interpretations that we tried.

Algorithm 1 The environment partitioning algorithm

Divide the environment into cells C_i for each cell $C_j, j \in [1, 2, \dots, M]$ do $C_j \leftarrow unexplored$ end for Initialize subregions S_i for each subregion $S_i, i \in [1, N]$ do $S_i \leftarrow i$ th UAV's starting point SP_i $SP_i \leftarrow explored$ end for while $unexplored, C_i$ exists do for each UAV_i, $i \in [1, N]$ do Evaluate each cell with one or more neighbour cells belonging to the region S_i with formula (4.1) find $C_{best} = \arg_j \max E_{i,j}$ Add C_{best} to S_i $C_{best} \leftarrow explored$ end for end while

The term $E_{j,m}^c$ is a modification of the term E_j^c from the original formula defined as follows:

$$E_{j,m}^{c} = \begin{cases} 0 & \text{for unexplored cells} \\ -\mathcal{E}_{M} D_{j,u} & \text{for explored cells,} \end{cases}$$
(4.6)

where $\mathcal{E}_M > 0$ is a large constant and $D_{j,u}$ is the Manhattan distance of the cell C_j from the closest unexplored cell. To save computational resources, only the unexplored cells, where $E_{j,m}^c = 0$ are evaluated at first. The explored cells are evaluated only when there is no unexplored cell among the evaluated cells, which means that $D_{j,u}$ needs to be calculated infrequently.

The term $E_{i,j}^d$ describes how many diagonal neighbour cells of the cell j are from the same region. The purpose of this term is to increase the score of cells that form clusters, which is convenient for the Cycle Growing (CG) algorithm (Section 4.2.2) used in the trajectory generation process (Section 4.2). It is defined as follows:

$$E_{i,j}^d = \sigma_d \operatorname{NC}_{i,j},\tag{4.7}$$

where $\sigma_d > 0$ is a constant and NC_{*i*,*j*} is the number of diagonal neighbour cells of cell C_j that belong to the region S_i corresponding to the *i*th agent.

Another improvement is the Algorithm 2, which is used to minimise the intersections of individual *regions* while maintaining similar *cell* counts. During 4. Exploration

this process, every cell C_j that belongs to more than one region is removed from every region S_i where the absence of C_j does not violate the continuity of S_i . If C_j does not belong to any region afterwards, it is marked as unexplored. After this, the agents take turns, evaluate each unexplored cell with 4.5 and pick the cell with the highest score. On each turn, the agent that gets to pick a cell is the agent whose corresponding region has the smallest number of cells. This whole process can be repeated until no solvable conflicts emerge, but in my implementation three iterations are performed, as it is enough to solve the majority of conflicts and it does not increase the computational demand much.

Algorithm 2 Algorithm for region intersection reduction

```
for each cell C_j, j \in [1, M] do
    if NR_{C_j} > 1, where NR_{C_j} is the number of regions S_i, i \in [1, N] which
satisfy C_j \in S_i then
        for each region S_i, C_j \in S_i do
            if S_i \setminus C_j is continuous then
                remove C_i from S_i
            end if
       end for
       if NR_{C_i} = 0 then
            C_i \leftarrow unexplored
        end if
    end if
end for
while unexplored C_j exists do
    i \leftarrow agent with least cells in its region S_i
    Evaluate each cell with one or more neighbour cells belonging to region
S_i with formula 4.5 as viewed by agent i
    find C_{best} = \arg_j \max E_{i,j}
    Add C_{best} to S_i
    C_{best} \leftarrow explored
end while
```

The numerical values of the constants $\sigma_a, \sigma_b, \sigma_d, \mathcal{E}_M$ can be found in Section 7.2. The outcome of the Environment partitioning part of the algorithm is shown in Figure 4.1. We can see that on some worlds the modified algorithm behaves almost identically to the original version. However, on some worlds there is a significant improvement in terms of redundancy.

• • 4.2. Trajectory Generation

(b) : Improved algorithm on world from (a)

(d) : Improved algorithm on world from (c) $% \left({{\left({{c_{\rm{c}}} \right)_{\rm{c}}}} \right)$

Figure 4.1: The original and improved environment partitioning - in (a) and (b) both versions perform almost identically on the same world, however, in (d) the improved version produces subregions with no overlaps as opposed to the original version (c) on the same world.

4.2 Trajectory Generation

When a corresponding subregion is assigned to each drone, the trajectories are planned in a way that each UAV explores each cell of its subregion. For this, the STC algorithm is used in [8].

4.2.1 Spanning Tree Coverage Algorithm

The main idea of the STC algorithm is to construct a tree T_i which represents the relevant subregion S_i corresponding to *i*th agent, divide every cell into four smaller subcells and then generate a trajectory such that each subcell is visited exactly once.

This approach performs optimally in terms of length of the resulting trajectory if *merging* (see Definition 3.13) takes place before the environment partitioning phase 4.1. Unfortunately this can be done only on some special worlds (see Figure 4.2). If such preprocessing cannot be applied, the length of the resulting trajectories increases dramatically, because instead of visiting only the center of each cell, the drone visits centers of each subcell.

To prevent this, the *environment* can be approximated using the 2l-size grid approximation as in [6], but this means that some of the free cells from the *environment representation* will be considered obstacles and therefore will not be explored. This can even cause situations like the one in Figure 4.3 where no trajectory is generated, because the approximation results in a world full of obstacles. To cope with this problem, the rendition of the algorithm used in this work performs a test of the environment at the start of the runtime and the cells are merged only if no problematic blocks (which consist of both free cells and cells with obstacles) are found (see Algorithm 3). This means that on some worlds the STC algorithm performs optimally in terms of length of resulting trajectories, but on some worlds the trajectories are far longer than they need to be, which leaves space for improvement.

Algorithm 3 The merging
if no 2x2 block of cells B_i exists such that $C_{i,1}, C_{i,2} \in B_i$ and $C_{i,1} =$
obstacle, $C_{i,2} \neq$ obstacle then
for each block of cells B_i do
replace B_j with cell C_j
exploration status of $C_j \leftarrow$ exploration status of B_j
end for
end if

For a subregion S_i the Spanning Tree T_i is constructed as follows: At first the orientation of S_i is determined. If S_i is horizontal, then clusters of adjacent cells belonging to the same row are connected into horizontal branches and then the individual branches are connected with the leftmost cell. If S_i is vertical, the procedure is the same, but the branches are formed from adjacent cells belonging to the same column, and they are connected via the lowermost cell.

.

Figure 4.2: The merging

After the Spanning Tree is created, each cell is split into four subcells and a trajectory which passes through the centre of each subcell is generated. The outcomes of the STC algorithm can be seen in Figure 4.4. The algorithm is described in Algorithm 4.

Figure 4.3: World which cannot be preprocessed with *2l-grid approximation*, because it would result in a world full of obstacles

4.2.2 Cycle Growing Algorithm

As we can see in Figure 4.4b, the trajectory generated by the STC algorithm is unnecessarily long when *merging* cannot be done. To cope with this, a new algorithm called the CG algorithm, which performs better on some worlds in terms of length of the resulting trajectories, is proposed.

In the CG algorithm the surrounding cycle C_s of the region S_i is found at first. A simple state machine, which starts in the left upper corner and navigates through the region using the left hand rule until the starting position is reached, is used for this (see Algorithm 5).

The pairs of cells are then appended to C_s in a way that ensures that the continuity of the cycle is not violated. Both cells of each pair must be *neighbour cells*, must not contain an *obstacle*, none of them can already be in C_s , and both must have at least one cell from C_s among its neighbours. If C_s is *horizontal*, the horizontal pairs are added first and the vertical pairs afterwards. For *vertical* C_s it is the opposite. This process of C_s growing is explained in Algorithm 6.

After this, all cells which have only *obstacles* or cells belonging to C_s among its *neighbour cells* are added to the cycle and marked as *priority edges*. This is described in Algorithm 7.

Algorithm 4 The Spanning Tree Coverage algorithm

perform *merging* (run Algorithm 3) initialize set xcoords and ycoords for each cell $C_j \in S_i$ do add x coordinate of C_j to x coords add y coordinate of C_j to ycoords end for if $card(xcoords) \ge card(ycoords)$ then orientation = horizontalelse orientation = verticalend if if orientation = horizontal then for each coord_{*u*} \in ycoords do connect adjacent cells C_j with the y coordinate $C_{j,y} = \operatorname{coord}_y$ into a branch BR_j end for for each branch BR_i do connect to BR_{j-1} and BR_{j+1} with the leftmost cells end for else for each $coord_x \in xcoords$ do connect adjacent cells C_j with the x coordinate $C_{j,x} = \operatorname{coord}_x$ into a branch BR_i end for for each branch BR_i do connect to BR_{j-1} and BR_{j+1} with the lowermost cells end for end if

The algorithm then runs recursively on each unexplored continuous *subre*gion of S_i and the resulting cycles are connected. The whole CG algorithm is described in Algorithm 8.

The resulting directed graph is then converted into trajectory using another state machine which navigates through the graph using the *left hand rule* with the exception that edges which are marked as *priority edges* are assigned higher priorities than they would otherwise get from the *left hand rule*. Conversion of the generated cycle to a trajectory is described in Algorithm 9. The four phases of the CG algorithm are visualised in Figure 4.5. When this algorithm is combined with the Environment partitioning algorithm 4.1, the resulting CGWEP algorithm can be used as an alternative to the AWSTC algorithm from [8].

4. Exploration

(a): World where *merging* can be performed

(b) : World where *merging* cannot be performed

Figure 4.4: The results of the Spanning Tree Coverage algorithm

Algorithm 5	Surrounding cycl	le retrieval al	gorithm	
Find the up	per left corner of	unexplored a	area C_{start}	

Find the upper left corner of unexplored area C_{start} position $\leftarrow C_{start}$ heading \leftarrow right finished \leftarrow false initialize the cycle while not finished do Add position to the cycle with the appropriate edge evaluate the neighbour cells of position with left hand rule and choose the cell C_{best} and action A_{best} with the highest priority position $\leftarrow C_{best}$ heading \leftarrow action if position = C_{start} then Add appropriate edge to enclose the cycle finished \leftarrow true end if end while

4.3 Resulting Path Planning Algorithms

When we combine the Environment partitioning algorithm (Section 4.1) and the STC algorithm (Section 4.2.1), we obtain the AWSTC algorithm described in [8]. If we combine the STC algorithm with the modified version of the Environment partitioning algorithm (see Section 4.1.1), we obtain the IAWSTC algorithm. The combination of the improved Environment

Algorithm 6 Growing of the surrounding cycle

if $C_s = horizontal$ then

Process the *horizontal* pairs first and then the *vertical* pairs of neighbour cells in the following part of the algorithm **else**

Process the *vertical* pairs first and then the *horizontal* pairs of neighbour cells in the following part of the algorithm

end if

for each horizontal/vertical pair of neighbour cells $C_{j,1}, C_{j,2}$ do

if $C_{j,1}, C_{j,2} \notin C_s$ and $C_{j,1}, C_{j,2} \neq obstacle$ then

if $NCS(C_{j,1}) \ge 1$ and $NCS(C_{j,2}) \ge 1$, where $NCS(C_j)$ is the number of *neighbour cells* of cell C_j which belong to surrounding cycle C_s then

Add $C_{j,1}, C_{j,2}$ to C_s and add/remove appropriate edges

Check the conditions and eventually add to C_s also the pair of cells next to $C_{j,1}, C_{j,2}$.

end if end if end for

ingoliting i the addition of priority dage	Algorithm	7	The	addition	of	priority	edges
---	-----------	----------	-----	----------	----	----------	-------

```
for each cell C_j \notin C_s do

neighbours \leftarrow all neighbour cells of C_j

u \leftarrow 0

for each cell C_n \in neighbours do

if C_n = obstacle or C_n \in C_s then

u \leftarrow u + 1

end if

end for

if u = len(neighbours), where len(vec) is a function which returns the

number of elements in vec then

Add C_j to C_s

add C_j to priority edges

end if

end for
```

partitioning algorithm and the CG algorithm (Section 4.2.2) results in the CGWEP algorithm. We can see the execution of the IAWSTC and CGWEP algorithms for three UAVs in Figure 4.6.

4. Exploration

Algorithm 8 The Cycle Growing algorithm

initialize C_s Run Algorithm 5 Run Algorithm 6 Run Algorithm 7 for each cell $C_j \in C_s$ do $C_j \leftarrow$ explored end for if unexplored cell exists then run the whole Algorithm 8 on the unexplored subregion. connect the result to C_s end if

Algorithm 9 Cycle to trajectory conversion

```
Initialize trajectory Traj
Find the upper left corner of the cycle C_s, C_{start}
position \leftarrow C_{start}
heading \leftarrow right
finished \leftarrow false
while not finished do
   Add position to Traj
   if edge pe from position in priority edges then
       remove pe from priority edges
       e \leftarrow pe
   else
       e \leftarrow choose a cell from edges of position using the left hand rule
   end if
   position \leftarrow goal(e)
   update heading
   if position = C_{start} then
       finished \leftarrow true
   end if
end while
```

4.4 Time Complexity

The time complexity of the original and improved versions of the Environment partitioning algorithm (Algorithm 1) is $\mathcal{O}(n^2)$. The time complexity of the STC algorithm (Algorithm 4) is $\mathcal{O}(n)$ and the complexity of the CG algorithm (Algorithm 8) is also $\mathcal{O}(n)$. Therefore, the resulting combination is $\mathcal{O}(n^2)$ for both the original AWSTC algorithm from [8] and the proposed IAWSTC and CGWEP algorithms.

.

Figure 4.5: The phases of the Cycle Growing algorithm

Figure 4.6: The outcomes of IAWSTC and CGWEP algorithms for three drones.

Chapter 5

Trajectory Smoothing

The trajectories generated by the algorithms described in Section 4.2 contain many rough turns. These turns can be smoothed to make it easier for the UAV's controller to track the generated trajectory. A fundamental yet effective optimisation based approach was chosen for the smoothing. It may seem that the smoothing is unnecessary, because in case the turn is too sharp, the controller deviates from the trajectory reference, which results in a smooth turn. However, when this happens, we lose control of the actual path, and some cells may remain unexplored, as the UAV does not pass through their centres. Therefore, it is better to smooth the generated trajectories.

There are various approaches to trajectory smoothing that can be generally divided into three main categories - interpolation based methods, methods using special curves, and optimisation methods [22]. The interpolation based methods use polynomial interpolation [5], Bézier curves [26], cubic splines [18], B-splines [3], or NURBS curves [13]. The methods using special curves use Dubin's curves [19], clothoids [4], hypocycloids [21], and other special curves [22]. The optimisation methods treat the trajectory smoothing as an optimisation problem, where energy, time of execution, and other criteria are minimized. In [27] trajectories are viewed as elastic bands where shape and speed are iteratively improved by solving convex optimisation problems. In [14] smoothness is achieved by minimizing the integral of squared acceleration using a numerical solution of a set of nonlinear equations obtained by the calculus of variation. A novel approach based on empirical mode decomposition, where the high frequencies of changes in x and y coordinates are discarded for better smoothness, is presented in [25]. Another unconventional approach is introduced in [11], where neural networks are used to perform the trajectory smoothing. For an extensive overview of state of the art trajectory smoothing

methods, see [22].

5.1 Trajectory Smoothing Using Least Squares Solution

The main criterion for the trajectory smoothing algorithm was simplicity and low computational complexity, because it is used for long trajectories and the computations are carried out by the UAV's control unit during flight. Another important condition is that the trajectory after smoothing should still go through each of the points of the original trajectory, otherwise the agent would not fulfil the definition of exploration laid down in Definition 3.2. For those reasons, the TSULSS approach, which meets all the criteria mentioned previously, was developed.

5.1.1 The Mathematical Principle

The main idea of the proposed TSULSS approach is to insert p equally distant points between each two points of the original trajectory (see Figure 5.1) and then minimise a function, which describes the curvature of the whole new trajectory τ . The ideal function for this would be the sum of squared angles between pairs of consecutive vectors $v_i, v_{i+1} \in \tau$. However, this function can not be formulated as least squares solution of a system of linear equations. Therefore, the vectors v_i, v_{i+1} were decomposed into three consecutive points P_i, P_{i+1}, P_{i+2} and the distance $d_{mid,i}$ of the middle point P_{i+1} from the centre of mass of the three points was used to describe the angle between the two vectors v_i, v_{i+1} . The distance $d_{mid,i}$ is visualised in Figure 5.2 and the relation of the distance $d_{mid,i}$ and the angle between v_i, v_{i+1} can be seen in Figure 5.3.

The function for the description of the curvature of τ is the sum of squared distances $d_{mid,i}$ for each triad of consecutive points from the trajectory τ :

$$f(\tau) = \sum_{i=0}^{N-2} \left[\left(\frac{P_{i,x} + P_{i+1,x} + P_{i+2,x}}{3} - P_{i+1,x} \right)^2 + \left(\frac{P_{i,y} + P_{i+1,y} + P_{i+2,y}}{3} - P_{i+1,y} \right)^2 \right].$$
 (5.1)

Figure 5.1: The meaning of the p parameter - with higher values of p, more points are inserted into the trajectory, which leads to smoother turns.

Equation (5.1) describes the curvature of a trajectory τ , but we must introduce the shift of individual points, because that is what needs to be computed. Therefore, each point P_i is replaced by $P_i + \lambda_i \delta_i$, where

$$\lambda_i = \begin{cases} 0 & P_i \text{ belongs to the original trajectory} \\ 1 & P_i \text{ was added during the first phase of trajectory smoothing,} \end{cases}$$

and δ_i is the change of the *i*-th point of the trajectory. The term λ_i ensures that the points of the original trajectory will not be changed during the smoothing process, and therefore, the UAV will *explore* all the *cells*. The resulting function is:

$$f(\tau) = \sum_{i=0}^{N-2} \left[\left(\frac{P_{i,x} + \lambda_i \,\delta_{i,x}}{3} - 2 \, \frac{P_{i+1,x} + \lambda_{i+1} \,\delta_{i+1,x}}{3} + \frac{P_{i+2,x} + \lambda_{i+2} \,\delta_{i+2,x}}{3} \right)^2 + \left(\frac{P_{i,y} + \lambda_i \,\delta_{i,y}}{3} + 2 \, \frac{P_{i+1,y} + \lambda_{i+1} \,\delta_{i+1,y}}{3} + \frac{P_{i+2,y} + \lambda_{i+2} \,\delta_{i+2,y}}{3} \right)^2 \right].$$
(5.2)

Figure 5.2: Distance $d_{mid,i}$ for various turns

For enclosed trajectories (where $P_1 = P_N$) one more term must be added to round off the connection of the start and the end. The final function with this term is:

$$f_f(\tau) = f(\tau) + \left(\frac{P_{N-1,x} + \lambda_{N-1}\,\delta_{N-1,x}}{3} - 2\,\frac{P_{1,x} + \lambda_1\,\delta_{1,x}}{3} + \frac{P_{2,x}\lambda_2\,\delta_{2,x}}{3}\right)^2 \\ + \left(\frac{P_{N-1,y} + \lambda_{N-1}\,\delta_{N-1,y}}{3} - 2\,\frac{P_{1,y} + \lambda_1\,\delta_{1,y}}{3} + \frac{P_{2,y}\lambda_2\,\delta_{2,y}}{3}\right)^2.$$
(5.3)

This equation can be rewritten in matrix form for better clarity:

$$f_f(\tau) = \|\mathbf{A}\,\mathbf{x} - \mathbf{b}\|^2,\tag{5.4}$$

н.

Figure 5.3: The relation of distance $d_{mid,i}$ and angle between v_i, v_{i+1}

where

$$\mathbf{x} = \begin{bmatrix} \delta_{1,x} & \delta_{1,y} & \delta_{2,x} & \delta_{2,y} & \delta_{3,x} & \delta_{3,y} & \dots & \delta_{N,x} & \delta_{N,y} \end{bmatrix}^T$$

5. Trajectory Smoothing

$$\mathbf{b} = \begin{bmatrix} -\frac{1}{3}P_{1,x} + \frac{2}{3}P_{2,x} - \frac{1}{3}P_{3,x} \\ -\frac{1}{3}P_{1,y} + \frac{2}{3}P_{2,y} - \frac{1}{3}P_{3,y} \\ \vdots \\ -\frac{1}{3}P_{N-2,x} + \frac{2}{3}P_{N-1,x} - \frac{1}{3}P_{N,x} \\ -\frac{1}{3}P_{N-2,y} + \frac{2}{3}P_{N-1,y} - \frac{1}{3}P_{N,y} \end{bmatrix}$$

The optimisation problem is then formulated as:

$$\min_{x \in \mathcal{R}^{2N}} \|\mathbf{A} \mathbf{x} - \mathbf{b}\|^2.$$
(5.5)

.

.

For better control over the resulting trajectories, the Tikhonov regularization was added to penalize significant changes in the trajectory, introducing the parameter μ , which controls how much the smoothed trajectory can deviate from the original trajectory. The effect of the parameter μ can be seen in Figure 5.4. The final optimisation problem with Tikhonov regularization is:

$$\min_{x \in \mathcal{R}^{2N}} \left(\|\mathbf{A} \mathbf{x} - \mathbf{b}\|^2 + \mu \|\mathbf{x}\|^2 \right).$$
(5.6)

This problem can be solved by singular value decomposition, QR decomposition, or normal equations. In this work the normal equation solution was chosen, because of its low computational complexity.

5.1.2 Performance

We can see the result of the TSULSS approach in Figure 5.5. The algorithm performs as expected and it is also possible to change the resulting trajectories with the parameters p and μ . The algorithm performs fast enough for real time applications for trajectories with approximately 100 points (before the insertion of p points). Longer trajectories must be decomposed into shorter subtrajectories, which can be smoothed separately and then joined into one final smooth trajectory. When dividing the trajectory into subtrajectories, the split point should not be in the middle of a turn.

.

Figure 5.4: The meaning of the μ parameter - smoothed trajectories differ less from the original trajectory for higher values of μ

. .

Figure 5.5: The result of trajectory smoothing

Chapter 6

Online Obstacle Detection And Avoidance

After the trajectories are generated, each drone is commanded to its starting position. After this, they start tracking the trajectories, inform the other agents about the visited *cells*, and periodically check for obstacles colliding with their trajectory. Whenever an unexpected obstacle appears, which is not in the obstacle map, the UAV immediately stops and observes the obstacle for time t_o . If the position of the obstacle does not change during this time, it is classified as *Static obstacle*, otherwise it is classified as *Dynamic obstacle*. For an example of static and dynamic obstacles, see Figure 6.1.

Figure 6.1: Static and dynamic obstacles

6.1 Dynamic Obstacles

Dynamic obstacles are obstacles, which move and therefore cannot be in the obstacle map. When a drone detects a dynamic obstacle colliding with it's trajectory, it suspends the trajectory execution and waits until the path is clear. Nothing is signaled to other UAVs. In this work, we assume dynamic obstacles aware of its surroundings which avoid crashing into the UAV. Therefore, it is sufficient for the drone to wait until the detected dynamic obstacle disappears.

6.2 Static Obstacles not Known Beforehand

When the detected obstacle is classified as *Static obstacle*, the agent sends the position of the obstacle to the other agents. The other agents add this new obstacle to their obstacle maps and suspend current trajectory execution. After this, the trajectories are *replanned*.

6.3 Replanning

During the replanning process all cells that were already visited by the agents are marked as *explored*, and the cells that were not yet visited and do not contain an obstacle are marked as *unexplored*. After this, the whole exploration algorithm is repeated. *Replanning* is also described in Algorithm 10.

Algorithm 10 Replanning

Watch for obstacles if detected obstacle then Wait for t_o if obstacle position changed then Wait for clear path Resume trajectory execution else Add obstacle to the obstacle map Signal obstacle position to other agents Other agents add obstacle to their obstacle maps and suspend trajectory execution Mark visited cells as explored and unvisited cells without obstacles as unexplored Repeat the exploration algorithm end if end if

. . . .

Chapter 7

Implementation

7.1 Used Programming Languages and Environments

The AWSTC, IAWSTC and CGWEP algorithms were implemented in Python and the Robotic Operating System $(ROS)^1$ using C++ for the simulation and hardware experiments.

The STC algorithm (Section 4.2.1), which is the trajectory generation part of the AWSTC algorithm, the CG algorithm (Section 4.2.2) which is the trajectory generation part of the CGWEP algorithm and the Environment partitioning algorithm (Section 4.1) along with it's modified version (see Section 4.1.1), which is the first phase of both IAWSTC and CGWEP algorithms, were implemented in Python only.

The Trajectory smoothing using least squares solution (Section 5.1) was developed in Matlab 2020a, then implemented in Python and also ROS using C++ for simulation and hardware experiments.

¹https://wiki.ros.org/

7.2 Numerical Values of Constants and Parameters

The values of various constants and parameters used in the implementation of the algorithms can be seen in Table 7.1.

	Name	Value
	σ_a	1
Environment partitioning	σ_b	100
Environment partitioning	σ_d	10
	\mathcal{E}_M	10000
Trajectory smoothing	p	5
majectory smoothing	μ	0.15
Replanning	t_o	2 [s]

Table 7.1: Values of used constants and parameters

Chapter 8

Quantitative Tests

The individual parts of the algorithm were realized as standalone applications in Python, and multiple tests were carried out to determine the benefits of proposed algorithms and algorithm modifications.

8.1 Environment Partitioning Improvement

To prove that the modifications proposed in Section 4.1.1 improve the behaviour of the algorithm from [8], the original (AWSTC) and modified (IAW-STC) versions of the algorithm were launched on 1000 worlds with dimensions 10 x 10 cells, 500 worlds with dimensions 20 x 20 cells, and 200 worlds with dimensions 30 x 30 cells. All the worlds and starting points of the agents were randomly generated. The main criteria for the comparison were the redundancy ratio (see Definition 3.16) and the equality ratio (see Definition 3.17). The results are listed in Table 8.1 and are also visualised in Figure 8.1. We can clearly see that the modified version of the Environment Partitioning algorithm used in IAWSTC effectively improves both the redundancy ratio and the equality ratio.

World size	Number of acents	Redunda	ancy ratio	Equality ratio		
	Number of agents	AWSTC	IAWSTC	AWSTC	IAWSTC	
	2	1.0029	1.0005	1.0084	1.0068	
10x10	4	1.0408	1.0052	1.0574	1.0339	
	8	1.225	1.0327	1.2617	1.1559	
20x20	2	1.001	1.0001	1.0023	1.0018	
	4	1.009	1.0004	1.0131	1.0066	
	8	1.1198	1.0097	1.1295	1.0387	
30x30	2	1.0001	1.0	1.0008	1.0008	
	4	1.0042	1.0001	1.006	1.0028	
	8	1.0748	1.0035	1.0791	1.0158	

Table 8.1: The quantitative tests of the environment partitioning algorithm

Figure 8.1: The dependency of redundancy ratio and equality ratio on number of drones and world size

8.2 Path Planning Algorithm Comparison

Quantitative tests were also carried out to provide a comparison between the two presented algorithms for trajectory generation (see Section 4.2). Both STC and CG algorithms were tested on 1000 randomly generated worlds with randomly generated dimensions, number of agents, and starting points. The experiments were performed on worlds, where merging can be done and therefore the STC algorithm acts optimally and also on worlds where merging cannot be done, separately. The measured criteria were the length ratio (see Definition 3.18) and the curvature ratio (see Definition 3.19). The results can be found in Table 8.2.

	Algorithm	Length ratio	Curvature ratio
With merging	STC	1.0	27.731
	CG	1.0014	34.0451
Merging not possible	STC	1.98	86.3356
	CG	1.1733	74.3884

Table 8.2: The quantitative tests of the path planning algorithms

We can deduce from the results of quantitative tests that on worlds, where merging can be done, the STC algorithm outperforms the CG algorithm, both in terms of length and in terms of curvature. This is no surprise as the STC algorithm is optimal in terms of trajectory length on such worlds and the way it is constructed guarantees low curvature. However, on the worlds where merging cannot be realized, the trajectories generated by the CG algorithm proved to be far shorter. The CG algorithm performed better also in terms of curvature on such worlds. Nevertheless, one valuable feature of the STC algorithm is that it provides an upper bound for the maximal turn size - for trajectory τ consisting of points P_1, \ldots, P_M :

$$\max_{i \in \{1, \dots, M-2\}} \left| \arccos\left(\frac{v_i \cdot v_{i+1}}{|v_i| |v_{i+1}|}\right) \right| \le \frac{\pi}{2},\tag{8.1}$$

where

$$v_i = P_{i+1} - P_i, (8.2)$$

$$v_{i+1} = P_{i+2} - P_{i+1}.$$
(8.3)

This does not hold true for the CG algorithm.

8.3 Trajectory Smoothing Evaluation

To examine the influence of the parameters p and μ on the performance of the trajectory smoothing algorithm, various combinations of values of pand μ were tested on 100 random worlds with random sizes $s \in \{10 \ge 10, 11 \ge 11, \ldots, 25 \ge 25\}$ and random numbers of agents $N \in \{2, 3, \ldots, 6\}$. The measured criteria were the length increase ratio (see Definition 3.20) and the turn intensity (see Definition 3.21). The results are listed in Table 8.3 and are also visualised in Figure 8.2. The results verified the assumption that the increase of μ parameter or p parameter values lead to smoother trajectories with greater lengths. On the other hand, smaller values of these parameters lead to shorter trajectories with sharper turns.

	-		
μ parameter	p parameter	Length increase ratio	Turn intensity
0	3	1.0183	20.6074
	4	1.0207	15.3694
	5	1.0230	12.6498
0.1	3	1.0163	20.4525
	4	1.0173	16.0535
	5	1.0146	13.1025
0.3	3	1.0092	22.1290
	4	1.0061	18.6607
	5	1.0043	17.1271

Table 8.3: The quantitative tests of the trajectory smoothing algorithm

Figure 8.2: The dependency of length increase ratio and turn intensity on the p and μ parameters

Chapter 9

Simulation Experiments

9.1 Environment

The simulation experiments were performed in the Gazebo simulator¹ (see Figure 9.1) on a laptop with Intel Core i7-8565U CPU with 8 GB RAM. Due to the limited computing power of the used hardware, the maximum of 3 drones could be used in the simulation experiments. However, this limitation was not an important issue, as three drones are sufficient to test the functionality of the algorithms.

Figure 9.1: The simulation environment

¹https://gazebosim.org/home

9.2 Results

Both algorithms were tested in the Exploration experiment (Section 9.2.1) and the Replanning experiment (Section 9.2.2) tested the online obstacle detection (Chapter 6) and replanning (Section 6.3). All the simulation experiments were successful.

9.2.1 Exploration Experiment

In this experiment, three UAVs explored a world with all the obstacles known beforehand. The dimensions of the world were 15 x 15 cells, which corresponds to 45 x 45 [m]. We can see the result of the IAWSTC algorithm in Figure 9.2 and the result of the CGWEP algorithm in Figure 9.3. It is evident, that the trajectories generated by the latter algorithm are shorter and also have smaller overlaps. Both figures are screenshots from a visualization tool called RViz² with additionally marked obstacles.

Figure 9.2: IAWSTC algorithm in simulation

²http://wiki.ros.org/rviz

Figure 9.3: CGWEP Algorithm in simulation

9.2.2 Replanning

In the Replanning experiment an obstacle, which was not marked in the obstacle map, had been added. Two UAVs explored a world of $10 \ge 10$ cells $(30 \ge 30 \text{ [m]})$ using the CGWEP algorithm and when one of them noticed the unexpected obstacle, they both stopped and replanned their paths. We can see the original trajectories before replanning in Figure 9.4 and the modified trajectories after replanning in Figure 9.5.

³The recording of the Replaning experiment can be found here: http://mrs.felk.cvut. cz/chleboun-2022-bp

Figure 9.4: Replanning experiment³ before unexpected obstacle detection

Figure 9.5: Replanning experiment after unexpected obstacle detection

Hardware Experiments

10.1 Hardware description

Hardware experiments were performed on three UAVs of type DJI F450¹ with GPS receiver for localization, 2D LiDAR² for obstacle detection, Intel NUC i7³ onboard computer and rangeFinder for height estimation. One of the drones (with propellers taken off) can be seen in Figure 10.1.

Figure 10.1: One of the UAVs used in the experiment

¹https://www.dji.com/cz/flame-wheel-arf/feature

²https://www.slamtec.com/en/Lidar/A3

³https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs.

html

10. Hardware Experiments

The chosen environment was a meadow in the South Bohemian Region of the Czech Republic. The aerial view of the environment can be seen in Figure 10.2.

Figure 10.2: The aerial view of the environment

10.2 Results

In the experiment, the IAWSTC and CGWEP algorithms were tested on a $40 \ge 40 \ \text{[m]}$ region. The world representation dimensions were $10 \ge 10 \ \text{cells}$. The cell size was set to $4 \ge 4$ meters so that the collision prediction mechanisms of the MRS UAV system core would not affect the generated trajectories. The outcome of the IAWSTC algorithm can be seen in Figure 10.3 and the outcome of the CGWEP algorithm in Figure 10.3. Both experiments were successful.

 $^{^4 \}rm The~recording$ of the IAWSTC algorithm hardware experiment can be found here: http://mrs.felk.cvut.cz/chleboun-2022-bp

⁵The recording of the CGWEP algorithm hardware experiment can be found here: http://mrs.felk.cvut.cz/chleboun-2022-bp

Figure 10.3: IAWSTC algorithm on real UAVs^4

Figure 10.4: CGWEP Algorithm on real UAVs⁵

Chapter 11

Conclusions

11.1 Final Conclusion

In this thesis, the AWSTC algorithm from [8] was implemented and improvements were proposed to reduce the redundancy of coverage, resulting into the IAWSTC algorithm. An alternative approach, the CGWEP algorithm, was designed and compared to the IAWSTC algorithm. Quantitative tests were also carried out along with simulation and hardware experiments. The results verified that the IAWSTC algorithm produces subregions with less redundancy than the AWSTC algorithm, and also that the IAWSTC algorithm performs better than the CGWEP algorithm on the worlds where merging cannot be performed. On the other hand, on worlds where merging is not possible, the CGWEP algorithm proved to be better in terms of both length and curvature of the resulting trajectories. The implementations of both algorithms were enriched with obstacle detection for both fixed and moving obstacles and replanning. The resulting trajectories were further improved with a novelty trajectory smoothing approach. The implemented algorithms are suitable for tasks such as search and rescue missions or object localisation in cluttered environments.

11.2 Future Work Proposition

It would be interesting to extend the exploration algorithms to polygonal environments with polygonal obstacles. This would result in a more versatile exploration technique which could be used in more universal spaces. Additionally, an online version of the CG algorithm could be created for environments where the obstacle map is not known beforehand.

The TSULSS can be extended into three dimensions. Also, instead of using constant speed, the speed profile could be optimized across the generated trajectories. This remains an opportunity for future research.

Appendix A

Acronyms

AWSTC Artificially Weighted Spanning Tree Coverage

 ${\bf CG}~{\rm Cycle}~{\rm Growing}$

CGWEP Cycle Growing With Environment Partitioning

IAWSTC Improved Artificially Weighted Spanning Tree Coverage

 ${\bf ROS}~{\rm Robotic}~{\rm Operating}~{\rm System}$

 ${\bf STC}\,$ Spanning Tree Coverage

 ${\bf TSULSS}\,$ Trajectory Smoothing Using Least Squares Solution

 ${\bf UAV}\,$ Unmanned Aerial Vehicle

Appendix **B**

Bibliography

- AGMON, N., HAZON, N., AND KAMINKA, G. Constructing Spanning Trees for Efficient Multi-robot Coverage. In *Proceedings IEEE International Conference on Robotics and Automation* (2006), pp. 1698–1703. Available at https://doi.org/10.1109/ROBOT.2006.1641951.
- [2] AVELLAR, G. S. C., PEREIRA, G. A. S., PIMENTA, L. C. A., AND ISCOLD, P. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time. *Sensors* 15, 11 (2015), 27783–27803. Available at https://doi.org/10.3390/s151127783.
- [3] BIAGIOTTI, L., AND MELCHIORRI, C. Online Trajectory Planning and Filtering for Robotic Applications via B-spline Smoothing Filters. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (2013), pp. 5668–5673. Available at https://doi.org/10. 1109/IROS.2013.6697177.
- BREZAK, M., AND PETROVIĆ, I. Path Smoothing Using Clothoids for Differential Drive Mobile Robots. *IFAC Proceedings Volumes* 44, 1 (2011), 1133–1138. Available at https://doi.org/10.3182/ 20110828-6-IT-1002.02944.
- [5] CHANG, S.-R. A G2 Continuous Path-smoothing Algorithm Using Modified Quadratic Polynomial Interpolation. *International Journal* of Advanced Robotic Systems 11 (February 2014). Available at https: //doi.org/10.5772%2F57340.
- [6] CHUNQING, G., YINGXIN, K., ZHANWU, L., AN, X., YOU, L., AND YIZHE, C. Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree. *Mathematical Problems in Engineering* (2018), 1–10. Available at https://doi.org/10.1155/2018/3436429.

B. Bibliography

- [7] DEMKIV, L., RUFFO, M., SILANO, G., BEDNÁŘ, J., AND SASKA, M. An Application of Stereo Thermal Vision for Preliminary Inspection of Electrical Power Lines by MAVs. In *Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)* (October 2021), IEEE, pp. 1–8. Available at https://doi.org/10.1109/AIRPHAR052252.2021. 9571025.
- [8] DONG, W., LIU, S., DING, Y., SHENG, X., AND ZHU, X. An Artificially Weighted Spanning Tree Coverage Algorithm for Decentralized Flying Robots. *IEEE Transactions on Automation Science and Engineering* 17, 4 (2020), 1689–1698. Available at https://doi.org/10.1109/TASE. 2020.2971324.
- [9] FAIGL, J., VÁŇA, P., PĚNIČKA, R., AND SASKA, M. Unsupervised Learning-based Flexible Framework for Surveillance Planning with Aerial Vehicles. *Journal of Field Robotics* 36, 1 (2019), 270–301. Available at https://doi.org/10.1002/rob.21823.
- [10] FENG, K., LI, W., GE, S., AND PAN, F. Packages Delivery Based on Marker Detection for UAVs. In *Chinese Control and Decision Conference* (*CCDC*) (2020), pp. 2094–2099. Available at https://doi.org/10. 1109/CCDC49329.2020.9164677.
- [11] FUJII, S., AND PHAM, Q.-C. Realtime Trajectory Smoothing with Neural Nets. CoRR abs/2111.02165 (2021). Available at https://doi. org/10.48550/arXiv.2111.02165.
- [12] GABRIELY, Y., AND RIMON, E. Spanning-tree Based Coverage of Continuous Areas by a Mobile Robot. In Proceedings ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164) (2001), vol. 2, pp. 1927–1933. Available at https://doi.org/10.1109/ ROBOT.2001.932890.
- [13] HASHEMIAN, A., HOSSEINI, S., AND NABAVI, S. N. Kinematically Smoothing Trajectories by NURBS Reparameterization – An Innovative Approach. Advanced Robotics 31 (November 2017), 1296–1312. Available at https://doi.org/10.1080/01691864.2017.1396923.
- [14] HUSSEIN, A., AND ELNAGAR, A. On Smooth and Safe Trajectory Planning in 2D Environments. In *Proceedings of International Conference* on Robotics and Automation (1997), vol. 4, pp. 3118–3123. Available at https://doi.org/10.1109/ROBOT.1997.606762.
- [15] JIAO, Y.-S., WANG, X.-M., CHEN, H., AND LI, Y. Research on the Coverage Path Planning of UAVs for Polygon Areas. In 5th IEEE Conference on Industrial Electronics and Applications (2010), pp. 1467– 1472. Available at https://doi.org/10.1109/ICIEA.2010.5514816.

- [16] KANG, Z., LING, H., ZHU, T., AND LUO, H. Coverage Flight Path Planning for Multi-rotor UAV in Convex Polygon Area. In *Chinese Con*trol And Decision Conference (CCDC) (2019), pp. 1930–1937. Available at https://doi.org/10.1109/CCDC.2019.8833382.
- [17] KARAPETYAN, N., BENSON, K., MCKINNEY, C., TASLAKIAN, P., AND REKLEITIS, I. M. Efficient Multi-Robot Coverage of a Known Environment. *CoRR abs/1808.02541* (2018). Available at https://doi. org/10.48550/arXiv.1808.02541.
- [18] LI, X., GAO, X., ZHANG, W., AND HAO, L. Smooth and Collision-free Trajectory Generation in Cluttered Environments Using Cubic B-spline Form. *Mechanism and Machine Theory 169* (2022), 104606. Available at https://doi.org/10.1016/j.mechmachtheory.2021.104606.
- [19] LIN, Y., AND SARIPALLI, S. Path Planning Using 3D Dubins Curve for Unmanned Aerial Vehicles. In International Conference on Unmanned Aircraft Systems (ICUAS) (2014), pp. 296–304. Available at https: //doi.org/10.1109/ICUAS.2014.6842268.
- [20] NEDJATI, A., IZBIRAK, G., VIZVARI, B., AND ARKAT, J. Complete Coverage Path Planning for a Multi-UAV Response System in Post-Earthquake Assessment. *Robotics* 5, 4 (2016). Available at https: //doi.org/10.3390/robotics5040026.
- [21] RAVANKAR, A., RAVANKAR, A. A., KOBAYASHI, Y., AND EMARU, T. SHP: Smooth Hypocycloidal Paths with Collision-Free and Decoupled Multi-Robot Path Planning. *International Journal of Advanced Robotic* Systems 13, 3 (2016), 133. Available at https://doi.org/10.5772/ 63458.
- [22] RAVANKAR, A., RAVANKAR, A. A., KOBAYASHI, Y., HOSHINO, Y., AND PENG, C.-C. Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges. *Sensors* 18, 9 (2018), 3170. Available at https://doi.org/10.3390/s18093170.
- [23] RUAN, L., WANG, J., CHEN, J., XU, Y., YANG, Y., JIANG, H., ZHANG, Y., AND XU, Y. Energy-efficient Multi-UAV Coverage Deployment in UAV Networks: A Game-theoretic Framework. *China Communications* 15, 10 (2018), 194–209. Available at https://doi.org/10.1109/CC. 2018.8485481.
- [24] SMRČKA, D., BÁČA, T., NASCIMENTO, T., AND SASKA, M. Admittance Force-Based UAV-Wall Stabilization and Press Exertion for Documentation and Inspection of Historical Buildings. In *International Conference* on Unmanned Aircraft Systems (ICUAS) (June 2021), IEEE, pp. 552–559. Available at https://doi.org/10.1109/ICUAS51884.2021.9476873.
- [25] YUAN, H. A Novel Trajectory Smoothing Algorithm Based on Empirical Mode Decomposition. In *Fifth International Conference on Image and*

B. Bibliography

Graphics (2009), pp. 223–226. Available at https://doi.org/10.1109/ ICIG.2009.75.

- [26] ZHOU, F., SONG, B., AND TIAN, G. Bézier Curve Based Smooth Path Planning for Mobile Robot. Journal of Information and Computational Science 8 (December 2011), 2441-2450. Available at https://www.researchgate.net/publication/285739464_ Bezier_curve_based_smooth_path_planning_for_mobile_robot.
- [27] ZHU, Z., SCHMERLING, E., AND PAVONE, M. A Convex Optimization Approach to Smooth Trajectories for Motion Planning with Car-Like Robots. *CoRR abs/1506.01085* (2015). Available at https://doi.org/ 10.48550/arXiv.1506.01085.

I. Personal and study details

Student's name: Chleboun Jan

Personal ID number: 492323

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics

II. Bachelor's thesis details

Bachelor's thesis title in English:

Spanning Tree Coverage Algorithm on Large Spaces for Multi-UAV Systems

Bachelor's thesis title in Czech:

Algoritmus pro pr zkum velkých prostor pomocí skupiny kooperujících dron

Guidelines:

Improve algorithm [1] by optimization on the cell size distribution and the path planning covering a single cel per run, decreasing the optimization and computational costs. For avoiding sharp turns, propose an adequate smoothing. The final implementation must experimentally verified on a real robot and compared with exisiting approaches. Furthermore, the student must consider the following modifications and tasks:

- 1. The student must consider fixed and moving obstacles.
- 2. Experiments with real robots must be performed.
- 3. An optimization smoother for the planned path must applied.
- 4. Comparisons with state-of-the-art algorithm (reference [1]) must be performed.

Bibliography / sources:

 [1] Dong, W., Liu, S., Ding, Y., Sheng, X., & Zhu, X. (2020). An Artificially Weighted Spanning Tree Coverage Algorithm for Decentralized Flying Robots. IEEE Transactions on Automation Science and Engineering, 2020
 [2] N. Agmon, N. Hazon and G. A. Kaminka, "Constructing spanning trees for efficient multi-robot coverage," Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006

Name and workplace of bachelor's thesis supervisor:

Tiago Pereira Do Nascimento, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor's thesis supervisor or consultant:

Date of bachelor's thesis assignment: **21.01.2022**

Deadline for bachelor thesis submission: 20.05.2022

Assignment valid until: 30.09.2023

Tiago Pereira Do Nascimento, Ph.D. Supervisor's signature prof. Ing. Tomáš Svoboda, Ph.D. Head of department's signature prof. Mgr. Petr Páta, Ph.D. Dean's signature

III. Assignment receipt

The student acknowledges that the bachelor's thesis is an individual work. The student must produce his thesis without the assistance of others, with the exception of provided consultations. Within the bachelor's thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt

Student's signature