Czech Technical University in Prague
Faculty of electrical engineering

DIPLOMA THESIS

Rzen pohon na FPGA v sti Pro net

Praha, 2015 Autor: Tonas Ryl

Proh&sen

Prohlasuiji,ze jsem svou diplomovou (bakab&rskou) paci vy pracoval samostatre a pouil
jsem pouze podklady (literaturu, projekty, SW atd.) uvedere v plzerem seznamu.

V Praze dne

podpis

Acknowledgment

| would like to express my gratitude mainly to Ing. Pavel Burget, Ph.D for his super-
vision in a form of consultations, help with obtaining important materi& for the work,

constructive comments and help with solving some practical issudsat arose during the
process. | would like to thank as well the experts from Softing Indirial Automation

GmbH and Siemens, s.r.o. for their quick and top quality technical syport.

Abstrakt

Tato diplomowa pace se zabna ravrhem zazen, zale erem na FPGA, ktee bude
schopre fungovat jako vzdalere vstupre-wstupn za rzen v PROFInet sti. Zazen bude
obsluhovat jeden ci vce thzowch moton. Bude pot reba na FPGA implementovat
PROFInet stack, ktely uman komunikaci v PROFInet sti. P ro synchronnrzen vce
vzchlerych motow je dle kit rychh real-time komunikace, proto je teba zvolit takov ou
implementaci stoveho protokolu, ktem umanuje komunikaci v reimu Iso chronous Real
Time. Pro lokalnrzen samotrych moton bude powita d ostupra softwarowa knihovna
prorzen moton zvara PXMC, ktea bude upravena pro n & konketn sysem. Nad
komunikacnm protokolem bude implementovan PROFIdrive pro | prorzen motaun a
jejich snadnou integraci do existujcch proces. Pace se rezabna detailnm ravrhem
jednotliwch souast, ale vywitm existujcch aplikac a knihoven a jejich upravou a
synezou k vytvaen zazen schopreho fungovat ve skutecre pumyslowe sti.

Abstract

This diploma thesis is about designing a device, based on FPGA, that ibla to
act as an remote input-output device in PROFInet network. The d&ce will control
one or more three-phase motors. That requires implementing a PRMet stack on the
device that allows the device to communicate in PROFInet network. d¥ synchronous
motion control, a fast real-time communication is necessary. In oed to provide this
type of communication, the stack must be able communicate in Isodnous Real Time
mode. For the control of the drives we use available library called PX®™ for motion
control, which will be adjusted to our particular system. On top of he communication
protocol will be implemented PROFIdrive pro le for motion control and easy integration
of the device into already existing industrial processes. This diplonthesis doesn't cover
implementing of each software and hardware part but aims to use akdy developed
applications and libraries and adjust them to create the device thas able to work in
the real industrial network.

Vi

Contents

List of Figures
List of Tables
1 Introduction
2 System Description
2.1 System overview e e
2.1.1 Systemcontroller
2.1.2 PROFInetlOdevice
21.2.1 PROFInetStack
2.1.2.2 PROFIdrive Stack
2.1.2.3 Main Applicationo
2.1.2.4 MotionControl,
2.1.3 Motor and adaptation circuit
3 Components and Technologies Used
3.1 Communication Protocol - PROFInet
3.1.1 Industrial Ethernet oL oL
3.1.2 PROFINetRT/IRT e
3.1.21 Cyclicdataexchange
3.1.2.2 Acyclicdataexchange
3.1.3 GSDML e
3.2 PROFInetStack
3.2.1 Hardware Components
3.22 SDAIl. . . . e
3.3 Alteraboard.
3.4 Alteratools e

© O © v © ® y (n

3.4.1 Quartusll 21

3.4.2 Eclipse IDEfor NIOSII 22
3.43 NIOS Il Command Shell 22
3.4.4 NIOS Il Processor 23
3.5 PXMC . . . e e 24
4 Implementation 25
4.1 PROFInetstack e 26
4.1.1 Hardwaredesign 27
4.1.1.1 Inputs/Outputs for motor 27
41.1.2 PWMgenerator, 28
4.1.1.3 Quadrature Counter 30
4.1.1.4 Complete Design 32
4.1.2 Software Application Design 32
4.1.2.1 Note about Debugging 33
4.1.2.2 SDAI Initialization 34
4.1.2.3 SDAI Data Exchange 40
4.1.2.4 Main Application 42
4.2 PXMC . . . e 43
421 Hardware design 44
4.2.2 Software design 46
4.3 PROFIdrive 46
4.3.1 Module specications e 50
4.3.2 Parametermodel 51
4.4 Testing e 53
441 PLC e 53
4.4.2 PROFIdrive Prole Tester 54
5 Conclusion 57
A Contents of the CD I

viii

List

1.1
21

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

of Figures

Printing Press 2
Overall schema 6
SendCycle example 14
GSDML Header 17
FPGA hardware components 19
Altera interconnection schema 23
Top level functionality 26
Qsys application subsystem IO 28
Modelsim pwm simulation L o 29
Quadratic counter simulation 31
Debounce lter 31
Top-level 10 for motion control 2
SDAI and stack initialization 34
SDAl units plugging e 39
IO application memory 40
Pluggingof IO modules 40
SDAIl data exchange 41
PXMC schema 43
Wire crossing to connect boards into series 45
PROFIdrive mappingtopronetlO 47
PROFIdrive mappingto pronetlO 48
PROFIdrive cyclic communication 49
Debug output telegram 6 modules 51
PROFIdrive read parameterrequest 52
PROFIdrive write parameter request 53

iX

4.20 Step7 network con guration

4.21 Application Relation establishment with 8bit input module

4.22 Expected modules from PLC
4.23 Expected modules response

fromboard

List of Tables

4.1 Pin assignment for PXMC motion control

Xi

Xii

Chapter 1

Introduction

In manufacturing industry but not only limited to it, the production speed is critical
in order to achieve desired prot for the companies. The productio itself is usually
controled by an industrial computer or PLC and the motion itself is caed on by simple
single-axis drives or more complex multi-axis drives. Usually multiple dis need to act
in some kind of synchronized manner in order to create the whole jphact. But as the
production speed is still increased, the quality of the product couldecrease, because
little inaccuracies in synchronization that were permisible at lower spes are beginning
to turn into signi cant inaccuracies at higher speeds. A good exan of such a process
where production speed is critical and has a direct impact on the ptas a newspaper
printing. Printing press is capable of printing about 10 pages per saud which yields
in paper speed about 3 meters per second. There are severagjggaconnected in series
that compose the printing press. First there is storage for a longaper sheet, which
is fed through high speed rollers further into machine. Then there & series of rollers
touching each other that transfers the ink from the so called platento the paper (hence
the method is called the o set printing). This part is repeated 4 timesonce for each
basic color and once for black (even though black could be mixed frdmasic color, it
is cheaper to have a black color separated). Then the paper is faldend chopped to
create the product. All the drives moving the rollers and other pas must be tightly
synchronized to produce the newspaper at such a speed. Thedywonization has to be
in order of few miliseconds or submiliseconds since during 1ms the shemild be 3mm
out of position, which could lead into a blurred image.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Printing Press

For fast and precise motion control in today's industrial applicatios, the precise
synchronization of the drives is necessary in order to achieve desliquality and speed of
the control application. Since it is not always possible to connect alhé drives directly
into the same controller device (e.g. because the drives might be ogdeng far away
from each other or because of too much computational requirems), the distributed
control network needs to be developed in such a case. The usualywhow to decrease
the computational demands for devices and how to cope with placent requirements, is
to develop a device, that would run the fast closed control loop artiat would directly
control the drive (or few drives) according to its dynamics and athte same time would
communicate with other devices and with the process controller. Asrocess controller
we refer to controller that controls the whole industrial processral thus needs to know
the state of each device and in turn provides the reference inpuisr the devices. The
devices could be called 10 (Input-Output) devices. They act as anterface between the
process and the controller. They measure important process iables (Input) and feed
the system with control signals (Output).

As could be already foreseen, fast, real-time communication betwvethe device and
the process controller (and possibly between the devices as well)stioe used. Real-Time
communication ensures that the input process variables that arerst to the controller are
up-to-date and that the output signals will be fed to the process isome kind of timely,
reliable manner. Real-Time communication alone doesn't imply that theotnmunication
must be fast. It means that there are some well de ned time limits in tich the data will
be transfered through the network. Since this work aims to devgda device for control-
ling a drives, fast Real-Time communication is necessary. Another imngant aspect that
has to be considered when designing an industrial network or netikalevices is the price
of the cabling. The communication protocol that will ful Il the requirements for speed
and its cabling is cheap at the same time is the PROFInet. The prototwill be desribed
more in chapter (Dat referenci). To allow easy incorporation of thdeveloped device into
the already working industrial plant, behavior according some welledned standards will

be helpful. The standard for motion control built on top of the PROHRnet stack is called
PROFIdrive pro le and this standard will be implemented in the device.Since the whole
PROFIdrive prole is a huge system with great variability in the sense bused drives,
implement whole pro le would be too demanding. Only the neccessarag of the pro le,

directly related to our particular drive will be implemented. But since he main mecha-
nism is needed for that, adding the support for broader range ofides will be simplier.

The content of this document is divided as follows. In chapter Il (Rerence) will be
presented hardware and software con guration that will be usednd will be given some
theoretical background about PROFInet in order to justify it's cloice as communication
protocol for our device. The theory will as well bring more light into @me implementation
details described later so that they will be understandable to the agler in the scope of
the whole application. In chapter Il (Reference) will be provided implementation details
and their role in overall functionality. Some areas in this chapter mighbe described
step by step in order to allow reader to replicate the developed degidunctionality. In
chapter IV (Reference) will be described the testbed for testinpe functionality of the
device. In chapter V (Reference) will be given conclusion and summaf achieved goals
as well as contemplation about possible changes in the future.

CHAPTER 1. INTRODUCTION

Chapter 2

System Description

In this chapter will be described our system. In rst section a gemal overview of the

system will be provided from both software and hardware perspge®.In the next section

used communicaiton protocol will be described and will be compared some other pos-
sibilities. That should provide neccessary information in order to uretstand the desired
device functionality. In the next section will be described used hangre con guration,

including the drive, the IO device and its interface towards the drivéowards the users
and towards the process controller. In the last section used saétre, including source
code, and toolchain will be described. The particular importance in deribing the source
code will have the interfaces between various parts of the appliga.

2.1 System overview

In this section we will describe the designed system as a whole and toy show the
relations between individual devices and their subsystems. Let usd with the schema
of the system shown on the following gure.

5

6 CHAPTER 2. SYSTEM DESCRIPTION

PN Controller

Process Control
Application

Cyclic (10 data)
Acyclic (Parameters)
Alarms

Clock Synchronous

PN IO Device PN Interface

SDAI
SDAI Functions SDAI Callbacks
PROFIdrive Application
PDMParameter PXMC Functions
anager Cyclic interrupt service
PD Object
Dictionary PXMC Library
F(’:E; rﬁ;‘c"f VHDL Quadr VHDL PWM
Encoder Generator

I
L LT MUl
T LT Motor Interface

Motor Adaptation
Circuit

BPhase Brushless
Motor

Figure 2.1: Overall schema

On the gure the hardware parts as well as software parts are svn. As for the
hardware components of the system, in working setup, it consist system controller,

2.1. SYSTEM OVERVIEW 7

PROFInet 10 device, motor adaptation circuit and a 3-phase brudhss motor. In the
industry there will be typically one PROFInet system controller and raltiple PROFInet
IO devices each with 1 or 2 motors connected.

2.1.1 System controller

There are actually two angles of view of how to describe the systemntroller.

First one is when we consider the functional part and the control ¢gc of the system.
Then the system controller could be described as a device on whicketimain process
control logic is implemented. This device executes the main controldp in a sense of
processing the process input data, computing new state of thessgm and providing the
new output data for the actuators. From this point of view there isno di erence whether
the inputs are connected directly to the controller or provided by emote devices and
whether the actuators are connected directly or located as welh @he remote devices.

Second angle is to consider the device roles from the networking gahview. Then
we would describe the controller as a device capable of acting as a HRaet master in the
PROFInet topology. The role of PROFInet master is to control thenetwork data cycle
and in the case of Isochronous Real Time to provide the refererdeck for other devices.

There are 3 devices capable of acting as a PROFInet controller thate considered in
our system. Each has it's own qualities which are important in di erenpart of 10 device
development.

Simatic PROFInet controller

This standard PROFInet controller is used for basic connection tahe 10 device. It
is used in order to observe and investigate the communication esisbhment process be-
tween the IO device and the controller. Then the simple application othe controller
is run to observe the communication and 10 data exchange. Anothadvantage of us-
ing the standard controller is not many restrictions and rules for emected 10 devices.

Simotion controller

Simotion controller is PROFIdrive compliant PROFInet controller. This device is
used in combination with PROFIdrive aware and compliant 10 devices. ©top of the
PROFIdrive communication it provides the advanced tools for motiorontrol. For exam-
ple trajectory interpolation. It can be used to test and run PROFdrive applications as a

8 CHAPTER 2. SYSTEM DESCRIPTION

whole.
PROFIdrive Tester

PROFIdrive Tester is an PC application in combination with the special atwork
interface card. The device then acts in PROFInet network as staard controller and
the same set of tools for programming the Simatic controller can besed. It could be
used to test whether the IO device PROFIdrive features are impleanted according to
PROFIdrive pro le speci cations. The advantege is that individual features can be tested
independently and with no need for an running application.

2.1.2 PROFInet IO device

PROFInet 10 device is peripheral device to the PROFInet controller It is capable of
sensing the process data and/or control the actuators/pross directly. It reads the output
data provided through the network by the controller and it provide the Input data to the
controller. There are di erent reasons and situations where it is adntageous or necessary
to use 10 device instead of connecting the inputs and outputs to ¢hcontroller directly.

Localization

In a large processes taking place over the large area, it is necegsarread the data
close to the system that generated them. Over the large distanaesignal containing the
data could get polluted by electromagnetic noise from the environmie Reading the sig-
nal close to the source and transfering it into some data represation reduces the impact
of the noise to the signal. It can reduce the cabling costs as well ®rtbere will be only one
cable from the 10 device to the controller while for the raw signal thre might be needed
more cabling.

Computational complexity

Process control can be computationaly complex task. For exampt®mputing the
ideal trajectories for series of motors, reacting to the feedda@and adjusting the val-
ues accordingly, implementing some advanced feedback controhtirequires a lot of
memory and processing and so on. It might be then desirable to mogeme com-
putation from the central controller into the peripheral devices. The tasks that pe-
ripheral 10 devices perform usually include some initial Input signal ppcessing (Iter-
ing, averaging, scaling, decoding) or some Output signal procesgpi(PWM, scaling).

2.1. SYSTEM OVERVIEW 9

Logical decomposition

Developing and maitaining more smaller parts of the application all with & own pur-
pose can be easier than mantaining one central application that te& care for everything
from converting inputs and outputs to some meaningful values to amtaining internal
states of application.

We will now brie y describe the subsystems of the 10 Device while theimplemen-
tation and functionality will be described in detail in later chapters.

2.1.2.1 PROFInet Stack

PROFInet stack is a subsystem of the application, that takes caref networking. In our

particular case it allows the device to act as a PROFInet slave device axnPROFInet

network, handles the incoming and outgoing messageses and presithe means for the
application to create or read message content to some extent. ttrms of ISO/OSI model,

it provides hardware and software components to control the st two/three layers and

provide the programming tools or interface to the networking seises for the application.
While for non real-time communication, standard ethernet networknterface hardware
would be su cient, for real-time PROFInet modes, the ethernet swich has to be adjusted
to provide all the services.

2.1.2.2 PROFIdrive Stack

PROFIdrive stack is set of software components that implement PR&FIdrive pro le on

top of the PROFInet stack. Prole uses PROFInet services and desn't require any
changes to the PROFInet stack if all the networking services arevailable. It de nes
certain rules, procedures, module types, alarms and state maabsnthat are typical for
the most of the motion control applications and provides a the instictions on how to
implement them with PROFInet. It can be used with other PROFIdrive IO devices or
controllers.

2.1.2.3 Main Application

As the main application we call a part of our program where the "main’loop is run-
ning. It actually connects all the other applicaiton subsystems tagher(PROFInet stack,
PROFIdrive stack, motion control) and takes care of propper initihzation of each part. It

10 CHAPTER 2. SYSTEM DESCRIPTION

is the application part that is noti ed about the external events (éther through hardware
or stack callbacks) and uses the services provided by modules. @pplication initializes
the PROFInet stack, PXMC library for motion control and listens ona callback methods
from PROFInet APl and has an access to PXMC data and PXMC fungbns to change
the drive behavior. It also handles the hardware events from theli&ra board.

2.1.2.4 Motion Control

Motion control subsystem takes care of converting the contralata provided by the main
application into signals that are fed directly to the drives. On the otkr hand it handles
converting the raw signal provided by the sensors on the drives stsome meaningful
representation for the main applications. It is composed of 3 parfsom which one is
PXMC-Portable highly eXtendable Motion Control library. That is a soitware component
that handles the internal state machine for the motion control att keeps track of motor
state, provides services for computation of speed and positiondaon the other hand
provides methods to control motor state. It allows programmera implement some
basic feedback controller. In our case PID controller is used. Theher part is a Pulse
Width Modulator, implemented as a FPGA block, that translates the ontrol voltage
into to PWM signal fed into the drive. Last importantant part is Quadratic decoder that
converts signal from quadratic encoder into the pulse countemat is in the end used for
determining the speed and position of the drive.

2.1.3 Motor and adaptation circuit

Motor and adaptation circuit is the part of the system that directly controls the process.
Motor is connected via the adaptation circuit into the 10 device boat. Adaptation circuit
solves the power requirements of the drive that cannot be supplidtbm the boards, it
provides the galvanic isolation of control signal and power signal @it allows the board
to disable any of 3 3-phase control PWMs.

Chapter 3
Components and Technologies Used

In this chapter we will describe what particular hardware and softare was used for our
device. What particular software components, what tools and whyere they chosen for
our implementation. We will provide more theoretical overview of theystem components
in this chapter and in the following chapter we will describe the impleméation process
in the detail. This chapter should provide necessary initial knowledge understand used
components, their capabilities and to make reader familiar with the tdnology used. This
allow us to follow up with the implementation details and focus on the imptaentation

without the need to describe the technology and tools in betweend®nological details.

3.1 Communication Protocol - PROFInet

Select the right communication protocol for the device is importantlecision and has to
be made at the beginning of the design. According to the selectedpcol, the hardware
with su cient peripherals and performance can be chosen.

3.1.1 Industrial Ethernet

Over the last years, Industrial Ethernet is increasing its populant as a protocol of
choice for process industries. It is estimated that about 45% of @le nodes connected
in process industries is communicating via Industrial Ethernet. Etérnet is widely used
in o ces and households, more than 85% of LAN connected devicesas Ethernet [1].

11

12 CHAPTER 3. COMPONENTS AND TECHNOLOGIES USED

This widespread of Ethernet actually increases the ethernet tewblogy development and
therefore makes it more a ordable and suitable to various environemts, including in-
dustrial environment. Using ethernet for industrial processeslso allows for seamless
information integration from eld control layer to management laye. The advantages of
Industrial Ethernet against other protocols often used in eld cotrol layer is it's high
data transfer rate, high reliability, easy to maintenance and quite oy range availabil-
ity [2]. It is also possible to use traditional o ce network elements like outers and
switches if no special requirements like deterministic communicatiomearequired. The
disandvantages of ethernet are that it's not naturally reliable andeal-time protocol so
if it is needed, the upper protocol layers need to provide those faees. Another ad-
justments that usually needs to be made for industrial ethernetra related to the harsh
environment the devices are in. Therefore the connectors, cabknd switches are usually
rugged and can resist higher temperatures. Ethernet cabling haaturally pretty good
resistance against electromagnetic disturbances, which is impantan industrial envi-
ronments. Using ethernet switches also allows to separate setsdefices into domains
called sub-networks. It allows for better logical division, for sepation of the data ow
from another parts of the network, eg. the devices in subnet mage their own rules for
access to shared resources and does not need to care aboutéleof the whole network.

For our project we chose PROFInet as a communicaiton protocol.t provides the
needed functionality in terms of available real-time modes to be able toansfer data
between 10 devices and process controller in reasonable low timeattis critical for con-
troling tightly synchronized drives. At the same time, PROFInet belags to the family of
Industrial Ethernet protocols. That means, that for physical ad link layer (according to
ISO/OSI model) could be used the same hardware and the same cagles for Ethernet.
On top of that, expansion to the PROFInet called PROFIdrive pro le provides a set of
rules and description of the interfaces between PROFIdrive comfoant devices and con-
troller and therefore stands for the standard for motion contdoin PROFInet-based net-
work.

PROFInet distingueshes between 3 device types. Those are [23]:

Controller is a PROFInet master device that provides desired output data fadevices
and receives from them the input data (cyclic data). It also exchayes acyclic data
with devices.

3.1. COMMUNICATION PROTOCOL - PROFINET 13

Device is a PROFInet slave device in the eld that reads inputs and writes oyguts to
the controlled process. It exchanges cyclic and acyclic data withrtooller.

Supervisor is a machine used for con guration and monitoring of the process.

"PROFInet devices are based on a modular device model" [19]. That ares that device
can be equiped with various modules, which are plugged into device slatost of them
usually being 1/0O modules. Particulary important module isDAP-Device Access Point
That is module that represents the network interface of the dewic Slots can be further
divided into submodules. While modules can represent either real @igal device or vir-
tual device, submodules has no physical counterpart and repeas only virtual division.
Data interpretation

3.1.2 PROFInet RT/IRT

PROFInet Real-Time modes ensure that IO data are always exchagd) in de ned time
intervals. This is achieved by diving the available bandwith between reééime cyclic
communication and non real-time acyclic communication. Cyclic data artransfered
with preference over acyclic data using RT/IRT channel. When thex is still available
bandwith, then the acyclic data are transfered.

3.1.2.1 Cyclic data exchange

IO data are exchanged between devices as a cyclic data. The basaqu for cyclic data
exchange is calleendClockwhich is 3125s long and is divided into phasesSendClock-
Factor is integer de ning multiple of SendClocks that compose a networkendCycle
Although it can get more complicated in particular scenarios, the basdivision is to Red
phaseand Green phase More precise division would be important if we were to develop
the PROFInet stack, for users, using PROFInet stack servicethis division is su cient.
Red phase

In the red phase all 10 data are transmited between devices.
Red phase is de ned so that maximum lenght must leave leftover foné Green period so
that [18]

Must allow transmision of non-fragmentable frames

Must allow transmision of at least one such a frame

14 CHAPTER 3. COMPONENTS AND TECHNOLOGIES USED

Cannot exceedViaxRedPeriodLengthde ned in GSD metadata

Each IRT device has to know when exactly red period starts and whet ends. De-
vice calculates it for both Rx and Tx directions. Red phase always bieg at start
of the SendClock period. Red phase ends when the last IRT frame irsmited.
Green phase
As described in red phase de nition, green phase length is a leftovarSendClock period
after all IRT frames has been transmitted. Data transmission usestandard UDP/IP
protocol.

3.1.2.2 Acyclic data exchange

Acyclic data exchange is used for sending all other data than 10. ®ke contain con gura-
tion and diagnostic information, alarms and parameter record data

Parameter Record Data
Write Request
Write Response
Read Request
Read Response

Example of SendCycle foSendClockF actor= 2 can be seen on the gure 3.1.

Figure 3.1: SendCycle example

3.1. COMMUNICATION PROTOCOL - PROFINET 15

3.1.3 GSDML

Slot and subslot data exchange is in general done as an exchangeytés between the
devices. GSDML le stands forGeneral Station Description Markup Languag¢9]. It is
a XML based device description that supports device description @rding to PROFInet
device model mentioned in [19][23].
Element top level topology will be now described with emphasis on elente that will
be used in our device description. All the module speci ¢ elements wileldescribed for
better readability later.

ISO15745Prole is the root element of GSDML le.

{ ProleHeader Header must always look like (REF g gsdml header).
{ ProleBody Includes main parts of device description.

Deviceldentity Attributes are VendorID and DevicelD.
InfoText
VendorName

DeviceFunction

Family Contains vendor information about what family of devices
this device belongs to.

ApplicationProcess Contains all the information about device modules.

ApplicationProcess
This is the parent element for all the module speci ¢ information. Thisncludes module
I/O type, usable slots and subslots, general list of modules and DAfRodules. it's struc-
ture will be now described. Not all the elements will be described, onllgose with some
sigini cance in our application. Whole speci cation can be found in [9].

DeviceAccessPointList List of DAP modules.

{ DeviceAccessPointltem Describes 1 DAP module. With attributesID,
PhysicalSlotstelling in which slots the module can be inserted an¥odulel-
dentNumberthe number that is used in exchanged data to identify the module.

Modulelnfo
Name

InfoText

CHAPTER 3. COMPONENTS AND TECHNOLOGIES USED

VendorName
HardwareRelease
SoftwareRelease
Certi cationinfo Information about certi cation.
SubslotList List of subslots of the module.
Subslotltem Contains attributes SubslotNumberand Textld.

IOCon gData Contains attributes like MaxInputLength, MaxOutput-
Length meaning the maximum IO data in octets (CITE GSDML). This is
the sum of all the data that can be exchanged by submodules.

UsableModules List of references to the modules described in GSDML
that can be used with this DAP.

ModuleltemRef With attributes ModuleltemTargetand AllowedInSlots
telling in which slots the modules can be used.

ModuleList Contains list of all modules, not all need to be used by application.

{ Moduleltem Describes 1 module available in the device with attributetD
and ModuleldentNumbernumber that is used by application and sent by net-
work. Must match the number assigned in application.

Modulelnfo With attribute CategoryRettelling from which category of
modules the module is (e.g. Input Module, Output Module ...)

Name

InfoText

OrderNumber

HarwareRelease

SoftwareRelease

VirtualSubmoduleList Contains virtual submodules available for each
module. Since submodules aren't physical devices, all the submodule
available for the device are listed here.

VirtualSubmoduleltem Contains attributes like VirtualSubmodu-
leNumberwhich must much the number assigned by the application
in the device andAPI -meaning Application Process Identi er in this
context. De nes to which process VirtualSubmoduleltem belongg-or

3.1. COMMUNICATION PROTOCOL - PROFINET 17

example PROFIdrive has its own APl number de ned. Users can de-

ne their API to distinguish for which process the modules is suppode
to be used.

Again for better readability the most important element for 10 dataexchangeVirtual-
Submoduleltemwill be described in more detail:

IOData Contains attributes IOPS_Length-IO Producer Status andlOCS_Length-
IO Consumer Status. Both those lengths cannot exceed 1440 etst (CITE GS-

DML). Child elements contain information about particular input and autput data
that the submodule can exchange through network.

{ Input Containing child important child element Dataltem that contains par-
ticular data information like DataType-e.g. unsinged8, oat32 describing the
data representation andUseAsBits ag, telling the engineering tool that the
data should be displayed/represented as individual bits, not beinganslated
to for example decimal number.

{ Output Contains similiar information asInput but for Output module

{ InputOutput The bits of this VirtualSubmoduleltem can be represented as
both input or output.

RecordDataList Contains list of ParameterRecordDataltem

Modulelnfo

On the next gure is the standard Pro leHeader used in GSDML v2.31

Figure 3.2: GSDML Header

18 CHAPTER 3. COMPONENTS AND TECHNOLOGIES USED

3.2 PROFInet Stack

"Softing Protocol IP for PROFINET is a combination of IP cores andndustrial Ethernet
device protocol software designed to o er all required communiitan capabilities for an
implementation based on the Altera FPGA." [19] There can be used vaus industrial
communication protocol with the stack while all use the same prograning API called
SDAI-Simple Device Aplication Interface
According to documentation [3][19] it can be used for:

Verify the functionality of available protocols.

To learn about the protocol integration.

To integrate the protocol into eld devices.

To work as a PROFInet, PROFInet RT/IRT device.
The package contains:

Documentation

IP core license

Real time ethernet switch IP core

Other utility IP cores

NIOS Il project and source code

NIOS Il software project

NIOS Il demo application

SDAI code and documentation

There is a 2 hour evaluation period timer, which block the functionalityafter the timer
expires. This is for the users to test the functionality without buyirg the product. After
purchase the timer is disabled. For our development we were usingslevaluation feature.
According to [19] the stack is compliant with PROFInet version 2.3, GSML version 2.31
and PROFIdrive version 4.1.

3.2. PROFINET STACK

3.2.1 Hardware Components

19

In this section we will describe hardware components used in the FRCGdesign. An

overview of the components and their interconnection is on the 3.3

Flash Sysld

Controller

MM-Bridge IRQ-PIO MM-Bridge MM-Bridge Reset-Bridge

NIOS 1l

Reset-PIO

Peripherals(LED,

RAM
Controller

Remote
Update

Reset-Bridge MM-Bridge ~ MM-Bridge IRQ-PIO

Mutex

NIOS Il

DPRAM

Timer

RTE Switch

LCD, pushbuttons)) Clock-Bridge
Timer

PLL

MM-Bridge

Figure 3.3: FPGA hardware components

"The IE subsystem (Switch subsystem) contains the switch IP cerfrom Softing and
the Nios Il core. The Nios Il uses a MM Bridge to access Flash and RAMhe mem-
ory provided is transparent for the Nios Il. It has to be implementé outside of the
subcomponent. Interaction with the Application subsystem is impleented via a DP
RAM in the IE subsystem. Mutex and IRQ are used to control acceso the DP RAM.
The second subcomponent is the Application subsystem. It contaira Nios Il on which
the sample application runs. Furthermore various IP cores to intact with the peripherals
are this [19].
For users of the stack the most important is the Application subsysm. That is be-

part of subcomponent”
cause unlike RT Switch subsystem, the application subsystem is assdle to user via
standart Altera FPGA tools and can therefore make modi cations irthe application sub-
system. RT Switch subsystem is unaccessible to the user and is pdexd as and IP core.
We will be making some modi cations in order to connect the motors a@hto allow some

20 CHAPTER 3. COMPONENTS AND TECHNOLOGIES USED

supervision through Altera board physical interface.

3.2.2 SDAI

SDAI-Simple Device Application Interfaceis a programming interface built on top the
hardware system. It is desinged for use of the protocol featsteo create initial con gu-
ration and receive and send data between device and the controller

3.3 Altera board

As a hardware for our 10 device implementation we decided to use AleeDE2-115. Main
reason was compatibility with the PROFInet stack. There is actually ery few vendors
and organisations that developed PROFInet stack as a standaloseftware/hardware
and de ned programming API, giving the users full control over tle application using
the stack. For our development we used the stack developed byft8w Industrial Au-

tomation GmbH. They provide the stack for PROFInet slave device ith a lot of freedom
for the programmer and with Isochronous Real Time communicatiomode available.
The stack is distributed as Altera Quartus les describing the hardare and a soft-
ware application written in C on top of that. Altera DE2-115 is amongghe devices on
which the stack was tested so there was lower risk of possible cotiipéity problems.

Cyclone 1V is the heart of the Altera DE2-115 board. The FPGA cordins 114480
LEs(Logical elements, LUTs-LookUp Tables or Slices) and 439 M9Keamory blocks.
Those two attributes are important in FPGA design since they repmgent how "big" de-
sign can t onto the board. Hardware components and their inter@mnnections use the LEs
and memory blocks to create the desired functionality. FPGA pins cabe connected di-
rectly to the peripherals. The most important peripherals in our dagn will be described.

Slide switches and Push buttons

Those will be used for direct user control over the application. Faxample they can
switch the information shown on LCD display between the stack infanation and drive in-
formation. They can directly disable the signal going to the drive byxeiting the disabling
pins on the motor adaptation circuit. Motor disable through switche on the board have

3.4. ALTERA TOOLS 21

actually priority over the software wanting to enable it. They can beas well used to con-
trol the speed of the drive.

LCD display and LED diodes
Are used to display various information for the user. We use it to dispy PROFInet
stack state, motor state and values fed into the motor.

GPIO

GPIO pins on the board are General Peripheral 10 pins allowing the RPA to drive
the singal out of the board. We use those to control the motor. Here are 2 connectors
available for that purpose. Both allowing the user to chose the HighJel between 2.5V,
3.3V or 5V. The GPIO connector provides as well the ground and limitepower supply
with 5V voltage and up to a 1A current [14].

3.4 Altera tools

As a development environment we have chosen a toolchain from Aleproviding a tools
for graphical hardware design, hardware and software programng environment and
compilation, build and deployment tools to load the application onto theboard. It is
possible to develop an application without those tools, using only coifgrs for Alteras
FPGAs, but the toolchain is a kind of waranty that application develogd with Altera
toolchain will run on Altera FPGA. Another important argument to use Altera toolchain
is that a lot of PROFInet stack components is available as a le to be esl with Altera
toolchain and then we can modify or observe the design with thosedis.

3.4.1 Quartus Il

Quartus Il is a software for designing and compiling an FPGA designt &llows smooth
integration of 3rd party IP cores and design and validation of the FBA components on
various levels, for example meeting timing constraints, whether theéesign can t into
the FPGA, allows to easily create and interconnect IP cores with Qsybuilder tool. This
tool is important when designing a processor, network switch andeppherals into the
FPGA, therefore we will use this tool a lot. Then it provides a basic etr for VHDL

22 CHAPTER 3. COMPONENTS AND TECHNOLOGIES USED

les. Quartus Il as well allows users to con gure the compilation prierences. Between
many con gurable parameters the most important is tradeo betveen the speed of the
circuits and designs size. When the FPGA is driven by a fast clock saer, the time
to propagate the signal in the circuit cannot be neglected anymard-or our design we
instructed the synthetizer to use timing-driven synthesis so thengphasis was placed
on meeting the timing constraints, which is important for real-time PROFInet switch.
After compilation many of les are generated. From the the most imprant are the
ones with ".sof", ".jdi" and ".sopcinfo" extensions. ".sof" stands 6r SRAM Object File
and it contains the information about the FPGA design. ".jdi" standsfor JTAG Debug
Information and it contains the information for the device about tle JTAG debugging
interface. It is used by the application to see the application print orthe console win-
dow of the connected PC through the programming interface of ¢hdevice. ".sopcinfo"
contains the Qsys generated information about the application adess space, settings
and preferences. It is used by other compliers in the toolchain to itai the BSP-Board
Speci ¢ Package which is something like Hardware Abstraction Layerlt provides the
constant, de nes and macros specic for the particular design antherefore hides the
board implementation details from the software programmer.

3.4.2 Eclipse IDE for NIOS I

Eclipse development environment was used for the software deysteent onto the NIOS
Il processor, that is part of our design. Except text editor it preides the tools to compile
and dowload the design to the board and see the console output andte the input. We

used it mainly as a text editor and for the purposes of compilation udethe command
shell.

3.4.3 NIOS Il Command Shell

NIOS Il command shell provides posix-like command shell environntefor program-

ming the altera device. It allows to run various tools from the consoleerminal. For

example "nios2-con gure-sof' command to download the .sof degirto the device or
"nios2-terminal” to watch the printouts of the application running on the board. It also
allows to compile whole HW/SW desing for the nios Il processor using @Ccompiler
for NIOS. For the latest version of our design, the 14.0 Altera todiain was used, which
comes with version 4.5.3.

3.4. ALTERA TOOLS 23

3.4.4 NIOS Il Processor

Software part of our application - written in C - will be running on the NOS Il soft
processor implemented on the FPGA (CITE NIOS Il software deveber's handbook,
NIl exception handling, NIl cpu manual). Since there is a thin line beteen what is
processed in hardware and what in software, it is important to undstand capabili-
ties of NIOS Il processor and to be able to adjust it's functionality Wwen necessary.
NIOS Il is a general-purpose RISC processor [8] with 32-bit instriign set, registers and
address space. Between important features belongs 32 intertrigources, access to va-
riety on chip peripherals, hardware-assisted debug module, sadie development based
on GNU C/C++ toolchain, interfaces to on-chip and o -chip memory. User can decide
what features the processor will implement and therefore custame it to his needs. For
example NIOS Il o ers oating point arithmetic instructions, but for the cost of ad-
ditional resources. User can decide what side of trade-o to takevheter the speed is
more important than resource usage or the other way around. €h the functionality
can be implemented directly by the processor, emulated in softwaoe omitted entirely.
On the next gure we can se the interconnections between the pressor and peripherals.

Figure 3.4: Altera interconnection schema

NIOS Il oers to customize the processor core attributes (suclas speed, creat-

24 CHAPTER 3. COMPONENTS AND TECHNOLOGIES USED

ing custom registers, ...) and allows to easy interconnect the proses with standard

peripherals such as SDRAM, general puprose /O, ethernet intiace, debug module
and with custom peripherals or hardware blocks(We will later conned¢he processor
to motion control hardware blocks, in order to reduce processdémad and to achieve
high enough speed) as well. Access to peripherals is implemented bymuog/ map-

ping of peripherals to the data bus address space. Registers cam d¢on gured to

support single-bit write/read operations as well as full byte writefead (by default).

NIOS Il processor provides simple non-vectored exception coolter. When an interrupt

occurs, exception controller controller passes the control to ppriate exception handler
[8]. This functionality will be used to invoke motion control library in regular short inter-

vals. Generated board support package and hardware abstraxt layer provides the the
software with methods to de ne timers that trigger processor irgrrupt and methods to
de ne respective exception handlers. NIOS Il Internal Interrpt controller can distinguish

between 32 interrupt requests. Interrupt requests can be disie@d/enabled by modifying
the processors control registers. This can be done at runtimedawill be important for our

application.

NIOS Il supports separate data and instruction space, there dsifying it as Hardware ar-
chitecture [8]. Instruction and data busses are implemented as Aga-Memory Mapped
master ports. While the data master port connects to both memgrand peripheral
components, instruction master port connects only to memory.

3.5 PXMC

PXMC is a software library project for motion control. It is a multi platform code
designed to be easily run on di erent platforms and with di erent mobrs [16]. There
is actually one aw to the portability and that is that there must exist C/C++ com-
piler for target platform. It is software library and a system coremeaning it has some
strict requirments on some services provided by hardware that resube met for awless
operation. Those requirments include execption handling, operati@tomicity and avail-
ability of some hardware components. Particular requirements willédbdescribed later.
Variants of the code have been succesfully used on many targeis robotics, laboratory
and medical projects [24]. On the following gure we can see PXMC datow schematic.

Chapter 4

Implementation

In this chapter we will describe how the implementation was done. Atrst we will
described the protocol in 4.1. What is the provided les structurewhat is and what
is not part of the PROFInet stack. We will describe how we deployedhe applica-
tion on the device, what changes have been made and how the deswgs veried.
Next we will describe how the PXMC was adjusted in order to be porteonto NIOS Il ar-
chitecture in section 4.2. What les have been used, what importarfinctions and object
PXMC provides, what hardware adjustment needed to be done aimw the motor is con-
nected to the device.
After that we describe obtained PROFIdrive stack implementation ad it's integration
into our device in order to create PROFIdrive IRT application. This pocess is described
in 4.4.2.
Before diving deep into implementation details we will remind what is thelpnned func-
tionality of the device on the gure 4.1. Most important parts of theimplementation are
as well described in 2.1

25

26 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Top level functionality

4.1 PROFInet stack

As already mentioned in 3.2, PROFInet stack includes both hardwaend software desing.
For non real-time communication, standard ethernet switch couldédused, but real-time
modes require some functionality on the hardware side because toics timing require-
ments.

Hardware is distributed as a Quartus Il project and a set of IP cer les and licences that
are needed for succesfull compilation of hardware design. The lesntained in the distri-
bution, process of hardware design and compilation and importanegerated les will be
described in 4.1.1.
When the hardware is compiled and all the necessary les generatesbftware develop-
ment can start (actually it can start independently when the interéce is well known in ad-
vance). In section 4.1.2 will be described the software les used tbe C application, im-
portant methods, design features and objects.

4.1. PROFINET STACK 27

4.1.1 Hardware design

In this section we will describe how the initial hardware looks like and vat changes
and adjustments were made, how they were made and what do theayect. We will
put some emphasis on the interface between the hardware andtsafe design. That
is set of generated les calle®SP-Board Support Packagand HAL-Hardware Abstrac-
tion Layer. Those software subsystems are created as a result of hardsvaompila-
tion and provides a layer for the software application to access ltare components.
The main tool wused in this part of design is Quartus Il
Obtained hardware design for Altera DE2-115 board is located undeardware/fpga/pro net/al-
tera_ink_switch/.

Most important les for hardware design arealtera_ink_pn.vhd which is top level hardware
description le and three Qsys lesaltera_ink_applsubsystem.qsysg|syspro net _system.qsys
and softing_pro net _devicesubsystem.gsysFirst it was necessary to add motor related
IOs into the hardware design.

4.1.1.1 Inputs/Outputs for motor

For motion control with PXMC, following inputs and outputs must be provided by the
system:

Output
{ 3x PWM - PWM signal to control each phase of the motor
Input

{ IRC counter - Value of IRC counter
{ IRC index - Value of IRC index

{ HAL sensor value
InputOutput
{ Status - Contains e.g. Enable/Disable

Those were added into Qsys application subsystem and "wired" thugh the top level

system to the memory-mapped area accessible by software apglma Memory address
in the NIOS Il system is relative to the subsystem. We chose freedrgss range between
0x000@010 and &000Q070. Created IO and their wiring is shown on 4.2.

28 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Qsys application subsystem IO

pio_axisQhal de ned as 3-bit input, pio_axisQ.irc_cnt and pio_axisQ.irc_index as 32-bit
inputs, pio_axisQ.irc_status as 8-bit bidirectional signal and picaxisO.pwm(1,2,3) as 16-bit
output.
Signalclk clock is being connected to mastearik systemclk signal, resetto the clk_system
clk_reset signal andsl to the cpu data_master port. By setting the Conduit to exter-
nal_connection value, we mean that the signal will be read/written outside of the du
system. In this case we need rst to export the signal from the ggtication subsystem into
gsyssystem.
When the Qsys les gets generated, there are two important leshiat we will need
to locate and use. First is qsyro net _system.qip that needs to be added as a source
le in the quartus project in order to compile the project right. The other one being
gsyspro ne _systeminst.vhd containig vhdl component description of the qsypro net _system.
In this le we need to nd the names which have been assigned to ourew signals in
order to use them in top level vhdl le. How the components are cowected together in
the top level hardware description le will be described in 4.1.1.4. It isetessary rst to
introduce other developed hardware components.

4.1.1.2 PWM generator

Since our motion control library provides only means to compute theumeric value for
the motor and since software interrupt periods cannot achieve @it enough time, it is nec-
essary to develop a PWM generator block in hardware and connecthetween memory-
mapped area used by PXMC for output data and real physical outp pins of the board.
PWM generator hardware block is block that takes a numeric value a input (can be

4.1. PROFINET STACK 29

absolute or scaled) and outputs a signal that oscilates betwekligh and Low levels. The
oscilation must be fast enough compared to the system that reces/the signal in order
for the receiver of the PWM not to react to individal signal changesThe e ect is that
slower system is capable of sensing only mean value of the signal, eaicting to individual
pulses.

On the gure 4.3 can be seen simulation results for our vhdl pwm gemaor. All the
input and output ports and internal signals will be described then.

Figure 4.3: Modelsim pwm simulation

From the input/output point of view, the entity pwm.generator was designed with
clk - Input port for 50MHz clock signal.

duty _cycle - 15-bitinput signal controlling pwm duty cycle. We decided to acceptalues
between 0 and 1000 (000001111101000).

pwm _out - Output pwm signal.

It is important to design PWM generator to achieve a compromise beeen the frequency
and resolution of the output pwm signal. The rule that applies is

flock = T pwm Mpwm
p)

where f¢ock is frequency of the driving clock signalf ,wm is a frequency of the pwm
signal andr,,m represents the number of descrete pwm output levels. There is rade-
0 between pwm frequency and pwm granularity. The higher the frguency of pwm
signal is, the lower is the granularity of the signal and vice versa. Faexample if

fowm = 1—00f°'°Ck we can achive only 100 pwm levels with range between output sig-

. 1
nal LOW and HIGH and granularity 1—OO(HIGH LOW). Therefore we must choose
the values in order for pwm signal to be "fast enough” compared tthe motor and
with granularity being lower than the required lowest speed step. Faexample if our

30 CHAPTER 4. IMPLEMENTATION

motor is running with speeghax = 1000 revolutions per second with 24V driving sig-

nal and we want the precision of the set speed to be at Ieasltigozo 0:1 revolutions
spee

per second, than our PWM has to support at least pste(i;ax = 01 = 10000 levels.

In our design we decided that reasonable pwm frequency iskB8z leaving the PWM

granularity to be 1000 levels. Hence the inputluty_cycle is required to be 0-1000.
On the 4.3 we can see that withlduty_cycle = 256, the pwm.out duty cycle is approxi-
mately 25%.

4.1.1.3 Quadrature Counter

IRC decoder is a hardware block that takes IRC quadrature encedsignals as an input
and outputs a single value representing the absolute position of tlmotor. Signals that
are received from the encoder ar€hannel A Channel B and Index channel Signals
comming from Channel A and Channel B are pulses shifted by 90deg to each other.
Edge detection is used to count the changes and phase shift alloves determine the
way of the rotation. Combination of rising/falling edge of either chanel and respective
LOWI/HIGH value of the other channel then uniquelly identi es whether to increment or
decrement the counter. If channel A leads channel B, then theunter is incremented,
if channel B leads then the counter is decrementedndex channelpulse signals 1 full
rotation of the motor. There are 3 modes how the quadratic couet signal can be decoded

X1 - Counter is changed only on falling or rising edge of one channel.
X2 - Counter is changed on both edges of one channel.

X4 - Counter is changed on both edges of both channels.

We will use X4 mode for better resolution of position.
Input/Output ports of quadcount are

clk

chan_A _in - Input Channel A from encoder.
chan_B_in - Input Channel B from encoder.
irc _index _in - Input Index channel.

cnt _out - Output 32-bit counter value.

irc _index _out - Output 32-bit o set of index pulse to counter value.

4.1. PROFINET STACK 31

irc _index _cnt _out - Output 4-bit index counter value.
cnt _ovrw - Output pulse when counter wraps around.
cnt _way - Output 1-"UP", 2-"DOWN"

Simulation results of the designed quadrature counter for the piise increment are on
gure 4.4

Figure 4.4: Quadratic counter simulation

After testing the quad_count hardware block in the design on the real motor, it turned
out that we need to solve some practical problems rst becausedhvalue of the counter
started to drift away from the real position of the motor. That is because real physical en-
coders encounters problems like signal bouncing and also it was ssegy to synchronize
the timing of the "outer world" with the FPGA timing.
The rst issue was solved by introducing the debounce Iter hardwa component in
between the quadrature encoder signals amguadcount logic. The debouncelter logic
is to wait for some time after the edge is detected on the signal andtput the new signal
only after the wait delay ends. This removes some possible countersoalculation due
to bouncing. Simulation of designed debounce lter for the threslid of 5 clock period is
shown on gure 4.5. On the gure we can see that bouncing does natect the output
signal of the hardware block and only after the delay when the levis steady is the new
value fed to the output.

Figure 4.5: Debounce lter

For the timing synchronization of "outer world" and internal clock-driven world of
FPGA, the series of 3 D ip- op circuits was used. It ensures that he value is preserved
for exactly 3 master clock periods until it gets into the quadraturecounture logic and

32 CHAPTER 4. IMPLEMENTATION

therefore making it synchronized to the internal clock, instead déeding the counter logic
with new data whenever they are available.

4.1.1.4 Complete Design

All the designed hardware components are put together in the tdpvel vhdl le and port-
mapped to the right input/output ports of the top-level design 4.6and/or to the ports

of gsyspro net _system component as described in 4.1.1.1. As mentioned in 4.1.1, top-
level le for the vhdl hardware design isaltera_ink_pn.vhd with the altera_ink_pn entity.

It's input/output ports are meant to be assigned to the physical ms of the FPGA and
provides the access point between FPGA design and physical I/O.

Figure 4.6: Top-level IO for motion control

4.1.2 Software Application Design

In this section we will describe how the design application works andwdhe functionality
was evaluated. We will show the implementation in detail, provide the deription of
the most important data structures and functions. Everything inthis section revolves
around SDAI programming API which provides functions, processeand callbacks for
programmers to use the PROFInet stack in the device. It also implesnts necessary
data structures to send/receive the data through the networland to con gure the device.
The initial application skeleton provided together with the stack is usd, because it de nes
some usefull data structures that simply es the coding and readidity of the code. Most
important les used in the design are:

demo.c Initialization, main loop, callbacks and nalization.

4.1. PROFINET STACK 33

pro net.c Important data structures related to PROFInet are lled and de ned here,
con guration functions are implemented here.

platform.c Board speci ¢ functions and interfaces are de ned here such agiting to
LED display, reading button values.

pxmc _nios _ink.c Altera board speci c PXMC, ported to NIOS Il architecture.

It is important to note, that during implementation we encountered some bugs and
some functionality not being fully working so we had to actually implemdneverything
again from the scratch when the new version 1.20 of the stack wasleased, since it
implemented some features that are critical for our application. W&n speaking about
implementation, we will refer to implementation in the later 1.20 versiotut we will men-
tion the features that are not working in the previous stack versioon respective places.
Another note worth to mention is that application running on board on gured with
JTAG debug module and connected to PC via USB can use terminal roimg on PC
for its standard input and output. To do this, host PC has to have \$B Blaster driver
installed and then by runningnios2terminal.execommand from the console, the console
starts to act as a terminal for the board. This was used for the theig of the board and
can be used as well for some runtime adjustments on the board.

4.1.2.1 Note about Debugging

SDAI comes with de ned debugging macros that are de ned iplatform.h. There are 3
main debugging levels that could be used and can be enabled in the le:

Debug This macro is used as a highest debugging level. We use it in application to
notify about various events like callback calls, SDAI initialized ...

Error Use in application to notify about errors.
Trace This debug macro is used throughout the application to trace the @aierarchy.

We enhanced macros to display the le and the line of the print as welbtmake tracking
the bugs and problems easier. Trace can be used to track the cakrarchy deep into
the SDAI driver, but it is not recommended though. Because the mare of JTAG Debug
chain using JTAG UART is serial connection connecting stdin, stdemnd stdout of device
to user console [8]. Serial connection with high tra c can be perforance demanding
on the system resources. According to nios2 documentation "tliiebug module gains

34 CHAPTER 4. IMPLEMENTATION

control of the processor either by asserting a hardware brealysal, or by writing a break
instruction into program memory to be executed. In both caseshé processor transfers
execution to the routine located at the break address" [8]. Themfe debugging with
high rate of printouts can lead into application being slowed by the pris or (what we
observed) the output or the whole application freezes.

4.1.2.2 SDAI Initialization

Before the PROFInetApplication Relation can be established between the device and the
controller, the device has to be con gured rst, which is programrad locally on the device.
Although there is possibility to tell the device to take some con guraon from the con-
troller during connection establishment, we went with aproach whetihe con guration is
coded in the device.

Initialization Let us rst describe how the stack and SDAI are initialized. The
process is ilustrated on the gure 4.7.

Figure 4.7: SDAI and stack initialization

The initialization process is started by calling

U8 sdai_init (struct SDAI_INIT* pApplicationinitData)

Before we can do that, we must rst assign some con guration datto the pApplica-
tionInitData pointer. Mapping of the structure to the PROFInet IO is describedn [3].

4.1. PROFINET STACK 35

The structure and its elds will be now described.

struct SDAI_INIT

{
us BackEnd;
us Alignment [3];
struct SDAI_IDENT_DATA Ident;
struct SDAI_DEVICE_DATA Info;
struct SDAI_CALLBACKS Callback;

h

First we start with description of the SDAI _.CALLBACKS . This structure is lled with
functions to be called on various SDAI callbacks to notify the applicaan about stack
events. The functionality of each callback is described in [3].

IdentDataCbk s called when the network parameter(e.g. ip address) is changed hgw
the callback is called, application stores new identi cation data like dege name,
ip address, connection status into the internal structure for Hding those data and
prints new data on the LED.

ExceptionCbk is called when fatal error occurs. Exception information is printedNo
automatic recovery was implemented.

DataCbk is called when the cyclic output data change.

WriteReqCbk is called when Write Request is received. This is used to process the
asynchronous data exchange between devices.

ReadReqCbk is called when Read Request is received
ControlReqCbk is called when a control command is received

SyncSignalCbk is called when a synchronization signal is received (IRT) (in the initial
version of the stack we used this callback was not implemented yetdashould have
always been set to NULL.

What particular function was assinged to which function pointer carpbe easily found in
the code so we will not write here the assignments. The important ishat actually hap-
pens when the callback is invoked so we will try to describe that for ingptant callbacks.
IdentDataCbk

36 CHAPTER 4. IMPLEMENTATION

After IdentDataCbk is invoked, new device name, ip address, netmk mask and gate-
way are stored internally and new data are printed on the led and tohe console.
DataCbk

After the output data are changed by the controller, the modulesor which were the
data changed (resp. their data representation in the main appliatig is updated by
calling

U8 sdai_get data (U32 Id, U8* pStatus, U8* pData)

This function read the input/output data from the stack data space. We will describe
this function more in . Now we just wanted to emphasize the relation diween Dat-
aCbk and function for reading the data from the stack space. Using thein this
connection allows the reading of new output data to be event drivemstead of peri-
odical checks (pooling) and therefore lowers some perfomancemeads of the application.
WriteReqCbk/ReadReqCbk

These two callback notify the application about the controller requating to read or write
some record data. These requests belongs to the acyclic commatan part of network
data exchange. This communication type is used in PROFIdrive pro léor parameter ac-
cess and will be described in more detail in 4.4.2. The request shouldahgays answered
with respective write/read response.

U8 sdai_write_response (const struct SDAI WRITE_RES* pWrite)
U8 sdai_read_response (const struct SDAI_READ RES* pRead)

Since the functions belongs into data exchange part of applicatiotiey will be described
more in 4.1.2.3

Now another part of initialization structure, SDAI _DEVICE _DATA will be de-
scribed.

struct SDAI_DEVICE_DATA
{
u32 SerialNumber;
u32 VendorlD;
u32 Type;
u32 ProductCode;

u32 Flags;

4.1. PROFINET STACK 37

union

{
struct SDAI_PN_DEVICE_DATA Pn;
struct SDAI_EIP_DEVICE_DATA Eip;
struct SDAI_PBDP_DEVICE_DATA PbDp;
struct SDAI_ECAT_DEVICE_DATA Ecat;
struct SDAI_MB_DEVICE_DATA Mb;
struct SDAI_EPL_DEVICE_DATA Epl;

} UseAs;

char ProductName [SDAI_PRODUCTNAME_MAX_PEN]The product name of the
device */
char Orderld [SDAI_ORDERID_MAX_LEN]; /**< The order ID of the device
*/
¥

Important parts of the structure will be described. For those usally the data from the
skeleton provided with the code are used and their name is prettylsdescripted, we will
focus on those that need more explanation. It is important to notahat lot of those data
must match the data lled in GSDML le, whose creation will be coveredin 4.4.2 and
theoretical overview is provided in 3.1.3.

Flags - Flags allows to adjust some features of the stack.

UseAs - This illustrates that the SDAI API is designed to be used with many comu-
nication protocols. We usePn for our PROFInet application.

Flags

Flags allow the programmer to specify or adjust some features dfet stack to be used in

the application. For the PROFInet protocol the only important ag is SDAI_LDYNAMIC _IO_CONFIG
Enabling this ag allow the device to plug/unplug modules and change I@ata layout by

the controller during runtime [3]. The change is triggered by ControlBqCbk() with the

control code SDALCONTROL _CODE_CFG_DATA _INFO received from the controller.

After receiving the the request, the application is responsible to pjuin or pull out the

modules to match the con guration of the controller.

SDAI PN DEVICE _DATA

38 CHAPTER 4. IMPLEMENTATION

This structure holds PROFInet speci c initialization data. Those aremainly network
con guration data for ethernet interface.

struct SDAI_PN_IDENT_DATA
{

U8 Address [4];

U8 Netmask [4];

U8 Gateway [4];

U8 MacAddressDevice [6];
U8 MacAddressPortl [6];
U8 MacAddressPort2 [6];

U8 StorePermanent;
U8 Alignment;

Although the device name and ip address are con gured in controllproject and stored to
the device from the network, it is important to initialize the device sohat it can commu-
nicate with the controller, in case they are not connected directlyral there is some eth-
ernet switch between. In that case we must choose the ip addresstmask and gateway
in the same subnet so the devices can communicate before new gomation is applied.
SDAI _IDENT _DATA

Stores currently used device and interface name.
BackEnd

Is set to SDAI _BACKEND _PN to indicate use of PROFInet.
All the elds for initialization are now lled in so that sdai_init can be called. After that
we can start with plugging of 10 modules.

Module plugging
After the initialization structure is lled, we can start to plug in modules to con gure 10
data layout for cyclic and acyclic data exchange with controller. It'@osition in the initial-
ization process is shown in 4.7. Basically we rst de ne modules to usearding to SDAI
rules, then plug them using SDAI API and in the end call SDAI functionto notify the
stack that plugging of the modules 5 done.
Plugging of modules by the SDAI implements themodular device designfeature of

4.1. PROFINET STACK 39

PROFInet 10. It can be imagined as a physically plugging the 10 units ird the rack
4.8.

Figure 4.8: SDAI units plugging

There are some rules and more consideration to take into accountile plugging the
units and those will be discused
First let us desribe the SDAI function for plugging the units.

U8 sdai_plug_unit (U8 UnitType, U8 InputSize, U8 OutputSiz e, U32* pld,
const struct SDAI_CFG_DATA* pCfgData)

UnitType de nes whether the module is INPUT, OUTPUT, INPUTOUTPUT or HEA D
module

InputSize is the size of input data of the module in bytes
OutputSize is the size of output data of the module in bytes

pld is 4-byte id of the module. SDAI composes id that 2 rst bytes are t subslot of
the module and next 2 bytes are slot number of the module

pCfgData contains moduleldentNumber and submoduleldentNumber and thisumber
must match the number de ned in GSDML for the module

40 CHAPTER 4. IMPLEMENTATION

AFter the modules are plugged in, appropriate memory space is cted to store the
IO data for modules. The created memory space and access to it issthated on 4.9.

Figure 4.9: 10 application memory

When the modules are succesfully initialized, we can see 4.10 on thepoitconsole.

Figure 4.10: Plugging of IO modules

4.1.2.3 SDAI Data Exchange

After all the modules are succesfully plugged in, we call plugging forspecial type of
module, by which we are telling the stack that we are done plugging moles

sdai_plug_unit (SDAI_UNIT_TYPE_PLUGGING_COMPLETE ,0,&Dummyld, NULL);

4.1. PROFINET STACK 41

Figure 4.11: SDAI data exchange

Now the device is ready to exchange cyclic and acyclic data, alarmsdaRROFInet
data through the network. There are 4 important functions fromSDAI API that provide
access to the 10 data exchange:

U8 sdai_get data (U32 Id, U8* pStatus, U8* pData)

U8 sdai_set data (U32 Id, U8 Status, const U8* pData)
WriteReqCbk

ReadReqCbk

While the rst two are called by the application, the other two being panters to funtions
called by stack when respective event occurs. The functions arss@ned to pointers dur-
ing SDAI initialization 4.1.2.2.
In the demo application when controller changes the value of the quit (which represents
setpoint for the motor speed), callback functiorDataCbk signals the application that the
output data value has changed. The application reacts by readingspective data from the
sdai data space (by callingdaigetdata) and stores them as a setpoint for the PXMC mo-
tor position (in the testing application).
On the other hand when the value of the input data changes, in ouase the quadrature
encoder position, the testing application callsdai setdata to write the input data to the
stack data space, from where it is cyclicaly transfered to the caoller.
Write request and read request are callbacks for acyclic data exctge, it allows the
controller to read and write various parameters stored in the devec Those parameteres
are application specic and are standardized for devices compliantittv PROFIdrive
pro le speci cation.

42 CHAPTER 4. IMPLEMENTATION

4.1.2.4 Main Application

Main application is initialized and started in demaplatform.c, wheremain() function is
located. The main loop implementation itself is the in th&lemo.c le. As the base for the
application was used the application provided with SDAI stack [20], as firovides a lot
of useful structures and sdai function wrappers which can beslg tailored to the applica-
tions needs.
In the demaplatform.c the LCD access is initialized, the eldbus processor is restarted
and two periodic timers are started to trigger NIOS Il interrupts. One of them is period-
ical interrupt timer, this is used for application to detect some exteal events (buttons
pressed and so on). The second one is timer for PXMC motion contr&ince both doesn't
require less then 1ms interval, they can be started using Altera HARPI, without the
need to trigger the interrupts by harware interrupt generator.1ms is one tick of the Altera
HAL clock. For periodic application interrupt we choose 10ms and f&XMC 1ms. If the
motion control needed lower step size, it would require us employ intept generator in
the hardware.

Internal Communication
Internal communication is preserved from the demo application debved with [20]. That
is the events like callbacks are detected in theemo.cand stored as a particular event
into shared variable betweerdemo.cand demaplatform.c. In the main loop the shared
variable is examined for various events and appropriate actions at&ken. Events that
can occur are:

EVENT _OUTPUT _DATA _CHANGED s set in callback function for output data
change.

EVENT _IDENT _DATA _CHANGED s set in callback function for identi cation
data change.

EVENT WRITE _IND _RECEIVED is set when write request from controller is re-
ceived.

EVENT _READ _IND _RECEIVED is set when read request from controller is re-
ceived.

EVENT _CONTROL _IND _RECEIVED is set when control request is received from
controller.

4.2. PXMC 43

EVENT _CYCLIC _TIMER is triggered every 10ms to allow processing of other than
stack information.

Motor control from board

Mainly for the testing purposes there was created interface tomiwol and observe the mo-
tor from the Altera board. This required some changes in both hawhre and software de-
sign.
All 3 PWM outputs can be enabled or disabled using the switch buttonsn the al-
tera board. The LCD printout can switch between the stack inforration (ip address,
connection status) and the motor information (encoder value, PMC status). The but-
tons can be used to increase/decrease speed of the motor or twventhe motor position.
Speed of the motor (values fed into PXMC functions) is shown on 2gment display.

4.2 PXMC

PXMC was used as a library for motion control. It's succesful deployent to various hard-
ware platforms is described in [12][13][16]. Now we needed to port the éibr onto NIOS 11
processor.

Overview of the PXMC functionality is provided on the gure 4.12.

¢ :

do_inp

Y

PXMC core do_out
— DC motor
do_con > 1

Y

do_gen

Figure 4.12: PXMC schema

pxmc _do_inp is a pointer to a function that is responsible for update gbxmcap-pxmc
actual positon andpxmcas-pxmc actual speed values.

pxmc _do_gen is a trajectory generator. We don't use it in our application.

pxmc _do_con is a pointer to a position controller which computepxmcene

44 CHAPTER 4. IMPLEMENTATION

pxmc _do_out is an output generator that translatespxmcene into PWM signal.

In general scenario there is a feedback loop, where inputs are tti@te from IRC-
Incrementary Rotary Encoder and motor and output is the PWM-Rilse Width Modu-
lated signal to control the motor. The other parts of the schemare PXMC speci ¢ ob-
jects
Discrete control should be run with step intervals around 1ms or Ies The execution
of PXMC control loop is then handled bypxmcsfr_isr which must be regist as an in-
terrupt handler for an interrupt timer. This is started after pxmc initialization and
it handles the execution ofpxmcdo.inp, pxmcdo.out and other necessary functions.
It is important to note, that during running of pxmcsfr_isr the process shouldn't be in-
terrupted since it can in uence the functionality greatly. This can ke achieved either by
de ning atomic operation on a processor level or by disabling interpits during PXMC
execution. This will be described in 4.2.2.

4.2.1 Hardware design

In this section we will describe how the hardware had to be adjustéd order for the device
to be used with a motor. For the motion control application we had a wtor adaptation
circuit made. This circuit was created during the application developent, therefore we
could discuss the solution with circuit designers during developmenn dAltera board.
After considering the interface available on the board, we decided use 40-pin GPIO
connector on the board. Assigned signals to GPIO ports as des&tbin [14] are shown
in the following table:

The pinout on the circuit between the board and the motor was desigd in a way
that it allow connecting 2 motors to 1 Altera board. It would be done ¥ connecting
another adaptation circuit into series to the rst one and each adatation board would
have 1 motor connected. On the side of altera board, only minor ange would be needed
by adding the second set of the signals to the FPGA design and wireetim to appropriate
pins. Circuit wiring to allow connect adaptation boards into series is slwn on the 4.13

4.2. PXMC

Pin Name | Purpose Direction
GPIO2 axisQ_pwm0O Output
GPIO6 axisO.pwml Output
GPIO6 axisO.pwm?2 Output

GPIOO axisO.pwmOEnN Output
GPIO4 axisO.pwm1En Output
GPIO8 axisO_pwm2En Output
GPIO12 | axisOpwmOSt Input
GPIO14 | axisOpwmlSt Input
GPIO16 | axisOpwm2St Input

GPIO30 | axisOhalO Input
GPIO32 | axisOhall Input
GPIO34 | axisOhal2 Input

GPIO24 | axisQirc_cnt_chA | Input
GPIO26 | axisQirc_cnt_chB | Input
GPIO28 | axisQirc_index Input

Table 4.1: Pin assignment for PXMC motion control

Figure 4.13: Wire crossing to connect boards into series

46 CHAPTER 4. IMPLEMENTATION

4.2.2 Software design

As for the software design for PXMC integration, the following stepwere necessary. First
to chose the functions from PXMC we need to use and get the soardes for them. After
that create pxmcnios._ink.c where the board speci c PXMC top level calls are imple-
mented. That is mainly to use address space that was created aftmmpilation of hard-
ware from 41.1.
As a base was used the source code from the IROCON project developed by PiIKRON
for motion control. We used hardware independent PXMC les for inialization, input
reading, output generation and HAL sensor align to the motor posdn. In the hardware
speci ¢ le we put the addresses to read the inputs from the quadture decode hardware
block and write outputs to the PWM generator block.
It was necessary to ensure that during every call to the PXMC rdine, all reads and
writes will be atomic processor calls. Since the NIOS Il processoredn't support atomic
operations [8], we ensured atomicity by disabling all interupts beforBXMC routine
started and allowing them again after routine ended. For this we udeAltera HAL API
function

InterruptContext = alt_irq_disable_all ();
alt_irg_enable_all (InterruptContext);

4.3 PROFIdrive

PROFIdrive pro le speci cation de nes set of rules, modules and ojects that take part
in a motion control via PROFInet network. Those are implemented ortop of the
stack, using it's functions and therefore don't require interventio to networking stack.
Speci cation of the PROFIdrive is in [11] and as a code base was usdtt tPROFIdrive
community project from Hilscher [22]. Main ares into which the PROFIdve can be
decomposed are

Base model Describes the devices in a PROFIdrive application
Cyclic data exchange

Acyclic data exchange

4.3. PROFIDRIVE 47

Mapping of the both communication types from PROFInet to PROFIdive model is
shown on 4.15.

PN Controller

Fault 10 Data Write/Read
Indication Control Request
Alarms Cyclic Data Acyclic Data
10 Device Fault IO Data Parameter
Buffer Space Access
Input Output Request Response
Actual val. | Setpoint val.

Application Parameter
Manager

Periphery Control

Periphery

Figure 4.14: PROFIdrive mapping to pro net IO

Base model distingueshes between 3 types of devices: ControlReiDevice, Supervi-
sor.

Controller is a host for the overall automation. It is controlling device conneetl to 1
or more axis.

PDevice is a eld peripheral device.

Supervisor is engineering device for supervision.

The P-Device, which is most important for us is composed from 1 or meoDrive Units,
each composed of 1 or more Drive Objects. Each object is using PR@et networking

48 CHAPTER 4. IMPLEMENTATION

services independently of other DOs.

PN Controller

Fault 10 Data Write/Read
Indication Control Request
Alarms Cyclic Data Acyclic Data
10 Device Fault 10 Data Parameter
Buffer Space Access
Input Output Request Response
Actual val. | Setpoint val.

Application Parameter
Manager
Periphery Control
Periphery

Figure 4.15: PROFIdrive mapping to pro net 10

Applications are sorted into Application Classes according to needddnctionality
and complexity. PROFIdrive classes are:
AP1 - Standard drive
AP2 - Standard drive with distributed controller technology
AP3 - Single axis positioning drive with local motion control
AP4 - Motion control with central interpoaltion and speed setpoint inteface

For the simple application in our setup, we might use AP1 or AP3. For usg central
interpolation, provided by some PROFIdrive controllers, we would redl to use AP4 and

4.3. PROFIDRIVE 49

PROFInet IRT mode since the interpolation on multiple axis requires tigt synchroniza-
tion of the drives.
For the time synchronization will be used the network clock as a bas®ROFInet IRT
speci cation and Precision Time Control Protocol(PTCP) used to sghronize the device
clocks with master clock ensure tight synchronization of the devise PTCP takes care
of synchronizing the clock in the mean of jitter and deviation, that hose cannot rise too
high. PROFInet IRT phases computation that ensures that IRT Rd phase ends and
starts at exaclty the same time. On the 4.16 we can se how this is usedorder to
synchronize the axis in multiaxis application with tight synchronizationdemands.

Send Clock

TimeTolnput
TimeToOutput / \
Red Phase__ \ \
_— —

\
— — T

__Red Phase __

~_

| | / H
/

Application /
PD Para

eyl B | I \

Readinput

Figure 4.16: PROFIdrive cyclic communication

After the red phase ends, it is certain that all the devices has agen new data. After
some delay calledTime To Output all the devices should apply the values to the axis.
Time To Output is the time that takes the slowest device to write it's otputs and each
device should modify the value according to it's own Time To Output. AleastTime To
Input time before the next Red phase starts, all the devices should writeeir inputs to the
stack for transmission in order to ensure the data will be delivered the next network cy-
cle.

In our application the detection of the Red phase start could by danby wiring the

50 CHAPTER 4. IMPLEMENTATION

signals from the FPGA to the application respectively creating a calllek functions for
the signal. The signalswitch signal 31 25usbaseclk is reset according to the Send cycle
of the network and can be use for the purpose, but we didn't implemethe functionality

in the current state of the application.

Pro le describes some standard data sets that are being exchaagbetween devices
for particular appliation purposes. Those data sets are called Stdard Telegrams.

4.3.1 Module speci cations

The pro le de nes some values for the PROFInet modules that mudbe used. For example
every module used as PROFIdrive module must provide parametercass to the controller
and this must be done via Parameter Access Point (PAP) being as subdule 0 of each
module (This made impossible to use the rst version of SDAI stack wead, as there only
subslot 0 could be used. There we would have only all PAP modules, daloate this rule).
Then the 10 speci c submodules are plugged.
Pro le de nes as well the API=14848 to be used with the devices ande nes the module
and submodule identi cation numbers. In our application we used Stalard Telegram 6
as it de nes 10 for single axis 1 setpoint write and read. The module #t we created is
therefore composed of:

submodule0 : PAP with submodule number being OXO000FFFF as de ned by speci -
cation.

submodulel : Telegram 6 module with 28 bits input and 20 bits output and submodule
number 0x10000006 as de ned by the speci cation for telegram @module.

We can see succesfull plugging of the IO module for Parameter aas@and Standard
telegram 6 on the 4.17.

4.3. PROFIDRIVE 51

Figure 4.17: Debug output telegram 6 modules

4.3.2 Parameter model

A parameter represents an information memory that stores pamseter value, parameter
description and text as described in [11].

value contains simpli ed data representation of a value.

description contains information such as identi er, number of array elementstandard-
ization factor.

text additional text.

Mapping of parameter read and parameter write to the PROFInettack is described on
4.18 and 4.19. As a base for PROFIdrive source code was used [22].

52 CHAPTER 4. IMPLEMENTATION

PD Param Manager H PD Par uest H H

arameter(p

Parameter(

aram

Parameter(|

Figure 4.18: PROFIdrive read parameter request

First the application receives the callback from the stack, signalizingarameter read
or parameter write request. The data are taken from the stack @mory space and passed
to the PROFIdrive Parameter Manager who then passes it to the PBFIdrive Object Dic-
tionary. Dictionary serves as a memory space for the data while thmarameter manager
provides services to access the data.

4.4. TESTING 53

PD Param Manager H PD Par uest H H

ameter

prameter(p

alue

alue

aram

Parameter(|

Figure 4.19: PROFIdrive write parameter request

4.4 Testing

At the rst stages of development, we tried to test the functionéty as isolated as pos-
sible. That is to isolate the PXMC, SDAI and PROFIdrive. When we veried the
individual application parts we could move to test the whole PROFIdrie application
with PROFIdrive pro le tester.

441 PLC

For the testing of connection between the device and the contralleve created simple
PROFInet 10 network project in Step7 and modi ed/monitor the remote 10 modules.
Simple network with our device and Simatic CPU 315 is on the gure 4.20.

54 CHAPTER 4. IMPLEMENTATION

Figure 4.20: Step7 network con guration

We used this setup with 16bit input and 16bit output modules plugged irto see
wheter the values get updated on the device side and on the corikeo side respectively.
When this proved to be working, we considered the stack working.

4.4.2 PROFIdrive Pro le Tester

For the more complex testing we intended to use PROFIdrive pro ledster with CP1616
PCI ethernet card from Siemens. The card can be used as a cofiaodevice in a
PROFInet IO network. After connecting the device to the card ad running the pro le
tester we were unable to establish connection though. Therefome connected the packet
snier in between to observe the communication with the Wireshark.
First let's see how succesful connection establishment looks in 4.21

4.4. TESTING 55

Figure 4.21: Application Relation establishment with 8bit input module

The controller sends Connect Request message with expected mled listed in the
message. The device compares that with own internal module conigtion and sends the
Connect Response. When the modules match, no ModuleDi Block is pp@f the response.
In our application though, using PROFIdrive APl 14848, ModuleDi Block is part of
the response and therefore making the connection unable to ddish. On the gures
4.22 and 4.23 we can see that the device replies with ModuleDi Block sag that
for the required API and respective modules and submodules theage no modules.
This was later recognized as a bug from Softing and was being xed the new release.
But the bug made the testing with PROFIdrive pro le tester impossilde with the current
release.

56

CHAPTER 4. IMPLEMENTATION

Figure 4.22: Expected modules from PLC

Figure 4.23: Expected modules response from board

Chapter 5
Conclusion

We developed a device for the motion control capable of communieat in the PROFInet
IO network. The device is based on Altera FPGA board DE2-115. Inrder to achieve
this, we had ported PXMC library onto the NIOS Il hardware platform. Porting PXMC
onto new hardware platform required to create necessary FPGAatdware blocks for mo-
tion control which were PWM generator and quadrature decodeiThen the software layer
between PXMC generic functions and board speci ¢ functions was ptemented. Using
PXMC for local motion control was part of a solution in [12][13][16]. We atinued in their
work by implementing the library to new hardware platform and using ifor a remote mo-
tion control via industrial ethernet network.
To implement PROFInet 10 functionality, we used the SDAI PROFInet stack for Altera
FPGA. We did the enhancements to the hardware design to allow moticcontrol and to
connect the motor. Than we connected the stack software furmans with the motion con-
trol library in the demo application to test the basic functionality. Weimplemented part
of the PROFIdrive pro le speci cation, namely Parameter Manageron top of the stack.
As a basis we used PROFIdrive community source code from Hilschdigd modi cations
in order to use it in a new hardware platform and integrated it into ourdesign. For the
basic motion control with PROFIdrive controller we created new 10 rmadule based on
PROFIdrive standard Telegram 6 for simple 1 axis motor. As a necesyg part of that we
developed a GSDML description of the module for integration with stadard PROFInet
10 tools.
During the development we encountered few bugs in the PROFInetask like unavail-
ability to use arbitrary slots and subslots for the modules or the unailability to use
PROFIdrive APl (Application Process Identier) for the data exchange.
This together with waiting for the bug xes and consecutive implemeamg of the func-

57

58 CHAPTER 5. CONCLUSION

tionality for the new PROFInet stack version greatly slowed the deslopment. We were
not able to test any of the PROFIdrive functionality because this uavailability was in a
oposition with PROFIdrive pro le speci cation requirements. There were as well trou-
bles with the rmware and driver version of the CP1616 card and theversion of the
PROFIdrive pro le tester. This incompatibility between versions we nanaged to over-
come but the results of the testing couldn't be taken as a prove airfction/disfunction.
Therefore in the end we mapped the way how to use the respectivR®FIdrive functions
in our application in order to nish the PROFIdrive compliant IRT application but were
not able to test it ourselves. Except for module speci cation for sindard telegram 6 we
weren't able to implement any of the cyclic data exchange speci catidrom PROFIdrive
such as application or controller state machine. The main benet ofhe work is in the
combining the motion control with PROFInet IRT stack and mapping the PROFIdrive
pro le to this particular PROFInet device with partial development of the PROFIdrive
functionality. Since such a projects for PROFIdrive and industriakthernet motion con-
trol in general are usually proprietary solutions with xed functiorality, this can serve as
a starting platform for custom PROFIdrive/PROFInet IRT motion ¢ ontrol applications.

Bibliography

[1] John A. Kay ; Rob A. Entzminger ; David C. Mazur : INDUSTRIAL
ETHERNET- OVERVIEW AND BEST PRACTICES , IEEE (2014)

[2] Hui Li ; Hao Zhang ; Daogang Peng ; Tianyu Chen : Research and Implemen-
tation of Embedded Remote Measurement and Control SystemsBd on Industrial
Ethernet, Springer-Verlag Berlin Heidelberg (2012)

[3] SOFTING Industrial Automation GmbH : Simple Device Application Interface
(SDAI) Documentation, SOFTING Industrial Automation GmbH (2014)

[4] PROFINET IRT: Getting Started with the Siemens CPU 315 PLCAltera
[5] PROFINET Reference design bootstrap and ash accesaltera

[6] Adding new design components to the PROFINET IR Altera

[7] NIOS Il Software Developer's Handbook Altera

[8] NIOS II Classic Processor Reference Guideltera

[9] GSDML Technical Speci caiton for Pro net IO , PROFIBUS Nutzerorganisation e.V.
(2014)

[10] Michal Sojka ; Pavel Pisa : Ocera Make System Manual 2011

[11] Pro le Drive Technology PROFIdrive Technical Speci cation for PROFIBUS and
PROFINET, PROFIBUS Nutzerorganisation e.V. (2006)

[12] Bc. Martin Meloun : Master's Thesis: FPGA Based Robotic Motion Control
System, CTU FEE (2014)

[13] Vladimir Burian : Bakalarska prace: Vyuziti programovatelneho pole pro riz&
bezkartacovych motory CTU FEE (2011)

59

60 BIBLIOGRAPHY

[14] DE2-115 User Manual, Altera

[15] Somsubhra Ghosh ; Ranjit Kumar Barai ; Samar Bhattarcharya ;
Prarthana Bhattacharyya ; Shubhobrata Rudra ; Arka Dutta ; Rown-
ick Pyne :An FPGA Based Implementation of a Flexible Digital PID Contoller For
a Motion Control System, ICCCI (2013)

[16] Konrad R. Skup Diploma Thesis: Motion Control for Mobile RobotsCTU FEE
(2007)

[17] Siemens Simatic PROFINET system descriptionSiemens (2008)

[18] PI Working Group PG6 PROFINET IO : PROFINET IRT Engineering,
Guideline for PROFINET, PROFIBUS Nutzerorganisation e.V. (2014)

[19] User Manual: Softing Protocol IP for Pro net v1.20 Softing Industrial Automation
GmbH (2014)

[20] SDAI source code Softing Industrial Automation GmbH (2014)
[21] PXMC source code Pavel Pisa, PIKRON Ltd. (2005)

[22] PROFIdrive pro le source code Hilscher Gesellschaft fur Systemautomation GmbH.
(2010)

[23] Manfred Popp :Industrielle komunikation mit pro net, PROFIBUS Nutzerorgan-
isation e.V.

[24] Pavel Pisa; Isabelle Rieucros; Michal Sojka; Konrad Skup :PXMC Doc-
umentation

APPENDIX A

Contents of the CD

To the thesis is enclosed the CD with the following items.
DP.pdf - Diploma thesis in PDF format.

project.zip - Compressed project source les.

