

Poděkování

 Děkuji Ing. Pavlu Píšovi Ph.D. za hodnotné rady a odborné vedení mé práce.

Dále děkuji svému otci, Ing. Michalu Melounovi, za hodnotné rady a poskytnutí

firemního hardwaru a softwaru.

Prohlášení

Prohlašuji, že jsem svou bakalářskou práci vypracoval samostatně a použil jsem

pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

V Praze, dne 27.5.2011 …………………………………….

 podpis

Èeské vysoké uèení technické v Praze, Fakulta elektrotechnická, Katedra øídicí techniky

Bachelor Thesis

MCF5484LITE LINUX KERNEL 2.6.37

PORT

Martin Meloun

Academic Year: 2010/2011

Supervisor: Ing. Pavel Pí²a, Ph.D.

1

Contents

1 Abstract 3

1.1 Czech . 3

1.2 English . 3

2 Introduction 4

2.1 Cold�re Platform . 4

2.2 Instruction Set . 5

2.3 Development Prerequisites . 6

3 Board Support Package 7

3.1 Overview . 7

3.2 Technical Reference Manual . 7

3.3 GNU Build System . 8

3.4 Compilation of GNU Toolchain . 8

3.5 GCC con�guration . 9

3.6 Linux Kernel 2.6.25 . 10

3.7 U-Boot . 11

4 Existing Colfdire Linux Projects 12

4.1 uClinux . 12

4.2 FreeBSD Port . 13

4.3 FreeScale Updated Linux Kernel 2.6.31 Port . 13

5 Preliminary Development 14

5.1 Workstation . 14

5.2 Background Debug Module . 14

5.3 Bootloader . 16

6 Linux 2.6.37 Port 18

6.1 GIT Repository . 18

1

MCF5484LITE Linux Kernel 2.6.37 Port 2

6.2 Linux Development . 18

6.3 GCC Development . 24

7 Conclusion 26

8 References 27

8.1 References . 27

8.2 Repositories . 27

1

Abstract

1.1 Czech

Cílem práce je naportovat aktuální verzi Linuxového jádra pro Cold�re V4e procesory s pod-

porou jednotky správy pam¥ti. Coldifre V4e procesory byly navrºeny pro b¥h plnohodnotného

opera£ního systému, ale kv·li �remní politice FreeScale ºádný opera£ní systém nepodporuje

Cold�re V4e ve své hlavní vývojové verzi zp·sobenou p°edev²ím kv·li nemoºné úbrºb¥ kódu

portace Linuxu od FreeScale.

1.2 English

The main goal is to port current version of Linux kernel to Cold�re V4e processors including

support for Memory Management Unit. Cold�re V4e has been designed to run operating systems

but due to FreeScale software developing politics no operating system currently supports this

platform in mainline version mainly because their Linux ports are not maintainable.

3

2

Introduction

2.1 Cold�re Platform

The ColdFire derives from the CISC m68k microprocessor architecture (Harvard type) man-

ufactured for embedded systems development by Freescale Semiconductor (formerly the

semiconductor sector of Motorola). Main advantage over other m68k processors is their speed:

MC68060 is clocked to 75 MHz (without overclocking) while ColdFire can be clocked up to 300

MHz (MCF5484LITE is clocked to 200 MHz). MCF548x is from the v4e generation launched

in 2000, which is using 32-bit instruction set. It features memory management unit, �oating

point unit and cache (32 kiB for both data and instructions by 8 kiB pages at minimum, virtually

accessed, physically tagged) as main advantages over previous versions. MCF5484LITE periph-

erals also include a programmable serial controllers, CAN, Ethernet, USB and PCI. ColdFire

mainly utilize Background Debug Module as their low-level debugging module, newer models

can however utilize JTAG as well. MCF5484LITE has only 4 MiB NOR �ash memory (unlike

regular boards containing one more �ash memory sized from 4 MiB to 16 MiB), 64 MiB SDRAM,

32 kiB SRAM.

4

MCF5484LITE Linux Kernel 2.6.37 Port 5

2.2 Instruction Set

Cold�re is using Harvard architecture having separated instruction and data memory. It is using

8 general purpose 32-bit data registers D0-D7, 7 general purpose 32-bit address registers A0-

A6, 32-bit full descending stack pointer A7, 32-bit program counter PC, 16-bit status register

SR and condition control registerCCR. Unlike for regular m68k processors instructions are only

2, 4 or 6 bytes wide and are characterized as "Variable-Length RISC" by Freescale. Missing

variants of many instruction operating with di�erent operand size, many instructions acting only

on registers, reduced addressing modes, complete lack of rarely used instructions - this all was

a result of plaform optimization based principles in RISC processors and instructions generated

in C code translation. Supervisor programming model was also simpli�ed to two stack pointers

(there is no interrupt stack pointer). Several instructions behave di�erently from the m68k, like

MULU, MULS (both multiply), ASL and ASR (arithmetic shift left / right) will not set over�ow

�ag, which has to be noted or code sequences working on m68k may yield an incorrect result on

Cold�re. Note that m68k assembler instructions are using source as its �rst operand in contrast

to many architectures like ARM.

Figure 2.1: MCF5484 Lite Board

MCF5484LITE Linux Kernel 2.6.37 Port 6

2.3 Development Prerequisites

The main prerequisite is low-level knowledge of C language. This means knowing the principles

of the compiler and having experience with assembler in general on any platform (then you

have to learn m68k instructions and relation between Cold�re and them). Why is knowledge of

principles of the compiler so important? Because there is no guarantee that it is going to be

�awless and if there is a bug in the compiler you are going to be the one to �x it because GCC

(GNU Compiler Collection) and binutils (binary utilities) are open source projects. From C

language you need to know compiler attributes (both as �ags passed to gcc or inside C code) and

being able to analyse problematic C code in assembler. And of course theoretical knowledge of

principles inside Linux kernel is a required knowledge as we are going to manipulate with that.

3

Board Support Package

3.1 Overview

The evaluation kit contains a complete software support package containing technical reference

manual and a software development kit including U-Boot (Universal Bootlader), Linux kernel

2.6.25, root �lesystem binaries and a toolchain. The build system is shared throughout the

whole family and thus con�gurable for the speci�c board. It also contained everything already

prebuilt which I've primarily tested with success (there was only a requirement to override

command line in U-Boot and to send root �lesystem from a tftp (trivial ftp) server). Linux kernel

in version 2.6.25 was distributed as a set or incremental patches which is a better approach

unlike just distributing patched code which Motorola (FreeScale is Motorola semiconductor

branch) still practices on kernels for their Linux phones. For future reference I shall use "BSP"

as Board Support Package in this chapter.

3.2 Technical Reference Manual

Technical reference manual is the most important part of the BSP. It's primary objective is to

de�ne the functionality of the MCF548X processors for use by software and hardware develop-

ers. It is divided into chapters per subsystem, totalling around 1000 pages where it describes

behaviour and all possible settings of all registers present on the board, complete instruction set,

signal description and their timing and mechanical data about the board. The manual describes

theory of operation in block diagrams with several simple usage examples.

7

MCF5484LITE Linux Kernel 2.6.37 Port 8

3.3 GNU Build System

Each GNU build system (called toolchain) consists of two necessary parts which are binutils and

gcc. Binutils provide support from translating assembler code into raw binary, archiver for static

libraries and linker for linking objects �les to create an executable and binary. GCC provides

support for higher level languages, for our purposes it's C and C++ languages. When choosing

components of your build system, one of your priorities is to ensure the build system either fully

and supports your platform, to be working under the premise that compiler is creating valid

code and thus in case of a bug you search in your code for the cause, or be able to reliably

diagnose potential compiler failure. I've already experienced a compiler failure on GCC 4.4.0 for

ARM with Android EABI (Extended Application Binary Interface; this de�nes how for example

parameters are passed during function call etc.). In that case the stack protector was bugged

and the binary was crashing upon returning from a certain function (stack protector code is

automatically generated by GCC unless it's turned o�). This one is fairly easy to identify

because it crashes exactly at the place where it is bugged. Another relatively good scenario

is when GCC creates invalid assembler directive. This mainly draws attention towards GCC

C compiler as it's unlikely that binutils would incorrectly translate assembler directive into

wrong binary representation. Secondly BSP uses an outdated version of GCC which is likely

not supported by current Linux kernel or C library and thus I've automatically discarded BSP

toolchain and decided to compile my own. The FreeBSD port by Miracle Group s.r.o., which is

described later in chapter 4.2, resulted in several critical patches for GCC for Cold�re platform

and these were committed since branch 4.5 (note extended Cold�re support since that version)

and thus I've used version 4.5.2. At the time version 4.6.0 was available as well but having

some experience from ARM 4.4.x and 4.5.x versions (another bug I experienced was on 4.4.3 in

invalid kernel module structure) I chose the older one with 2 revisions for having potentially less

issues.

3.4 Compilation of GNU Toolchain

GNU Toolchain consists from two compulsory compulsory components, binutils and gcc as stated

above, and two optional components which is OS userspace headers and C library. At �rst you

con�gure and build binutils. After that you specify either "without-headers" �ag to gcc or import

userspace headers from OS environment. This is a function of the Linux kernel (commandmake

headers_install after con�guring it) or other operating systems. After that you compile gcc

(only compiler, command make all-gcc). Many tools (including C library or bootloaders)

MCF5484LITE Linux Kernel 2.6.37 Port 9

require you to build libgcc. This library consists of mostly arithmetic operations that the

speci�ed platform cannot make directly, exception handling and some miscellaneous operations.

However if gcc was con�gured to enable shared libraries then when compiling libgcc it will try

to compile a shared version of it as well and failing on the impossibility to link it with C library,

which is likely requiring part of the library as well. This is a little pitfall in the build system,

another one I've noted is not fully working �xincludes, an utility to create default interface if

not speci�ed in imported headers, for libgcc. This is used for the case when con�guring with

"without-headers" �ag. Otherwise you export headers from the C library prior compiling libgcc

and compile a static version of it (command make all-target-libgcc). Then you optionally

con�gure and compile C library recon�gure gcc to support shared libraries and recompile it.

3.5 GCC con�guration

The compiler is con�gured as cross-compiler, meaning that it compiles on a workstation for a

di�erent system than it runs on. It can be divided into three parts: con�guration triplet cpu-

vendor-OS specifying the target environment; disabling unnecessary features and lastly default

�ags passed to the compiler. Please note that regarding the con�guration triplet that vendor

part can be anything or omitted and that linux-gnu is an option for OS part. At �rst I decided

to look on the con�guration of GCC inside the BSP and found:

configure -build=i686-pc-linux-gnu -host=i686-pc-linux-gnu

-target=m68k-linux-gnu -enable-threads -disable-libmudflap

-disable-libssp -disable-libgomp -disable-libstdcxx-pch

-with-arch=cf -with-gnu-as -with-gnu-ld -enable-languages=c,c++

-enable-shared -enable-symvers=gnu -enable-__cxa_atexit

-disable-nls -prefix=/opt/.../m68k-linux

-enable-languages=c -disable-libffi

I've omitted unimportant parts of the con�guration. Note twice and contradictory against each

other supplied "enable-languages" parameter and disabling C++ library while enabling C++

language. Also note the lack of sysroot argument (which is used to de�ne the root folder of

your cross compiler under which you have the standard directory structure). Mainly specifying

"linux-gnu" as OS is not supposed to be used to be built things like U-Boot. Thus I've scratched

the supplied build system completely and used my own con�guration for building U-Boot and

Linux kernel

configure -with-sysroot=/coldfire/sysroot/

MCF5484LITE Linux Kernel 2.6.37 Port 10

-prefix=/coldfire/tools/elf -target=m68k-elf

-enable-languages=c -enable-c99 -disable-nls -disable-libgomp

-disable-libssp -disable-libmudflap -disable-shared

-disable-threads -disable-multilib -without-headers -with-arch=cf

and the following one for userspace binaries, with glibc as a C library in version 2.13 and with

using kernel 2.6.37 userspace headers.

configure -with-sysroot=/coldfire/sysroot/linux

-prefix=/coldfire/tools/linux -target=m68k-m68k-linux-gnu -enable-languages=c,c++

-enable-c99 -disable-nls -disable-libgomp -disable-libssp

-disable-libmudflap -enable-shared -enable-threads

-disable-multilib -with-arch=cf

3.6 Linux Kernel 2.6.25

Supplied Linux Kernel was the main source of my development despite the �aws it has (de-

scribed in chapter 6). In this section I shall not analyse functional �aws in the code. As stated

in overview the source was supplied as a set of incremental patches which were exported from a

development repository. The patches add support for two Cold�re V4e core families MCF5445X

and MCF547X / MCF548X. The a�ected parts of Linux kernel structure is low-level architec-

ture based code and drivers. My �rst step was examining low-level boot code. Entry points are

written in assembler (�les head.S and entry.S). These two �les were forked into newly created

subdirectory. Comparing them with the generic m68k ones; head.S turned out to be a fork with

minimal changes (assembler di�erence) and which should have been accomplished by patching

the original entry.S �le to distinguish based on current con�guration de�nitions; head.S was

written specially for Cold�re and part of it was rewritten to C code which is a more appropriate

solution for maintaining and readability. However I've noticed several major faults in the boot-

code. First it was hardcoded to be booted from U-Boot and its non-standard way, by passing a

structure, command line and initial ramdisk on stack pointer. Using a di�erent bootloader, like

CoLiLo (Cold�re Linux Loader) caused the processor to hang inde�nitely on bus response (this

can be forcibly terminated by XLB arbiter or using BDM (Backgroud Debug Module)) when

attempting to read the sturcture. Moreover the structure U-Boot passes when giving control was

imported into the kernel and was only used for setting MAC addresses for FEC (Fast Ethernet

Controller). Normally Linux kernel reads boot records behind bss section, and you're supposed

to override them by appending a newly created boot record. Examining the rest of the patches

MCF5484LITE Linux Kernel 2.6.37 Port 11

in low-level system support showed that page size was at its minimum allowed size, which is

8 kiB. I have also found mess in code for cache handling and in confusing merge of the source

codes handling cache on MCF547X / MCF548X and MCF5445X. MCF547X / MCF548X cache

code has been rewritten unlike MCF5445X but both version were not properly isolated. After

that I have examined drivers and narrowed myself to basic peripherials, such as USB, Serial line

and Ethernet (not all features, such as secure boot, are available on MCF5484LITE plus they

are as an addition to the system). I have found two drivers for Serial line for Cold�re boards. In

fact it was one driver which was rewritten by Greg Ungeger who not working in FreeScale, and

that revision was applied for m68knommu Cold�re branch, while m68k still was using the old

one. Ethernet driver (Fast Ethernet Controller) has its issues as well. The other two peripherals

do not have issues. Then I look on design patterns. The m68knommu Cold�re branch was using

"mcf" pre�x for platform speci�c headers and these are mostly only mapping platform speci�c

registers but you still have to manually include them in source �les. The m68k Cold�re branch

didn't follow that pattern and created its own with "cf" pre�x and what is worse, some (not

all) were forked platform generic headers them and making small changes. Lastly after walking

through the patches I've discovered that a portions of code (for example the cache code rewrite

noted several lines above) that was rewritten or removed from further patches. Thus I have

decided not to develop the port by "pushing every minor change to git repository" but rather

pushing blocks of �nished code. Concluding this, it serves well as a source of tested and working

code but there still lot of things to be �xed.

3.7 U-Boot

U-Boot supports this board in it's working tree I have only decided to use the precompiled

binary to verify that supplied binaries are indeed working.

4

Existing Colfdire Linux Projects

4.1 uClinux

Aside from the board support package, which was be described earlier in detail, there exist two

public projects; �rst, them68knommu branch inside Linux kernel and second, uClinux, which

stands for Linux for microcontrollers (the letter "u" is in fact standing lowercase Greek letter

"Mu"). The main disadvantage of both projects is lack of support for memory management

unit. Due to relatively low di�erence of these two projects (most notable would be that uClinux

is using its own C library) they have been united since kernel version 2.6.29 and I'll refer to

these as uClinux from now on.

uClinux supports Cold�re processors up to MCF540X family which is backwards compatible

with previous generations of Cold�re processors and signi�cantly di�erent from MCF548X fam-

ily. An examination of the source code pointed out several things. There was some code for

MCF547X / MCF548X, although just pieces of the code in a manner of un�nished project (miss-

ing defcon�g for example). Secondly, unlike the board support package, there is a con�guration

switch for booting from U-Boot. Another major di�erence between 2.6.25 and 2.6.37 kernels is

that architecture speci�c headers are united in 2.6.37 for m68k and m68knommu systems. A sort

of unhappy solution is partially "mixed" design pattern when determining which header belongs

to what system. Several headers are distinguishing based on con�guration de�nitions and have

a "nommu" and "mmu" version, while platform speci�c headers are still pre�xed in name and

respective source code �les must include them manually however they do not contain forked

code as the board support package. Despite that I don't think that it's good to have a header

"cache.h" and another header "mcfcache.h" both containing di�erent pieces of de�nitions.

uClinux can be run properly on system with memory management unit, having it disabled. Note

12

MCF5484LITE Linux Kernel 2.6.37 Port 13

that mainstream architectures like ARM are supported even with memory management unit en-

abled. Originally one of the possibilities for Linux kernel development was to port uClinux

properly to MCF548X but it was decided to use full capabilities of Cold�re V4e core and create

a system supporting MMU.

4.2 FreeBSD Port

FreeBSD was ported to Cold�re MCF548X by Miracle Group s.r.o. company to be used on their

boards. It is utilizing memory management unit and includes support for basic peripherals with

the exception of Cache, which is labeled as un�nished yet. FreeBSD is still using monolithic

kernel (think of a kernel being as a one large program) unlike Linux, which is using modular

kernel. It practically means that is not useful for more than studying techniques that were used

when dealing with architectural �aws and apply them on Linux port if possible. This FreeBSD

port is licensed under simpli�ed BSD license and is used by Miracle Group s.r.o. privately and

thus they do not maintain any open source repository.

4.3 FreeScale Updated Linux Kernel 2.6.31 Port

Around �rst quarter of 2010 FreeScale updated their kernel from 2.6.25 to 2.6.31 for MCF547X

/ MCF548X but did not update the board support package with it (and I didn't �nd any

reference towards that kernel on FreeScale website). This kernel used the new serial driver

previously noted as being used only m68knommu branch. This project mainly had �xed Fast

Ethernet Controller driver and was already using updated serial driver. There also was some

update to cache handling code. It also had a cleaner way of updating vanilla 2.6.31 kernel.

There are just 7 patches, instead of hundreds, updating the existing �les. Rest of the �les is

distributed in archive. I've also preferred this version for updating KCon�g (kernel con�guration

�le, contains list of options and their dependencies).

5

Preliminary Development

5.1 Workstation

The 2.6.37 has been developed on my laptop running Windows 7 operating system. I have used

a OpenSUSE distribution, in which I've set up a toolchain compiling for Cold�re, described in

section 3 in a virtual machine to compile the Linux kernel (as it's not recommended to compile

under cygwin). All other tools for communication and debugging were developed under .NET

framework and run Windows.

5.2 Background Debug Module

The Background Debug Module (BDM for future reference) is the most powerful debugging

utility, allowing one to break the execution, read and modify register contents and mainly to

recover the unit in cases of corrupted bootloader. It uses 26pin connector to communicate

with external hardware, however only 6 pins are required to use most of its features. BDM

uses three types of commands. Commands such as setting program counter, D0-D7 and A0-A7

registers etc. require interrupting the execution (the processor to be halted). Other commands,

mostly setting peripheral registers, steals the processor clocks (that means inject themselves to

the execution queue). Lastly there are commands such as program counter tracing that are

executed asynchronously with the execution queue and there require full pinout.

The board package supplied a BDM to parallel cable converter by P&E Microcomputer Systems

and software for recovery �ashing. However I've used a custom board from Miracle Group

s.r.o. which they use for developing their Cold�re boards. This board serves as BDM to USB

converter, with reduced pinout and having asynchronous commands not avaiable. Additional

14

MCF5484LITE Linux Kernel 2.6.37 Port 15

functions is a measuring module, which isn't used for this project. This board itself runs on

Cold�re MCF52223 (V2 core). Supplied driver and �rmware included support for most of BDM

commands and �ash programming for older chipsets (Cold�re Flash Module). On newer chips

you reprogram the �ash by �rst sending the data to RAM and with a simple program to write

the contents RAM to the �ash memory and executing it. This way of �ashing is pretty slow and

is recommended only to be used for recovery of the unit.

Another important part of debugging is software support - and how much of it is actually

needed. Ideally full blown support for GDB (GNU DeBugger) would be the most powerful

option. There exists a port for GDB to run under BDM (m68k-bdm-elf-gdb) requiring a BDM

Linux driver, which wasn't written by Miracle Group s.r.o.. The reason is problematic debugging

of an operating system. BDM is mainly suitable for stepping through the code however for

operating system, with the exception of boot code, this is made practically impossible due to

interrupt handling. So you are logging debug information over a serial console. This reduces

the need for BDM only for recovery �ashing, potentially debugging bootloader in case there

are issues with it and debugging OS boot code. Based on the fact that I am not writing these

parts from scratch I've decided not to spend time for GDB support and only created a simple

.NET program for basic BDM operations, meaning reading and writing registers, reading and

writing memory, execution control, dumping stack and recovery functions (actually I did not

need to make a recovery �ash yet due to technique I've used for developing, that's why there is

only button to dump �ash memory on the picture). This utility was developed based on board

communication interface provided by Miracle Group s.r.o..

Testing the debugger board showed two issues. One of them was non-functioning hardware

breakpoint signal, making it impossible to externally break the execution. This is perhaps useful

if the processor is stuck in in�nite loop as you rather want to have it interrupted on prede�ned

places using halt instruction. Also this is problematic if there was a bootloader malfunction to

start the processor in halted mode, but for this case P&E Microcomputer Systems convertor

would do it's job and halt the execution at startup (which it does if disconnected from the other

Figure 5.1: BDM Debugging Board

MCF5484LITE Linux Kernel 2.6.37 Port 16

side). A bypass for this situation is to always start in halted mode, and having halt as a �rst

instruction in the bootloader written in �ash memory. The other one was lack of support TA

(Transfer Acknowledge) signal. This signal forcibly terminates bus cycle by generating an error.

This signal is used when you for example address invalid physical memory and the processor

inde�nitely waits for response (if you address invalid virtual memory than memory managment

unit will generate the fault). For this case I've set up the XLB arbiter which will forcibly

terminate bus cycle after a certain period. This can be used as a watchdog to restart the

processor or just to trigger an interrupt (this requires valid stack pointer).

5.3 Bootloader

The board came with pre-installed with dBUG a small monitor program by Freescale. I have

found two other bootloader projects, CoLiLo, a simple bootloader designed to boot uClinux

and more complex U-Boot bootloader, widely used across all platforms and with support for

�lesystems. When choosing the bootloader I required the ability for the bootloader to be able to

boot from both �ash and RAM so I can send it via ethernet from tftp server or load from �ash.

Also I required for the bootloader to receive the kernel from ethernet. This both is to speed

up the development as prevent myself from recovery �ashing via BDM. This was supported by

CoLiLo as U-Boot, with several excpetions on ARM processors (like Texas Instruments OMAP,

where the initial bootloader is called xloader which loads U-Boot to RAM and executes it),

doesn't support booting from RAM (I discovered the "U-Boot requirement" of 2.6.25 kernel

in the BSP package after choosing CoLiLo as my bootloader). Nevertheless I've made several

minor modi�cations to CoLiLo (interrupt handling, default con�guration etc.). The reason I

didn't want to use U-Boot initially was that it contained some compilation errors which means

Figure 5.2: BDM Debugger Application

MCF5484LITE Linux Kernel 2.6.37 Port 17

it wasn't maintained for some time and thus possibly could contain bugs. Secondly I have

originally misinterpreted the lack of support from booting from RAM, overall this is meant to

completely skip any low-level hardware initialization and relocation to RAM, something which

U-Boot is not designed for in it's initial code. This would mean slow development from �ash

memory and that's why I decided to skip it originally. It however later turned out that the

only thing I need to do is to set it's text base to SRAM location and disable it's initialization

and then I can load it to SRAM in dBUG and execute it. So at the end I have two di�erent

bootloaders for my board.

6

Linux 2.6.37 Port

6.1 GIT Repository

A git repository for the port was set up on the Department's pages and with the intention to be

used to commit each modi�cation done. This is commonly used when multiple people work on

the same project so everybody has his working source code up to date. It is also used to create

the �nal incremental patches to allow porting to later kernel version with ease. I have decided

not to use a GIT Repository for my development in initial stage for several reasons as I work on

it alone and a lot of my development still was in trial & error style - this would be re�ected in

the patches as a mess should there be another modi�cations between the committing patch and

removal patch. I have noticed that in cache code in incremental patches supplied from Freescale.

This basically voided the possibility to walk through the patches in order to resolve mismatches

so I've decided to result in lesser amount of patches having bigger blocks of code. These patches

are then used to make the port for current version of Linux kernel, which is 2.6.39 at the time of

writing the thesis. Initially I started developing on Linux kernel version 2.6.35 in the phase to

look inside the kernel code and study the code more precisely . The actual development started

on 2.6.37 kernel version but also many modi�cations were tested in the old 2.6.25 kernel as it

was the bootable system.

6.2 Linux Development

In order of the port to be e�ective the code must be working correctly and be maintainable.

Therefore my main aim was to remove all forking inside the existing code, mainly the headers.

I've focused only on the main peripherials, meaning serial line, ethernet etc., there is no support

18

MCF5484LITE Linux Kernel 2.6.37 Port 19

for PCI, CAN, any hardware cryptographic support etc. Firstly I removed all traces of MCF548X

from m68knommu branch to prevent possible ambiguous situations among both of the branches.

After that I've analysed what things were changed and why. Typically these were assembler

di�erences in low-level code and di�erent peripherial usage (each platform has its own registers

etc.). In some cases I've found problems with lack of cleanness of the code serving as a barrier

for any further development (this is the case FEC driver in Board Support Package for example).

I've focused on working with code for MCF547X / MCF548X and leaving MCF5445X code as

it was keeping the possibility of making the code work on that board as well even though it was

discarded mostly in 2.6.31 port. The thing I changed �rst was removing the hardcoded bootcode

expecting U-Boot and using it as con�guration option as in m68knommu branch. Interestingly

in 2.6.31 kernel the revised FEC driver already didn't need the passed U-Boot structure but this

was not �xed. Currently the kernel will only accept command line and init ramdisk image (if not

empty) from U-Boot if con�gured to. This also included. Second thing was reducing the forking

to a minimum that is necessary and uniting the headers with current m68knommu branch where

possible (this however still has it's pitfalls where m68k and m68knommu in the same header have

code serving a bit di�erent purpose). Other things I was editing partially �xed was cache code

(which still includes hacks in clearing and pushing). Serial line driver now contains de�nitions for

MCF547X / MCF548X. I've also modi�ed cache code which is at this point only �ushing more

than asked for (performance loss over maintaining discarded data). What remained un�nished is

proper port of memory management handling code including updating it current code in higher

layer, common for all architectures. Several commented code examples from 2.6.25 BSP kernel:

Listing 6.1: Entry point with hardcoded U-Boot boot arguments

ENTRY(__start)

/* Save the location of u-boot info - cmd line, bd_info, etc. */

movel %a7,%a4 /* Don’t use %a4 before cf_early_init */

addl #0x00000004,%a4 /* offset past top */

addl #(PAGE_OFFSET-CONFIG_SDRAM_BASE),%a4 /* high mem offset */

/* Setup initial stack pointer */

movel #CONFIG_SDRAM_BASE+0x1000,%sp

/* Setup usp */

subl %a0,%a0

movel %a0,%usp

MCF5484LITE Linux Kernel 2.6.37 Port 20

Listing 6.2: Original U-Boot handling code notice the nested default command line

which is not going to work on any other workstation

/* ethernet mac addresses from uboot */

unsigned char uboot_enet0[6];

unsigned char uboot_enet1[6];

/*

* UBoot Handler

*/

int __init uboot_commandline(char *bootargs)

{

int len = 0, cmd_line_len;

static struct uboot_record uboot_info;

u32 offset = PAGE_OFFSET_RAW - PHYS_OFFSET;

extern unsigned long uboot_info_stk;

/* validate address */

if ((uboot_info_stk < PAGE_OFFSET_RAW) ||

(uboot_info_stk >= (PAGE_OFFSET_RAW + CONFIG_SDRAM_SIZE)))

return 0;

/* Add offset to get post-remapped kernel memory location */

uboot_info.bdi = (struct bd_info *)((*(u32 *)(uboot_info_stk)) +

offset);

uboot_info.initrd_start = (*(u32 *)(uboot_info_stk+4)) + offset;

uboot_info.initrd_end = (*(u32 *)(uboot_info_stk+8)) + offset;

uboot_info.cmd_line_start = (*(u32 *)(uboot_info_stk+12)) + offset;

uboot_info.cmd_line_stop = (*(u32 *)(uboot_info_stk+16)) + offset;

/* copy over mac addresses */

memcpy(uboot_enet0, uboot_info.bdi->bi_enet0addr, 6);

memcpy(uboot_enet1, uboot_info.bdi->bi_enet1addr, 6);

/* copy command line */

cmd_line_len = uboot_info.cmd_line_stop - uboot_info.cmd_line_start;

if ((cmd_line_len > 0) && (cmd_line_len < CL_SIZE-1))

len = (int)strncpy(bootargs, (char *)uboot_info.cmd_line_start,\

cmd_line_len);

return len;

MCF5484LITE Linux Kernel 2.6.37 Port 21

}

/*

* This routine does things not done in the bootloader.

*/

#if defined(CONFIG_M54451)

#define DEFAULT_COMMAND_LINE "debug root=/dev/nfs rw nfsroot

=172.27.155.1:/tftpboot/redstripe/rootfs/ ip

=172.27.155.51:172.27.155.1"

#elif defined(CONFIG_M54455)

#define MTD_DEFAULT_COMMAND_LINE "root=/dev/mtdblock1 rw rootfstype=

jffs2 ip=none mtdparts=physmap-flash.0:5M(kernel)ro,-(jffs2)"

#define DEFAULT_COMMAND_LINE "debug root=/dev/nfs rw nfsroot

=172.27.155.1:/tftpboot/redstripe/rootfs/ ip

=172.27.155.55:172.27.155.1"

#elif defined(CONFIG_M547X_8X)

#define DEFAULT_COMMAND_LINE "debug root=/dev/nfs rw nfsroot

=172.27.155.1:/tftpboot/rigo/rootfs/ ip=172.27.155.75:172.27.155.1"

#endif

MCF5484LITE Linux Kernel 2.6.37 Port 22

Listing 6.3: Cache code �ushing more than is needed

/* Push n pages at kernel virtual address and clear the icache */

/* RZ: use cpush %bc instead of cpush %dc, cinv %ic */

void flush_icache_range(unsigned long address, unsigned long endaddr)

{

#ifdef CONFIG_COLDFIRE

// JKM -- hack until new cpushl stuff is in

// cf_icache_flush_range(address, endaddr);

flush_icache();

#else /* !CONFIG_COLDFIRE */

...

}

void cache_clear (unsigned long paddr, int len)

{

#ifdef CONFIG_COLDFIRE

// JKM -- revise to use proper caching

// cf_cache_clear(paddr, len);

flush_bcache();

#else

...

}

MCF5484LITE Linux Kernel 2.6.37 Port 23

Listing 6.4: MMU context stealing (ported from di�erent architecture) which is a per-

formance loss

/*

* Steal a context from a task that has one at the moment.

* This is only used on 8xx and 4xx and we presently assume that

* they don’t do SMP. If they do then thicfpgalloc.hs will have to

check

* whether the MM we steal is in use.

* We also assume that this is only used on systems that don’t

* use an MMU hash table - this is true for 8xx and 4xx.

* This isn’t an LRU system, it just frees up each context in

* turn (sort-of pseudo-random replacement :). This would be the

* place to implement an LRU scheme if anyone was motivated to do it.

* -- paulus

*/

void steal_context(void)

{

struct mm_struct *mm;

/* free up context ‘next_mmu_context’ */

/* if we shouldn’t free context 0, don’t... */

if (next_mmu_context < FIRST_CONTEXT)

next_mmu_context = FIRST_CONTEXT;

mm = context_mm[next_mmu_context];

flush_tlb_mm(mm);

destroy_context(mm);

}

MCF5484LITE Linux Kernel 2.6.37 Port 24

6.3 GCC Development

Working with GCC 4.5.2, with the exception of issues with "long long" type (64-bit integer)

producing easily diagnosable assembler directive error for which I've found a patch, I did not

diagnose any major bugs meaning it was compiling correctly. However the compiled code has a

lot of redundant code when it comes to register allocation. Here is a sample C function

Listing 6.5: Sample function in C

unsigned long long __attribute__((noinline)) use_ll(unsigned long long

ll)

{

return ll*3;

}

which GCC translates into assembler as

Listing 6.6: Translated to Assembler

use_ll:

link.w %fp,#-16

movem.l #60,(%sp)

move.l 8(%fp),%d2

move.l 12(%fp),%d3

move.l %d2,%d0

move.l %d3,%d1

move.l %d1,%d4 ;d1 = d3 = d4

add.l %d4,%d4

subx.l %d4,%d4

neg.l %d4

move.l %d0,%d5 ;no need to use d5 here at all

add.l %d5,%d5

move.l %d5,%a0

move.l %a0,%d5 ;d5 already had a0 value

or.l %d4,%d5

move.l %d5,%a0 ;d5 is put into a0,

;which is later put back to d0

move.l %d1,%d4 ;d3 wasn’t used yet

;d1 still has d3 value

MCF5484LITE Linux Kernel 2.6.37 Port 25

add.l %d4,%d4

move.l %d4,%a1

move.l %a0,%d0

move.l %a1,%d1 ;a1 isn’t used anymore

add.l %d3,%d1

addx.l %d2,%d0

movem.l (%sp),#60

unlk %fp

rts

in which I commented redundant directives. Fixing this issue would signi�cantly reduce size of

the binaries.

7

Conclusion

I examined supplied Linux kernel in version 2.6.25 and started to clean up and �x stated issues

in order to prepare the code to be added to mainline repository. I have also gathered information

about other projects for Cold�re which were a FreeBSD Port, uClinux and updated FreeScale

2.6.31 kernel. I also checked for proper support in GNU tools and pinpointed issues to be

�xed. However memory management unit support was not �nished which means to update

the properly with code changes on higher layers and bypass architecture �aws in software (for

example problem with kernel stacks mapping using translation look-aside bu�er which either

have to be �ushed on context switch, or be mapped as locked (and there might be a need to

steal context from another task) both leading to performance loss; alternative is to map a single

16 MiB locked page in high memory behind kernel text pages and use that to distribute space

for kernel stacks, here it saves performance but can over�ow causing the kernel to panic). Kernel

on the supplied CD will not compile itself in its current state (I have excluded all bypasses to

make it compile without being functional).

26

8

References

8.1 References

[1] MCF548x Reference Manual (FreeScale)

[2] Linux BSP for MCF5484LITE (FreeScale)

[3] Linux 2.6.31 Port for MCF547X / MCF548X (FreeScale)

[4] Linux Kernel (www.kernel.org)

[5] uCLinux (www.uclinux.org)

[6] U-Boot (www.denx.de/wiki/U-Boot)

[7] CoLiLo (Ken Treis)

[8] FreeBSD Port (Miracle Group s.r.o.)

8.2 Repositories

[1] Linux 2.6.31 Port for MCF547X / MCF548X

(dev.openwrt.org/browser/trunk/target/linux/cold�re)

27

