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Abstrakt

Efektivni komunikace mezi ¢lovékem a strojem predstavuje dilezitou oblast
vyzkumu. Nedavné pokroky v oblasti strojového ucéeni, konkrétné v oblasti
zpracovani piirozeného jazyka, umoziuji inteligentnim robotim vyuzit hlasové
rozhrani, které je pro ¢lovéka prirozené a efektivni. Nicméné, vétSina z dos-
tupnych systému pro inteligetni roboty vyzaduje stabilni pfipojeni k internetu
a zpracovani probihé z velké ¢asti v cloudu. Tento pozadavek vsak naraizi
napiiklad v aplikacich asistenénich robotti, kde internetové spojeni neni vzdy
zajisténo. Cilem této prace je (a) poskytnout piehled souc¢asnych a dostupnych
open-source frameworkt s dirazem na pozadavky hotelového asiste¢niho rob-
ota; (b) navrhnout a realizovat aplikaci hlasového asistenta; ¢) implementovat
feSen{ s jinymi systémy.

Klic¢ova slova Strojové uceni, Zpracovani prirozeného jazyka, Asistent feci.
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Abstract

Efficient communication between robots and humans represent an important
field of research. Recent advances in machine learning, specifically in the field
of natural language processing, enable smart robots to benefit from voice inter-
action interfaces. This interface allows customers to communicate with robots
naturally and conveniently over spoken utterances by employing a personal
component at the same time.

However, most of the available systems .for example, require a stable inter-
net connection to work, which interferes with standard requirements of service
robots.

This thesis, therefore, aims to (a) provide thorough research of current open-
source frameworks with an emphasis on clearly defined objectives of a service
robot within a hotel environment; (b) design and implement a speech assis-
tant application; (c) evaluate the developed system by comparing it to other
commercial state-of-the-art systems.

Keywords Machine Learning, Natural Language Processing, Speech Assis-
tant.
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Introduction

This thesis aims to implement a speech assistant application which is able to
work within strictly defined requirements. Initially, the Introduction chapter
described the objectives, the motivation and the resulting research questions.
The Theory chapter covers the key topics to comprehend the developed system
and its components. Next, the Result chapter is separated into two sections.
First of all, thorough research of current machine learning frameworks is pre-
sented, followed by the system architecture and the description of its internal
components. The Fwvaluation chapter aims to compare the developed system
to other assistants by comparing both with the previously defined objectives.
Finally, the last section discusses the consequences of the findings and the
utilisation of the system.

Background

Machine Learning is an evolving field which already influences our daily lives|45].
The interaction between machines and human beings is one area in which ma-

chine learning has gained significant influence. The ability to converse with

machines in a natural way has finally become a reality in the form of intelli-

gent assistants. By 2020, between 30 to 50 per cent of all search requests is

expected to be powered by, so-called, speech assistants like Amazon Alexa or

Apple Siri[36]. Speech Assistants are incorporating three main technologies of

natural language processing, a subfield of machine learning:

1. Speech Recognition
2. Intent Matching
3. Speech Synthesis

The former describes the transformation of a spoken utterance in a sequence
of characters. Utterances describe the smallest unit of spoken language, which
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is separated from each other with clear pauses. The intent matcher uses this
sequence to infer the purpose of the original user request. The latter trans-
forms the generated response into intelligible speech. Nevertheless, several
other algorithms are used to support computational assistants on their way to
become more natural. For instance, Hot-Word Recognition is used to parse
a continuous stream of speech to recognise the well known "Hey Siri" which
invokes the assistant to process the subsequent request. Despite remarkable
advances in this field, the usability of those systems is still unsatisfying|55].
Furthermore, the majority of the currently available speech assistants on the
market are utilising a cloud backend to compute responses, which may let
the doubt arise that privacy and data protection are violated[11]. In general,
these platforms represent a security bottleneck of smart home infrastructures
by providing potential attackers with the opportunity to control and monitor
all connected devices|42|. With this in regard, speech assistants offer a novel
way to convey with machines by introducing new weak spots in the form of
security and privacy of sensible data.

Objectives

Robotise, a German robotics startup, is interested in integrating voice assis-
tant capabilities in their service robots. These robots are currently offering
various customer services in hotels. The robots include a large touchscreen,
microphones and speakers. The following requirements were set to guarantee
compatibility with the company standards and the environment in which the
robot operates:

1. Security

2. Information Privacy
3. Scalability

4. OfHline

5. User Experience

6. Domain tailored

Security represents besides the privacy of customer data, one of the essen-
tial priorities of the company. Therefore, an architecture which ensures the
security of the communication and the intellectual property must be guaran-
teed. Robotise is utilising virtualisation such as containers heavily for their
development and deployment processes. Considering this premise, the voice
assistant ought to use this technology as a baseline to accomplish the required
scalability. The system itself should be able to work entirely offline, based on
the inadequate internet coverage of some areas within hotels. The last two
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requirements express the desire to create a unique customer experience tai-
lored for hotel guests. Hence, the voice assistant must be capable to focus
on its specific audience in the form of utilising a smaller vocabulary to gener-
ate customised responses. With these requirements in mind, the goal of this
thesis is to gain knowledge in the theoretical and practical implications us-
ing the latest technologies to compose a voice assistant who can communicate
with customers within a particular environment. The goal for the company
is to gain insight and guidance regarding which extent they should adopt this
internally developed solution or to purchase a third party product.

Research Question

This thesis investigates the primary research question:

“Can currently available software frameworks be composed to form a voice
assistant which outperforms comparable third-party products regarding
requirements of a specific environment”

Methodology

In order to investigate the defined research question in a scientific fashion, a
research methodology was adopted. Peffers et al.[52] propose a Design Science
Research Methodology (DSRM) for system design which involving the following
five activities:

1. Problem identification and motivation
2. Objectives definition

3. Design and development

4. Demonstration

5. Communication

Following these five steps, the Introduction chapter identifies the problem
and motivates to develop an entirely new domain tailored intelligence. The
design and implementation of this system are described in the Result section.
The Fwvaluation chapter tries to assess the developed system in terms of the
outlined objectives. Finally, the Discussion chapter debates the outcome of
this work.






CHAPTER 1

Theory

This chapter covers the important topics to understand the thesis. It fol-
lows the processing pipeline of speech assistants which consists of the Speech
Recognition, Dialogue System and Speech Synthesis. The last section aims to
introduce the basic concepts of virtualisations with a specific focus on contain-
ers.

1.1 Speech Recognition

Speech is the most natural form of human communication, and consequently,
speech recognition is one of the most exciting modern applications regarding
machine learning[6]. The objective of speech recognition is parsing a given
input audio stream to create a textual representation in the form of a sequence
of words and sentences|64]. The upcoming section describes the challenges to
process such audio streams and various techniques of such algorithms.

1.1.1 Challenges

Major advances in machine learning allow applications to use speech recogni-
tion modules simplifying the interaction and consequently improving the user
experience|6]. Nevertheless, there are still numerous challenges which influ-
ence the accuracy of such systems. In general, noise represents one of the
most significant difficulties since it overlaps the actual signal, which results in
distortion and lastly misinterpretation. The level of noise strongly depends on
the surrounding environment as well as the nature of the applied microphones.
The microphone transforms the sound wave into a digital representation. This
transformation process can add further artefacts like echos and distortions.
Besides, unique properties of the speaker like dialect, sex, age and physical
state affect the computed output as well. Conclusively, a lot of parameters are
influencing the outcome of speech recognition algorithms, which leads to the
fact that even the latest publications still suffering from problems. However,
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speech to text systems reached a crucial mark which allows the usage within
machine learning based assistances|6, 64, 21, 48|.

1.1.2 Techniques

Modern speech recognition systems are consisting out of three processing
stages: Preprocessing, Feature Extraction and Classification. Each of these
stages fulfils a crucial task to transfer spoken utterances into text. Figure 1.1
shows the pipeline from the audio input on the left, transformed through the
microphone into a digital representation. Next, the pipeline itself processes
the raw audio information and last but not least generates a set of characters.

Y

. N Preprocessing | Feature Extraction N Classification
\. , 7| (section 1.1.2.1) “1 (section 1.1.1.2) ”1 (section 1.1.2.3)

Figure 1.1: Speech Recognition Pipeline

1.1.2.1 Preprocessing

The preprocessing step servers in general as a filter. Interference through
surrounding noise leads to insufficient accuracy. Therefore, the preprocessing
stage removes all kind of unwanted artefacts based on the zero-crossing rate
and the signal energy[28|.

1.1.2.2 Feature Extraction

The main goal of the feature extraction stage is to determine a sequence of
features in the form of a vector providing a compact representation of the given
input signal|43]. Usually, this extraction performs three substeps:

1. The acoustic front-end computes raw features which are describing the
envelope of the power spectrum.

2. The second stage calculates static and dynamic features.

3. Converts previous feature vector into more robust and compact repre-
sentations.

Anusuya et al. [6] mentions various feature extraction algorithms.
The Principal Component Analysis (PCA) represents a non-linear feature ex-
traction method which applies eigenvectors to calculate the required features.
In comparison, the cepstral analysis uses static features calculated from the
power spectrum of the signal. This approach can be improved by using the

6
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Fourier transformation to determine the power spectrum which is called Mel-
Frequency Cepstrum (MFC).

In general, the computed features shall enable the speech recognition module
to distinguish diverse yet similar sounding records.

1.1.2.3 Classification

The Classification stage represents the main part of the speech recognition
task which learns the relationship between utterances, sentences and words|64].
Three different approaches can be distinguished:

Acustic Phonetic Approach The acoustic-phonetic approach assumes that
there are finite, distinctive phonetic units in spoken language which are char-
acterised by a set of acoustic properties. A spectral analysis serves as a first
step to extract these acoustic properties. On this basis, the input signal can
be segmented into stable acoustic regions attached with one or more labels re-
sulting in the so-called phoneme lattice characterisation of the speech. Finally,
the attached labels are used to obtain a valid word out of a database which
matches the phoneme lattice characterisation|6].

Pattern Recognition Approach A well-formulated mathematical frame-
work characterises this approach. The training stage introduces consistent
speech pattern representations which enable reliable pattern comparison. These
representations can be generated in a statistical or template style. The tem-
plate approach uses stored pattern references representing the dictionary of
possible words. In comparison, the statistical approach utilises probabilistic
models, for instance, Hidden Markov models to deal with uncertain or incom-
plete information. The pattern recognition stage attempts to find a direct
match between the input speech and the previously learned patterns to deter-
mine a textual transcript|6].

Artificial Intelligence Approach The artificial intelligence approach com-
bines the two previous strategies in the form of using the knowledge about
linguistic, phonetic and spectrograms as well as occurring patterns. Neuronal
Networks enable modern speech recognition systems to learn about the rela-
tionship among phonetic events. Besides the immense potential of this rel-
atively new approach, neuronal networks often require hundreds of iteration
over large amounts of training data which prolongs the overall time to train
such models drastically[6].
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1.2 Dialogue Systems

Human-machine interaction promises an effective and natural way to exchange
information. The machine must, therefore, keep track of various states and
parameters such as user speech, conversational context and collected data to be
capable of understanding the current phase of the ongoing conversation. This
task, so-called dialogue tracking, is one component of a system which enables
machines to follow and interact with us in a natural way[33]. In general,
dialogue systems can be distinguished in two different categories: task-oriented
systems and non-task-oriented systems (see figure 1.2). The latter offers the
user a set of actions which can be triggered through a corresponding speech
command. As a result of this, the system can guide the user through a whole
process and even ask additional questions to limit the intention of the request.
That kind of system is commonly structured in the form of a pipeline. Firstly,
the system represents the request as an internal state. The second stage selects
an action according to the internal state and the implemented policy, which
finally generates the response of the system.

Non-task-oriented systems, also termed chatbots, aim to have an open-domain
dialogue with their counterpart. Two main approaches are used to realise
such systems: generative methods such as sequence-to-sequence models and
retrieval-based methods which selecting responses from a database[16].

Figure 1.2: Dialogue System Overview

Dialogue Systems

—

— |

Task-oriented
(section 1.2.1)

Non-task-oriented
(section 1.2.2)

L —

Pipeline
Approach
(section 1.2.1.1)

End-to-End
Approach
(section 1.2.1.2)

Generative
Models
(section 1.2.2.1)

Retrieval-based
Models
(section 1.2.2.2)

1.2.1 Task-Oriented Systems

This chapter introduces two approaches of task-oriented systems: pipelines
and the end-to-end method.
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1.2.1.1 Pipeline Methods

The pipeline approach of task-oriented systems consists of four separate stages,
which are visualised in figure 1.3.

Figure 1.3: Dialogue System Processing Pipeline

Intention: Create event

Natural When: 4 pm Dialogue
"Create an event at 4 pm"  ---- > Language > State
Understanding Tracker

State: Create

Y

Natural Dialogue
"I created your event" € ----1 Language < Polig
Generation Y

Execute: Create Event

Natural Language Understanding (NLU) parses the input utterance,
which has already been transformed into a string. The NLU attempts to map
the given statement into predefined semantic slots. These slots are specific
to the scenario of the current conversation. For instance, the user wants to
book a flight to New York City, then the required semantic slots could be the
destination and the kind of transportation. The same example leads us to the
next task of the NLU intent detection. The intent detection identifies the pri-
mary reason for the given request and therefore, specifies the individual action
later on. The final output of the NLU is the so-called semantic representation,
which includes the semantic slots as well as the intention.

Dialogue State Tracker manages the current state by using predefined
rules to calculate the most likely subsequent state according to the semantic
representation of the previous stage. However, these predefined rules are prone
to frequent errors as the most likely result is not always the desired state[16].

Dialogue Policy chooses the most likely action based on the previously
calculated dialogue state. It can consider handcrafted rules or work entirely
with a statistical model. For example, a customer wants to book a hotel room.
Hence the dialogue policy module could fetch the contingent of available rooms
from the hotel database which would represent the most likely action[16].

Natural Language Generation represents the last stage of the pipeline
and generates out of an abstract action selected by the previous step a natural

9
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language utterance. There are two main approaches to implement this module.
The first approach consists of a handcrafted collection of predefined responses
in comparison to the second approach, which generates the answers entirely by
itself. Those two approaches represent the typical trade-off between flexibility
and accuracy. The template-based method guarantees grammatically correct
responses. However, the second approach offers versatility.

1.2.1.2 End-to-End Methods

The End-to-End method represents a completely new concept of a dialogue
system based on deep learning and sequence-to-sequence models. As admitted
from[66], the pipeline approach suffers two major limitations. The Credit As-
signment problem describes the fact that developers, in general, get feedback
about the final output of their system. Applying this fact to the given pipeline
architecture, tiresome error analysis has to be obeyed to determine the mali-
cious stage. The other dilemma, termed Process Independence, occurs if one
stage of the pipeline receives an update. In this case, the entire pipeline has to
be updated, respectively, because each stage depends on its predecessor. Con-
sidering these two drawbacks, a system which only consists out of one single
module would be beneficial.[10], and others propose such a module in the form
of a network-based end-to-end trainable task-oriented model, which treats the
given task as a mapping from the dialogue history to a new response[16].

1.2.2 Non-Task-Oriented Systems

In comparison to Task-Oriented systems, Non-Task-Oriented systems aim to
have an open-domain conversation with their counterpart. The upcoming two
chapters discuss Generative and Retrieval-based models which are generally
used to implement such procedures.

1.2.2.1 Generative Models

Generative models treat the response creation task as a translation from input
requests to corresponding responses. Sequence-to-Sequence (seq2seq) mod-
els resulted in great accuracy in translating words from one language in an-
other[63]. Nevertheless, using the same models to solve the given task of
generating responses was found to be much harder, considering the fact that
a given request fits a large number of various responses. Besides, Sequence-to-
Sequence models suffer from a lack of variety and meaning of their generated
responses. Both concerns are current research topics and challenges for the
generative approach of dialogue systems[46, 16].

10
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1.2.2.2 Retrieval-based Methods

This approach takes advantage of response repositories to select a suitable
answer to a given demand. The essential part of this method is the match-
ing algorithm. Single-turn response matching algorithms take into account
the current request message of the utterance. The algorithm calculates out of
this message a vector representation and tries to maximise the correspondence
with precalculated vectors of the repository responses. Multi-turn response
matching algorithms work with the same principles but considering the pre-
vious massages of the dialogue to enrich the calculated feature vector. This
method guarantees grammatically correct and reasonable responses during the
conversation, as long as the matching algorithm manages to determine a cor-
responding reaction within the repository|16].

1.3 Text Synthesis

The text synthesis represents the last element in the processing pipeline of
a modern voice assistant. In general, text synthesis aims to solve a signal-
inversion problem. The information encoded in a string of characters represents
a highly compressed signal which must be transformed into speech utterances,
so a decompressed signal. Conventional text-to-speech (TTS) systems are
composed out of several submodules like acoustic front-ends, duration mod-
els, acoustic prediction models and vocoder models. The complexity of such
systems is reasonably high, plus the accuracy nor the naturality of the gen-
erated speech is comparable to a human utterance. Recent advances in deep
learning and particularly of end-to-end models allow a novel approach to cre-
ating utterances out of a text passage with only one single module. This new
approach utilises audio-text pairs to train a sequence-to-sequence model and
decreases, thereby the complexity respectively by improving the quality at the
same time[65]. There are two major categories of text-to-speech systems which
can be subdivided according to the utilised technique. Fundamentally, systems
can generate a speech in the form of composing recorded waveforms or gener-
ating the waveform completely by itself. Both, Sample-based and Generative
methods are described in the following chapters as stated by|[26]. Furthermore,
there are Hidden Markov Models and End-to-End Models described attempting
to benefit from recent advances in machine learning (see figure 1.4).

11
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Speech
Synthesis

O 5

End-to-End Hidaen Markov
Models Synthesis
(section 1.3.4) (section 1.3.3)
\ 4 A4
Sample-based Generative
Synthesis Synthesis
(section 1.3.1) (section 1.3.2)
\ 4 \ 4 \ 4 I 1
Unit-selection Sample-based Diphone Articulatory Sinusoidal
Synthesis Synthesis Synthesis Synthesis Synthesis

Figure 1.4: Speech Synthesis Overview

1.3.1 Sample-based Synthesis

Sample-based Synthesis based on the fact that human speech represents the
most natural possible utterance. Therefore, the simplest possible approach
might concatenate recorded real-world utterances to form new speech responses.

Limited Domain Synthesis This approach can be applied for use cases
which are limited to a specific domain, for instance, train announcements.
Following that example, each station name and further required information
are recorded in advance. If the train approaches a train station, the synthe-
siser concatenates the required utterances to inform the passengers about the
upcoming stop. Limited domain synthesis is straightforward to implement and
can be comfortably extended. Overall, this system can produce excellent nat-
ural speech responses. However, it is thereby limited to its narrow domain,
which makes it worthless for real text-to-speech use cases.

Unit Selection Synthesis This method generalises the previous approach
in the form of extending the domain. The system allocates a database to store
a vast amount of recorded utterances which takes a considerable effort to pro-
vide. Generally, speech synthesis systems must be able to pronounce arbitrary
words which our current system is still not capable of. A first solution might
be to record and store phones as well as words and sentences in the same
database. The system could use the phones to build the required waveforms
of arbitrary words. Unfortunately, this approach results in low intelligibility
and naturalness according to the fact that phones are differently pronounced
depending on their context. This effect can be bypassed in recording phone

12
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transitions, so-called diphones. Diphones are far more stable in their pronunci-
ation in comparison to phones itself. However, the resulting database consists
of many redundant entries since each phone has to be recorded multiple times
with varying intonation, speed, and pitch. All in all, unit selection systems
embody the most potent and natural sample-based speech synthesis system.
However, it costs an enormous effort to create the required database.

Diphone Synthesis The Unit Selection Synthesis uses a database con-
taining words, sentences and diphones to form new speech utterances. This
database has to manage numerous entries which increase the size tremendously.
The Diphone Synthesis attempts to solve this problem in storing only diphones
in its database. The diminished capacity of the module enables the application
to run on embedded systems and uses less computational resources to search
through the dataset at the same time. However, the generation of utterances
only with diphones introduces new challenges. Speech irregularities occur if
diphones are not recorded with the same pitch, speed and pronunciation. Fur-
thermore, the recorded waveforms should start and end at a common point
to ensure continuity of the generated response. Generally, Diphone Synthesis
results in a high level of intelligibility but provides a low level of naturalness.
The proposed solution to ensure continuity also leads to waveforms which do
not represent the changing pitch and emphasis of a human utterance.

1.3.2 Generative Synthesis

Generative Synthesis approaches generating response waveforms purely pro-
grammatically by using software models to simulate the physical and acous-
tic appearance of humans. This leads primarily to models with a meagerer
memory footprint. However, generative approaches require more computation
resources.

Articulatory Synthesis The Arcticulartory Synthesis applies knowledge
of the human vocal tract in the form of a physical simulation to approximate
human utterances. However, the physical simulation requires advanced biome-
chanical and fluid dynamic models to calculate the air flow through the vocal
tract. The major challenge of this synthesis method embodies the model gen-
eration. For this purpose, advanced scanning techniques like x-ray cameras are
used to reconstruct a virtual clone of the vocal tract of a human being. The
reconstruction demands high-level algorithms to build out of two-dimensional
data a three-dimensional model. Nevertheless, through changing the internal
model parameter, various speaker voices can be produced, which is a massive
benefit of this approach|26].

Sinusoidal Synthesis In comparison to Articulatory Synthesis the Sinu-
soidal Synthesis aims to create directly a waveform produced in ordinary

13
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speech. This approach does not need an advanced model of a vocal tract and
is therefore much more comfortable to implement. The method superimposes
different sinusoidal waves together with noise to create vowels and consonants.
This method leads to intelligible utterances with a lack of naturalness|26].

1.3.3 Hidden Markov Model Synthesis

Hidden Markov Models (HMM) are statistical models describing the depen-
dency between states of a given system. The central statement of Markov says
that the current state does only depend on the previous state of a system. The
Hidden Markov Model Synthesis aims to benefit from both fundamental ap-
proaches: Sample-based and Generative synthesis. This approach utilises huge
datasets to learn an HMM in predicting the next phone depending on the pre-
vious one comparable to a sample-based synthesis method. Notwithstanding,
the HMM does not concatenate recorded samples to generate waveforms. It
generates programmatically different waveforms like a generative approach|26].

1.3.4 End-to-End Models

End-to-End models describe a novel architecture which applies recent advances
in neural networks. Thereby, two different kinds of end-to-end models can be
distinguished: Recurrent and Conwvolutional Neuronal Networks. Both vari-
ants qualify a speech synthesis as a mapping of a given input sequence to a
sequence of phones building a waveform. Encoder-Decoder architectures are a
preferred way of solving sequence-to-sequence tasks in the field of natural lan-
guage processing. The encoder network, represented through a convolutional
or recurrent neuronal network, calculates out of a string of words an internal
state. The decoder network uses this internal representation to determine in
a second step the waveform utterance. Recent research papers introduced an
additional layer between encoder and decoder so-called attention mechanism,
which manages the alignment between the input and the output sequence[29,
65].

1.4 Virtualization

A monolith is a software application whose modules cannot be executed in-
dependently [24]. Therefore, monoliths suffering various issues like scalability,
dependency management, maintainability. The microservice architecture has
been proposed to cope with these problems. The microservice architecture de-
scribes a system which splits the application in simple, small and lightweight
services. Those services are designed to perform a very cohesive business func-
tion by communicating over messages with each other and are therefore com-
pletely independ|2]. This innovative software style solves some of the known
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issues of monolith application. Services enable dynamic and natural load bal-
ancing. If a system has to manage more workload regarding user requests,
for example, the same module can be relaunched to provide several instances.
This modularity also improves the development of other systems, since reusing
a given module with its clear interface is an additional advantage of this ar-
chitecture. Furthermore, the modularity of the microservice architecture al-
lows teams to work entirely distinct from which the testing and verification
process benefits equally. However, it also introduces new challenges with its
character as a distributed system. Primarily, the communication within the
system represents a critical weakness. Distributed systems use conventional
web technologies like Representational State Transfer (REST), JavaScript Ob-
ject Notation (JSON) and Extensible Markup Language (XML) to realise the
interaction between services and third-party modules. These protocols require
additional overhead to secure the data exchange and ensure the integrity of
the whole system. Another challenge represents the system performance. The
network latency has a significant influence since it is much slower than data
exchange through in-memory processes|24]. The following chapters discuss
the realisation of a microservice architecture with Docker, an open-source con-
tainerisation tool and focus thereby on its security mechanism (see figure 1.5).

Monolithic Architecture Micro-Service Architecture

‘1' Service

Application Service <—|_) Senvi
ervice A

Service

Service

Ve

Figure 1.5: Monolithic vs. Micro-Service Architecture
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1.4.1 Docker Ecosystem

Docker|22]| describes a set of open-source products which are maintained and
developed by the Docker Incorporation. This toolset is current one of the
most successful containerisation application since it offers unique advantages
in comparison to his predecessors. First, Docker offers an easy and straight-
forward interface to run an application within a container. This benefit in-
creases the group of potential users and use-cases. Furthermore, the Docker
ecosystem collaborates with various third-party tools like Kubernetes|7], Va-
grant[32] and Ansible[58] which improve the management and the deployment
of Docker containers or more general microservices. Lastly, a huge community
helps to improve and increases the containerisation universe of Docker with
new features and particularly base images, which function as blueprints for
new containers as well as complete implemented services like databases or web
servers|12].

Docker Engine Docker Engine is a packaging tool to create and launch a
containerised application. Figure 1.6 shows the principal components of the
Docker Engine. The Docker Daemon runs on top of the host operating sys-
tems and provides the basic virtualisation functionality. The Docker Client
is a command-line tool which allows the user to interact with the Docker
Daemon and its containers over a RESTful API. In general, the Docker Dae-
mon establishes a secure and isolated environment to run its container. This
environment uses two main features of the Linux kernel: namespaces and con-
trol groups (cgroups). The kernel namespaces are responsible for altering the
view of internal container processes. That means that processes running in-
side the container do not see processes of other namespaces and vice versa.
This mechanism works with six different categories of namespaces: mount,
hostname, Inter-Process Communication (IPC), Process Identifiers (PID), and
network|[37]. Control Groups provide the functionality to limit the access to
specific resources which a particular process within a container is allowed to
access|12].

Nevertheless, processor security vulnerabilities like Meltdown or Spectre clari-
fying that Docker with its numerous security layers depends lastly on a secure
operating system as well as reliable hardware. In general, the system admin-
istrator must ensure that the latest versions of the Linux kernel as well as the
Docker engine itself are used to minimize the risk of such vulnerabilities.

Docker Container The Docker Engines launches its container from images.
These images represent a blueprint which instructs the Docker Engine how to
build and start a new container. Images consist of layers which subdivides and
structures the build workflow into steps. This mechanism simplifies the update
and distribution process of containers over a network significantly. Figure 1.7
shows the structure of an image with examples for each layer. The base image
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Figure 1.6: Docker Engine Overview

serves as an essential layer which sets up the container environment like the
operating system and its basic system configurations. After that, additional
libraries and application are installed as well as files which can be added to
the container.

Docker Hub Docker Hub|23| serves as a platform to exchange customised
container images stored in public and private repositories. Furthermore, the
platform signs and authenticates all uploaded images so that potential users
can verify their integrity[18].

1.4.2 Docker Security

This chapter reviews the security mechanism, namely Isolation, Host Harden-
ing and Network Security, discussed by [18] which are enforced by Docker.

Isolation As previously mentioned, the Docker Daemon isolates its container
by using Linux kernel features exclusively. By default, namespaces are au-
tomatically configured in comparison to cgroups which need to be enabled
manually. The default configuration of cgroups is fairly strict beside the fact
that all containers are sharing the same network bridge, which enables ARP
poisoning attacks. The configuration can be changed to deactivate the mu-
tual network bridge. However, this would restrict the whole communication
between containers and is therefore really often not applicable.
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Figure 1.7: Docker Image Structure

Host Hardening Host Hardening can be enforced through additional Linux
kernel modules like SELinux, Apparmor and Seccomp which are currently sup-
ported by Docker. These modules restrict cases such as a container escapes or
compromising containers from the host side. Docker offers a default configu-
ration for those modules which hardens the host from the containers. Never-
theless, further settings, for example, restricting the access from the host to
the containers, must be configured individually.

Network Security The Docker Daemon is controllable over the network,
which enables the usage of Docker containers in cloud structures. This con-
nection is by default, encrypted with TLS, and the images itself are verified
with a hash. Docker Content Trust is another security mechanism introduced
by Docker to address package manager flaws. This mechanism implements
a whole PKI process to ensure a certain level of security in the process of
managing images over the network.
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CHAPTER 2

Result

The result chapter presents the findings and proposals of this thesis. Initially,
a model defines the objectives regarding the DSRM to evaluate the designed
solution (see Methodology chapter). Next, chapter 2.2 presents the findings
of a thorough comparison of various frameworks and justifies the final choice
respectively for each stage of the processing pipeline. Chapter 2.3 discusses
the system architecture, the micro-services and the defined communication
schema.

2.1 Solution Objectives Model

Following the chosen methodology, an objectives model has to be defined. The
objectives model represents the baseline with which the developed system can
be compared to evaluate its performance. Regarding the defined requirements
in chapter , the model focuses on three main aspects.

1. Offline: The whole system must be capable of working at least partial
offline, which means that the system must be able to process a user
request without having a stable internet connection.

2. User Experience: The user must be able to have a smooth, under-
standable and rational communication with the system.

3. Security: The system must be secure in the matter of information pri-
vacy and general attacks from outside.
2.2 Framework Selection

This chapter examines the outcome of thorough research, aiming to find frame-
works in the domain of natural language processing. Both open and closed
source projects are considered, as well as the latest introduced algorithms
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based on scientific papers. The following three sections evaluating frameworks
distinct for the three different stages of a voice assistant: speech recognition,
intent matching and speech synthesis. Thereby, each section defines an evalu-
ation metric to ensure a systematic comparison of pre-selected frameworks.

2.2.1 Speech Recognition

Speech Recognition represents the first stage of a recent speech assistant ap-
plication. This stage influences the accuracy of the following stages directly,
which leads to misinterpretation of utterances. A designated metric evaluates
a subset of speech recognition frameworks based on six different characteris-
tics which rely on the previously defined objectives in chapter . The following
enumeration discusses the specified characteristics and their purpose.

1. Information Privacy discusses the collection and dissemination of user
data.

2. Adaptability reviews the capacity to adapt to a specific domain.
3. Offline Capability reflects the ability to operate offline.

4. Language Support inspects the number of out-of-the-box supported
languages.

5. Support/Documenation reflects the given customer support and doc-
umentation.

6. Maintainability surveys the effort of maintaining this framework.

2.2.1.1 CMU Sphinx

CMUSphinx|13| represents a set of application focusing on language process-
ing developed by the Carnegie Mellon University (CMU). Some of the possible
use-cases are speech transcription, closed captioning, speech translation, voice
search and language learning|15]. The CMUSphinx toolkit offers four major
applications, which are all together speaker independent. Pocketsphinx, to-
gether with Sphinxbase, serves as a lightweight recogniser tool with a small
vocabulary which is implemented in the C programming language. Sphinxtrain
includes all the necessary tools to train models for the CMUSphinx toolkit.
Sphinx4[41] represents a Java implementation of the same algorithm developed
to run on servers allowing to search through large vocabularies. Furthermore,
the project offers pre-trained models in different languages as a download for
free.

The CMUSphinx family uses a similar approach like the acoustic-phonetic ap-
proach by utilising Hidden Markov models to recognise speech utterances|4].
Furthermore, various feature selection methods are implemented like MFC,
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PCA, and Linear Discriminant Analysis (LDA) as well as additional language
models|39].

Table 2.1 shows the evaluation results for the Pocketsphinx package. The
CMUSphinx application family is developed as an open-source project|14]| with
a specific focus on a lightweight implementation which enables the usage on
embedded systems. This fact implicates that the framework is offline usable
since the source code can be compiled for every platform.

Furthermore, the system architecture allows through its modular design to
fork from the latest development branch developing individual features and
improvements. The Sphinxtrain toolset empowers the opportunity to adapt
the framework to various languages and particularly to create domain-specific
vocabularies which enhance the accuracy of the system. The system itself does
not store any individual data, and given the fact of its open-source character,
we can review the entire code base to justify this assumption. This suggests
that the privacy of user input data is warranted.

In contrast, the maintainability of this framework rates rather weak in com-
parison to closed-source solutions. A thorough foundation in the field of
natural language processing, as well as software architecture, including sev-
eral programming languages, is required to maintain this project. However,
CMUSphinx engages an active community which develops new features and
bugfixes.

Characteristic Result
Information Privacy High
Adaptability High
Offline Capability Yes
Language Support English, Chinese, French, Spanish, German, Russian
Support/Documentation | Active community, brief documentation
Maintainability Medium

Table 2.1: CMUSphinx evaluation

2.2.1.2 DeepSpeech 2

DeepSpeech 2[50] represents an implementation of the end-to-end speech recog-
nition algorithm proposed by Amodei et al.|3]. The project takes advantage of
PaddlePaddle[51], which is an efficient deep learning platform from Baidu. In
comparison to the CMUSphinx framework in chapter 2.2.1.1, this algorithm
adopts a radically different approach. Figure 2.1 shows the architecture of the
model, which combines several convolutional input layers followed by multiple
recurrent layers together with a finally softmax layer. This architecture allows
training the model with simple audio-text pairs.

On the contrary side, this class of model requires a vast amount of compu-
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Figure 2.1: Architecture of the DeepSpeech2 model (Retrieved from|3])

tational resources to determine the up to 52 million parameters of the Deep-
Speech 2 model|20]. These facts influenced the evaluation of this framework,
which is presented in the following table 2.2. The considerable effort to train
new models and therefore lowers the adaptability to new languages lowers the
rating for the maintainability and the adaptability. Though, the project offers
two pre-trained models in English and Mandarin.

On the other hand, the project supports offline usage and does not store any
user data which can be again guaranteed by reviewing the source code. Fur-
thermore, the project has got an active community. However, the documenta-
tion consists only out of the research paper and sparse yet complete instructions
on the project page.

Characteristic Result
Information Privacy High
Adaptability Medium
Offline Capability Yes
Language Support English, Chinese
Support/Documenation | Low/Good
Maintainability Low

Table 2.2: DeepSpeech 2 evaluation

2.2.1.3 wav2letter++4

The Facebook Al research team develops an open-source speech recognition
toolkit based on an end-to-end architecture. The toolkit focuses on efficiency,
which makes wav2letter++ two times faster in training compared to other
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equivalent frameworks|[54]. Figure 2.2 shows the different modules of the
wav2letter++ framework. The learnable front-end chooses features out of
the raw waveform based on Mel-Frequency Cepstral Coefficients (MFCC) or
the power spectrum. Next, the acoustic model uses 1-dimensional convolu-
tional neural networks which offer the benefit to see a huger context without
increasing the number of parameters. Lastly, the language model adopts a
similar architecture of convolutional neuronal networks and connects it to the
segmentation criteria. The segmentation criteria represent a simpler form of
the CTC criteria of DeepSpeech2 algorithm|17].

Figure 2.2: Architecture of the wav2letter+-+ model (Retrieved from|25])
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The following table 2.3 shows the evaluation of this framework. The frame-
work is published as an open-source project allowing us to run the code offline
on any device which offers enough computation resources. Furthermore, the
source code does not imply that the framework stores user data during the
inference process. The facebook Al research team used for their framework
an end-to-end architecture, which represents one of the latest approaches in
the field of speech recognition. As already mentioned in chapter 2.2.1.2, end-
to-end models differ significantly in their structure of the training dataset.
This means that training data can be generated much more comfortable in
the form of using audiobooks, for example, since the required dataset consists
out of audio-text pairs. This simplified dataset generation increases the adapt-
ability significantly in comparison to the approach used within chapter 2.2.1.1.
Unfortunately, the wave2letter++ framework does not offer pre-trained models
which would involve a model training before the framework can be used in an
application. Furthermore, to use wav2letter++ a thorough foundation of ma-
chine learning and language processing knowledge is required, which evaluates
the maintainability as relatively low in comparison to other frameworks.

2.2.1.4 Summary

This chapter evaluated three pre-selected speech recognition frameworks with
a metric described in chapter 2.2.1. The first framework, CMUSphinx, imple-
ments a traditional architecture of a speech recognition task which involves
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Characteristic Result
Information Privacy High
Adaptability High
Offline Capability Yes
Language Support No pre-trained models available
Support/Documenation | Low/Good
Maintainability Low

Table 2.3: wav2letter+-+ evaluation

a Hidden Markov Model. Besides being good documented, the framework
supports various languages out-of-the-box. DeepSpeech, the other evaluated
framework, follows a more recent approach in applying an end-to-end archi-
tecture. Therefore, the framework benefits from much easier training dataset
structures. However, neuronal networks require substantial computational
resources and data to be able to outperform the traditional approach with
HMMs. Last but not least, wave2letter++ presents a similar end-to-end ar-
chitecture but stands out with its efficient implementation, which decreases the
training time by a factor of two. In conclusion, CMUSphinx convicted with
its various supported languages and the HMM-based implementation. Never-
theless, the speech recognition stage fulfils a crucial task and must, therefore,
operate with the highest accuracy possible. That in mind, the CMUSphinx
framework should be exchanged in the long-term with modern end-to-end mod-
els.

2.2.2 Intent Matching

The second stage of our processing pipeline is the intent matching. Intent
matcher trying to extract the intent out of spoken utterances as described in
chapter 1.2. As well as in the previous chapter, a metric supports the compar-
ison of three pre-selected frameworks discussed in the following enumeration.

1. Information Privacy discusses the collection and dissemination of user
data.

2. Endpoint Support reviews the capacity to communicate with third-
party endpoints.

3. Offline Capability reflects the ability to operate offline.

4. Language Support inspects the number of out-of-the-box supported
languages.

5. Documenation reflects the given customer support and documentation.

6. Maintainability surveys the effort of maintaining this framework.
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2.2.2.1 Rasa

Rasa|57| is one of the leading open-source machine learning toolkits providing
algorithms to extract and manage conversations between humans and com-
puters|[56]. The toolkit consists of two major application: Rasa NLU and
Rasa Core. The former describes the natural language unit of Rasa, which
is responsible for translating text utterances in an understandable computer
format. This translation task involves to fill in entities and slots representing
the memory of the assistant as described in paragraph 1.2.1.1. The figure 2.3
shows the general components of the overall rasa system. The NLU is realised
through the first step.

1
Interpreter
2
Message In
3
6 Tracker Policy
Message Out
5
. 4
Action

Figure 2.3: Architecture of the Rasa system (Retrieved from[9])

Rasa Core represented through step two to six in figure 2.3 is responsible
for tracking and executing of actions according to the given output of the NLU.
The framework offers through its modular architecture based on RESTful APIs
the possibility to separate the implementation of actions. This can be particu-
larly beneficial if the application backend runs on a different device. Further-
more, Rasa Core allows integrating various third-party platforms like Facebook
Messenger, Telegram, SocketIO. Table 2.4 shows the various language which
the rasa platform supports and highlights the excellent documentation of this
framework. The offline capability ensures information privacy, though Rasa al-
lows outsourcing the tracker to an external database. The configuration of the
rasa framework works primarily through files encoded in markdown or JSON
format. Third-party projects started to implement graphical user interfaces to
simplify the process of generating the required training datasets utilising the

RESTful API of Rasa Core and NLUJ9.
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Characteristic Result
Information Privacy High
Endpoint Support Yes
Offline Capability Yes
Language Support English, Spanish, Portuguese, Italian, French, Chinese
Support/Documenation | Good/Very Good
Maintainability Medium

Table 2.4: Rasa evaluation

2.2.2.2 Dialogflow

Dialogflow serves as an online provider of chatbots based on the Google Cloud
Platform. It offers a simple and powerful way to create assistants which
are fully integrated within the Google universe as well as several third-party
providers like Kik, Telegram, Twitter and Skype. The following figure 2.4 ex-
plains the overall structure of the Dialogflow platform. Dialogflow works with
agents describing a custom chatbot application. The end-user device and Di-
alogflow communicating with the provided SDK available for various program-
ming languages. The agent extracts the intention together with pre-defined
entities. The Fulfilment component connects with the company internal server
or backend, which implements the required actions. The agent itself is config-
urable through the web interface, which serves as documentation and guide at
the same time.

Your integration, MyDirectionsAgent

website, or app give-directions Fulfillment
Retrieve your agent’s response User Says Connect your services, APLs
for a user’s query via the I'd like directions to and databases to Dialogflow
User Request detectIntent APL London
[ Directions to(PFague 8
. : . O )
directions to —— ° » e Action e atare iparier
Paris directions 3
Entities Your Webhook
User @sys.geo-city {
Agent Response Response “falfillnentText”: I
<@ here are your
Here are your directions directions to Paris..”
Here are your to @sys.geo-city
directions to g }
Paris.. N B
find-location
User Says

t

projects.agent.intents.create

K
“action”:"directions”,
)

Agent API
Create, edit, and update
intents, entities, contexts, and more

Figure 2.4: Dialogflow SDK structure (Retrieved from[30])

The evaluation of Dialogflow reports proper documentation, including an
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Characteristic Result
Information Privacy N/A
Endpoint Support Yes
Offline Capability No
Language Support up to 20 languages
Support/Documenation | Very Good/Very Good
Maintainability Very Good

Table 2.5: Dialogflow evaluation

extensive selection of examples, which allows everybody without specific knowl-
edge in machine learning to create a chatbot agent. Furthermore, Dialogflow
benefits from the Google service backend, which allows it to support a vast
amount of languages as well as various other components like text-to-speech
and phone call capabilities. This advanced feature set requires a considerable
amount of resources which forces Dialogflow agents to run online. Information
privacy cannot be guaranteed considering the fact that the service runs on
Google servers as well as the source code is closed-source. Last but not least,
the maintainability outperforms the previous framework based on the graphi-
cal user interface and the provided support. Nevertheless, Dialogflow charges
their customer with fees if a limited amount of requests may be exceeded.

2.2.2.3 Snips NLU

Coucke et al. describe in their paper|[19] Snips as a machine learning based
voice platform which is able to perform inference on embedded systems. Fur-
thermore, the platform does not store any user data which supports the so-
called "privacy by design" paradigm. This paradigm implies that the platform
is offline capable as well as published in the form of an open-source project.
Snips supports currently seven languages, including English, German, French.

In general, Snips NLU follows the architecture described in figure 2.5. The
system applies two different intent matching algorithms successively. The de-
terministic intent matching component uses regular expressions to fill intents
and slots, which results in perfect matches as long as the input has been part
of the training dataset. If the deterministic matcher is not able to fill the enti-
ties probably, the probabilistic intent matcher takes over. This intent matcher
works with a machine learning approach and is, therefore, able to outperform
the deterministic intent matcher in such cases. Table 2.6 presents the eval-
uation results of the Snips NLU. The framework strikes with its "private by
design" premise, which ensures information privacy as well as the possibil-
ity to change and adapt the framework. Currently, the framework supports
six languages|62]. Besides the published scientific paper, several examples are
documenting the NLU. However, the framework does not provide any out-of-
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Figure 2.5: Snips NLU architecture (Retrieved from |[8])

Characteristic Result
Information Privacy High
Endpoint Support No
Offline Capability Yes
Language Support English, French, German, Spanish, Korean, Italian
Support/Documentation | Medium/Good
Maintainability Good

Table 2.6: Snips NLU evaluation

the-box support for third-party applications.

2.2.2.4 Summary

This chapter intends to examine intent matching frameworks based on the
developed metric. This metric focuses on the key aspects of modern intent
matching mechanism like adaptability, information privacy, language support
and the accessibility of third-party services. Rasa convinces with its completely
modular architecture and its abundant accessibility. The framework supports
the most common languages as well as offers the opportunity to run entirely of-
fline. On the other hand, Rasa lacks in usability and maintainability based on
a missing unified graphical user interface. Dialogflow represents an application
powered by the Google infrastructure. Regarding this fact, the service offers a
vast amount of supported languages and a unique user experience throughout
the whole lifecycle. However, Dialogflow does not support to run their intent
matching algorithms locally, which violates a fundamental requirement. Snips
NLU presents a similar feature set like Rasa by supporting various languages
and offering offline capabilities. The small memory footprint predestinates this
framework to run on embedded machines with a limited amount of resources.
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However, Snips NLU does not support third-party accessibility yet which out-
lines as a disadvantage for later adaptations. Overall, Rasa conveniences with
its modular architecture, which supports a smooth integration into existing
infrastructure.

2.2.3 Speech Synthesis

Speech synthesis represents the last module in our processing pipeline. The
module aims to synthesis waveforms out of the response provided by the intent
matcher. This problem can be seen as the decompression of highly compressed
information, as described in chapter 1.3. The intelligibility and naturality are
the two highest weighted parameters during the evaluation process since these
parameters significantly influence the user experience of the robot. In this
context and together with the baseline requirements equivalent to the previous
evaluations, the following metric resulted.

1. Information Privacy discusses the collection and dissemination of user
data.

2. Intelligibility reviews the intelligibility of the synthesised utterances.
3. Naturality reviews the naturality of the synthesised utterances.
4. Offline Capability reflects the ability to operate offline.

5. Language Support inspects the number of out-of-the-box supported
languages.

6. Documenation reflects the provided customer support and documen-
tation.

7. Maintainability surveys the effort of maintaining this framework.

2.2.3.1 Tacotron

Tacotron describes a speech synthesis algorithm proposed by Wang et al. [65].
This algorithm works in an end-to-end fashion and outperforms traditional
approaches in naturality and computation time. Figure 2.6 shows the overall
architecture of the model and its underlying components. The model consists
of three major parts: Encoder, Decoder and Audio Reconstruction[44]. The
overall goal of the Decoder is to find a feature representation of the input.
Therefore the Decoder takes character embeddings as an input and applies a
set of non-linear transformations, so-called pre-net, followed by a CBHG mod-
ule. The abbreviation CBHG describes a module of a one-dimensional con-
volutional network followed by a highway network and a bidirectional Gated

Recurrent Unit (GRU).
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The Tacotron model utilises an attention-based decoder with a stateful recur-
rent layer providing the attention query at each time step. The Decoder aims
to generate a mel-scale spectrogram based on the internal state representa-
tion computed by the encoder. A mel-scale spectrogram expresses an acoustic
time-frequency representation of sound. As shown in figure 2.6, the Decoder
feeds the last predictions through a pre-net module to the next prediction
stage. Based on the usage of the Griffin-Lim algorithm to finally synthesise
the audio sequence, the post-processing network attempts to predict a spectral
magnitude spectrogram sampled on a linear frequency scale. Besides that, the
authors arguing that the post-processing network provides another significant
benefit. The post-processing network has the ability to see the full decoded
sequence, which offers the opportunity to correct the prediction error of each
frame.
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Figure 2.6: Tacotron Model Architecture (Retrieved from|[65])

Unfortunately, Wang et al. did not provide their implementation of the
Tacotron model neither their internal training dataset. This matter of fact
resulted in numerous open-source implementation of the model with vary-
ing quality in comparison to the published audio samples of the authors.
Keith Ito[38] implemented the Tacotron algorithm|[35] by using Tensorflow,
an open-source machine learning framework|31]. His implementation seems to
be the most promising one besides the version of Alex Barron|[1] and Kyuby-
ong Park|[40]. Therefore, the evaluation of the Tacotron model based on the
implementation of Keith Ito, who also provides a pre-trained model.

Tacotron outperforms its predecessors in intelligibility by decreasing the
computation time. Nevertheless, the open-source implementations were not
able to reach the same accuracy and quality as the results provided by the
authors. At the same time, the model itself still needs sufficient infrastruc-
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Characteristic Result
Information Privacy High
Intelligibility Good
Naturality Medium
Offline Capability Yes
Language Support English
Support/Documenation | Medium
Maintainability Medium

Table 2.7: Tacotron evaluation

Characteristic Result
Information Privacy High
Intelligibility Good
Naturality Medium
Offline Capability Yes
Language Support No pre-trained model available
Support/Documenation | Good
Maintainability Good

Table 2.8: Mimic 2 evaluation

ture and computation resource to train new models to provide support for
additional languages. Nevertheless, the previously mentioned projects allow
to customise the source code and run the models offline. Overall, Tacotron
represents a state-of-the-art speech synthesis algorithm, but the usability and
the maintainability suffer from the fact that neither the source code nor the
training dataset was published (see 2.7).

2.2.3.2 Mimic 2

MyCroft Al claims to develop the first open-source voice assistant|49]. The
company uses an improved version of the Tacotron algorithm outlined in the
previous chapter. It utilises the implementation of Keith Ito[35] and applied
various improvements to his code base. Mimic 2 improves through its sup-
port and maintenance of MyCroft Al the evaluation slightly in comparison to
the implementation of Keith Ito. However, MyCroft AI does not offer any
pre-trained models which increase the effort to use Mimic 2 significantly. Ta-
ble 2.8 discusses the results of the evaluation of the algorithm and shows the
mentioned improvements.
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2.2.3.3 DeepVoice 3

The team of Ping et al. proposes Deep Voice 3, a fully convolutional text-
to-speech model[53]. The model utilises a sequence-to-sequence approach to-
gether with a dot-product attention mechanism. The architecture follows the
common structure by consisting of a Encoder, and Decoder and a Converter.
The Encoder converts the characters or phonemes in vector representation. Af-
ter resizing this representation, the Decoder extracts time-depended features
through various convolutional blocks. The very same features are used to form
the attention key vector by projecting them back to the embedded dimension.
The attention key vector together with the original input embeddings resulting
finally the context vector, which represents local as well as long term context
information.
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Figure 2.7: DeepVoice 3 Model Architecture (Retrieved from|[53|)

As shown in figure 2.7, the Decoder uses causal convolutional blocks to-
gether with the computed attention vector of the Decoder to generate in an au-
toregressive fashion audio. Thereby, the authors chose mel-band log-magnitude
spectrogram as the audio frame representation. Based on the autoregressive
fashion, the Decoder does exclusively consider past audio frames by employing
causal computation blocks. The attention mechanism uses a dot-product of
a query vector which represents the hidden states of the Decoder and per-
timestep key vector to compute the required weights. Finally, the Converter
computes the parameters required by the synthesiser. The framework supports
various backends to synthesis the computed parameters. Ping et al. concluded
that the WaveNet Vocoder produces the most natural audio output.

Table 2.9 presents the evaluation of the DeepSpeech 3 model. Similar to the
previous text-to-speech frameworks, the source code is published in the form of
an open-source project[60] and a scientific paper documents the architecture
of the model, respectively. Several sound samples of pre-trained models, as
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Characteristic Result
Information Privacy Yes
Intelligibility Good
Naturality Medium
Offline Capability Yes
Language Support English
Support/Documenation | Medium
Maintainability Good

Table 2.9: DeepSpeech 3 evaluation

well as the models itself, are available for download[59]. The intelligibility and
naturality of the resulting audio sequences are comparable with the results
from Tacotron 2.2.3.1. Furthermore, information privacy is guaranteed based
on the fact that the source code is accessible and executable offline.

2.2.3.4 Summary

This chapter evaluates speech-to-text algorithms with a particular focus on
intelligibility and naturality of the audio output. Tacotron describes a cutting-
edge end-to-end trainable model based on a sequence-to-sequence architecture.
Several implementations of this algorithm are available in the form of open-
source projects. However, neither of them were able to reproduce the original
results. Mimic 2, an open-source project from MyCroft Al, uses the Tacotron
implementation of Keith Ito to apply several improvements. This project is
under current development and profits of the maintaining and usage of the
MyCraft Al community. Last but not least, Deep Voice 3 represents a fully
convolutional speech synthesis model which computes intelligible and natural
speech sequences. The authors are offering various models as downloads which
can be directly used or adapted for further training. Overall, the evaluation
shows that the given requirements are massively limiting the set of possible
frameworks. Various providers like Google, Amazon and Microsoft are offer-
ing online speech synthesis services outperforming the presented models in
both intelligibility and naturality. Considering the Tacotron model, multiple
developers tried to reproduce the results given by audio samples but failed
because the authors did not describe every parameter as well as used an in-
ternal dataset. This leads to the conclusion that currently, no offline capable
speech-to-text framework satisfied the defined requirements adequately. How-
ever, projects like Mimic 2 positioning themselves as promising future solution.
Considering the fact, that the first version of the speech assistant implements
only a subset of the features, a Limited Domain Synthesis as described in chap-
ter 1.3.1 embodies the best trade-off between development effort and quality
of the speech sequences. A more sophisticated solution can substitute the
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Limited Domain Synthesis during the further process of this project.

2.3 System Architecture

This chapter presents the design and implementation of the system. The
Services section describes the implemented services and their relationships
with each other. Chapter 2.3.2 explains the deployment mechanism of the
project.

2.3.1 Services

Figure 2.8 presents the overall system architecture deployed on the robot.
Starting from the bottom, the Board Support Package describes a set of drivers
and scripts, allowing the micro-services to communicate with the peripherals of
the robot itself. The Speech-to-Text service offers over a defined interface the
possibility to transform a wave encoded sound-file into a sequence of characters.
Following the processing pipeline, the Rasa NLU uses the output from the
previous service to fill in the entities and determine the intention of the request.
The service forwards this collection of information to the Rasa Core module.
Rasa Core decides based on its input and the current conversation state which
is stored in the Conversation Tracker Database which action shall be triggered.
The service can trigger action by calling the Rasa Action Server. Last but not
least, the Text-to-Speech service synthesises the given response and send the
created sound-file to the Board Support Package. The following paragraphs
describe the implementation of each micro-service.

Robot

Docker

Conversation
Rasa Core Tracker Rasa NLU
Database
‘F—l ‘
A/
Text to Speech ‘ Rassa Action Speech to Text
erver
\

A

Board Support Package

Figure 2.8: Micro-Service Architecture Overview
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Board Support Package This module provides an abstraction layer be-
tween the docker micro-services and the robots peripherals. Currently, the
speech assistant requires a microphone and speakers to interact with the user.
The internal computation unit of the robot communicates with those two de-
vices over a USB bus. The computation unit itself runs a Linux distribution
which supports general audio drivers and devices. PulseAudio|27], a sound
system for POSIX OSes, serves as middleware to stream the audio data from
the host system to the docker containers. The middleware must be installed
on both, host and client and offers there a native representation of the audio
device within the Linux environment which is beneficial because most frame-
works require a native Linux audio device source as an input. In general, the
abstraction layer offers a clean yet straightforward opportunity to map other
devices in the docker environment.

Text-to-Speech Service This service implements the text-to-speech func-
tionality by using the python package SpeechRecognition|5]. This package offers
a unified interface to various speech recognition frameworks which simplify the
effort to use those algorithms as well as replace them later on. The package
accesses directly over the PyAudio|34] package the Linux standard audio in-
put device which represents in our case the PulseAudio streaming device. The
SpeechRecognition package determines an environment noise threshold auto-
matically, which is used to filter the noise and recognise the beginning of an
utterance. The service employs multiple threads to allow ongoing speech recog-
nition. The first thread runs the audio collection routine of the SpeechRecog-
nition package. Each time a novel utterance is recognised, the package calls a
callback function which starts a new thread. The thread transforms the given
audio chunks by calling the underlying CMUSphinz framework. The service
sends this sequence of characters within an HTTP message to its consumers.

Rasa Core Service The Rasa Core service functions as the central con-
trol unit of the whole Rasa framework. Figure 2.9 discusses the sequence of
calls originated from a single request issues by a user request. The Speech-to-
Text service sends the transformed utterance to the Rasa Core service, which
forwards the call to the Rasa NLU module. Based on the response of the
NLU, the Rasa Core service emits the correspondent actions by calling the
Rasa Action Server service. Finally, the response is generated and send to
the Text-to-Speech service. Regarding this order, the primary function of this
service consists of predicting the next state of the current conversation and
hence triggering the individual actions. The training data, so-called stories,
are the essential input to train the machine learning model in predicting the
required conversation states. Listing 2.1 shows an example of such a story.
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## take indirect order
H mood_confirm
- action_enumerate_products
* choose_product
- action_check_availability
- utter_anything_else
> chose_product

Listing 2.1: Rasa Core - Story File

The story file aims to represent a possible conversation between the user
and the assistant. Each line which starts with either an asterisk or a hyphen
describes an utterance from the user or the assistant respectively. The Rasa
Core service recognises based on the response from the Rasa NLU which of
the learnt stories might fit the best. Based on this, the service executes the
actions below the recognised intents to response to the user request.

Rasa
E?_SS < | > Action
2 | Server
‘ 4
Rasa W -
3> Core 9
6 1

|

Figure 2.9: Rasa Framework - Call Sequence

Rasa NLU Service This service provides the natural language understand-
ing functionality of the robot. The framework offers various algorithms to
perform the intent matching and the entity parsing, respectively. The training
process of the model requires two substantial information. The configuration
file defines the components of the processing pipeline, and a set of files serves as
training data. An example of such a training data entry is shown in listing 2.2.
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"text": "show me german restaurants",
"intent": "restaurant_search",
"entities": [
{

"start": 8,

"end": 15,

"value": "german",

"entity": "cuisine"

Listing 2.2: Rasa NLU - Training Dataset

The JSON encoded data structure provides three different information.
Firstly, the text field provides the given input text. The intent field described
the overall intention of this request and the entities field documents a set of
entities. The latter contains the start and end position within the given input
text string as well as the value and name of the entity itself. The NLU Service
provides an HTTP interface which accepts requests of JSON encoded messages
to interact with other services.

Rasa Action Server This service serves as an abstraction layer which pro-
vides the implementation of customised actions. Generally, actions can be
implemented in every programming language and do not need to run on the
machine itself. The Action Server uses an HTTP interface which makes it
completely independent from the other services.

A callback function realises an action executed through an incoming HTTP
request. This request consists of the name of the action, the current domain
and a reference to the dispatcher and tracker object (see listing 2.3). The
dispatcher reference enables the action to interact with the user in the form of
generating dynamic responses, on the other hand, the tracker allows the action
server to fetch information about the history of the conversation. The follow-
ing listing 2.3 shows an exemplary implementation of a custom action which
checks the product availability by fetching the information from a database
(in this case, a simple python array).
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class ActionCheckAvailability(Action):
def name(self):
return "action_check_availability"

def run(self, dispatcher, tracker, domain):
intent = tracker.get_latest_entity_values('product')
if not intent:
logger.info("No intent recognised")
dispatcher.utter_template('utter_default', tracker)

return []
logger.info("Chosen Product: {}".format(intent))
products = ['water', 'nuts', 'grapes', 'wine', 'apple'l

if intent in products:
dispatcher.utter_message (
"Sure, I added a {} to your cart!".format(intent))
else:
dispatcher.utter_template('utter_not_available', tracker)
return []

Listing 2.3: Rasa Action Server - Action Implementation

Conversation Tracker Database Service The Rasa framework supports
numerous types of databases to maintain conversation tracking. The robot it-
self employs already MongoDB[47] instances which is known to be lightweight,
reliable and easy to maintain.

The Rasa Core conversation tracker is configurable through a file which is
shown below in listing 2.4. The configuration file includes information about
the URL and the credentials to access the database. Once configured, the
Rasa framework uses the employed database as the central conversation track-
ing module.

action_endpoint:

url: http://action_server:5055/webhook
nlu:

url: http://rasa_nlu:5000
tracker_store:

store_type: mongod

url: mongodb://mongo:27017

username: trackerUser

password: trackerPassword

Listing 2.4: Rasa Core - Configuration

Text-to-Speech Service This service implements the Text-to-Speech mod-
ule which employes Swagger|61], a standardized schema to implement and
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document RESTful APIs. This schema does only provide the structure of the
interface which needs to be deployed by a web server application. In general,
the service offers a webhook, which starts the text-to-speech algorithm. As
stated in section 2.2.3.4, a simple Limited Domain Synthesis embodies the
first implementation of this module. Therefore, prepared sound utterances are
stored within the module. The triggered webhook compares the generated
response from the Rasa Core call with its internal database and records the
chosen file. Thereby, the service accesses the internal audio speaker device,
which is a virtual representation of the PulseAudio streaming device.
Besides, the Speech-to-Text module grants three different policies to be config-
ured. These policies manage the behaviour of concurrent requests if the user
interaction is faster than the duration of the last response. For instance, the
user may interrupt the robot based on a misunderstanding. Following policies
are supported:

1. Purge: The module finishes the current response, purges the queued
response and finally plays the latest correspondent sound file.

2. Add: The system adds the response to the queue.

3. ASAP: The module interrupts the current playback, clears the queue
and plays the latest response.

2.3.2 Deployment

A modern software development process requires an Continuous Delivery de-
ployment process. This paradigm ensures through implemented automation
pipeline that the project is continuously built, tested and deployed, which
results in three major advantages. The pipeline implements a standardised
routine which automates repetitive and especially time-consuming work. Fur-
thermore, the pipeline implementation serves as documentation of the overall
building process. This leads to improved productivity and simplifies additional
testing of commits and features.

In the context of the developed system, a Continuous Delivery pipeline is used
to build and run tests on each of the described micro-services. Docker, the
chosen platform virtualisation, serves as an essential component by providing
a clean and pre-defined environment to build the micro-services. In general,
the pipeline consists of three distinct stages.

1. Lint: The linting stage guarantees that the structure and the source
code itself meets the quality standards of the company.

2. Build: The building stage utilised the Docker Engine to build the micro-
services by using the defined Dockerfiles.

39



2. REsuLT

3. Test: This stage aims to run various tests to ensure the functionality as
well as the integrability of the services.

4. Release: This stage pushes the built and tested Docker Containers to
the internal Docker Registry of the company from which the containers
are distributed to the robots.

The implemented pipeline offers another feature which is responsible for train-
ing the machine learning models automatically. This functionality is part of
the Build stage and is triggered only in the cases that the training dataset
of the corresponding machine learning model has been changed. This ensures
that developers without a deeper understanding of the training process are able
to update the models of the system. Furthermore, the pipeline assures that
each new model is versioned together with the dataset and the corresponding
Docker Container.
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CHAPTER 3

Evaluation

This chapter covers the evaluation of the implemented system. Section 3.1,
Satisfaction of Objectives, compares the implementation with the objectives
defined in section . Section 3.2, Comparison with Other Systems, evaluate how
the implemented system performs in comparison to a state-of-the-art device.

3.1 Satisfaction of Objectives

This chapter attempts to evaluate the designed and implemented system with
the previously defined objectives in chapter .

The developed speech assistant is part of a robot which provides hospitality in
hotels. One of the greatest challenges of the robot is the insufficient wireless
internet connection throughout the hotel. Therefore, the offline capability of
the whole system must be ensured. In chapter 2.2, the capability to work
entirely offline led among others to the choice of CMUSphinx as the speech
recognition framework, Rasa as the intent matcher platform and especially to
the limited domain synthesis as the text-to-speech module.

The ability to work offline automatically provides a higher standard of privacy
and security of the system. This fact also implies that there is no exchange
with third-parties of sensible user-specific data nor anonymous generated per-
formance data.

The selected frameworks are characterized by being open-source developed,
which encourages to customize and adapt the frameworks to the specific use
case. This confirms the ability of the system to be able to tailor its behaviour
and generated responses to fit perfectly into its later environment. For in-
stance, CMUSphinx offers the possibility to train its model with a customized
vocabulary, which significantly improves the accuracy of the model.
Furthermore, the chosen micro-service architecture underlines this paradigm of
a highly flexible and customizable system. This architecture ensures another
level of security by implementing the "security through separation" concept,
which also outperforms monolithic systems in scalability and complexity.
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The ability to adapt to a specific environment together with other parameters
like the accuracy of the modules and the overall system latency contribute to
the overall user experience of the system.

Conclusively, the developed system provides a solution which fits the previously
defined objectives. Nevertheless, the strict requirements prevent the system
from using the latest algorithms, which is noticeable in the user experience of
the system.

3.2 Comparison with Other Systems

This chapter compares the implemented system with a state-of-the-art device
of a third-party. This measurement is important to justify whether the devel-
opment of a novel system is worth it in comparison to use an already existing
framework.

Several companies offer devices which are including speech assistant capabili-
ties. One of the most successful assistants is called Alexa, which is developed by
Amazon Incorporation. Alexa is a cloud-based virtual speech assistant which
can be included in many devices like smart home controls, mobile phones and
speakers. The greatest advantages of Alexa in the context of this evaluation
is the so-called Alexa Skills Kit. This development kit allows developers to
implement custom action for Alexa, which can be executed over a speech com-
mand.

The following subsection 3.2.1 evaluates the Alexa speech assistant based on
the same objectives as used in chapter 3.1. The final comparison between the
two systems is discussed in chapter 3.2.2.

3.2.1 Amazon Alexa

Amazon presents with Alexa, a cloud-based speech assistant. This assistant
requires a constant connection to the internet without it is not able to respond
to user requests. On the downside, the assistant violates one of the essential
objectives.

Nevertheless, this constant connection enables the assistant to employ more
sophisticated algorithms to process the request. This, overall, leads to the fact
that Alexa offers a great user experience based on its cloud backend as well as
the feedback of millions of users.

Amazon offers with its broad server portfolio a unique opportunity to extend
and scale a customized Alexa application. However, Amazon uses this re-
quirement to obtain and gather statistical data to improve and monitor their
algorithms. For this reason, the security, as well as the privacy of the system,
may suffer under these circumstances.
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3.2.2 Summary

As stated in chapter 3.1, the developed system fulfils the defined objectives.
However, the user experience suffers because more sophisticated models would
require additional resources in the form of a stable and constant internet con-
nection.

In comparison, Amazon Alexa uses a cloud-backend which improves the user
experience with the speech assistant. Nevertheless, this introduces new chal-
lenges, like data privacy and security issues. Conclusively, the developed sys-
tem represents a hand-tailored solution for a particular use case which would
not be reproducible with Amazon Alexa without reconsidering the objectives
of the application.
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CHAPTER 4

Discussion

This chapter discusses the outcome and results of this thesis and outlines future
work opportunities for this thesis.

4.1 Research Question Satisfaction

The fundamental research question of this thesis attempts to justify the de-
velopment of a hand-tailored speech assistant application. The origin of this
question based on the fact that the majority of applications requires a stable
and constant internet connection to be able to generate responses. Further-
more, those assistants are developed to work for a broad target group.
Nevertheless, the usage of such systems in products requires the ability to
adapt to a specific audience in the form of a particular vocabulary, phrases
and behaviour in standard situations.

This leads finally to the conclusion concerning the result of this thesis that it is
possible to develop a hand-tailored application which outperforms its competi-
tion within a particular, defined use-case. Nonetheless, as soon as the use-case
changes in the form of loosening the requirements, the developed system can-
not compete with its competitors.

4.2 Hardware Specification

This section yields to discuss an opportunity to improve the overall perfor-
mance of the system without altering the system itself. As mentioned in chap-
ter 1.1.1, one of the challenges of speech recognition is the signal distortion
through undesired noise. The first stage of a speech recognition pipelines aims
to minimise the influence of such artefacts on the accuracy of the output.

Nevertheless, if the distortion reaches a specific level, the module itself cannot
manage to produce reasonable text sequences anymore, which interrupts the
whole user experience. Numerous vendors of speech assistant capable devices
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started to install multiple microphones to overcome this issue. By sampling
multiple microphones with a synchronous clock signal, it is possible to filter
distortions like noise much better than a system with a single audio input.
Furthermore, a whole matrix of microphones can be used to determine the
direction and the distance of the speaker, which might be a beneficial input
for the assistant.

4.3 Deployment

The current deployment setup consists of a pipeline which builds, tests and
releases new versions of the system. This setup guarantees a minimum quality
of builds by automatically running software test. The current first version of
this pipeline implements only basic testing mechanism like an overall system
startup. This may be extended in future work to ensure the functionality
of each service and its defined communication interface. Therefore, various
mockup containers would work as a counterpart to test the communication
modules of a specific service. The mockup container simulates the environment
of a given application to test its behaviour. This could ensure the integration
of each micro-service in the system and further increase the quality of the
source code.

4.4 Chatbot Ability

The implemented system uses a micro-service architecture which enables the
system to be highly adaptable and scalable. This advantage offers the possi-
bility to run the system on every kind of platform, which is an essential feature
of the chosen virtualisation.

Chatbots are representing a growing development within the field of customer
service, which automatically responds to a standard user request. The devel-
oped system offers the ability to be adapted as a chatbot application, which
increases its value by almost zero migration effort. The internally used intent
matching algorithms allows the interaction with third-party messaging services
like Slack and Facebook Messenger.

This example shows the ability of the system to adapt to new use-cases by
minimising the effort of changes are adaptations as well as outlines a future
work opportunity.
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Conclusion

This thesis attempts to answer the given research question whether a sys-
tem can be developed which fulfils the strict requirements of service robots
by outperforming commercial applications. Therefore, the thesis introduces
the theoretical foundation in the three subfields (speech recognition, intent
matching, speech synthesis), which compose a modern speech assistant. Var-
ious frameworks of each discipline are evaluated, which serve as fundamental
components of the application. The evaluation uses for each subfield a custom-
tailored metric to compare the corresponding frameworks. The thesis proposes
a micro-service architecture which proves to be scalable and highly adaptable.
Furthermore, the architecture enables the system to be used in various use-
cases because of the underlying virtualisation which can be deployed on robots
as well as on server clusters. Finally, the developed system outperforms within
its precise defined environment, a popular commercial speech assistant. Never-
theless, the general performance of the system must be improved to guarantee
a sufficient level of user experience. This may require an adaption of the re-
quirements which restricts the selection of framework and therefore, the quality
of the system dramatically.

47






(1]

2]

3]

14]
[5]

[6]

7]
18]

19]

Bibliography

Alex Barron. Barron Alex - Tacotron Implementation. URL: https://
github.com/barronalex/Tacotron (visited on 04/29/2019).

Nuha Alshuqayran, Nour Ali, and Roger Evans. “A systematic mapping
study in microservice architecture”. In: 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications (SOCA).
IEEE. 2016, pp. 44-51.

Dario Amodei et al. “Deep speech 2: End-to-end speech recognition in
english and mandarin”. In: International conference on machine learning.
2016, pp. 173-182.

Dimitra Anastasiou. “Survey on Speech, Machine Translation and Ges-
tures in Ambient Assisted Living.” In: 2011-Paris (2011).

Anthony Zhang. Speech recognition module for Python, supporting several
engines and APIs, online and offline. URL: https://github.com/Uberi/
speech_recognition (visited on 05/14/2019).

M. A. Anusuya and S. K. Katti. “Speech Recognition by Machine, A
Review”. In: International Journal of Computer Science and Informa-
tion Security, IJCSIS, Vol. 6, No. 3, pp. 181-205, December 2009, USA
(Jan. 13, 2010). arXiv: http://arxiv.org/abs/1001.2267v1 [cs.CL].

The Kubernetes Authors. Kubernetes. URL: https://kubernetes.io/
(visited on 04/15/2019).

Adrien Ball. An Introduction to Snips NLU, the Open Source Library
behind Snips Embedded Voice Platform. URL: https://medium. com/
snips-ai/an- introduction- to - snips-nlu- the - open - source -
library - behind - snips - embedded - voice - platform-bl2bla60a4dla
(visited on 04/22/2019).

Tom Bocklisch et al. “Rasa: Open Source Language Understanding and
Dialogue Management”. In: (Dec. 14, 2017). arXiv: http://arxiv.org/
abs/1712.05181v2 [cs.CL].

49


https://github.com/barronalex/Tacotron
https://github.com/barronalex/Tacotron
https://github.com/Uberi/speech_recognition
https://github.com/Uberi/speech_recognition
http://arxiv.org/abs/http://arxiv.org/abs/1001.2267v1
https://kubernetes.io/
https://medium.com/snips-ai/an-introduction-to-snips-nlu-the-open-source-library-behind-snips-embedded-voice-platform-b12b1a60a41a
https://medium.com/snips-ai/an-introduction-to-snips-nlu-the-open-source-library-behind-snips-embedded-voice-platform-b12b1a60a41a
https://medium.com/snips-ai/an-introduction-to-snips-nlu-the-open-source-library-behind-snips-embedded-voice-platform-b12b1a60a41a
http://arxiv.org/abs/http://arxiv.org/abs/1712.05181v2
http://arxiv.org/abs/http://arxiv.org/abs/1712.05181v2

BIBLIOGRAPHY

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

20

Antoine Bordes, Y-Lan Boureau, and Jason Weston. “Learning end-to-
end goal-oriented dialog”. In: arXiv preprint arXiv:1605.07683 (2016).

Martin Brinkmann. Amazon blunder leaks Alexa data to other customer.
URL: https://www.ghacks.net/2018/12/21/amazon-blunder-leaks-
alexa-data-to-other-customer/ (visited on 05/10/2019).

Thanh Bui. “Analysis of docker security”. In: arXiv preprint arXiv:1501.02967
(2015).

Carnegie Mellon University. CMUSphinz. URL: https ://cmusphinx .
github.io/ (visited on 04/18/2019).

Carnegie Mellon University. CM USphinz Github Repositories. URL: https:
//github.com/cmusphinx (visited on 04/19/2019).

Carnegie Mellon University. CMUSphinz Tutorial For Developers. URL:
https://cmusphinx.github.io/wiki/tutorial/ (visited on 04/18/2019).

Hongshen Chen et al. “A Survey on Dialogue Systems: Recent Advances
and New Frontiers”. In: (Nov. 6, 2017). arXiv: http://arxiv.org/abs/
1711.01731v3 [cs.CL].

Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. “Wav2letter:
an end-to-end convnet-based speech recognition system”. In: arXww preprint
arXiv:1609.03193 (2016).

Theo Combe, Antony Martin, and Roberto Di Pietro. “To Docker or
Not to Docker: A Security Perspective.” In: IEEE Cloud Computing 3.5
(2016), pp. 54-62.

Alice Coucke et al. “Snips Voice Platform: an embedded Spoken Lan-
guage Understanding system for private-by-design voice interfaces”. In:
(May 25, 2018). arXiv: http://arxiv.org/abs/1805.10190v3 [cs.CL].

Deep Speech 2 Trained on Baidu English Data. URL: https://resources.
wolframcloud.com/NeuralNetRepository/resources/Deep-Speech-
2-Trained-on-Baidu-English-Data (visited on 04/19/2019).

Ratnadeep Deshmukh and Abdulmalik Alasadi. “ Automatic Speech Recog-
nition Techniques: A Review”. In: Feb. 2018.

Docker Inc. Docker. URL: https://www.docker.com (visited on 04/15/2019).
Docker Inc. Docker Hub. URL: https://hub.docker. com (visited on
04/15/2019).

N Dragoni et al. “Microservices: yesterday, today and tomorrow.(2017)”.

In: arXiv preprint arXiv:1606.04036 (2017).

Facebook Inc. Open sourcing wavletter++, the fastest state-of-the-art
speech system, and flashlight, an ML library going native. URL: https:
//code.fb.com/ai-research/wav2letter/ (visited on 04/20/2019).


https://www.ghacks.net/2018/12/21/amazon-blunder-leaks-alexa-data-to-other-customer/
https://www.ghacks.net/2018/12/21/amazon-blunder-leaks-alexa-data-to-other-customer/
https://cmusphinx.github.io/
https://cmusphinx.github.io/
https://github.com/cmusphinx
https://github.com/cmusphinx
https://cmusphinx.github.io/wiki/tutorial/
http://arxiv.org/abs/http://arxiv.org/abs/1711.01731v3
http://arxiv.org/abs/http://arxiv.org/abs/1711.01731v3
http://arxiv.org/abs/http://arxiv.org/abs/1805.10190v3
https://resources.wolframcloud.com/NeuralNetRepository/resources/Deep-Speech-2-Trained-on-Baidu-English-Data
https://resources.wolframcloud.com/NeuralNetRepository/resources/Deep-Speech-2-Trained-on-Baidu-English-Data
https://resources.wolframcloud.com/NeuralNetRepository/resources/Deep-Speech-2-Trained-on-Baidu-English-Data
https://www.docker.com
https://hub.docker.com
https://code.fb.com/ai-research/wav2letter/
https://code.fb.com/ai-research/wav2letter/

Bibliography

[26]
[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

David Ferris. “Techniques and Challenges in Speech Synthesis”. In: (Sept. 22,
2017). arXiv: http://arxiv.org/abs/1709.07552v1 [cs.SD].

freedesktop.org. PulseAudio. URL: https ://www . freedesktop . org/
wiki/Software/PulseAudio/ (visited on 05/14/2019).

Mayur R Gamit, Kinnal Dhameliya, and Ninad S Bhatt. “Classification
techniques for speech recognition: A review”. In: International Journal of
Emerging Technology and Advanced Engineering 5.2 (2015), pp. 58-63.

Albert Gatt and Emiel Krahmer. “Survey of the State of the Art in
Natural Language Generation: Core tasks, applications and evaluation”.
In: Journal of AI Research, volume 60, 2017 (Mar. 29, 2017). arXiv:
http://arxiv.org/abs/1703.09902v4 [cs.CL].

Google Inc. Dialogflow SDK Documentation. URL: https://dialogflow.
com/docs/sdks (visited on 04/22/2019).

Google Inc. Tensorflow - An end-to-end open source machine learning
platform. URL: https://www.tensorflow.org/ (visited on 04/29/2019).

HashiCorp. Vagrant. URL: https://www . vagrantup . com (visited on
04/15/2019).

Matthew Henderson. “Machine Learning for Dialog State Tracking: A
Review”. In: Proceedings of The First International Workshop on Ma-
chine Learning in Spoken Language Processing. 2015.

Hubert Pham. PyAudio. URL: https ://people . csail . mit . edu/
hubert/pyaudio/ (visited on 05/14/2019).

Keith Ito. A TensorFlow implementation of Google’s Tacotron speech
synthesis with pre-trained model (unofficial). URL: https://github.
com/keithito/tacotron (visited on 04/28/2019).

Mike Jeffs. OK Google, Siri, Alexa, Cortana; Can you tell me some stats
on wvoice search? 2018. URL: https://edit . co.uk/blog/google -
voice-search-stats-growth-trends/ (visited on 03/30/2019).

Ann Mary Joy. “Performance comparison between linux containers and
virtual machines”. In: 2015 International Conference on Advances in
Computer Engineering and Applications. IEEE. 2015, pp. 342-346.

Keith Ito. Keith Ito - Github Profile. URL: https: //github . com/
keithito (visited on 04/29/2019).

Veton Képuska and Gamal Bohouta. “Comparing speech recognition sys-
tems (Microsoft API, Google API and CMU Sphinx)”. In: Int. J. Eng.
Res. Appl 7.03 (2017), pp. 20-24.

Kyubyong Park. Kyubyong - Tacotron Implementation. URL: https://
github.com/Kyubyong/tacotron (visited on 04/29/2019).

51


http://arxiv.org/abs/http://arxiv.org/abs/1709.07552v1
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://www.freedesktop.org/wiki/Software/PulseAudio/
http://arxiv.org/abs/http://arxiv.org/abs/1703.09902v4
https://dialogflow.com/docs/sdks
https://dialogflow.com/docs/sdks
https://www.tensorflow.org/
https://www.vagrantup.com
https://people.csail.mit.edu/hubert/pyaudio/
https://people.csail.mit.edu/hubert/pyaudio/
https://github.com/keithito/tacotron
https://github.com/keithito/tacotron
https://edit.co.uk/blog/google-voice-search-stats-growth-trends/
https://edit.co.uk/blog/google-voice-search-stats-growth-trends/
https://github.com/keithito
https://github.com/keithito
https://github.com/Kyubyong/tacotron
https://github.com/Kyubyong/tacotron

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

52

Paul Lamere et al. “Sphinx-4: A flexible open source framework for
speech recognition”. In: Sun Microsystems, Report Number: TR-2004-
139 (2004).

Xinyu Lei et al. “The Insecurity of Home Digital Voice Assistants - Ama-
zon Alexa as a Case Study”. In: (Dec. 9, 2017). arXiv: http://arxiv.
org/abs/1712.03327v2 [cs.CR].

Akansha Madan and Divya Gupta. “Speech feature extraction and clas-
sification: A comparative review”. In: International Journal of computer
applications 90.9 (2014).

Michael Nguyen. Mimic2 is LIVE! URL: https://mycroft.ai/blog/
mimic-2-is-1live/ (visited on 04/29/2019).

Terence Mills. The Impact Of Artificial Intelligence In The Fveryday
Lives Of Consumers. 2018. URL: https://www . forbes . com/sites/
forbestechcouncil /2018 /03 /07 / the - impact - of - artificial -
intelligence- in- the - everyday - lives - of - consumers (visited on
03/30/2019).

Maali Mnasri. “Recent advances in conversational NLP : Towards the
standardization of Chatbot building”. In: (Mar. 21, 2019). arXiv: http:
//arxiv.org/abs/1903.09025v1 [cs.CL].

MongoDB Inc. Mongo Database - Webpage. URL: https://www.mongodb.
com/ (visited on 05/15/2019).

Nicolas Morales, Zhenyu Tang, and Dinesh Manocha. “Receiver Place-
ment for Speech Enhancement using Sound Propagation Optimization”.
In: (May 29, 2018). arXiv: http://arxiv.org/abs /1805 . 11533v3
[cs.SD].

Mycroft Al Inc. Who is Mycroft? URL: https://mycroft.ai/about-
mycroft/ (visited on 04/22/2019).

PaddlePaddle. DeepSpeech?2 PaddlaPaddle Implementation. URL: https:
//github.com/PaddlePaddle/DeepSpeech (visited on 04/19/2019).

PaddlePaddle. PaddlePaddle (Parallel Distributed Deep Learning). URL:
https://github.com/PaddlePaddle/Paddle (visited on 04/19/2019).

Ken Peffers et al. “A design science research methodology for information
systems research”. In: Journal of management information systems 24.3
(2007), pp. 45-77.

Wei Ping et al. “Deep Voice 3: Scaling Text-to-Speech with Convolutional
Sequence Learning”. In: (Oct. 20, 2017). arXiv: http://arxiv.org/abs/
1710.07654v3 [cs.SD].

Vineel Pratap et al. “wav2letter+-+: The Fastest Open-source Speech
Recognition System”. In: arXiv preprint arXiv:1812.07625 (2018).


http://arxiv.org/abs/http://arxiv.org/abs/1712.03327v2
http://arxiv.org/abs/http://arxiv.org/abs/1712.03327v2
https://mycroft.ai/blog/mimic-2-is-live/
https://mycroft.ai/blog/mimic-2-is-live/
https://www.forbes.com/sites/forbestechcouncil/2018/03/07/the-impact-of-artificial-intelligence-in-the-everyday-lives-of-consumers
https://www.forbes.com/sites/forbestechcouncil/2018/03/07/the-impact-of-artificial-intelligence-in-the-everyday-lives-of-consumers
https://www.forbes.com/sites/forbestechcouncil/2018/03/07/the-impact-of-artificial-intelligence-in-the-everyday-lives-of-consumers
http://arxiv.org/abs/http://arxiv.org/abs/1903.09025v1
http://arxiv.org/abs/http://arxiv.org/abs/1903.09025v1
https://www.mongodb.com/
https://www.mongodb.com/
http://arxiv.org/abs/http://arxiv.org/abs/1805.11533v3
http://arxiv.org/abs/http://arxiv.org/abs/1805.11533v3
https://mycroft.ai/about-mycroft/
https://mycroft.ai/about-mycroft/
https://github.com/PaddlePaddle/DeepSpeech
https://github.com/PaddlePaddle/DeepSpeech
https://github.com/PaddlePaddle/Paddle
http://arxiv.org/abs/http://arxiv.org/abs/1710.07654v3
http://arxiv.org/abs/http://arxiv.org/abs/1710.07654v3

Bibliography

[55] Page Laubheimer Raluca Budiu. Intelligent Assistants Have Poor Usabil-
ity: A User Study of Alexa, Google Assistant, and Siri. 2018. URL: https:
//www .nngroup.com/articles/intelligent-assistant-usability/
(visited on 03/30/2019).

[56] Rasa Technologies GmbH. Build contextual chatbots and Al assistants
with our open source conversational Al framework. URL: https://rasa.
com/docs/ (visited on 04/22/2019).

[57] Rasa Technologies GmbH. Rasa Webpage. URL: https://rasa.com/
(visited on 04/22/2019).

[58] Red Hat Inc. Ansible. URL: https://www . ansible . com (visited on
04/15/2019).

[59] Ryuichi Yamamoto. An open source implementation of Deep Voice 3:
Scaling Text-to-Speech with Convolutional Sequence Learning. URL: https:
//19y9.github.io/deepvoice3_pytorch/ (visited on 04/30/2019).

[60] Ryuichi Yamamoto. PyTorch implementation of convolutional neural networks-
based text-to-speech synthesis models. URL: https://github.com/r9y9/
deepvoice3_pytorch (visited on 04/30/2019).

[61] SmartBear Software. Swagger - Webpage. URL: https://swagger.io/
(visited on 05/15/2019). (accessed: 2019-05-15).

[62] Snips. Which languages are supported? URL: https://docs.snips.ai/
additional-resources/faq/general-faq (visited on 04/22/2019).

[63] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence
learning with neural networks”. In: Advances in neural information pro-
cessing systems. 2014, pp. 3104-3112.

[64] Ayushi Y Vadwala et al. “Survey paper on Different Speech Recognition
Algorithm: Challenges and Techniques”. In: Int. J. Comput. Appl. 175.1
(2017), pp. 31-36.

[65] Gary Wang. “Deep Text-to-Speech System with Seq2Seq Model”. In:
(Mar. 11, 2019).

[66] Tiancheng Zhao and Maxine Eskenazi. “Towards End-to-End Learning
for Dialog State Tracking and Management using Deep Reinforcement
Learning”. In: (June 8, 2016). arXiv: http://arxiv.org/abs/1606.
02560v2 [cs.AI].

93


https://www.nngroup.com/articles/intelligent-assistant-usability/
https://www.nngroup.com/articles/intelligent-assistant-usability/
https://rasa.com/docs/
https://rasa.com/docs/
https://rasa.com/
https://www.ansible.com
https://r9y9.github.io/deepvoice3_pytorch/
https://r9y9.github.io/deepvoice3_pytorch/
https://github.com/r9y9/deepvoice3_pytorch
https://github.com/r9y9/deepvoice3_pytorch
https://swagger.io/
https://docs.snips.ai/additional-resources/faq/general-faq
https://docs.snips.ai/additional-resources/faq/general-faq
http://arxiv.org/abs/http://arxiv.org/abs/1606.02560v2
http://arxiv.org/abs/http://arxiv.org/abs/1606.02560v2

	Introduction
	Background
	Objectives
	Research Question
	Methodology

	Theory
	Speech Recognition
	Dialogue Systems
	Text Synthesis
	Virtualization

	Result
	Solution Objectives Model
	Framework Selection
	System Architecture

	Evaluation
	Satisfaction of Objectives
	Comparison with Other Systems

	Discussion
	Research Question Satisfaction
	Hardware Specification
	Deployment
	Chatbot Ability

	Conclusion
	Bibliography

