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Abstrakt / Abstract

Táto práca pojednáva o tvorbe pris-
pôsobiteľného letového počítača pre
výkonovú študentskú raketu. Začneme
stručným úvodom o výkonových rake-
tách a letových počítačoch. Predstavíme
si a vysvetlíme požiadavky, ktoré boli
stanovené študentským tímom CTU
SR, na základe zmien v novom systéme
rakety Illustria Blok II. Odhalíme ná-
stroje a programy, ktoré sme použili
pri tvorbe hardvérových a softvéro-
vých riešení. Podrobne predstavíme
kroky návrhu a osádzania dosky ploš-
ných spojov. Priblížime postup tvorby
stavového automatu a správ komuni-
kačného protokolu MAVLink pre letový
počítač. Poskytneme detailný návod
pre implementáciu firmvéru. Predve-
dieme funkčnosť hardvérového riešenia
a najdôležitejších senzorov. Pre ove-
renie softvérových riešení použijeme
metodiku HIL testovania, ktorá využije
simulácie 1D letu rakety v programe
Matlab.

Preklad titulu: Prispôsobiteľný letový
počítač pre raketu (Návrh a realizácia
škálovateľného letového počítača pre
študentskú raketu ILLUSTRIA Blok II)

This work addresses the creation
of an adaptable flight computer for
a high-power student rocket. A brief
introduction on high-power rocketry
and the purpose of flight computers
is provided. The requirements set by
the CTU Space Research student team,
based on changes in the new Illustria
Block II rocket system, are introduced
and described. Additionally, the cho-
sen tools used during the creation of
the hardware and software solutions
are detailed. The design steps and
assembly of the printed circuit board
are presented in detail. The design
process of the flight commander state
machine and a MAVLink communica-
tion protocol for the flight computer
is demonstrated. A comprehensive
guide to the firmware implementation
is provided. The functionality of the
hardware solution and on-board sensors
is demonstrated. A hardware-in-the-
loop testing methodology, employing a
Matlab simulation of a one-dimensional
rocket flight, is employed to verify the
software solutions.

Keywords: High-Power Rocket,
Flight Computer, CTU SR, Avion-
ics Systems, Illustria, Printed Cir-
cuit Board, State Machine, MCU,
PX4, Bootloader, NuttX, MAVLink,
Hardware-in-the-Loop, Matlab
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Chapter 1
Introduction

This work is both a stand-alone project and a key component of the CTU Space Re-
search Team’s transition from the legacy Illustria Block I avionics systems to the new
Illustria Block II, Andromeda modular systems.

The main objective is to provide a novel approach to the existing flight computer
software and hardware solution by making it adaptable to the new modular system.

We will look at the old Illustria Block I avionics systems, their shortcomings and
compare them with the new modular system, for which we will also design an easy-to-
integrate flight computer hardware board that will support new, more adaptable and
powerful software with a full-featured RTOS.

1.1 CTU Space Research team
The CTU Space Research Team1 is a student-led initiative at the Czech Technical
University (CTU) in Prague, focusing on the development of high-power rockets and
other space technologies. Founded in 2021, the team comprises over 50 members from
various faculties within the university, including engineering and technology disciplines.

One of their main projects is the Illustria rocket, the largest student-built rocket
in the Czech Republic. Illustria features a hybrid rocket engine, modular design and
advanced avionics, and aims to reach a target altitude of 3 kilometres. This rocket was
showcased at the European Rocketry Challenge (EuRoC) 2023 in Portugal2, where it
competed against other international student teams.

The team’s work extends beyond rocket development. They have also created the
Stratosat project, which successfully tested avionics in the stratosphere by reaching an
altitude of 32,600 metres. These projects help students gain practical experience and
contribute to the advancement of the aerospace sector in the Czech Republic.

1.2 High-Power Rockets
High-power rockets are advanced rocketry systems designed to reach higher altitudes
and carry larger payloads than standard model rockets. These rockets are an inte-
gral part of the research and development activities of academic and amateur rocketry
groups. The primary purpose of high-power rockets is to provide a platform for edu-
cational, experimental and competitive purposes, allowing students and hobbyists to
gain hands-on experience in rocketry and aerospace engineering. For example, the CTU
Space Research team’s projects, such as the Illustria rocket, are platforms for testing
different types of rocket engines, modular design concepts and gaining expertise in the
complexities of rocket design, aerodynamics, propulsion and avionics.

1 https://spaceresearch.cvut.cz/en [cit. 24/05/2024]
2 https://previous-editions.euroc.pt [cit. 24/05/2024]

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Development of a high-power rockets can be divided into several areas:. Structural Design

The structure of these rockets is designed to withstand the stresses of high-speed
flight and rapid acceleration. Advanced materials such as carbon fibre composites
are often used to ensure strength while minimising weight. The modular design of
the Illustria rocket makes it easy to integrate different payloads and components,
increasing the rocket’s versatility.. Propulsion Systems

High-power rockets typically utilize more advanced propulsion systems than stan-
dard rockets. These include solid, liquid or hybrid engines. Hybrid engines, such as
those used in the Illustria rocket, combine aspects of solid and liquid propulsion to
provide a balance of safety, performance and complexity.. Avionics and Control

Modern high-power rockets are equipped with sophisticated avionics for naviga-
tion, telemetry, and control. These systems include on-board computers, sensors and
communications equipment that monitor and control the rocket’s flight. For exam-
ple, the Illustria rocket’s avionics system, developed by the CTU Space Research
team, ensures communication with mission control and collection of current state
data during flight.. Flight Phases & Recovery

Figure 1.1. Diagram of High-Power Rocket Dual Deploy Flight Sequence

The flight of a high-power rocket is typically divided into several phases: launch,
powered ascent, unpowered ascent, apogee, recovery, and landing. Each phase re-
quires careful planning and execution. During the ascent, the rocket’s engines provide
thrust to overcome gravity and atmospheric drag. When the engines burn out, the
rocket coasts to its apogee, the highest point in its trajectory. Recovery systems,
such as parachutes, are then deployed to ensure a safe return to the ground. The Il-
lustria rocket uses two parachutes, drogue chute and main chute. The smaller drogue
parachute is deployed as soon as possible after apogee to slow down the rocket’s
descent. Then, after passing a certain height, usually around 300 metres, the larger
main parachute is deployed to further slow the rocket for a safe landing and minimise
damage to the vehicle.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Flight Computer

1.3 Flight Computer
A flight computer is a sophisticated electronic device used in high-power and model
rocketry to manage, monitor, and control various aspects of a rocket’s flight. At its core,
a flight computer performs several key functions. First, it handles pre-launch checks and
system arming, ensuring all sensors and control mechanisms are operational. During
flight, the computer continuously monitors sensor data, which includes acceleration,
altitude, orientation, and velocity. One of the primary roles of the flight computer is to
manage the deployment of recovery systems. For instance, during ascent, the computer
tracks the rocket’s altitude to detect when it reaches apogee, the highest point in
its flight. At this critical moment, the flight computer deploys a drogue parachute to
stabilize the descent. As the rocket descends further, typically around 300 meters above
the ground, the computer then deploys the main parachute to ensure a soft landing.

Figure 1.2. Closeup photo of Cimrman V2 flight computer board used by the CTU Space
Research team

Additionally, flight computers can be used to control other avionic systems, such as
telemetry modules that transmit real-time data back to the ground crew. This data
allows for the monitoring of the rocket’s status throughout its flight, enabling quick
responses to any anomalies. They may also control cameras, scientific payloads, or
other experimental equipment, coordinating their operation to gather valuable data
during the flight.

In our work we will push this idea further by using a real-time operating system
(RTOS) as the basis for our flight computer, which will offer significant benefits in han-
dling real-time data processing and multitasking efficiently. An RTOS ensures that crit-
ical tasks such as sensor data acquisition, flight control algorithms and communication
processes are executed within strict time constraints, ensuring timely and predictable
responses. Developers can add new features or upgrade existing ones without overhaul-
ing the entire system. In the context of high-power rocketry, where missions can range
from simple launches to complex scientific experiments, the flexibility and scalability
offered by an RTOS is invaluable in enabling the development of sophisticated and
adaptable flight control systems.

3



Chapter 2
System Overview and Requirements

2.1 The Rocket
The Illustria rocket is a modular system made up of 7 sections that are connected to
each other by a system of section joints called RADAX1.

Most of the sections are made out of carbon fibre sections. The avionics section is
the only one made specifically from fibreglass, as it must not interfere with telemetry
systems and radio waves.

The modularity of the rocket ensures that it can be easily reconfigured to a smaller
or larger size when required. For example, the smaller configuration is more suitable
for testing lower height solid rocket launches or obtaining data from wind tunnel tests,
while the larger size is preferred for the main hybrid configuration and accommodates
larger oxidiser and pressuriser tanks, as well as a larger engine section.

The brain of the rocket is the Cimrman V2[1] flight computer located in the avionics
section. It is connected to several Zora V1 measurement boards in other sections of
the rocket via a series of RocketBus cables, which provide power distribution to all the
boards, as well as a communications link in the form of a CAN bus.

2.1.1 The Old Illustria system
The Cimrman V2 flight computer[1] uses the STM32WLE5JC Sub-GHz wireless mi-
crocontroller with Arm Cortex-M4 @48 MHz with 256 Kbytes of flash memory. For
telemetry it uses the integrated LoRa wireless module.

It is connected to an extender board that enhances its capabilities, but most im-
portantly holds batteries and has connectors for the RocketBus cables. Without the
extender the Cimrman V2 flight computer could not communicate with the measure-
ment boards in the rocket alone. Extender board also has a GPS GNSS module. Yet
the flight computer still has limited memory, with only a 4MB eeprom and no SD card.
It has limited connectivity even with the extender board. So there is no SPI, I2C, and
only one UART as external peripherals.

There are 3 Zora V1 boards inside the rocket. One is located in the recovery section
and handles the drogue and main parachute deployment logic, as well as powering the
shear pins. As the Illustria rocket can have a hybrid engine configuration that requires
two tanks to hold the oxidiser and pressuriser, the next Zora board is in this section
and handles the servo motors used to fill and connect the tanks. The last Zora board
is in the engine section, where it is responsible for opening the main valve immediately
after engine ignition.

In the mission control, the communication with the rocket is handled through another
Cimrman V2 board with the LoRa wireless module, that is programmed simply as a
radio-usb transceiver connected to a computer.
1 Ježek, Vojtěch. Návrh spojů sekcí modulární studentské rakety. ČVUT, 2023[cit. 24/05/2024]. Bach-

elor’s Thesis. Available from http://hdl.handle.net/10467/109891/
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Mission control and simulation software

2.1.2 Changes in the new Andromeda system
There are several big changes in the new system.

The most important of these is the separation of power distribution and battery
management from the flight computer into a dedicated section called the Battery Op-
timisation & Balancing Enhancement System (BOBES). The other key part is the
creation of a new telemetry system (RocketLink), which now includes a new board in
the rocket for dedicated handling of communications with the mission control.

These two changes have freed the main flight computer from managing both power
distribution and telemetry communications, giving it more room to become a dedicated
flight control system. The new Zora V2 board now also supports the CAN FD protocol,
has more peripherals and is half the size of Zora V1. Therefore new main requirements
for the new flight computer have shifted greatly from its predecessor.

The main requirement is to support the modular adaptable design of the Andromeda
system, meaning that the flight computer needs to provide:. Should be primarily powered from RocketBus and be able to connect with other

boards via CAN.. Have multiple UART peripherals for connecting to RocketLink and possible other
radio boards and have at least one SPI and I2C peripheral.. Have a robust controller and state management for rocket flight.. Provide an easy way for programming and configuring the firmware.. Have IMU and Baro sensors.. The PCB should use the same drill hole placement as the expander board

2.2 Mission control and simulation software
The mission control play a pivotal role in ensuring the success and safety of rocket
launches. The team is responsible for a wide range of critical tasks, including pre-launch
setup and configuration, real-time monitoring of the rocket’s status, and post-launch
recovery operations.

To communicate with the rocket and manage configuration and system checks, the
CTU SR team uses a custom Matlab GUI application, that allows the ground crew to
seamlessly interface with the rocket’s flight computer, facilitating the input of pre-flight
parameters, monitoring telemetry data in real-time, and making necessary adjustments
on the fly. The GUI provides a comprehensive display of vital statistics such as altitude,
velocity, and system health indicators, ensuring that the ground crew can maintain
situational awareness throughout the mission.

For pre-flight verification and HIL testing of the rocket flight computer state machine,
the Matlab application uses a Simulink program to create a simple 1D simulation of
a rocket flight. The simulation takes the current rocket and parachute states as input
and simulates the vertical acceleration, velocity and altitude of the rocket flight based
on this information and a predefined engine thrust curve. It then sends a message back
to the computer simulating data collected from the IMU and Baro sensors.

Until now, communication has been done via a custom message protocol that is
difficult to scale and extend. For each new message type, both the flight computer and
the Matlab application have to be painstakingly rewritten and rebuilt or recompiled.
As a result, the CTU SR team decided to use a common solution such as the MAVLink
communications protocol. This placed a new requirement on our flight computer, which
now has to natively support the MAVLink protocol and provide an easy way to modify
its messages.

5



2. System Overview and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Net of the Simulink program that will be used for simulating 1D rocket flight
during HIL testing

2.2.1 MAVLink protocol
MAVLink (Micro Air Vehicle Link) is a lightweight communication protocol designed
to exchange information between unmanned vehicles and ground control stations. It
is widely used in robotics, particularly in applications involving drones, UAVs and
other autonomous systems. Developed by Lorenz Meier in 2009, MAVLink has become
something of a standard for drone communication due to its robustness, efficiency and
flexibility.[2]

It works by encoding messages in a binary format, which ensures efficient transmission
and minimises bandwidth usage. Each MAVLink message consists of a predefined
structure that includes headers, payload and checksums. Two versions of the protocol
are supported: MAVLink v1.0 and MAVLink v2.0, the latter offering enhanced features
such as extended message length, IDs and improved security mechanisms.

Figure 2.2. Structure of MAVLink v2.0 message frame

One of the key benefits of MAVLink is its simplicity in defining new messages using
XML files. These files define the message formats, including fields, types and message
IDs. Users can easily add custom messages by editing these XML files, which are
then used to automatically generate source code for encoding and decoding messages
in various programming languages. This flexibility allows MAVLink to be adapted
to a wide range of applications and use cases, making it highly versatile. MAVLink
encourages the use of the provided predefined dialects with common messages that are
made for standard UAV operations.

PX4 natively supports this protocol, which is used to send telemetry data, receive
commands, and coordinate missions. The flight stack includes a MAVLink module that
handles message encoding, decoding, and dispatching, ensuring seamless integration
with MAVLink-compatible tools and software.

6



Chapter 3
Toolkit

The purpose of this chapter is to introduce the tools we have chosen to complete our
work, as there are quite a lot of them and it will therefore be necessary to give a brief
explanation of each one.

3.1 Draw.io (v21.6.8)
Draw.io is a versatile and intuitive diagramming tool that lets you create a wide range of
visual representations, from flowcharts and network diagrams to wire-frames [3]. With
an easy-to-use interface and an extensive library of shapes and icons, it is a popular
choice for brainstorming ideas, planning projects or illustrating complex concepts. Its
main purpose is to provide a flexible and efficient solution for communicating informa-
tion visually. We used it mainly to brainstorm, plan and visualise our implementation
of the requirements for our new flight computer hardware board.

3.2 KiCad (v8.0.0)
KiCad is an open source electronic design automation (EDA) software suite used pri-
marily for printed circuit board (PCB) design [4]. It provides a comprehensive set of
tools for schematic design, PCB layout and component footprint management, as well
as features for generating manufacturing files such as gerber files. It also includes the
option of 3D visualisation and design rule checking, enabling users to create professional
PCB designs. It also has an active community and provides extensive documentation
with plenty of resources and examples for new users. All this makes it an ideal choice
for our purposes.

3.3 MATLAB and Simulink (R2022a)
MATLAB is a programming platform designed specifically for engineers and scientists
to analyze and design systems. The heart of MATLAB is the MATLAB language, a
matrix-based language allowing the most natural expression of computational mathe-
matics [5]. We use it in conjunction with Simulink to create real-time simulations for
our HIL testing.

Simulink is a graphical programming environment and simulation tool widely used
for modelling, simulating, and analysing dynamic systems [6]. It provides a visual
interface for designing block diagrams that enable users to simulate and test control
systems, signal processing algorithms, and other dynamic systems. It is integrated with
MATLAB, allowing seamless transfer of data and algorithms.

The CTU SR team provided us with a simple 1D simulation model of a rocket
flight with a predefined engine thrust curve, which will be used to verify the correct
implementation of our flight computer state machine design in the HIL testing as can
be seen on Figure 2.1.

7



3. Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4 NuttX RTOS
NuttX is a real-time operating system (RTOS) designed for embedded systems with an
emphasis on standards compliance and small footprint [7]. Developed under the Apache
Software Foundation, NuttX adheres to POSIX and ANSI standards, providing us with
a familiar environment close to Unix-like systems. It also supports a wide range of
microcontroller architectures, including most of ST STM32 microcontrollers, making it
highly versatile for a variety of embedded applications and our work.

Figure 3.1. Diagram of NuttX Architecture (based on [8])

NuttX’s architecture is modular and scalable, designed to run efficiently on resource-
constrained devices. It consists of several key functionalities of a proper RTOS that
make it suited for our work:

. Task scheduling: The primary scheduling policy is strict priority scheduling, where
higher priority tasks precede lower priority tasks. If multiple tasks have the same
priority, they are scheduled on a First-In-First-Out (FIFO) basis.. Inter-Process Communication: Uses queues for message exchange between tasks,
semaphores for signalling and resource access, and signals for asynchronous notifica-
tion and interrupts.. Pseudo Root File System: It serves as the root file system in NuttX. It provides a
directory structure and supports standard file operations such as open, close, read,
and write. Character and block device drivers are inherently supported within the
/dev directory of this pseudo file system similar to POSIX systems.. Device Drivers: NuttX provides a wide range of drivers for different hardware inter-
faces, such as USB, SPI, I2C, CAN, and more. These drivers can be divided into 3
categories:. Character Device Drivers: Used for devices that handle data streams like serial

ports.. Block Device Drivers: Used for storage devices that handle data in blocks such as
eeprom or SD cards.. Specialized Device Drivers: Include drivers for Ethernet, USB, and other specific
hardware that often require additional configuration and interaction protocols

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 PX4

The structure of the NuttX device drivers generally adheres to a two-layer structure
consisting of an upper-half and a lower-half:. Upper-half Driver: This part of the driver is responsible for interfacing with the

NuttX RTOS. It implements the standard file operations (open, close, read, write,
etc.) and interacts with user space applications.. Lower-half Driver: This part is hardware specific and implements the actual inter-
action with the device. It is typically located at the architecture or board level.
The upper-half driver communicates with the lower-half driver via a set of callbacks
defined in the driver interface.

3.5 PX4
The PX4 platform is an advanced open-source flight control software designed to operate
drones and other unmanned vehicles, but there is no implementation or documented
vehicle type that could be used to manage the flight states of a rocket. It provides the
functionality required for vehicle stabilisation, control and navigation, and integrates
seamlessly with a wide range of hardware components. PX4 is widely used in both
research and commercial applications due to its robustness, flexibility and support for
a wide range of vehicles [9].

Figure 3.2. High level overview of a typical PX4 System

Let’s start by looking at what a typical PX4 system looks like and how it works. The
figure above shows a common layout of how the PX4 could be used. The MCU hosts
the flight controller software, i.e. the underlying NuttX RTOS and the PX4 software
on top of it.
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The PX4 software can be divided into 3 layers. Drivers, which handle the IO commu-

nication with the external devices through the NuttX high level drivers. Middleware,
which handles the inter-process or inter-application communication. And Modules or
Applications in themselves, which handle the logic for higher level organisation and
control of flight behaviour.

Folder Description

platforms Platform-specific code, providing abstraction layers for
different hardware architectures.

boards Board-specific configurations and drivers, tailored for dif-
ferent hardware platforms.

src/lib Core and support libraries used across the PX4 codebase.
src/drivers Hardware drivers for sensors and peripherals.
src/modules Core flight modules like navigator, commander, and sen-

sors.
msg Definitions for uORB message topics.
ROMFS File system images including startup scripts, configuration

files and parameters.
cmake Build configuration files that guide the build process.
Tools Various utilities and scripts to aid in development, testing,

and deployment.

Table 3.1. PX4 project folder structure.

PX4 drivers are organised into blocks, each responsible for a specific type of hard-
ware component, such as sensors (IMUs, magnetometers, barometers), actuators (mo-
tors, servos), and communication devices (telemetry radios). These are stored in the
src/drivers directory of the PX4 source tree. Each driver module typically contains:. Initialisation routines: Functions to set up the hardware, configure parameters, and

initialise communication protocols.. Data Input Handling: Functions to read data from sensors, process it, and make it
available to other parts of the system.. Hardware Control Interfaces: Functions to send commands to hardware components
such as actuators or to control data transmission.

The NuttX drivers, being a POSIX compliant, provide standardized device driver
interfaces by their upper-half implementation. PX4 drivers leverage these interfaces to
interact with the underlying hardware through read and write operations. The drivers
communicate with other PX4 modules primarily through the uORB (micro Object Re-
quest Broker) messaging system middleware. This publish-subscribe framework allows
different modules within PX4 to exchange data efficiently and asynchronously. For ex-
ample, a sensor driver will publish raw data messages to uORB topics, which can then
be subscribed to by sensor fusion algorithms, estimators and other control modules.

PX4 applications and modules are higher-level functions that use the core systems
and drivers to perform specific tasks. They process data from sensors and provide
functions for automated procedures using sensor data and control algorithms. They
collect and store flight data and monitor the overall state of the system.
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Chapter 4
Design of Flight Computer Hardware Board

Given our requirements, we set out to create a new hardware board that would still be
based on the previous generation Cimrman V2 flight computer, but would also integrate
and support the major changes made in the new Andromeda system.

4.1 From Concept to Diagram
We started by creating a graphical representation in a form of a diagram for the core
systems required, the power organisation they would need, and the desired peripherals
and protocols we would implement.

As the new Andromeda system is predominantly modular, the most important would
be the connection to the rest of the subsystems via the RocketBus link. Therefore we
started by specifying the layout of the RocketBus link, which includes the main 11.4V
and secondary 5V power line coming from BOBES, as well as the two-wire CAN bus,
completed by the two grounding wires to form a six-wire RocketBus. This was followed
by the selection of key components such as the MCU, IMU, barometric sensor and
power step-down ICs.

4.1.1 Core systems and power distribution
As the earlier versions of the Cimrman flight computer used STM32 MCUs, and almost
all other boards in the Illustria and Andromeda systems follow suit, we decided to
continue with this approach. Our familiarity and experience with STM32 MCUs also
influenced our decision. The STM32H7 series was specifically chosen for the MCU
because of its binary compatibility with the latest PX4 FMUv6 software, high reliability,
widespread use, good overall documentation, performance and versatility.

The deciding factor for choosing an STM32 chip from the H7 series was mainly the
amount of flash size and the maximum processor speed. Although some of the H7 series
processors are even dual-core, the PX4 would not be able to take advantage of this,
and there is still very limited support from NuttX RTOS for the new H7 series at the
moment. This leaves us with the H742, H743 and H753, which are all very similar in
terms of performance, amount of peripherals and supported features. Based on price,
availability and the package type and size, we chose the STM32H743VIT6 1.

The next thing every good MCU needs to work precisely is an external crystal oscil-
lator to provide it with an accurate clock signal. Even though the STM32H743VIT6
is brandishing an internal high-speed oscillator its frequency drift could reach around
1000ppm while a proper external one can drop that to less than 50ppm. We chose a solid
automotive grade ceramic smd crystal oscillator from the ABRACON-ABM8AAIG2 se-
ries at a frequency of 8MHz.

Thinking back to the modularity of the whole system, connecting to the RocketBus is
the next priority. It is our main power supply and a means of communicating with the
1 https://www.st.com/resource/en/datasheet/stm32h743vi.pdf [cit. 24/05/2024]
2 https://abracon.com/datasheets/ABM8AAIG.pdf [cit. 24/05/2024]
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Figure 4.1. Diagram of core systems and power distribution, without sensors or peripherals.

rest of the rocket’s subsystems. Although we will not need more than 5V to power all our
board components, which can come from the on-board USB port and the RocketBus,
we will still support power supplies up to 12V for the sake of adaptability. For this
reason we are going to include the possibility of connecting up to a 3S LiPo battery to
the board, or selecting the 11.4V power supply from the RocketBus.

As our board’s core systems primarily use 3.3V voltages, we have chosen a suitable
step-down to reduce the input voltages to acceptable levels. As the voltage difference
between input and output can be quite large when using batteries, we chose to use a
more efficient step-down rather than a simple LDO, which will produce less heat and
current drop during operation. For the power selection we use simple solder jumpers
combined with the efficiency of Shottky diodes that have low voltage drop and a forward
current of up to 2A. For the step-down we chose one from the LMR436103 series by
Texas Instruments. We opted for the 1A version, as we do not expect our max current
to exceed more than 500mA.

As CAN bus uses differential signals, CAN high (CANH) and CAN low (CANL) we
need a CAN transceiver that will be capable of translating this differential pair into
CAN TX and CAN RX signals that our STM32 MCU can understand. For this role
we chose a popular chip from the TCAN332G4 series by Texas Instruments, which can
also support the CAN FD protocol if we ever have a need for higher speeds (this is also

3 https://www.ti.com/lit/gpn/lmr43610-q1 [cit. 24/05/2024]
4 https://www.ti.com/lit/gpn/tcan332g [cit. 24/05/2024]
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 From Concept to Diagram

supported by our MCU). Although our MCU already has 2MB of flash memory, which
can be used for fast data storage alongside our programme, it is not much. Looking back
at the previous versions of the Cimrman flight computer, they use an eeprom precisly
to avoid this bottleneck. Therefore, we have also included an eeprom in a standard
SOIC8 package in our design, which is connected to the MCU via an I2C bus.

4.1.2 Sensors

Figure 4.2. Diagram of sensors on board.

In order for our flight computer to carry out the required tasks of recognising the
different stages of flight, we need two commonly used sensors. The Inertial Measurement
Unit (IMU) for linear and angular acceleration, and a barometric sensor (Baro) to
measure the surrounding atmospheric pressure, which can then be used to calculate
the current altitude from lift-off. The selection of the specific sensors was made on the
basis of these qualifications in the following order of priority:

. Minimise the number of sensors as we have limited space on the board.. Choose sensors that are supported by PX4 or NuttX and already have an imple-
mented driver.. Select the sensors that have the best accuracy while being efficient in their power
consumption.

For the barometric sensor we chose the MS5611-01BA035 series from TE Connectiv-
ity. This sensor measures absolute pressure over a range more than sufficient for our
rocket flight, from sea level(1bar) to over 20km(10mbar). It has an accuracy of down
to 0.012mbar and an operating supply current of only 12.5uA. It is also supported by
PX4 and already has a driver already written. All of this meets the requirements for
our sensors as it also has a tiny footprint on board.

5 https://www.te.com/en/product-MS561101BA03-50.html [cit. 24/05/2024]
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For the IMU we chose the ICM-20948 which is a 9-axis IMU sensor in one package,

that includes an accelerometer, gyroscope and magnetometer. It is an InvenSense
IMU from TDK, promoted as „World’s Lowest-Power 9‑Axis MEMS MotionTracking®
Device“.6 Judging by the qualifications, the 3-in-1 package helps to limit the space used
on board. The IMU is also already supported by PX4 and has a driver written. Last
but not least it also meets the low power with high enough accuracy requirement. The
only downside to all this is that the IMU runs on 1.8V instead of 3.3V like the rest of
our ICs. We were unable to find any other suitable replacement that met all three of
our requirements, so we decided to just add a 1.8V LDO and a voltage level translator
rather than split the IMU into several ICs and potentially having to write multiple
drivers. Both the IMU and Baro provide fast SPI peripherals, so we leveraged the
multitude of SPI peripherals on our microcontroller to grant the IMU and Baro sensors
the advantage of an exclusive SPI Bus for each of them.

The GPS was a late addition, as it was previously intended to be housed on the
RocketLink telemetry board. However, due to space constraints, the CTU-SR team
decided to move the GPS from the telemetry board to the flight computer. That way,
the flight computer has more options if it is used in a self-contained environment without
the telemetry board, and the telemetry board has more room to specialise.

The choice of TESEO-VIC3DA from STMicroelectronics as the GNSS / GPS Module
was made based on its successful usage on previous projects by the CTU-SR team.

4.1.3 Peripherals

Figure 4.3. Diagram of supported peripherals.

One of the most important connections on the board is definitely the ground and the
SWD pins for programming the MCU. These are connected to the PC via a programmer,
such as ST-Link, to upload new firmware into the MCU’s memory. The same pins can
also be used for advanced software debugging at run-time using breakpoints.

As we want to store as much data as possible from our sensors throughout the
flight, and also have an easy way of accessing this data, we chose the standard option
of integrating an SD card on our board. The MCU provides support for SDMMC
protocol with dedicated SDIO pinout interface, which we can use in the fast 4-bit mode
for read/write operations on the SD card.

We provide 4 UART peripherals as an easy way for interconnection with other boards,
such as the aforementioned telemetry board.

One additional UART is routed through an FTDI chip to support an USB-C con-
nection straight to a Host PC. The same USB-C port is also used as another option of
power delivery. This is mostly useful during the programming and debugging phase of
setting up the flight computer, where we want to have a single connection to the host
PC via a USB cable. When implemented inside the rocket the RocketBus will be used
as a primary power source.
6 https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948 [cit. 24/05/2024]
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4.2 Creating the Schematic
In the creation of Schematics and PCB layout design we opted for KiCad software as
its open-source and easy-to-use.

We started by creating a new project and find all the core parts and components,
such as the MCU, Sensors, Power Regulators and peripheral devices.

For easy ordering of all components we selected only those available through the
Mouser Electronics (cz.mouser.com website).

For many symbols and footprints of our parts we had to include them manually
as they were not in the default KiCad library. We used online platforms such as
snapeda.com, ultralibrarian.com or directly mouser.com to download free footprint
and symbol libraries for these parts.

4.2.1 Power delivery and source selection
We began by placing symbols and nets for power delivery peripherals, including Rock-
etBus, USB port and battery ports. The 3.3V Step-Down is the most complex power
supply on the board. To ensure proper function of the integrated circuits(ICs), includ-
ing the MCU, the 3.3 V power supply should have minimal voltage ripple. This can
be achieved by using output blocking capacitors and an LC filter. The use of these
components results in steady voltage, and means the ADC readings will be accurate
and there won’t be any voltage drops during current peaks. The power supply uses a
numerous amount of capacitors with different capacitance’s to achieve this.

Figure 4.4. Power Delivery 3.3V Step-Down Schema.

Figure 4.5. Power Selector Schema.

Based on the power delivery requirements set, we provide a way to select the power
source. To select the power inputs a set of solder jumpers is provided with a set of
Shottky Diodes guarding against reverse current. A resetable smd fuse is utilized to
prevent damage to the board in case of a short or over-voltage situation.
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4.2.2 MCU

Figure 4.6. MCU pinout mapping.

We configured the correct pin mapping composition based on the peripheral protocols
used using the STM32CubeMX 7 program. We enabled and placed the pinout for SWD,
SDMMC, SPIs and UARTs used by Sensors and other ICs, which gave us an origin
layout. We then refined the mapping during the schematic and PCB layout creation
process, adding peripheral and less important connections such as GPIO for the buzzer
and SPI chip select or ADC pinout.

The schematic was initiated by placing the MCU symbol in the central position, as
it is the primary controlling component. The ground ports were then connected to the
GND net symbol, and the VDD ports were linked to the 3.3V power source net. For
each VDD pin, a standard decoupling capacitor of 100nF was used to regulate peak
7 https://www.st.com/en/development-tools/stm32cubemx.html [cit. 24/05/2024]

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Creating the Schematic

power draw. We also added one 4.7uF capacitor as power storage for the MCU which
will help with smoothing the overall power draw during the startup and booting phase.
For the VDDA ports, that are used as power source for analog operations inside the
MCU, we detached a net from the 3.3V one using a ferrite bead, that helps filter any
high frequency noise further, and we also added another 1uF and 100nF decoupling
capacitors.

After connecting the power, we continued by giving the NRST port an external pad
for easy debugging and also a 100nF capacitor that will aid in keeping it in a powered
state by default. By connecting it to ground we can later power down and force a
restart of the MCU. We also added a pull-down resistor to the BOOT0 port which can
be used to force the MCU into Bootloader mode when connected to the VDD voltage.
The MCU also provides two VCAP ports for connecting additional external decoupling
capacitors for further smoothing the internal analog operations. We connected a 2.2uF
capacitor to each port.

Figure 4.7. MCU Crystal Oscillator Schema.

The external crystal oscillator that will provide the MCU with a clock needs to have
two capacitors as shown on the Figure 4.7. These need to be the same value and
precisely calculated using a formula to minimize external interference and provide clear
clock signal without disturbances based on the crystal used.

The final step was to connect the SWD ports, SWDCLK and SWDIO, with the
NRST port to a connector that will be used for debugging the MCU firmware. The
connector also included a connection to GND and 3.3V, with overvoltage protection
using a Zener Diode in accordance with standard practice.

4.2.3 Sensors
Connecting the sensors was the next crucial step in the schematic design. Each sensor
power connection is done via a solder jumper, so we can measure current draw and
isolate the sensor during assembly and debugging. Additionally, a 100nF decoupling
capacitor is attached to the VDD port of each sensor.

As previously stated in the design chapter 4.1.2, the IMU runs on 1.8V and not
3.3V as the other ICs. This is addressed by using an LDO that drops the voltage from
3.3V to 1.8V with minimal losses as the sensor draws only milli-amps at peak usage.
The more significant issue is that the MCU communicates on its ports at 3.3V voltage
level, so it is not possible to connect it directly to the IMU, which uses only 1.8V. We
therefore utilise the power of voltage level shifters.
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Figure 4.8. IMU Connection through Volatge-Level Shifters Schema.

The voltage level shifters, in their bidirectional form, enable us to connect two com-
ponents operating at different voltage levels by translating the signal voltages sent
between them. They employ MOSFET transistors and pull-up resistors to rapidly and
flexibly regulate the voltage levels of signals passing through them. The voltage regu-
lators chosen also have an enable port that we tied using a pull-up to the VDD of our
IMU. In this way we were able to connect the IMU using a dedicated SPI bus to the
MCU.

Figure 4.9. Baro Sensor Schema.

The connection of the baro sensor was straight forward. Based on the datasheet we
correctly set the PS port of the Sensor IC to GND, selecting the SPI interface. Then we
connected it to the MCU using the SPI2 bus. This means attaching the MISO, MOSI,
SCK and CS pinouts of both ICs.
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4.2.4 Peripherals
One of the requirements for the ease of programming and debugging was the selection
of the USB-C connector as one of the boards’ power sources and a serial communication
interface.

The USB-C standard differentiates between current sink and current source devices
and supports active power delivery up to 5 A at 20 V (100 W). However, such advanced
power delivery is not necessary for our application. The fundamental USB-C connector
is capable of delivering up to 500 mA at 5 V without any modifications. The addition
of a pair of 5.1 kΩ pulldown resistors between the CC pins and GND configures the
device as a power sink, increasing the power limit to 1.5 A at 5 V, which is more than
sufficient for our application.

Figure 4.10. USB-C VBus FTDI Connection Schema.

As the connector is only used for power delivery and communicating via UART
using an FTDI chip, it is not a concern that the physical connector is only capable of
supporting USB 2.0 speeds. The advantage is that it is equipped with a smaller number
of pads in comparison to a USB 3.0 connector, which makes the assembly process easier.

Figure 4.11. SD Card slot Schema.
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For the SD card connector, we chose one that allows full opening and closing with

a locking mechanism, which is particularly useful in high vibration environments such
as inside a rocket. To connect the SD card to the MCU, we took advantage of using
the SDMMC SDIO interface with a 4-bit data bus mode for higher transfer speeds. We
also added external pull-up resistors to the data lines and decoupling capacitors to the
SD card VDD line.

4.3 Printed Circuit Board Layout Design
To guarantee the optimal outcome, the schematic underwent a meticulous review by
multiple individuals from the CTU SR avionics team. This comprehensive review pro-
cess aimed to identify or rectify any potential issues and improvements. Once this
in-depth evaluation was complete, we proceeded to the next crucial step: designing
the printed circuit board (PCB). This design phase translated the refined schematic
into a physical layout, carefully planning the placement of components and routing of
electrical connections to create a functional and efficient PCB.

For our PCB Design we chose a 4 layer board, mainly to minimize manufacturing
costs, as we anticipated the routing on board with this size should not be a problem.
The top and bottom layers should include signal routing and ground, while the middle
ones will be preferably only the ground and power planes with minimal signal routing.

Figure 4.12. Diagram plan for Power Delivery on board the PCB.

To ensure the most logical placement of components and minimize routing lengths
we created a diagram to help us identify and specify the power zones and power de-
livery pathways, as well as the most important logic signal routes, using a graphical
representation seen in Figure 4.12.

We have placed all the power delivering devices and connectors on one side of our
board. On the other side we placed our MCU and all its peripherals. We then placed
the rest of our components in the middle, while trying to minimize the power and logical
signal routes lengths between all the components on the board.

Following this guide we first created a PCB board inside the KiCad PCB Editor
with the required arrangement of drill holes. We configured the default editor layers
to correspond with ur 4 layer design. We also setup the Design Rules and Constraints
based on the JLCPCB Manufacturing & Assembly Capabilities8.
8 https://jlcpcb.com/capabilities/Capabilities [cit. 24/05/2024]
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Based on this, we specified the track and via sizes that would be used. For the tracks,
these were widths of 0.2, 0.3, 0.5 and 0.75mm. During placement, we selected which
based on the maximum current that could be applied to the track. With regard to the
vias, two sizes were employed: one with a 0.2mm hole and the other with a 0.4mm
hole. Once again, the selection of the appropriate size during the placement process
was based on the prevailing current requirements or space constraints.

Figure 4.13. PCB Routing inside the KiCad PCB Editor.

The initial step in the PCB layout design process was to transfer all components from
the schematic to the PCB Editor. This was followed by grouping components that
belonged together with their respective passive components based on the schematic.
This allowed us to identify the approximate area each component group would occupy
on the PCB board. Finally, the groups were placed on the board in accordance with
the previously specified layout diagram 4.12.

We proceeded to add the footprints for the thought-hole connectors, which provide
the inputs and outputs for our PCB. These were placed on the edges of our PCB.
This gave us a starting point from which to begin routing the power connectors on the
right hand side of the board to the centre of the board, where the power selection and
regulation would be placed. On the left side of the board we placed the MCU and routed
the connections for peripherals such as UARTs, SPIs, I2C and GPIO pins. Finally, we
connected the components in the centre, which included the IMU and barometric sensor,
eeprom and GPS. When routing the logic signals, we aimed to minimise trace length
and the use of vias. Our aim was to place the majority of our components on the top
side of the board to simplify the assembly process.

With the main components placed and the initial routing completed, we focused
on optimising the signal and power distribution routing. Higher speed signals were
routed with great care to avoid crossovers. Decoupling capacitors were placed close to
the power pins of the ICs to filter out high frequency noise and ensure a stable power
supply. Over-current and over-voltage protectors were placed as close as possible to
the input connectors. Finally, as the last step in the process, we added the ground and
power planes to the PCB. The ground planes were added to each layer to minimise the
size of the return current loops and connected with vias around the edge to reduce the
effect of external signal noise. We also added vias where necessary around the board
to avoid large voltage differences across the ground planes.
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Figure 4.14. Render of the finished PCB Layout.

4.4 Board Assembly
We used the services of JLCPCB9 to have our PCB boards manufactured. With the
PCB we also ordered a stencil to simplify the assembly process. A stencil is a thin sheet
of metal with precisely cut openings that correspond with the soldering pads on the
PCB. This helps to correctly apply and spread the solder paste during the assembly
process. Hand soldering is possible for most larger smd components, but a stencil is
essential for consistent and reliable solder joints.

Once the solder paste had been applied precisely to the soldering pads on the top side
of the board using the stencil, we picked and placed each and every smd component by
hand. Once all the components had been placed on the top side of the board, excluding
the connectors, we carefully placed the whole board inside a programmable laboratory
oven. This oven slowly melts the solder paste and solidifies the connections by heating
and then cooling them based on a predefined temperature curve. After the board cooled
we visually and electrically checked for any bad connections, and then moved to hand
soldering also the bottom-side smd components. As last we soldered the through hole
plastic connectors, as these cannot be baked in the oven.

When the board was fully embedded with parts and visually and electrically checked
for any errors, we proceeded with reviving the board. We began by checking for any
shorts or undesirable miscellaneous connections. Once everything was checked, we
started to connect the power selector solder jumpers and the board through USB-C to
the power source. The power indicator LEDs lit up one by one, and we checked that
the step-down and LDO were giving out the correct and steady voltage values of 3.3V
and 1.8V.

The board was now successfully powered and the MCU was ready to be programmed.
We connected the board to an ST-Link debugger via the SWD connector and the
debugger to our PC. Using the STM32CubeProgrammer10 software we were successful
at connecting to our MCU and were able to erase or flash its memory.

9 https://jlcpcb.com [cit. 24/05/2024]
10 https://www.st.com/en/development-tools/stm32cubeprog [cit. 24/05/2024]
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Chapter 5
Flight Commander Design

One of the main goals of our work is to design and implement a flight commander that
will be able to control and manage the state of the rocket based on commands and
sensor data. This system must be highly responsive and capable of real-time processing
to adjust the behaviour of the rocket during flight. The software architecture should
support modularity and scalability, allowing for future upgrades and the inclusion of
more advanced features.

We chose the PX4 platform, which is widely used as an advanced open source flight
control software for operating drones and other unmanned vehicles. It runs on the
NuttX RTOS, which is modular and scalable, designed to run efficiently on resource
constrained devices such as our microcontroller in the rocket.

The integration of our flight commander as a module into the PX4 platform enables
sophisticated functionality such as precise state control, data processing and flight con-
trol under varying conditions. The PX4’s rich set of drivers and middleware components
enables seamless interfacing with a wide range of sensors and peripherals, ensuring full
situational awareness and control.

In addition, the real-time capabilities of the NuttX RTOS ensure that the system can
handle the high-frequency data acquisition and processing required for rapid in-flight
adjustments. By leveraging the modular nature of PX4 and the NuttX RTOS, we can
continuously improve our flight control algorithms and incorporate community-driven
enhancements, ensuring that our system can easily adapt to changing requirements in
the future.

5.1 State Machine Design and Architecture
We begin the process of designing our flight commander module by first analysing the
various phases of rocket flight to create a comprehensive state machine that will manage
the various processes and transitions throughout the flight.

By creating a visual representation in the form of a diagram, it helps us to system-
atically outline the rocket’s flight phases, state transitions and control processes. By
showing the precise behaviour in each state, its actions during transitions and interac-
tions with the rest of the system, we can identify potential problems early and ensure
a thorough understanding of the system’s requirements and behaviour. This approach
reduces the likelihood of errors in later design and implementation phases by allowing
us to address complexity and dependencies up front. Ultimately, these diagrams serve
as a blueprint to guide our development and implementation processes.

The first state the commander starts in is the CONFIG state, which is important
because we want to clearly separate the Armed and UnArmed states for our rocket. So
we start with the rocket unarmed, which means that the high-power devices such as
shear pins, servos and igniters are inert and safe to handle. In this state the software
can be configured with new parameters that will define the behaviour during launch.
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From the config state, we can switch to the ARM state. This can be done by running

a command directly on our module from the nsh shell, or by sending a command
message via Mavlink. In the armed state we now have permission to send signals to
the high-power devices, such as rotating servos or enabling power delivery to shear pins
and igniters. It is still possible to return from the armed state to the unarmed state, as
the armed state can be used for testing different configurations of high power devices
prior to launch.

Figure 5.1. Diagram of rocket flight states.

In the same fashion as we transitioned from config to arm state, we can transition
the state further to ENGINE START state. It is important to note that this is the first
non-return state as the countdown and engine ignition process has begun and the only
way back is to abort the launch. In this state, the rocket engine is successfully ignited
and we are waiting for lift-off detection to move us to the next state.

After successful lift-off detection we enter to the POWERED ASCENT state. In this
state the rocket engine is still firing and we are accelerating. The next transition occurs
when we detect the engine cut-off and the end of acceleration.

The UNPOWERED ASCENT state is when the rocket is coasting to the highest
point in the trajectory, the apogee, while losing speed. Apogee detection triggers the
next transition to the descent state.

At the beginning of the DESCENT state, when we have minimum vertical speed, it’s
most advantageous to deploy the drogue parachute. Later in the descent, after reaching
a critical height above the ground, we will deploy the full main parachute to slow us
down further for a safe landing.

When we detect zero vertical speed and drop to the launch height we enter the
LANDED state. In this state we know the rocket is back on the ground after flight,
so we begin the shutdown procedures of powering down and unarming to facilitate safe
recovery by the team.

Now let us talk a little about the ABORT state. If the launch or flight are not
nominal and the rocket could become dangerous to its surroundings during any of
the irreversible states, we can manually trigger the ABORT state. The transition to
ABORT state will be different depending on the previous state. It can be divided into
two main possibilities. Abort during engine start or powered ascent, and abort during
unpowered ascent or descent. Let us work our way from the end.
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If we abort during the descent, it will usually be because the parachutes have not
deployed. Therefore, the action taken during this abort will be to continually attempt
to deploy parachutes in rapid succession to restart the deployment process.

In the event of an abort during the unpowered ascent phase, which could be due to
the rocket going off course and becoming dangerous, we deploy both parachutes again
in rapid succession to ensure the deployment.

Now, if we abort while the rocket is still on the launch pad, it would be pointless
and perhaps even more dangerous to try to eject our parachutes. Therefore if the
rocket is powered bya solid motor, there is nothing we can do. If by chance we have
the possibility to regulate the engine power by closing the fuel or oxidizer intake, than
thats the only action we will take in this case, and await manual reset.

In the case of abort in the powered ascent phase, it is up to debate. If we cant regulate
the motor then it might be unsafe based on the rocket airframe to eject parachutes. It
would be best to provide the operator with a configuration during the config state to
set the best behaviour during this step for their use case.

Parachute Deployment Sequence

. UNARMED State, the parachute deployment mechanism is unpowered. ARMed State, the parachute deployment mechanism is now powered.. DROGUE State, ejected Drogue parachute from the rocket. MAIN State, ejected Main parachute from the rocket (The Drogue is already out)

State Description

CONFIG
UnArmed State. Operator can set up and configure the
Flight Commander parameters.

ARM
All high power devices (servos, igniters, shearing pins, ...)
are now armed. The Operator can still return back to the
Configuration phase.

ENGINE START
We await Engine Ignition and start the Lift Off Detection.
Can be Aborted.

POWERED
ASCENT

Rocket engine is firing and we are accelerating. Can be
Aborted depending on configuration.

UNPOWERED
ASCENT

We are coasting to the Apogee while losing speed. Can be
safely Aborted.

DESCENT
The Rocket is now falling to the ground and we start the
parachutes deployment sequence. Can be safely Aborted.

LANDED
We have detected landing. We UnArm high power devices
for safe recovery and conserve power while waiting.

ABORT
Behavior based on configuration and depending on current
state. Can be configured. In most cases will override the
parachute deployment sequence and try to launch both
drogue and main parachute repeatedly until successful
landing.

Table 5.1. Rocket flight state machine.
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5.2 MAVLink Messages and Matlab connection
We have created our own dialect which extends the common messages that are provided
by MAVLink protocol and used by the PX4 platform by default. In this dialect we
define the Rocket State message which encompasses both the state of the Rocket and
the Parachutes. You can view the rocket.xml file, 9. It includes definitions for two
enums. One contains the Rocket States as they are defined in the Table 5.1. The second
one defines the Parachtute States as shown in the Parachute Deployment Sequence.

Figure 5.2. Simulink communication input.

To handle MAVLink messages inside Matlab, we use the UAV Toolbox1 package,
which provides support for deserialization and serialization of MAVLink messages. This
can be seen on Figure 5.2, where it is able to handle raw data from the incoming
connection and only act if Rocket State message gets detected. Similarly on the Figure
5.3 we use it to create new MAVLink messages and serialise them for the outgoing
connection.

The Instrument Control Toolbox2 is used for configuring and creating UDP or Serial
I/O connections. It always needs one single setup block, as can be seen on Figure 5.2,
which handles the configuration. Then you can have any number of input blocks that
provide you with raw data from the connection, or any number of outgoing blocks for
sending raw data.

Figure 5.3. Simulink communication output.

1 https://www.mathworks.com/products/uav [cit. 24/05/2024]
2 https://www.mathworks.com/products/instrument [cit. 24/05/2024]
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Chapter 6
Firmware Implementation Guide

We have chosen our MCU so that it is already supported by the NuttX RTOS. However
if our selected MCU was not yet on the list of Supported Platforms in the NuttX RTOS
documentation1, we can still use the handy and exhausting porting guide to port NuttX
RTOS on to the new device.2

Although NuttX RTOS supports our chosen MCU, we still need to configure the pin
mapping and clock settings to ensure proper functionality. Using the PX4 platform
on top of NuttX RTOS requires a different configuration setup than just plain NuttX
RTOS.

One key difference with the PX4 platform is the inclusion of a bootloader. A boot-
loader is a critical piece of firmware that initialises the hardware and loads the main
firmware application at power-up. In addition, the PX4 bootloader also facilitates the
flashing of new firmware onto the microcontroller. This is particularly useful for updat-
ing the flight control software without the need for physical access to the microcontroller
via a debugger. The bootloading process ensures a reliable and secure startup sequence
for the hardware and applications managed by the NuttX and PX4 stack.

We will now take a look at implementing a custom board configuration on top of the
PX4 and NuttX RTOS stack.

6.1 Preparing the Environment
For our Linux environment we used a fresh installation of Ubuntu 20.04 running on
Windows Subsystem for Linux (WSL) v2 under Windows 10.

To prepare the environment we followed the handy PX4 development setup tutorial
on their page3 Starting with the PX4 project, we will have to download the PX4 source
code from [10]. It uses git submodules so don’t forget to clone it using the --recursive
switch to also fetch all the submodules.

git clone https://github.com/PX4/PX4-Autopilot.git --recursive

Then we have to setup our development tools. There is a script that can do this for
us in the PX4 Project. Just by running

bash ./PX4-Autopilot/Tools/setup/ubuntu.sh --no-sim-tools

all the important development tools and dependencies got installed. Before continuing
do not forget to relogin or restart your computer.

1 https://nuttx.apache.org/docs/latest/platforms [cit. 24/05/2024]
2 https://cwiki.apache.org/confluence/display/NUTTX/Porting+Guide [cit. 24/05/2024]
3 https://docs.px4.io/main/en/dev_setup/dev_env_linux_ubuntu [cit. 24/05/2024]
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6.2 Implementing custom PX4 Board configuration

Best first step would be to explain the folder structure for the board configuration files
on the PX4 platform similarly as before in Table 3.1.

Folder Description

./ Board root folder. Includes firmware.prototype
file and *.px4board files, as well as the following
folders.

src Where source code for our board is located. Also
includes hw_config.h and bootloader_main.c
files. Includes board_config.h and init.c files.
But Most importantly hosts the CMakeLists.txt
file.

cmake Any bonus *.cmake files. For example, we can
use it to create the uploader target.

nuttx-config Holds the NuttX specific configuration folders.
nuttx-config/bootloader defconfig file for the bootloader.
nuttx-config/nsh defconfig file for the px4 system.
nuttx-config/include Clock and pinout configurations in board.h and

dma configuration in board_dma_map.h files.
nuttx-config/scripts script.ld and bootloader_script.ld files that

define the memory structure of the MCU.

Table 6.1. PX4 new Board folder structure.

We have the root Vendor folder, in our case named ctusr. Then we have the root
Board folder, we will name it cimrman-v1. The Table 6.1 explains how the folder
structure inside /boards/ctusr/cimrman-v1/ works.

{
"board_id": 601,
"magic": "CTUSRV1",
"description": "Firmware for the FC Cimrman PX4 V1 boards",
"version": "0.1",
"image_maxsize": 1966080

}

The first important file is the firmware.prototype located right in the root Board
folder. It defines some of the important constants used by the PX4 system and the
bootloader. The board_id should be a unique integer identifier for our board. It
will be used by the firmware uploader script when communicating with bootloader to
recognize the board. Before uploading, the new firmware size will be first checked
against the image_maxsize value, which is denoted in bytes. The file can also include
other non-critical values such as magic, description, version or git_identity.
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6.2.1 Building the PX4 Bootloader
To build the PX4 bootloader for the STM32H7 MCU series, the newer PX4 FMUv6
versions of firmware provide the bootloader inside the main PX4 repository[10]. For
older STM32 MCUs, mainly the F series the PX4 provides a standalone bootloader
build repository[11]. In this work we won’t be going over the standalone bootloader
and will instead use the one provided inside the main project repository.

For the build to successfully complete, we needed to create and properly con-
figure these files: Inside the nuttx-config folder the bootloader/defconfig,
scripts/bootloder_script.ld and include/board.h files. Inside the src folder the
hw_config.h, board_config.h, bootloader_main.c and CMakeLists.txt. And in-
side the board root folder the bootloader.px4board file and the previously mentioned
firmware.prototype file.

Starting with the nuttx-config folder and NuttX configuration, we are provided with
a handy terminal GUI tool, menuconfig, which will help configure for us the defconfig
files, so we don’t have to make them manually.

Just write this command into the console,
make ctusr_cimrman-v1_bootloader menuconfig

and the menuconfig GUI will popup.

Figure 6.1. NuttX RTOS menuconfig gui tool for easy configuration of defconfig files.

With this tool we easily selected and configured the correct board, in this case its
was a custom board with path going to our folder /ctusr/cimrman-v1/nuttx-config,
and the arm chip as our stm32h743vi. We enabled the desired peripherals, in our case
usart3, which will be used for flashing the firmware. Its also desireable to configure
the entrypoint to the bootloader_main file. We won’t go deeper into explaining the
precise sub menus and configurations as it would go over the scope of this work, but
for anyone feeling lost, there are great videos on the NuttX youtube channel4, that go
over navigating and configuring with the menuconfig tool.
4 https://www.youtube.com/@nuttxchannel [cit. 24/05/2024]
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Next step was to provide correct mapping of the memory space and the clock config-

uration. Starting with the memory mapping, inside the datasheet for our MCU we find
the Memory mapping in chapter 4 5. The table outlines each memory section starting
point and size. We copied a bootloader_script.ld file inside nuttx-config/scripts
directory from another already preconfigured board inside the PX4 project with the
same STM32H7 chip and modified the starting section like this, based on the values
from our datasheet.

MEMORY
{

FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 2048K
DTCM1 (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
DTCM2 (rwx) : ORIGIN = 0x20010000, LENGTH = 64K

ITCM_RAM (rwx) : ORIGIN = 0x00000000, LENGTH = 64K
DTCM_RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 128K
AXI_SRAM (rwx) : ORIGIN = 0x24000000, LENGTH = 512K

SRAM1 (rwx) : ORIGIN = 0x30000000, LENGTH = 128K
SRAM2 (rwx) : ORIGIN = 0x30020000, LENGTH = 128K
SRAM3 (rwx) : ORIGIN = 0x30040000, LENGTH = 32K
SRAM4 (rwx) : ORIGIN = 0x38000000, LENGTH = 64K
BKPRAM (rwx) : ORIGIN = 0x38800000, LENGTH = 4K

}

For the correct clock configuration we got help from the STM32CubeMX program.
We used it previously for easily mapping our pinout in Section 4.2.2, but it can also
be used as a handy clock configurator. Again we copy a board.h file from another
preconfigured board PX4 project with the same STM32H7 chip as our template and
modify it. This file includes definitions for configuring the correct input frequencies and
clock prescaler and divider values. We have an external crystal clock source running
on 8MHz and we want our SYSCLK to utilize the fastest possible speed for our MCU,
that is 480MHz. We input these values into the STM32CubeMX Clock Configuration
window and run the auto-solver, that will provide us with everything we need for the
rest of the values. Then we can modify the board.h configuration with our values, as
shown bellow on some of the important excerpted lines from the file.

#define STM32_BOARD_XTAL 8000000ul
#define STM32_HSE_FREQUENCY STM32_BOARD_XTAL
...
#define STM32_BOARD_USEHSE
#define STM32_PLLCFG_PLLSRC RCC_PLLCKSELR_PLLSRC_HSE
...
#define STM32_PLLCFG_PLL1M RCC_PLLCKSELR_DIVM1(1)
#define STM32_PLLCFG_PLL1N RCC_PLL1DIVR_N1(120)
#define STM32_PLLCFG_PLL1P RCC_PLL1DIVR_P1(2)
...
#define STM32_VCO1_FREQUENCY ((STM32_HSE_FREQUENCY / 1) * 120)
#define STM32_PLL1P_FREQUENCY (STM32_VCO1_FREQUENCY / 2)

5 https://www.st.com/resource/en/datasheet/stm32h743vi.pdf [cit. 24/05/2024]
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In the same board.h file we also have definitions for our pinnout mapping. For
the bootloader we only utilise this to specify our USART ports, that will be used for
programming and flashing our firmware later. The configurations in this file are not for
bootloader built only, but are shared with the PX4 system build as well.

#define GPIO_USART3_RX GPIO_USART3_RX_3 /* PD9 */
#define GPIO_USART3_TX GPIO_USART3_TX_3 /* PD8 */

Next continues probably the most important file in the whole bootloader configura-
tion. The hw_config.h, in which we defined the primary constants used by the main
bootloader file. This file includes following important values:

#define APP_LOAD_ADDRESS 0x08020000
#define BOOTLOADER_DELAY 3000 // 3s

#define INTERFACE_USART 1
#define INTERFACE_USART_CONFIG "/dev/ttyS0,115200"

#define BOARD_TYPE 601

// Flash memory size register address Reference Manual: Page 3292
#define _FLASH_KBYTES (*(uint32_t *)0x1FF1E880)
#define BOARD_FLASH_SECTORS (15) // Without the zero 0 sector
#define BOARD_FLASH_SIZE (_FLASH_KBYTES * 1024)

Starting with the APP_LOAD_ADDRESS which defines the point in memory where the
bootloader will be flashing the uploaded firmware. Next we have BOOTLOADER_DELAY,
which specifies the amount of time before the bootloader process jumps to initialize
the application code, and will therefore no longer listen for start upload commands.
INTERFACE_USART and INTERFACE_USART_CONFIG specify that we will be using usart as
our primary connection interface and configure NuttX device driver path and baudrate.
If you remember we specified the board_type value inside the firmware.prototype
file previously. The BOARD_TYPE value here needs to match, otherwise the upload script
would not identify the board correctly. Last three definitions specify the size and
amount of our flash sectors on the chip at runtime.

The board_config.h is mainly for definitions used by the PX4 system and the
application code. We will talk about it later, but for now, the bootloader only needs
this piece of code in it to build successfully.

#include <px4_platform_common/px4_config.h>
#include <nuttx/compiler.h>
__BEGIN_DECLS
#ifndef __ASSEMBLY__
extern void board_peripheral_reset(int ms);
#include <px4_platform_common/board_common.h>
#endif /* __ASSEMBLY__ */
__END_DECLS

The bootloader_main.c needs to define a few functions for the bootloader to run.
Mainly the board_timerhook function that calls the sys_tick_handler. And then it
has to export the 3 functions, board_app_initialize, stm32_boardinitialize, and
board_on_reset, which do not need to really do anything, only exist.
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extern void sys_tick_handler(void);
void board_timerhook(void) {sys_tick_handler();}
__EXPORT void board_on_reset(int status) {}
__EXPORT void stm32_boardinitialize(void) {}
__EXPORT int board_app_initialize(uintptr_t arg) {return 0;}

And lastly, to actually have our boards custom code built, we added our bootloader
code to the build order inside the CMakeLists.txt like this:

if("${PX4_BOARD_LABEL}" STREQUAL "bootloader")
add_library(drivers_board bootloader_main.c)
target_link_libraries(drivers_board
PRIVATE nuttx_arch nuttx_drivers bootloader)
target_include_directories(drivers_board
PRIVATE ${PX4_SOURCE_DIR}/platforms/nuttx/src/bootloader/common)
endif()

Finally the bootloader.px4board file is used during the build by cmake to enable,
disable and configure different aspects of the PX4 application based on current needs.
For the bootloader we only need to specify used toolchain, chip architecture and possibly
a custom filesystem from the ROMFS folder.

CONFIG_BOARD_TOOLCHAIN="arm-none-eabi"
CONFIG_BOARD_ARCHITECTURE="cortex-m7"
CONFIG_BOARD_ROMFSROOT=""

Now that we have provided configuration for the NuttX RTOS in a form of correct
memory mapping, clock definitions and defconfig file, and also specified the needed
definitions for our bootloader inside hw_config.h and bootloader_main.c we should
be able to successfully build it using this command in the terminal

make ctusr_cimrman-v1_bootloader

After the build finishes, it will print out the Used Size by the binary file for each specified
Memory region, the most important one being the FLASH, and creates the .bin and
.elf files in the build folder for the project tree. Thanks to the memory summary we
can easily see the remaining size of flash we have onboard the MCU.

Memory region Used Size Region Size %age Used
FLASH: 32140 B 2 MB 1.53%
DTCM1: 0 GB 64 KB 0.00%
DTCM2: 0 GB 64 KB 0.00%

ITCM_RAM: 0 GB 64 KB 0.00%
DTCM_RAM: 0 GB 128 KB 0.00%
AXI_SRAM: 4932 B 512 KB 0.94%

SRAM1: 0 GB 128 KB 0.00%
...

Now we flash our binary file on to the board using an ST-Link debugger6 connected
via the SWD pins. During the process we provide power to the board using the USB-C
port. In the next step we will show how to configure and build the PX4 application, as
well as upload it to the board using our bootloader.

6 https://www.st.com/en/development-tools/st-link-v2 [cit. 24/05/2024]
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6.2.2 Building the PX4 Application
The mapping of our memory space that we have done for the bootloader in
bootloader_script.ld can be copied over to script.ld for our PX4 applica-
tion. The important difference is that our FLASH memory for the application starts
at 0x08020000 as the first sector is occupied by the bootloader.

Now comes to the defconfig file. We again use the menuconfig tool so we can easily
configure it correctly by just navigating a GUI. The important distinctions from the
bootloaders defconfig file are these:

. Switching init entrypoint to nsh_main. Enabling Timer (CONFIG_STM32H7_TIM*) and RTC (CONFIG_STM32H7_RTC*). Enabling the NuttX Task Scheduling interface (CONFIG_SHED_* declarations). Enabling and Configuring all needed peripherals, such as UARTs, SPIs, I2Cs and
MMCSD SDIO.. Enabling the NuttX console shell (CONFIG_NSH_*) and setting one UART as our
serial console.. Enabling the NuttX FAT filesystem features
(CONFIG_FS_*, CONFIG_FAT_* declarations)

Again, if you are not sure how to navigate the menuconfig, refer to the link mentioned
in Section 6.2.1.

We used the board.h file to setup our clock configuration. Now we will also add
at the end of this file the definitions for the peripheral pinout we have enabled in the
defconfig file, for our UARTs, SPIs and SDMMC peripherals.

/* SDMMC */
#define GPIO_SDMMC1_D0 GPIO_SDMMC1_D0_0 /* PC8 */
#define GPIO_SDMMC1_D1 GPIO_SDMMC1_D1_0 /* PC9 */
#define GPIO_SDMMC1_D2 GPIO_SDMMC1_D2_0 /* PC10 */
#define GPIO_SDMMC1_D3 GPIO_SDMMC1_D3_0 /* PC11 */
#define GPIO_SDMMC1_CK GPIO_SDMMC1_CK_0 /* PC12 */
#define GPIO_SDMMC1_CMD GPIO_SDMMC1_CMD_0 /* PD2 */
/* UART/USART */
#define GPIO_USART3_RX GPIO_USART3_RX_3 /* PD9 */
#define GPIO_USART3_TX GPIO_USART3_TX_3 /* PD8 */
/* SPI */
#define ADJ_SLEW_RATE(p) (((p) & ~GPIO_SPEED_MASK) | (GPIO_SPEED_2MHz))
#define GPIO_SPI1_SCK ADJ_SLEW_RATE(GPIO_SPI1_SCK_1) /* PA5 */
#define GPIO_SPI1_MISO GPIO_SPI1_MISO_1 /* PA6 */
#define GPIO_SPI1_MOSI GPIO_SPI1_MOSI_1 /* PA7 */
#define GPIO_SPI2_SCK ADJ_SLEW_RATE(GPIO_SPI2_SCK_4) /* PB13 */
#define GPIO_SPI2_MISO GPIO_SPI2_MISO_1 /* PB14 */
#define GPIO_SPI2_MOSI GPIO_SPI2_MOSI_1 /* PB15 */

We find the correct values in the predefined pinmap files provided by the NuttX
platform for the STM32H7x3 MCUs, and select them based on our pinout, which we
specified using the STM32CubeMX tool in Chapter 4. The two SPI buses will be used
for our IMU and barometric sensor. The USART will provide an additional connection
for our MCU, and the SDMMC peripheral will be used in a 4-bit SDIO mode for writing
to and reading from an SD card.

33



6. Firmware Implementation Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuing with the previously mysterious board_config.h file in the src directory,

it will now be useful to define the number of constants needed by the PX4 application
to initialise drivers for our peripherals, as well as providing definitions for external
initialisation functions.
/* SDIO/SDMMC */
#define SDIO_SLOTNO 0
#define SDIO_MINOR 0
/* BOARD INTERFACES */
#define BOARD_ENABLE_CONSOLE_BUFFER
#define BOARD_USB_VBUS_SENSE_DISABLED 1
#define BOARD_NUM_IO_TIMERS 1

__BEGIN_DECLS
#ifndef __ASSEMBLY__
extern int stm32_sdio_initialize(void);
extern void stm32_spiinitialize(void);
#endif /* __ASSEMBLY__ */
__END_DECLS

Now that we have configured all the required constants for the NuttX and PX4
application, we can move to the implementation. Starting with the init.c file
in the src directory, we call the external initialization functions for our drivers,
inside the board_app_initialize function, such as stm32_spiinitialize() or
stm32_sdio_initialize(). This will initialize register the NuttX device drivers,
which will then appear as devices in the filesystem under /dev. So if you have problem
finding your devices, try to verify that you have done all these steps correctly, before
moving to hardware debugging. Most of the times it will be an incorrectly configured
software problem. The other *.c and *.cpp file inside the src directory will be used to
provide constexpr arrays where we map which drivers should the PX4 system use for
the specified peripherals, like for example our sensors on SPI buses:
constexpr px4_spi_bus_t px4_spi_buses[SPI_BUS_MAX_BUS_ITEMS] = {

initSPIBus(SPI::Bus::SPI1, {
initSPIDevice(DRV_IMU_DEVTYPE_ICM20948, SPI::CS{GPIO::PortA, GPIO::Pin4})

}),
initSPIBus(SPI::Bus::SPI2, {

initSPIDevice(DRV_BARO_DEVTYPE_MS5611, SPI::CS{GPIO::PortD, GPIO::Pin10})
})

};
static constexpr bool unused = validateSPIConfig(px4_spi_buses);

The last file inside the src directory we will mention is the CMakeList.txt file. In
here similarly to when we added the bootloader code to the build order, we will now
append the if statement with this code for our PX4 application code.
add_library(drivers_board

init.c spi.cpp sdio.c)
add_dependencies(drivers_board arch_board_hw_info)
target_link_libraries(drivers_board

PRIVATE arch_io_pins arch_spi
arch_board_hw_info nuttx_arch nuttx_drivers px4_layer)

endif()
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Now that we have configured and initialised the necessary peripherals for our PX4
application, there is one last thing we need to do. We have to tell the PX4 system to
actually build and use these drivers and modules. This is done in the default.px4board
file in the board root directory, similar to the bootloader.px4board file.

CONFIG_BOARD_TOOLCHAIN="arm-none-eabi"
CONFIG_BOARD_ARCHITECTURE="cortex-m7"
CONFIG_BOARD_ROMFSROOT="ctusr_common"
# PX4 TASK SPAWN interface for modules
CONFIG_MODULES_LOAD_MON=y
# Rocket commander and Mavlink
CONFIG_MODULES_ROCKET_COMMANDER=y
CONFIG_MODULES_MAVLINK=y
CONFIG_MAVLINK_DIALECT="rocket"
# Sensor Drivers
CONFIG_DRIVERS_IMU_INVENSENSE_ICM20948=y
CONFIG_DRIVERS_BAROMETER_MS5611=y
# System commands
CONFIG_SYSTEMCMDS_TOPIC_LISTENER=y
CONFIG_SYSTEMCMDS_UORB=y
CONFIG_SYSTEMCMDS_PARAM=y

We tell the PX4 system that we want to use our ctusr_common ROMFS, which we will
talk about more in the next section. Then we activate the load_mon module, which
is a primary PX4 interface for creating and managing other modules, which we will
need for our custom Rocket Commander module, which we can activate in a similar
way to any other module. We also enable and configure the mavlink module with our
rocket dialect. Next we specify our sensor drivers for the IMU and barometer, which
have already been implemented by the PX4 community. Finally, we enable some system
commands that can be used by the init script at boot time or directly in the nsh console.

6.2.3 Startup Process and Init scripts
After successfully starting the PX4 application, it will search for and execute the ini-
tialisation scripts within the NuttX RTOS file system. Custom initialisation scripts
can be created in the ROMFS folder, which are then included in the binary and made
accessible in the MCU’s pseudo file system when NuttX RTOS is booted. These scripts
can contain commands that are automatically executed in the NuttX shell on startup,
as if they had been entered manually.

We create a folder with a custom name in the ROMFS directory; in our case it will
be called ctusr_common. This folder will contain only one file, CMakeLists.txt, which
will be used to include all subsequent subdirectories. The convention is to name the
folders within our ROMFS directory init.d and init.d-posix, distinguishing them by
the platform they are built for. Inside each init.d directory we have our initialisation
scripts and a CMakeLists.txt file which uses the px4_add_romfs_files() function to
add them to the build. The individual init scripts are just plain text files with no
extension, containing a list of commands to be executed in a sequence at startup. You
can also call other scripts from the file and create a hierarchical initialisation of the
subsystems you need. For example, we use this to initialise the mavlink module, which
has its own separate init script. All we need to do to make our board use our new
ROMFS is to specify it in the *.px4board file.
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This is a simplified version of what our init script looks like.

ver all
set RC /etc/init.d/
set FRC /fs/microsd/etc/rc
mount -t vfat /dev/mmcsd0 /fs/microsd
if [ -f $FRC ]
then

. $FRC
else

rocket_commander start
rocket_commander launch

fi

. ${RC}rc.mavlink
unset FRC
unset RC
mavlink boot_complete

You might see, that we can also launch init scripts from a removeable media such
as the SD card. In this way we can easily modify the startup behaviour of our flight
computer without the need of reprogramming or flashing new firmware.

6.2.4 Flashing software
After connecting the board to a PC via the configured port in the bootloader, we should
see it in our connected devices. Then by executing

make ctusr_cimrman-v1_default upload

the PX4 application will get built, and the upload script will run right after. It will try
to find the USB device and communicate with the bootloader to flash the application
binary.

Once the application is successfully flashed and running, we can now connect to the
peripheral we chose in the configuration as our main serial console, and write to it using
a program for serial communication of your own choosing. It is also possible to use the
mavlink_shell.py script under Tools and connect through a serial port that is being
used for communication over MAVLink messages.

6.3 Flight Commander Module Implementation
The implementation of a custom PX4 module is simple. We followed the example of
other modules that already exist. We created a directory inside src/modules named
rocket_commander for our new flight commander module. Inside this directory we can
create files and sub directories with our source code. To register our module with the
PX4 system we just need to create 3 simple files. The module.yaml file, which just
specifies the module name, in our case it has just this one line.

module_name: Rocket Commander

Then we have a Kconfig file, which is used to specify any config constants that if
defined inside any board *.px4board file can enable parts of our module. We will only
have one constant that will be used to enable our module.

36



. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Flight Commander Module Implementation

The content of the Kconfig file looks like this.

menuconfig MODULES_ROCKET_COMMANDER
bool "rocket_commander"
default n

Lastly we have our CMakeLists.txt in which we specify which source files and de-
pendencies should be built for our module during the build process.

px4_add_module(
MODULE modules__rocket_commander
MAIN rocket_commander
SRCS

RocketCommander.cpp
MODULE_CONFIG

module.yaml
)

Our code is written in c++ and includes just a single class with the name of Rocket
Commander which extends the public ModuleBase and ModuleParams classes from
the PX4 platform code. Each module has to therefore implement functions for their
instantiation, run cycle and handling commands.

The purpose of the instantiation function is to use the px4_task_spawn_cmd function
from the load_mon module mentioned at end of Section 6.2.2, and to create an instance
of the module class. Then we have several functions for sending and handling commands
that can be sent to our module from the nsh shell, or even from other modules. We can
also specify our own custom commands that can trigger a function call. Finally, we have
the actual module run cycle function, which is the body of the spawned task. Inside the
run function we almost always want to have a while cycle where we repeatedly process
the work of our module until the module class instance is destroyed.

The inter-module communication heavily rests on the subscription and publication
of uORB messages as mentioned in Section 3.5. We also Subscribe to multiple uORB
message topics. These include vehicle_imu and vehicle_odometry messages which
provide us with current information about the vehicle position, angle and linear and
angular velocity. As we are required to handle commands sent to our module, we also
subscribe to vehicle_command uORB topic, which is used for this purpose.

The published topics again include the vehicle_command and vehicle_command_ack
uORB messages, which are needed because we can send commands to modules and need
to acknowledge that we have received commands from other modules. But for us, the
important uORB topic that we will be publishing is the rocket_state message. This
is the message that will contain the current rocket and parachute state, and will also
be sent to external systems using MAVLink messages over a serial connection.

Now for our rocket commander module to fulfil the tasks of a state machine, we
use enums to define our states, as designed in chapter 5. We declare two variables that
hold the current state of both the rocket and the parachute. We subscribe to the uORB
messages for vehicle_odometry and vehicle_imu. During the run cycle, we evaluate
whether the values have changed and update our internal state.

We than have two switch case structures that handle behaviour based on the current
rocket and parachute states. At the end of the run cycle, if there was a change in the
current state, this is immediately published to our rocket_state uORB message topic
to notify any interested subscribers. For the actual code of our module you can refer
to the included PX4Project.zip file under 9.
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Chapter 7
Hardware and Software Verification

7.1 Flight Commander HIL Test
Hardware-in-the-Loop (HIL) testing is crucial in the development and validation as
we can simulate real-world conditions and record the behaviour of our software and
hardware before deployment.

For our HIL testing we use a 1D rocket flight simulation made in Simulink program,
that was created and is currently used by the CTU SR team for rocket flight state
machine validation. It will communicate with the on-board MCU via a USB serial
connection. The communication protocol uses MAVLink messages from our custom
dialect, that includes information about the current state of the rocket and parachutes.
The Simulink program and MAVLink protocol are described in Section 2.2. as part of
the requirements. Our implementation of the serial communication with the MAVLink
messages is then shown in Section 5.2.

Figure 7.1. Graphs of simulated sensor data and rocket state response from the HIL test.
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Before the HIL testing the module was moved to the ENGINE_START (3) rocket state
where it awaited data from the simulated sensors. After launching the Simulink sim-
ulation, it started sending sensor data to the flight computer, where they were picked
up by our rocket commander module, which successfully identified the simulated liftoff
and switched to the POWERED_ASCENT (4) rocket state.

At the 6 second mark, the simulator stopped the engine thrust which can be seen
by the sudden drop in acceleration. Our module was fast to react and switched the
state to the UNPOWERED_ASCENT (5) phase. It then monitored closely for the apogee
and beginning of descent, which it detected precisely, and changed the rocket state to
DESCENT (6), as well as switched the parachute state to DROGUE (2).

Then during the descent it detected passing the preset 300m threshold in altitude
and switched the parachute state to MAIN (3), deploying the main parachute. This was
also detected by the simulation, which modified the descent speed accordingly. The
last mark was at about 47 seconds from launch when the rocket commander module
successfully detected the simulated landing and switched its state ti LANDED (7).

We repeated the HIL test multiple times, always getting the same results, verify-
ing the reliability of our implementation. From these results we concluded, that the
main branch of our state machine, which we designed and implemented in our rocket
commander module, was successfully verified by the HIL testing as can be seen on the
Figure 7.1.

7.2 IMU and Baro Allan deviation verification
The IMU and barometer are the most critical sensor systems inside a rocket. We
therefore decided to analyse the noise of these sensors. This will hopefully show the
correct functioning of our sensors on board and could also be used to develop an accurate
sensor simulation in later work.

To show that our sensors are working properly, we did a little experiment. We mea-
sured the data from our sensors over a long period of time, two hours to be precise, at a
frequency of 250Hz to get about two million samples for each sensor. We then used the
Allan deviation test to determine their Bias Instability during prolonged measurement.

Allan deviation was originally derived to measure the long-term stability and noise
characteristics of clock oscillators. This was later transferred to also analyse the noise
and stability of sensors. All sensors, regardless of quality, will have a bias in their mea-
surements. The short-term effects of this are called bias instability and show random
fluctuations in the sensor output. But bias can also change slowly over time due to
external factors, this is called bias drift and is a long term indicator of sensor stability.

Sensor Avg. Deviation 𝜎(𝜏) Bias Instability

Accelerometer [𝑚/𝑠2] 5.67 ⋅ 10−5 2.04 ⋅ 10−1

Gyroscope [𝑟𝑎𝑑/𝑠2] 1.90 ⋅ 10−6 6.84 ⋅ 10−3

Barometer [𝑚𝐵𝑎𝑟] 2.19 ⋅ 10−4 7.88 ⋅ 10−1

Table 7.1. Allan Deviation Sensors Bias Instability over 1 hour period.

From the measured sensor data, we have calculated allan variation values using the
alanvar function in Matlab, and by applying root square on the result we got the Allan
Deviation graphs. Allan Deviation graphs compare the change in sensor measurement
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Figure 7.2. Graph of Allan Deviations for Accelerometer values.

Figure 7.3. Graph of Allan Deviations for Gyroscope values.
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Figure 7.4. Graph of Allan Deviations for Barometric values.

stability over different time periods. We have calculated the overall short-term Bias
Instability for each sensor and presented it in Table 7.1. The Avg Deviation values
were taken at the curves minimum, where it is flat and its derivative is close to zero.
We have then multiplied this value by 3600 seconds to figure out the average change
over a period of one hour.

We have demonstrated that we can continuously measure data from our IMU and
Baro sensors over long periods of time. The impact of the measured IMU sensor bias
instability and inaccuracy is insignificant in the context of the high performance rocket
flight mission, where the flight time from launch to landing is typically 10 minutes or
less. The bias instability of the barometric sensor is at least two orders of magnitude
greater than that of the IMU, and this change could be reflected as a difference of a
around one meter in the measured altitude over the flight time. However, this could
also have been caused by inaccuracies in the measurement, as we did not have the
proper equipment to completely isolate the board from the environment and it was
therefore affected by the constant change in atmospheric pressure. In future work,
further analysis and proper filtering of the barometric sensor could be carried out to
improve the quality of this measurement.

The data used for the Allan Variance test were gathered on to an sd card via the
SDMMC Peripheral. We created a simple module, just for recording the sensor data in
an appropriate format, for quick importing over to matlab and further analysis. This
module used the underlying NuttX RTOS filesystem interface for opening, writing and
closing files on the sd card. In its run cycle it detected when a sensor pushed a new
updated data, and wrote them directly to a file on the sd card. In this way, we have
also successfully verified the proper functioning of our on board SD card peripheral
implementation.
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Chapter 8
Results

A working Printed Circuit Board (PCB) was successfully designed and assembled for
our flight computer that met requirements set in the Chapter 2 as shown in Chapters 4.
We then designed our flight commander module in Chapter 5, successfully implemented
it in Chapter 6 and verified our design with a Hardware-in-the-Loop test in Chapter 7.

The board uses a state of the art STM32H743VI microchip with 2MB of Flash
memory and runs the PX4 and NuttX RTOS stack. It includes a barometric sensor
and a 9-axis IMU with accelerometer, gyroscope and magnetometer, each connected
to the MCU via a dedicated SPI bus. The board features drill holes in the same
arrangement as those on the Expander board used by the previous generation of the
Cimrman flight computer as specified in the requirements. Next the board features
both an eeprom on dedicated I2C bus, and an SD card, connected via a SDMMC SDIO
interface in 4-bit mode configuration, as storage enhancing solutions. The components
were chosen based on our requirements in Chapter 2, and the ease of implementation,
taking into account their support by NuttX RTOS and PX4 system.

In accordance with the requirements, a connection to other boards inside the rocket
can be assured by the two RocketBus connectors, which the board also used as its
primary source of power. The board includes a CAN FD transceiver for facilitating
the communication between connected systems on the RocketBus. The board provides
an easy connection for debugging and testing via an USB-C port, that might also be
selected as a power source. As a bonus, the board features solder pads for possible
external battery connection as a third power source option in standalone solutions. Pe-
ripherals include at least 4 UART connectors, mainly for linking with Telemetry boards.
One external I2C bus connector, one SPI bus with chip select pin and a multitude of
GPIO pinouts for additional ADC, PWM or just simple digital I/O capabilities.

As the software solution, a PX4 and NuttX RTOS combination was chosen for its
adaptability and ease of future extensibility. These were introduced in Chapter 3, and
the process of configuration for our board was detailed in Chapter 6.

In order to demonstrate the proper functionality of the on-board sensors, we created
a module capable of recording sensor data to an SD card over extended period of time.
Using the gathered data, we analyzed the bias instability of the sensors shown in Section
7.2, confirming that they were adequate for the requirements of the problem.

Finally, a flight commander module was designed as shown in Chapter 5, with a
robust state machine for handling the behaviour of a high-power rocket during different
flight phases. Subsequently, our implementation, described in Section 6.3, was success-
fully tested and verified, with the provided Simulink simulation of a 1D rocket flight
by the CTU SR team described in Section 2.2, using Hardware-in-the-Loop testing as
shown in Chapter 7.
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Chapter 9
Appendencies

AndromedaSystem.pdf Overview diagrams of the full Andromeda Rocket System.

rocket.xml Custom MAVLink dialect with the Rocket State message.

KiCadProject.zip KiCad project of the Schematic and PCB Layout.
PX4Project.zip PX4 project with our source code and implementation.

* All files are available online for download from:
https://github.com/Aandrej2/Adaptable-Flight-Computer-for-a-Rocket
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