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Abstract

To guide the movement of the body
through space, the brain must analyze the
relation of the body position to nearby ob-
jects. This spacial awareness requires an
integration of multiple sensory inputs and
internal representation of the immediate
surroundings, i.e., the peripersonal space.

We’ve implemented a biologically in-
spired computational model of periper-
sonal space representation using spiking
neural network in the Neurorobotics plat-
form and explored its dynamical prop-
erties during multiple learning scenarios.
Finally, we’ve demonstrated the use of
this model as a defense mechanism on an
iCub robot in a simulated environment.
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Abstrakt

Pro spravnou orientaci pohybu téla v
prostoru musi mozek neustédle analyzovat
pozici svého téla vici poloze blizkych pred-
méti. Toto povédomi o okolnim prostoru
vyzaduje neustilé sjednocovani senzoric-
kych podnétt z nékolika smysli a tvorbu
interni reprezentace peripersonalniho pro-
storu.

V Neurorobotické platformé jsme imple-
mentovali biologicky inspirovany model re-
prezentace peripersonalniho prostoru po-
moci “spiking” neuronovych siti a pro-
zkoumali jsme jeho dynamické vlastnosti
pri ruznych typech uceni. Nakonec jsme
demonstrovali vyuziti tohoto modelu k vy-
volani obranné reakce na iCub robotu v
simulovaném prostiedi.

Klicova slova: Peripersonalni prostor,
“spiking” neuronové sité, receptivni pole,
mechanismus synaptického uceni

Pteklad nazvu: Uceni se reprezentaci
peripersonalniho prostoru pomoci
“spiking” neuronovych siti
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Chapter 1

Introduction

Automated systems and robots are becoming an indispensable component
of modern industry and are replacing human counterparts in precise and
repetitive operations. And by replacing many others it is increasing it’s
worth every day with other, more complex tasks. Even though most current
designs are operating from a safe distance, the benefits of mutual interaction
between human and robot workers are appealing. Unfortunately, progress is
accompanied by tragic accidents [5]. Researchers from The National Institute
for Occupational Safety and Health in the United States already identified
61 robot-related deaths just between 1992 and 2015 [9], and although from
an analyzed set of accidents some are reportedly caused by human error [24],
safety is still a big concern and a topic of great interest.

One of the fields of research trying not only to tackle the problem of
human-robot interaction, but the interaction of robots with the environment
in general, is the study of peripersonal space (PPS). Based on recent research
in neuroscience [7], primate brains seem to construct multiple representations
of space, collectively called PPS, which provide essential information to guide
their body through space, avoid collisions, grasp objects and interact with
immediate surroundings. These are the exact properties, that could help
robots, which are today usually simplified just to their kinematic chains, to
achieve more natural and more importantly safer movement through their
dynamically changing environments in which they operate. If successfully
applied, these robots are able to perceive their surroundings and avoid any
hazardous situations, could significantly speed up the integration of robotics in
spaces already occupied by people, making the research of PPS an important
area to explore.



1. Introduction

The circuitry in the brain specialized in representing space immediately
surrounding the body was firstly explored in studies on macaque monkeys
[26], [29], and later elaborated by Rizzolatti et al. [32], [31], who introduced
the term PPS. By studying afferent properties of individual neurons, these
papers describe a set of neurons, found predominantly caudal to the arcuate
sulcus of macaques in the area F4, that are bimodal, responding to both
visual and somatosensory stimuli. The visual receptive field of either bimodal
neuron never exceeds the animal’s reaching distance and is spatially related
to the tactile receptive field of the same neuron; furthermore, both receptive
fields are neither orientation nor direction selective. The bimodal neurons
itself also do not code space in a coordinate system centered on the retina,
rather, they use a coordinate system centered on a specific body part (i.e.,
hand-centered, head-centered, and trunk-centered) [2], [12]. Interestingly,
their visual point of interest is not based solely on the current field of vision,
but by utilization of working memory, once the animal is aware of a stimulus,
corresponding bimodal neurons respond even if the stimulus is no longer in
sight [15].

Since the underlying mechanisms of PPS and its emergence remains yet to
be explained, together with direct neurological research, computational models
are offering a more detailed view and inching us towards a comprehensive
understanding. In this thesis, we present one such model based on existing
work of Elisa Magosso et al. [28] implemented using spiking neural networks
in the environment of the Neurorobotics Platform [I]. We focus on multiple
stimulation scenarios and explore the effects such stimulations induce. Finally,
we demonstrate the use of this model as a defense mechanism on an iCub
robot in a closed-loop simulated environment.



Chapter 2

Related Work

B 21 Peripersonal space

Several areas have been found in the macaque brain to encode a multisensory
map of space in a body part-centered frame of reference including the putamen,
area F4, area 7b, and the Ventral Intraparietal Area [I4]. These areas,
illustrated in Figure 2.1, contain neurons with relatively large tactile receptive
fields (RFs), located primarily on the face, neck, arms, hands, and face.
Neurons are arranged in such a way to form a crude map of the body part
surface, similarly to a cortical homunculus. A large portion of these neurons is
bimodal, responding to both tactile and visual stimuli. The location of visual
RFs is spatially related to the tactile RFs and never exceeds the animal’s
reaching distance. Therefore the bimodal neurons represent somatotopically
organized space near the body.

Unlike classical visual neurons, bimodal neurons in these areas respond
poorly to plain light stimuli far from the animal, but are most sensitive to
real three-dimensional objects looming towards the body [32]. The maximal
distance of these visual RFs varies from less than 10 cm to the farthest
reachable area, but never exceeds it. However, the specific boundary is not
hardcoded in the brain and can be altered, for example, through tool use.
Another relevant characteristic of the visual RFs is that they are independent
of eye movements [I1]. Their location is always anchored to the tactile RFs
of the body part, regardless of the body posture or visual fixation field of
view, creating a body part-centered reference frame.
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2. Related Work

Figure 2.1: Lateral view of the monkey cerebral cortex showing three regions
containing neuronal populations that selectively encode peripersonal space: area
F4 in the frontal lobe, area 7b and the Ventral Intraparietal Area, which is buried
in the depth of the intraparietal sulcus (IPs), in the parietal lobe. As=arcuate
sulcus; Cs=central sulcus; Ls=lateral sulcus. Figure and caption from [7].

Multiple other findings are crucial in PPS representations. One of them
being, that some bimodal neurons in area F4 exhibit the property of "object
permanence' [I5]. These neurons keep firing even after the initially presented
and visible stimulus was silently (in the dark) removed. Such cells are
thus utilizing working memory and higher cortical processes, and are not
dependent on visual and tactile purely feed-forward stimuli. As such, the PPS
representation can play a role in general movement through the environment
even in the dark or in the direction outside of the field of vision.

Recordings of bimodal neurons in area F4 shows directional and proximity
selectivity, but no change in response to a differently sized stimulus [16]. The
results suggest that most bimodal cells are sensitive to the direction of motion
of the stimulus, and although a wide range of directions is present, many
neurons preferred looming stimuli. All these properties are represented in
Figure 2.2, in which both directional and proximity selectivity resulted in
higher cell activity, whereas differently sized stimulus had no effect.

Some bimodal neurons were shown to respond to visual stimuli presented
near a fake stuffed monkey arm placed in a realistic posture [13] and that the
visual RF was modulated by the movement of the fake arm. Furthermore,
even when the real arm was moved out of view and only proprioceptive signals
were available, the shift in the location of the visual RF was still present,
suggesting the brain uses a convergence of visual and proprioceptive cues to
determine the location of the body part.

Finally, it has been shown that neurons in the area F4 integrate not only
tactile and visual stimuli, but also auditory stimuli within the corresponding
PPS [17], creating a sensory complete representation of the space around the
body.



2.1. Peripersonal space
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Figure 2.2: Responses of a bimodal neuron from premotor cortex with a tactile
receptive field on the eyebrows. Each histogram is based on 10 trials. Stimuli
were presented while the monkey was not performing the fixation task. In A-C
the visual stimulus was advanced toward the face from in front at 8.25 cm/s and
retracted on alternate trials. Stimulus farpoint = 37.5 cm, nearpoint = 2 cm,
intertrial interval = 10 s. Vertical lines: onset and offset of stimulus movement.
In A, the stimulus was a 2 x 2 cm square of cardboard viewed binocularly. The
cell responded better as the stimulus approached. In B, one eye was covered,
but the cell was still sensitive to depth. The baseline activity increased because
the eye cover touched the tactile receptive field. In C, the stimulus was a 4 x 4
cm square of cardboard viewed binocularly. The increase in stimulus size did not
cause a corresponding increase in response. In D, stationary stimuli were tested
at eight different distances. The cell still preferred nearby stimuli, even though
all motion cues for depth had been eliminated. Figure and caption from [16].
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B 22 Peripersonal space development and plasticity

Human infants seem to be born without any notion of PPS, as they are
not able to reach, grasp, or in any other way interact with the environment
around them, and their motions are seemingly aimless. But throughout an
unguided experience, they learn to contact nearby objects and later to grasp
them with a reasonable degree of reliability [3], and with successive training,
their initially jerky and uncertain movements become increasingly refined.

A behavior closely attributed to the development of PPS is a spontaneous
self-touching by human infants in the first six months [35]. The behavior is
believed to be an important developmental phase that allows the coordination
of reaching and grasping motions. It is also supported by an experiment,
suggesting, that at early stages the development of PPS seems to be dependent
purely on proprioceptive cues [6], as the success rate of an object grasping
by young infants is unaffected when the hand is not visible. The vision then
becomes increasingly important toward the end of the first year for smooth
movements and anticipation of contact with an object.

It is thought that the PPS remains dynamic and adaptable to the environ-
ment throughout the whole life. One of the main experiment demonstrating
this property is based on the fascinating idea that tools become extensions
of our body [23], [4], [8]. Results collectively show that during and a couple
of minutes after the tool use the visual RFs of bimodal neurons are altered
and enlarged to include the effective length of the tool. While it is generally
accepted that these results serve as evidence for PPS adaptation, there are
interpretations explaining the results in a different view [19] or dismissing the
hypothesis of PPS extension altogether [20], [I8]. Nonetheless, the underlying
mechanisms of the visual RFs alternations during tool use are still debated
and far from understood.

B 23 Computational models

Numerous computational models, often supported by neurophysiological
experiments, are trying to explain and simulate some of the attributes of
PPS. One such model proposed by Magosso et al. [28] is focusing precisely
on the previously mentioned plasticity through tool-use. Assuming that
the modification of peri-hand space arises from a Hebbian growing of visual
synapses, while other synapses remain unmodified, the model consisted of two
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Figure 2.3: Feedforward synapses from unimodal layers to a single multimodal
neuron. Visual synapses reinforce to integrate the tip of the tool in the PPS.
Figure and caption adopted from [28].

mutually inhibiting hemispheres, each having only the visual feed-forward
connection plastic. It predicted a PPS extension after tool use, independently
of whether the tool was present or absent in the hand of the subject at the
time (Figure [2.3)). The results had been validated by an in-vivo experiment
on a right brain-damaged patient suffering from visual-tactile extinction,
providing strong evidence for the plausibility of the model.

A different approach, yet, based on the same neural network architecture,
by Jean-Paul Noel et al. [30] is exploring the PPS from the position of
dynamical, i.e., instantaneous, adaptation as opposed to long-lasting changes.
As mentioned above, the PPS depth is changing as a function of the velocity
of incoming stimuli. They propose an audio-tactile model implementing
a neural adaptation to persistent stimulation as a mechanism interpreting
this phenomenon. Again, supported by behavioral observations, the model
can effectively differentiate between various stimuli speeds, as illustrated in
Figure 2.4,

Furthermore, studies more directly focused on robotics are exploring the
use of PPS representations in an object manipulating or object avoidance
tasks. A biologically motivated model by Roncone et al. [33] implemented on
a humanoid robot is able to learn its PPS representation through the real-
time interaction with humans and can be utilized in behaviors like avoidance
and reaching. Likewise, a model developed by Straka and Hoffmann [34] is
excelling in the ability to predict the position of potential impact with an
approaching object.



2. Related Work
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Figure 2.4: Response of the multisensory neuron in the peri-face space network
to a sound given alone, moving at four different velocities, as a function of the
sound distance from the face. Figure and caption adopted from [30].

Other, closely similar computational models exist, although not necessarily
related to PPS representations. However, one model by Osamu Hoshino
[21] deserves mention, since, unlike any other previously described model of
sensory integration, it is the only one proposing a direct connection between
unisensory areas, not just a link between them through the multisensory
layer. Due to this connection, the model is able to produce a faster response
to a cross-modal stimulus, than relying purely on the top-down influence of
multisensory populations.

In the next chapter, we introduce the platform we’ve worked with and use
the work mentioned above in order to develop our own model of PPS.



Chapter 3

Materials and Methods

B 3.1 Neurorobotics platform

A robot mind interacting through its body with the environment around
makes an important closed loop system, which gives rise to an aim-oriented
behavior. This perception-action loop is an emerging point of interest for
neuroscience and robotics, both united under the field of neurorobotics. One of
the leading projects is Neurorobotics Platform (NRP) under the development
of the European Union-funded Human Brain Project [25].

NRP is simplifying the development of our PPS models by providing a
bridge between Gazebo [10] physics engine running a simulation of a robot
body and environment, and a spiking neural network simulator NEST [22]
running the robot’s brain. The communication between the two is provided
by transfer functions (TFs), written in python, which are called synchronously
in discrete time intervals, set to T7r = 20ms. This time interval is necessary
to take into account and is the cause of discretization as evident in the result
below.

The main function of TFs is to gather all the necessary data from the
physics engine, like value from a sensor, position of an object or an image
from a simulated camera, and "transfer" them into the neural network in two
ways. Either as a spike train or a source injecting a current into one or many
neurons. In the same manner, they are also responsible for data extraction
from the neural network and controlling the robot actuators according to

9



3. Materials and Methods

Multimodal neuron

: .

Figure 3.1: The architecture of our model’s neural network. A single multimodal
neuron is integrating information from visual and tactile sensory inputs.

them. TFs are therefore closing the loop between a robot’s brain and the
simulated robot body and environment.

Most of our experiments do not utilize the physics engine and are based
solely on a neural network and a couple of TFs managing the stimulation of the
neural network. The physics engine is used only in the last experiment, where
an application of the modeled PPS is used as a proof-of-concept experiment
demonstrating a simple defense mechanism.

. 3.2 Neural model

Architecture of our neural network model is inspired by the state of the
art computational model, as of now, able to cover several PPS properties
including somatotopic organization, cross-modal extinction and facilitation
[27], expansion upon tool-use [28] and dynamic resizing [30], even though,
not all of them at the same time. Although the model is based on a neural
network, the neurons in question are modeled as a first-order dynamical
system with sigmoidal, and therefore continuous, output function. Such
model of neurons is not easily compatible with an integrate and fire neurons
available in the NRP, and therefore some parameters, namely the weights,
had to be altered.

As illustrated in Figure the network’s architecture consists of one
multimodal neuron integrating information from two sensory modalities
— tactile, representing the somatosensory input of the robot, and visual,
representing the robot’s sight. Both modalities consist of somatotopically
arranged neurons, stimulated by direct sensory input. The model corresponds

10



3.2. Neural model

to an immobile robot with a square body of size M! x Nt cm covered with
skin, operating in a two-dimensional environment, having visual information
about the entire area of its body and a space in front of it for a total size of
M"Y x NV cm.

All neurons in the network are leaky integrate and fire models with fixed
threshold and alpha-function shaped post-synaptic current (in NRP labeled
as "IF__curr_alpha'). Both tactile and visual layers are connected with the
multimodal neuron through feedforward and feedback connections but aren’t
connected between themselves. If no stimulation to input layers is applied,
the network is quiet, and no activity is present, and while the network itself
is run in the NEST simulator, the stimulation has to be artificially injected
through TF.

The skin, covering the robot’s body, is represented by a tactile neural
layer of size M? x N' neurons, where each neuron has its RF defined as a
two-dimensional Gaussian function ®f;(x,y):

(x —ab)* + (y — yfj)z)

! (x,y) = B - cxp( — T

where the center of the RF (%, yf;) is defined for each tactile neuron 4j as:

(xh i) = —M'+0.5,i—=N'/24+05) em  j=1,2,...M"' i=1,2,..,N".

The robot’s vision is, again, represented by a neural layer, where each
visual neuron has RF with a center (mfj, y;;) defined by a function:

y . (x —2f,)” + (y — )
(I)ij(xvy): 0'65029(— ]2.(01;)2 ’ )’

(i u55) = (—M'+05,i—N*/2405)em  j=1,2,...M" i=1,2,..,N".

By using these positions, all visual neurons with RF in the negative plane of
X-axis are representing a stimulus within the robot’s body, while the ones
with RF in the positive plane of X-axis are representing a stimulus in front
of the body.

The input to both unimodal layers is a stimulus at a position (z°,y*), with
an amplitude defined by a function:

(z—a2°)* 4 (y — yS)Q)

S(x,y) = So - exp( - 2 (0°)?2

11



3. Materials and Methods

so the total input current ¢;; (uA) into each unimodal neuron is a sum of
the stimulus amplitude and the neuron’s RF:

Ty

Computed input currents are injected into the network using TF, and therefore,
the update frequency is limited by the NRP’s update time T7r. Hence, the
movement of a stimulus is only approximated by updating its position each
time the TF is called:

(@241, Y81) = (27, 4) + Trre - (v, v).

The network is interconnected via several synaptic connections. Static
lateral synapses connect neurons within unimodal layers, static feedback
synapses project from multimodal neuron to unimodal layers, and feedforward
synapses carry stimulation data from unimodal layers up to the multimodal
neuron.

The static lateral synapses within an unimodal layer have a "mexican
hat" shaped excitation. An actively firing neuron is therefore exciting other
neurons in close proximity, while inhibiting the ones far away. The function
determining the synaptic weight between two neurons ij and kl in the same
modality is:

2 2 2 2
o ap o @i )+ W ) N v (@i — )+ (Y — Yk
Nij e = Ng eacp( 2 (0P)2 ) Ap e:z:p( 2 (o) )

The static feedback synapses from the multimodal neuron to every neuron
in both tactile and visual layers have all the same weight of B. Similarly, all
feedforward synapses from each neuron in the tactile layer to the multimodal
neuron have the weight of W.

The feedforward synapses from visual layer to multimodal neuron, on the
other hand, are plastic, using the default spike-timing-dependent plasticity
(STDP) mechanism provided by the NEST simulator. The weights are limited
to a maximum value of ()4, and the default values for an ¢j neuron in the
visual layer are initialized as followed:

Qo j<M
Qij = : ;
0 J4>M

All constants mentioned above are stated in table 3.1.

12



3.3. iCub PPS model

Name Label Value
TF update time (ms) Trp 20
Size of the tactile layer along X-axis M? 15
Size of the tactile layer along Y-axis Nt 10
Size of the visual layer along X-axis MY 40
Size of the visual layer along Y -axis N? 10
Strength of the tactile RF P} 1.5
Strength of the visual RF 0 1.5
Deviation of the tactile RF ot 1.0
Deviation of the visual RF a" 1.0
Strength of the stimulus S0 4.0
Deviation of the stimulus o® 1.5
Positive amplitude of lateral "mexican hat" synapses AL 2.7
Negative amplitude of lateral "mexican hat" synapses | A} 2.0
Positive deviation of lateral "mexican hat" synapses of 2.0
Negative deviation of lateral "mexican hat" synapses oV 4.5
Weight of feedback synapses B 0.4
Weight of tactile feedforward synapses %14 1.0
Maximum weight of visual STDP synapses () — 1.0
Default weight of visual STDP synapses Qo 0.8

Table 3.1: Constants used in the neural network model of PPS.

B 3.3 iCub PPS model

To demonstrate a practical use case of our model, a fully-featured closed-loop
system was implemented in the NRP. The architecture of the model remains
mostly the same, though, the dimensions are modified. In contrast to the
previously described model, this one utilizes the Gazebo physics engine to
actually simulate the robot’s body and generate the sensory inputs. Finally,
by connecting an actuator to the multimodal neuron, the model is able to
generate behavior.

The whole setup can be seen in Figure 3.2, an iCub robot in the simulated
environment was placed in such a posture to look downwards. A stimulus,
represented by a red ball, is looming towards the robot’s torso, while his right
arm is raised to a position, where it does not intersect the ball’s trajectory
but is able to if the shoulder is yawed.

The tactile layer is reduced to a single neuron and therefore no lateral
synapses are present. To account for the reduction in quantity, the feedforward
synapse weight W is increased. The input current of the tactile neuron is

13



3. Materials and Methods

Figure 3.2: The setup of an iCub robot in the simulation. Left: Right arm in a
default position does not intersect the red ball’s trajectory. Right: If yawed, the
right arm is in the way between the red ball and the robot’s torso.

Name | Label Value
Size of both visual layers Vv 10
Weight of the tactile feedforward synapse w 10.0
Input current into tactile neuron upon collision 8 10.0

Table 3.2: Constants used in the iCub neural model.

dependent on the collision test of robot’s torso with other objects, and can
be defined as:

(p:

‘ St collision detected
0  otherwise

So once the looming ball contacts the torso, the tactile neuron becomes active.

The visual layer is now split into two layers of size V' x V', one layer for
each eye. The current inputs of the visual neurons are computed separately
for the left and right eye and are defined by a function:

v =0.008 ——3_
& Gij - Bij

ij=12..V,
where R;j,G;j, B;j are direct values of red, green and blue color of a pixel
from an image captured by an eye at position ;.

The last addition to this model is the ability to interact with its environment.
The positioning of the right arm is directly proportional to the activity of
the multimodal neuron, and as a result, stimulation of the neural network
causes the right arm to yaw and intersect the trajectory of the red ball.

14



Chapter 4

Results

B a1 Receding stimulus

The First experiment, performed on the PPS model with single bimodal cell,
demonstrates the effect of receding stimuli. One learning iteration consisted
of a stimulus moving at a constant speed along the X-axis away from the
body from coordinates (-17, 0) to (27, 0). Both the starting and ending
position of the stimulus were outside of the visual RF bounds, so the outer
positions of the stimulus had no impact on the learned representation. Three
different stimulus speeds were tested: 7.5, 15, and 30 cm/s.

-6
, 0 iterations 25 -18 30 cm/s, O iterations 25

- -5
-18 15 cmy/s, 150 iterations 25 -15 30 cm/s, 150 iterations 25

- -5
-15 15 em/s, 300 iterations 25 -15 30 em/s, 300 iterations 25

Figure 4.1: Weights of visual feedforward synapses after 150 and 300 iterations
of stimuli receding away from the body at a constant speed of 15 cm/s (left) and
30 cm/s (right).

15



4. Results

. Multimodal neuron response after 300 iterations of receding stimulation pattern

—— without learning
—— stimulus speed 7.5 cm/s
—— stimulus speed 15 cm/s

100 - —— stimulus speed 30 cm/s

80 1

60

spikes per second

40 1

20

-15 -10 -5 0 5 10 15 20 25
distance from skin [cm]

Figure 4.2: Multimodal neuron activity to a stimulus applied throughout the
X-axis of the input layers RF after 300 iterations of receding stimuli.

The weights of visual feedforward synapses, modified after 300 iterations by
the STDP algorithm, can be seen in Figure [4.1. The visual RF have reduced
in size and, as a consequence, multimodal neuron exhibited a weaker activity
near the edge of the body, compared to the reasonably even response before
the stimulation, Figure |4.2l The speed of receding stimuli appears to have an
influence on the margin, by which the PPS representation reduces, since, the
faster the stimulation was, the stronger the attenuation of the multimodal
neuron activity at the body boundary has become.

B a2 Looming stimulus

An opposite scenario was produced by reversing the direction of the stimulus.
Once the stimuli were looming towards the body, again, along the X-axis
from coordinates (27, 0) to (-17, 0) at a constant speed of 15 cm/s, the visual
RF has expanded, Figure 4.3, as opposed to the previous experiment.

Even though the stimulus was looming towards the body on one side, since
it maintained its motion, it was actually receding from the body on the other.
So naturally, we can see the same outcome of the RF contraction as in the
previous experiment, only mirrored.
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4.2. Looming stimulus
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Figure 4.3: Weights of visual feedforward synapses during the learning of 400
iterations of a looming stimulus with a speed of 15 cm/s.

2 Multimodal neuron response after 400 iterations of looming stimulation pattern
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Figure 4.4: Multimodal neuron activity to a stimulus applied throughout the
X-axis of the input layers RF after 400 iterations of looming stimuli.

By testing multiple speeds, we can confirm from Figure that on the
"receding" side of the body the visual RF has again reduced more with faster
speeds. On the other hand, the "looming" side gives exactly opposite results.
Here, the slowest speed had produced the biggest expansion of the RF, while
the fastest stimulation produced the smallest effect. Also evident is the
limited activity of the PPS representation to stimuli outside of the body’s
area, because of the absence of tactile sensory input.

Plotting the distance of the stimulus from the body, at which the multimodal
neuron became active, we can estimate the PPS representation size throughout
the stimulation. Testing the same speeds as previously, as illustrated in
figure [4.5], it is even more visible that the slowest stimulation produced the
largest expansion of the visual RF. Furthermore, the expansion rate seems to
be linear and, as such, not limited by the distance from the actual body.
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4. Results

PPS expansion rate as a function of stimulus speed
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Figure 4.5: PPS expansion during looming stimuli of speeds 7.5, 15, and 30 cm/s.

PPS expansion rate as a function of stimulus size
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Figure 4.6: PPS expansion during looming stimuli of different sizes.

If we vary the size of the stimulus by changing the value of ¢°, Figure 4.6,
we can see a more expected outcome, as the greater stimulus resulted in a
faster expansion rate of the PPS representation. But again, the increase is
linear and is limited only by the boundary of our model’s visual input layer.
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4.3. Looming and receding stimulus

B a3 Looming and receding stimulus

All previous experiments suffer from a reduction of the visual RF inside the
body. But by removing the discontinuity from the stimulation, so that the
stimulus moves along the X-axis from coordinates (27, 0) to (-10, 0) and then
back to (27, 0), this issue disappears, as seen in Figure Even after 100
iterations, the response to stimulation throughout the entire surface of the
body remained mostly unchanged, Figure 4.8. But the unnatural property
that slower stimuli caused significantly faster expansion of the PPS still
remains, Figure and seems to be even greater, since the speed of 30 cm/s
resulted in almost no expansion of the visual RF.

o
o
o

-b
-15 10 cm/s, O iteration:

25

Figure 4.7: Weights of visual feedforward synapses during the learning through
100 iterations of looming and then receding stimuli with a speed of 10 cm/s.

Mulltzi(r)nodal neuron response after 100 iterations of looming and receding stimulation pattern
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Figure 4.8: Multimodal neuron activity to a stimulus applied throughout the
X-axis of the input layers RF after 100 iterations of looming and receding

stimuli.
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4. Results

PPS expansion rate as a function of stimulus speed
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Figure 4.9: PPS expansion during looming and receding stimuli of speeds 7.5,
10, 15, and 30 cm/s.

B 4.4 icub model

We have subjected the model to a looming stimulation. Each iteration
consisted of a red ball moving from outside of the robot’s field of vision
towards the robot’s chest at a speed of 50 cm/s. Upon collision with the
robot, the stimulus was removed shortly after the tactile input neuron became
activated.

The learned visual RFs after just a couple of iterations for left and right
eyes are visualized in Figure [4.10. Expectedly, both RF has enlarged in the
same manner as in previous experiments, with a looming stimulus. In this
scenario, however, both sensory inputs were based on physics simulation,
therefore, demonstrating the practical use of the model to represent external

stimuli.
1.29
1T T T 0.65
:::i:: ::i::: :::i:: ::I::: 0
left eye right eye left eye right eye left eye right eye
0 iterations 3 iterations 9 iterations

Figure 4.10: Weights of visual feedforward synapses during learning PPS repre-
sentation with a stimulus of a speed 50 cm/s.
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4.4. iCub model

PPS expansion in an iCub model
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Figure 4.11: PPS expansion of an iCub model during looming stimuli of speeds
25, 50, 75, and 100 cm/s.

By varying the speed of the looming stimulus, in accordance with previous
experiments, the slowest speed has again produced the most dominant change
in PPS representation, as seen Figure |4.11. Because of the reduced size of the
network, the extension rate in the simulated environment was faster compared
to the previous experiments, but remains linear and unlimited.

The last and foremost important experiment performed with our spiking
neural implementation of PPS in the closed-loop environment of NRP is the
addition of an actuator connected to the multimodal neuron. Until now, the
model was only a passive system implementing a crude version of unsupervised
learning, but with the ability to intersect the red ball’s path by stimulating
the right arm, the model gains the ability to influence the place of collision.

As illustrated in Figure [4.12, where the Y-axis represents the distance
of the red ball from the iCub robot, the model has been learning the PPS
representation during the first stimulus iterations but in some cases, already
2 iterations the visual RF was strengthened enough, to induce a sufficient
activity in the multimodal neuron to move with the iCub’s arm and prevent
the collision.
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4. Results

Defence mechanism demonstrated by an iCub PPS model
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Figure 4.12: Distance of the red ball from the iCub robot upon collision.
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Chapter 5

Conclusion and Discussion

We have implemented a biologically inspired computational model of periper-
sonal space representation using a spiking neural network in the Neurorobotics
platform. The model integrates sensory input from visual and tactile modality
and is able to adapt to dynamic stimulation.

Subjecting the network to a receding stimulation resulted in a reduction
of the represented peripersonal space. Since there’s not much information
regarding this phenomenon, it is unclear, if the property could be assumed
as evidence for or against the model’s biological plausibility. Nevertheless, it
seems very unlikely to consistently occur during usual interaction with the
environment.

The expansion of the represented space upon approaching stimulus is,
however, a property of great value, and can be most likely linked to the early
development of the peripersonal space [3], [35] or as a general prediction
mechanism [34]. Sadly, the achievement is undercut with the effect of self-
sustained, unlimited expansion. Because it is evident that the real peripersonal
space never exceeds the body’s reaching distance, either the brain limits the
boundary by yet another mechanism, or the means necessary for learning are
not sufficiently complete.

Another property directly conflicting with the biological data is the strong
influence of the stimulus size, which is not present in the biological counter-
parts [I6]. It’s hard to think of a solution to this problem, and while lateral
synapses help in this regard, probably more layers are needed between the
unimodal layer of the peripersonal model and the direct sensory input.
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5. Conclusion and Discussion

In short, while, our model can successfully integrate spatial information
from multiple modalities and can be utilized in a prediction based tasks
focusing on margin of safety around the robot, it seems unable to achieve any
high-order characteristics such as direction selectivity, object permanence,
selective attention, or a instantaneous adaptation based on stimulation speed
[30].

Therefore, it is evident from the attributes of our model and from the
current research, that more work is indeed required to build a coherent and
potentially useful model of peripersonal space.
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Appendix B

CD content

The attached CD contains the following files:

this document in as a pdf;

folder with experiment files of receding stimulus;

folder with experiment files of looming stimulus;

folder with experiment files of looming and receding stimulus;

folder with scripts for figures generation;

a Readme file with instructions.
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