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Abstract

This thesis deals with a physical interaction of a human and an unmanned
multirotor vehicle. A specialized platform that allows a safe interaction is
designed and built. The dynamical model the designed platform is pre-
sented, and its parameters are identified. The main focus of this work lies
in the design of a state observer capable of an external force estimation.
Further, a control design suitable for physical interaction is proposed, us-
ing the Admittance control. The functionality of the developed system is
verified in the series of simulation experiments.

Keywords: unmanned aerial vehicles, physical human-UAV interaction,
Admittance control

Abstrakt

Tato práce se zabýva fyzickou interakćı človeka s bezpilotńı v́ıcerotorovou
helikoptérou. Pro účely této práce byla navržena a postavena specializovaná
platforma, která je vhodná pro danou aplikaci. Byl odvozen dynamický
model této helikoptéry a jeho parametry byly identifikovány. Hlavńı ćılem
této práce je návrh stavového pozorovatele, který odhaduje śılu pusob́ıćı na
helikoptéru. Dále je představen ř́ıd́ıćı systém vhodný pro fyzickou interakci.
Funkčnost navrženého systému je ověřena pomoćı několika experiment̊u
provedených v simulaci.

Kĺıčová slova: bezpilotńı letouny, interakce s člověkem, Admittance con-
trol
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1 Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, have gained much popularity
in recent years. Such vehicles can have different configurations and looks, but a common thing
to all is the absence of a pilot. The most popular UAV type is called a vertical takeoff and
landing (VTOL) vehicle (figure 1.1). The popularity of VTOL vehicles is enormous, and they
can be found in many different areas including the film industry, military, or hobby helicopter
usage. Multirotor UAV usually consists of a frame from light materials (e.g., plastic or carbon
fibre), a flight control unit (FCU) (low-level stabilization), brushless DC motors controlled
via electronic speed controllers (ESCs), propellers, remote control receiver, and battery(e.g.,
Lithium-Polymer ones). Quadcopters, hexacopters, or octocopters are commonly used types
of UAVs. The cheapest, most basic quadcopters are possible to get from tens of dollars.
However, their deployment within research and industry is impractical regarding the limited
equipment. On the other hand, costly vehicles can be equipped with different cameras, a GPS
locator, or a robotic arm, which increases the range of potential applications.

In most cases, a human operator on the ground controls the UAV either by observing
the vehicle or using a first-person view (FPV) camera. A possible way of improving the vehicle
is by adding a level of autonomous assistance. An essential autonomy is provided by equipping
the UAV with a computer to run necessary computations and adding sensors such as a Global
Positioning System (GPS) receiver Such configuration can provide most basic functions like
following objects or trajectories, which is crucial for performing more complex tasks. Many
research laboratories nowadays deal with tasks like package delivery [5], fire extinguishing [6],
or autonomous aerial monitoring [7].

The increasing range of applications also increases a need for a possible interaction of
UAVs with the environment, including interaction with people. For example, the UAV system
has to handle the interaction without harming the nearby people, during a package delivery.

Figure 1.1: An example of a general purpose quadcopter [1].
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INTRODUCTION

Another possible application might be direct cooperation with people, e.g., to help them carry
and hand objects. However, UAVs are very dangerous vehicles. Their propellers usually spin
tens of thousands of times per minute which makes contact with such propeller might be
critical and, in the worst cases, imply fatal injury. Therefore providing a protective frame
around the UAV and implementing an adequate control design is necessary.

The interaction force must be estimated first to allow the UAV to behave appropriately
in physical contact with its surroundings. This task can be approached in many ways. One of
the methods is the implementation of a state observer. It can be either linear or nonlinear.
We expect to have a linearized linear model at some equilibrium, if the linear observer is
used. Either way, the external force has to be included in the model. This approach is very
convenient as it relies only on data from localization and does not require additional sensors.

The estimated external force can be used to control the UAV appropriately. Most con-
trollers use the estimation and compensate for it to reach the best position tracking. Never-
theless, it is desirable to require the exact opposite reaction during interaction with people.
Once there is a contact, the vehicle is tasked to move in the direction of that estimated in-
teraction force to prevent an unwanted collision. Such an approach is well studied, and the
most frequent methods are Impedance control and Admittance control [4].

The thesis is structured as follows. Chapter 1 introduces the concerned problem, an
overview of state of the art, the contribution of presented work and used mathematical nota-
tion. Chapter 2 describes the necessary terms and tools used in the thesis. The description of
dynamical designed model of a quadcopter is in chapter 3. Chapter 4 then shows a derivation
of a dynamical model, which is needed to provide a Kalman filter implementation. Identi-
fication of this model is discussed in chapter 5. Theoretical description of state estimation
methods is introduced in chapter 6, together with verification methods. Chapter 7 describes
the theoretical details of the Admittance control. Implementation details are presented in
chapter 8. Complete results of the thesis are presented in chapter 9. The conclusion of the
thesis, together with discussion over the results, is in chapter 10.

1.1 Problem Definition

This thesis aims to design, build, and identify a small Unmanned Aerial Vehicle that is
suitable for human-machine interaction. This vehicle is expected to have propeller protection
to prevent harming the surrounding objects, including people. No motion capture system is
used to provide localization and visual localization is used instead. The UAV will be designed
for the usage primarily in indoor conditions. Furthermore, two-state estimation methods are
designed to estimate an external force acting on the vehicle. Many sources of disturbances can
be found around the vehicle. Thus, it is important to differentiate each element to provide
solid estimates for the controller. To achieve that, we expect that disturbances driven by wind
are omitted. Our goal is to separate only the parasitic disturbances and applied external force.
The last part of the thesis focuses on force control. Such a topic is well studied [8], mainly
in industrial robotics, typically connected with robotic arms. Therefore this thesis deals with
extending human-machine interaction to the UAVs. The force control approach used in this
strategy is called Admittance control. This approach only controls the reference position and
velocity in the world based on the force acting on the controlled system. Hence, a position
controller is further needed to complete the whole control pipeline. The design of the whole
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INTRODUCTION

control system is a complex and challenging task and it is beyond the proposed thesis. Thus,
focus is put on design and implementation of Admittance control and its integration into the
MRS UAV system.

1.2 State of the art

This thesis can be divided into two separate subtasks, force estimation and interaction
control. Force estimation is well studied across the robotic field, and therefore multiple solu-
tions are available. The topic of interaction control is based on the previous topic. Knowing
the interacting force together with its direction and magnitude is crucial to provide reasonable
control action. Combinations of both tasks are then called physical interaction. This topic is
also well studied in industrial robotics, mainly in combination with robotic arms. Although
there is also a contribution in the UAV research area, it is not nearly that significant.

1.2.1 Force estimation

The force that is to be estimated in the thesis represents disturbance acting on a ve-
hicle. If there were no other sources of other disturbances, it would be enough to estimate
disturbance as one and call it external force. Unfortunately, it is not usually like that. The es-
timated disturbance can be typically divided into two main components: internal and external
disturbance. The internal disturbance is caused by the errors on the electronics, unbalanced
platform, modelling error, and all things within the UAV itself. On the other hand, exter-
nal represent all the external factors such as wind, ground or wall effect, or the interaction
force caused by contact. However, whether the application requires getting information of
specific components or not, disturbances are first estimated as one and then parsed based on
additional information. Therefore the initial approach is typically similar.

Problems without the need for knowledge of disturbance source appear typically from
precision flying problems or position control tasks. The control within such problems compen-
sates for all the disturbances to be as precise as possible. California Institute of Technology,
together with the ETH Zurich, published disturbance estimation and rejection for high preci-
sion control [9]. They presented a solution for rejecting strong wind gusts up to 12 m s−1 and
ground effect by implementing and comparing augmented model predictive control (MPC) and
PID control. Non-linear Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF)
were used to estimate disturbances. Based on several tests, the UKF did not provided signif-
icant improvement over the EKF. Furthermore, the EKF showed as more effective, because
of its computational load. They tested their work in real-world experiments using a motion
capture system.

A different approach was shown in [10]. The main focus was to design model predictive
control for a UAV running onboard embedded controller. To provide a disturbance rejection,
they presented disturbance estimation as a subtask. By adding the external force elements
to the linear model as a component of acceleration, they were able to estimate the force by
the Linear Kalman filter (LKF). This approach was tested using a platform localized with an
optic-flow sensor in indoor conditions.
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INTRODUCTION

Another approach was presented by the Institute of robotics and Mechatronics in Ger-
many [11]. They presented a model-based approach and divided the solution into momentum-
based and acceleration-based approaches. They were able to estimate the external force purely
based on Inertial measurement unit data and known input commands, by defining a model
correctly and using the mentioned technique.

1.2.2 Interaction control

Background on the topic of interaction control is vast and was implemented in many
applications. The most frequent approaches are called Impedance and Admittance control.

Christian Ott et al. [4] presented an article concerning the topic of these two control
approaches. As mentioned in the article, “Impedance and Admittance control are two distinct
implementations of the same control goal.” Both methods provide control action that directly
works with an external force. The difference between them is in the structure of the control
pipeline. The Impedance control behaves as mechanical impedance and directly feeds out the
estimated force to the controlled plant. Whereas in the Admittance control, the external force
is converted to the position command, fed to the position controller. The article itself also
provides pros and cons to both the mentioned approaches. Impedance control better behaves
in more stiff conditions, whereas Admittance control in soft conditions.

University of Twente, Netherlands, elaborated more on the Admittance control [12]
used in the physical interaction between humans and machines. They provided a framework
where many concerning effects and their influence on the controller performance can be stud-
ied. Force signal filtering, internal robot flexibility, or influence of feed-forward control were
effects taken into account. At last, they provided seven design guidelines to achieve the best
performance.

An example of an application of Admittance control that is not UAV-control related is
controlling dual-arm robots used in industry. Sonny Tarbouriech et al. presented their work
in their study [13].

1.2.3 Physical human-UAV interaction

The application of both mentioned topics was also studied within the UAV research.

Federico Augugliaro and Raffaello D’Andrea from ETH in Zurich presented a work [14]
that strongly motivated this thesis. Their work focuses exactly on the topic of Admittance
control for the human-UAV interaction. They used position and attitude information in com-
bination with the UKF to estimate the external force. Other than external interacting forces
were not considered, and their experiments were presented under a motion capture system.

Sujit Rajappa et al. had a different approach to this task. They presented a mechanical
construction around the UAV equipped with contact sensors. It provided a reliable solution
to differentiate the interacting contact force from other disturbances. Their approach was to
use an unscented Kalman filter to obtain all disturbances acting on the vehicle. Based on the
information from the contact sensors, the disturbance components were separated from each
other [8].
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1.3 Contribution

This thesis presents a solution to the physical interaction of humans with the small
quadcopter in real conditions without additional sensory infrastructure, such as a motion
capture system. We provide an interaction-safe design of a small (800 g, 200 mm) quadcopter
made of carbon fiber parts. The mathematical model of proposed vehicle was identified and
studied in detail to allow external force estimation based on linear and nonlinear estimation.
Linear Kalman filter and nonlinear Unscented Kalman Filter were implemented and verified
based on the multiple tests. An Admittance force control was implemented, to allow a reason-
able behaviour of the quadcopter around humans. This approach allowed controlling desired
velocities and position based on the external force. All the work was integrated to the MRS
UAV control system that was recently made open-source.

1.4 Mathematical notation

This section denotes information about mathematical symbols used in this thesis (ta-
ble 1.1).

Symbol Description

Upper and lowercase letter - x, X scalar
Bold lowercase letter - x column vector
Bold uppercase letter - X matrix
xT , XT vector and matrix transpose
ẋ, ẍ,

...
x first, second and third time derivative

xt vector x at time t
‖x‖ Euclidean norm of a vector x

x(W) vector x in coordinate system W
R,Z Real number, Integer numbers

Table 1.1: Used mathematical notation.
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2 Preliminaries

This chapter describes the software tools that are used in this thesis. First, Robot
Operating System, which is used to control a UAV, is introduced together with the Gazebo
simulator. Then, the structure of an MRS UAV system is shown, and the main parts included
in this work are depicted.

2.1 Robot Operating System

Robot Operating System (ROS) is an open-source middleware framework. As mentioned
on the official website “It is a collection of tools, libraries, and conventions that aim to sim-
plify the task of creating complex and robust robot behaviour across a wide variety of robotic
platforms”[15]. ROS has a great variety of libraries that simplify the user’s work thanks to
the fact that many people can contribute to the system. It allows for a different and robust
background in the process of robot development. Many recent and trending research tasks
might look trivial to humans, but it needs a huge effort to achieve the goal from the robot’s
perspective. It would be difficult to deal with all the aspects of the research without the
robotic community and software support.

Figure 2.1: ROS structure

The basic working structure of ROS is depicted in figure 2.1. The ROS Master keeps
track of all separated nodes and allows different features between them. The most common
way of communication between nodes is via messages. Each node can publish data to topics
and simultaneously subscribe data from any other topic. Another communication feature is
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called service. Services can trigger any node and pass information from the user while the
system is already running. Sharing the configuration parameters is allowed thanks to the
global parameter server that keeps track of each parameter and allows for its changes. All
features described above make the system built upon ROS reliable and robust against the
failure of individual node, which is crucial for robot development.

2.2 Gazebo robotic simulator

Gazebo [16] is a realistic robotic simulator that allows for creating custom platforms
and models of hardware sensors. Gazebo is compatible with ROS, which perfectly fits the
needs of the MRS group and the purpose of this thesis. Native support of Pixhawk autopilot
is another essential feature of the simulator since Pixhawk is used as one of the few out of
the box components in the MRS system.

2.3 MRS system

This thesis is built upon the MRS UAV system [2]. This system provides fully au-
tonomous control over the various types of multirotor vehicles. It is prepared for a wide range
of possible applications and allows user to work separately on multiple levels. From high-level
planning and navigation, through adding and testing different sensors to lower-level local-
ization and control pipeline. flight control unit (FCU) is the only part of the system that is
restricted and used externally. It is a low-level autopilot that provides basic attitude stabi-
lization and thrust control of the vehicle. Pixhawk autopilot [3] is the most commonly used
autopilot in the MRS. More information about it is can be found in chapter 4. The MRS
system is implemented in ROS, which provides great extensibility. MRS system can be di-
vided into three main subsystems: control, odometry, and planning subsystems. Its overall
architecture is depicted in figure 2.2.

The odometry subsystem is created in a way that it usage of mixing many possible
localization methods. GPS, optic-flow, Simultaneous Localization And Mapping (SLAM) al-
gorithms or a Visual odometry (VIO) are all options that are currently implemented within
the pipeline. The type of localization used is based on the user’s choice and the sensor equip-
ment on a UAV. The odometry subsystem covers blocks State estimator and Odometry &
Localization in figure 2.2.

Mission &

navigation

Reference

tracker

Reference

controller

Attitude rate

controller

IMU

UAV

actuators
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Figure 2.2: Structure of the MRS UAV system pipeline [2].
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Pixhawk
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Height sensorRTK GPS SLAM
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Figure 2.3: Structure of the managers implemented within the MRS system [2].

The control subsystem provides the necessary conversion between the desired state of
the UAV and the attitude rate and thrust which is needed for the FCU. The control subsystem
is based on two controllers, model predictive control and a SE3 controller [17]. This combina-
tion shows as adequate and enough for various applications, and the MRS team builds upon
these two controllers. To provide a better control performance, the underlying controller is
preceded by the reference tracker that parses the user commands from the planning algorithm
to feasible states. The structure of the control subsystem allows possible multi-level safety as
both the trackers and the controllers have separated constraints.

The combination of the odometry subsystem and the control subsystem provides the
main core of the MRS system. The implementation of high-level planning and navigation is
build upon these two subsystems.

The whole MRS system is wrapped in several managers that fit well in the distributed
architecture (figure 2.3). These managers provide control over separated parts of the pipeline.

� Control manger manages changes between controllers and trackers during the flight. It
keeps track of control errors, the feasibility of inputs passing to the autopilot and triggers
emergency landing safety features. Furthermore, it enables using the RC transmitter
(real flights) and ROS-compatible joystick (simulation flights).

� Gain manager responds to the gains passing to the controllers. Each controller expects
different sets of parameters. It is convenient to allow dynamic changes during the flight,
which Gain manager does.

� Constraint manager stores and provides sets of constraints used within the trackers.

� UAV manger takes care of the procedure around the takeoff and landing. Desired takeoff
height, maximal thrust, or maximum altitude are included here.

This presented architecture is the basis of the MRS group success in recent years. Its
contribution in the world of UAVs is significant. The success in the Mohamed Bin Zayed
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International Robotics Challenge (MBZIRC) 2020 and 2017 competitions proved the MRS
system’s capability in real-world conditions against the best universities in the world. The
contribution was undoubtedly shown in the Defense Advanced Research Projects Agency
(DARPA) challenge, where UAVs with the presented system competed together with the team
of Unmanned Ground Vehicles (UGVs) from the Czech Technical University (CTU). Apart
from these most significant world-known competitions, the MRS system is also actively used
and developed in multi-robotic radiation sensing [18], historical buildings documentation [19]
or AERIAL-core project [20].
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3 Platform design

Physical human-machine interaction is a challenging task that involves special demands
on the control level. Providing capable force estimation and robust control approach is indeed
the core of the task. However, a significant part of this thesis is also to provide a safe platform
for the experiments. There should always be safety bounds to protect interacting humans
from danger.

In the case of the UGVs or robotic arms, there is usually an important red button that
shuts down all the systems and makes the robot stop the movement. Most of the time, this
is the safest approach. Nevertheless, when it comes to the UAVs, implementation of such a
button is not straightforward. Because it is a flying vehicle, shutting down all systems would
lead to a crash. Moreover, even the smallest UAVs are very dangerous to the surroundings.
As already mentioned in chapter 1, contact with their propellers can harm a human very
seriously. In combination with the fact that UAV can often be operating at a significant
height, it presents another challenge of dealing with such critical situations and preventing
unwanted injuries.

One possible approach to this is to replicate an idea of the red button, but instead of
shutting down the system, make the UAV perform some manoeuvre. However, what kind of
manoeuvre to use is not straightforward, and there is not a universal solution that one might
say to be the best. The UAV can be already in a complex space to perform any manoeuvre
or too close to objects which may affect the control abilities. An existing example of such
a solution can be found within the MRS UAV system. A manoeuvre that is performed in
their implementation is called Emergency landing. Once the safety pilot that holds the RC
controller spots anything odd or the system itself discovers a problem, e.g. large control error,
the pilot presses the switch, and the UAV slowly lands. Based on the current state, if flying
or hovering, it either lands directly or lands on a trajectory that keeps the direction of the
original trajectory.

Although such a manoeuvre usually safes an aircraft, it does not protect the UAV from
harming the surroundings. The easiest solution to prevent from this potential problem is to
equip the aircraft with a safety protective frame. With such protective equipment, even if the
UAV would be landing, and there was an object in a way, the chance of hurting anybody or
damaging UAV and objects would be significantly lowered.

The motivation behind this work is not to develop an intelligent system that would
prevent collisions when needed. It is expected that the experiments are performed at heights
up to 2 m, and an environment is without unnecessary objects. Hence, the only possible
danger comes from performing real physical interaction, and a sufficient level of safety can
be reached by making the UAV in a way that propellers are guarded from possible contact.
It is also assumed that a small aircraft is more suitable for the thesis than a large vehicle.
This assumption comes from the fact that necessary equipment is lightweight and the solution
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Figure 3.1: Configuration of a quadcopter setup [3]. Numbers and arrows in the circles sym-
bolize a direction of a rotation and order of a propeller in the Pixhawk autopilot. The center
red arrow shows the orientation of the vehicle.

should be easily scalable to perform with any platform.

Although there are many commercial frames and complete UAVs on the market, not
many of them include propeller protection. If they do, it is usually lightweight plastic pro-
tection only, which does not work on a more significant impact and tends to bend. There
are certainly exceptions. Complete vehicles with protection can be found. However, extending
such a vehicle to fit all necessary equipment to allow needed functionality would be compli-
cated. Therefore such an option is not very suitable for the purpose of this work.

There is research on building a platform that is suitable for human-UAV interaction.
In [21], authors presented their solution on this topic. They presented a protective shroud
built around a general quadrotor and demonstrated a capability of continuing in-flight after a
collision. Their design was mounted at the centre of the vehicle and had a shape of a block. It
proved to be working well, and therefore it makes an option how to proceed with the design
of a protective cage.

Another very robust solution that is already applied in the industry is presented by a
company FlyAbility [22]. Their solution consists of a spherical cage build around the vehicle
made of tubes connected multiple spots. This makes it a optimal solution to fly in a confined
space. They offer several types of solutions, add-on drone cages that can be customized and
mounted on any UAV. Fixed-caged solution similar to the add-on cage with the difference
that fixed-cage is built from the ground to sustain higher impact collision. The last offer is
a decoupled drone cage which works similarly as a gimbal mechanism. Its structure allows
making the aircraft stable while the cage around is rotating. Their solutions are robust and
ideal even for human-machine interaction. However, it is an excessive bulk for our purpose.

Based on the matters mentioned above, it was decided that the best option is to design
a custom UAV. Designing a custom UAV consists of mechanical design, selecting adequate
drive components and adding sensory equipment. The mechanical design includes creating a
base frame to which all the components are mounted. Drive components consist of a selection
of motors with all electronic components and batteries. The last part includes all optional
sensors that a user want to use.
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3.1 Mechanical design

The design of the custom UAV was modeled using a 3D computer-aided design (CAD)
software 1. The structure of the aircraft is separated into three parts

� Base frame - A part that represents the main building piece of the aircraft. All the
components are mounted here.

� Extension of the base - To create more space for mounting, another layer is created on
top of the base frame. It is a flat rectangle that is placed over the centre and is separated
via 3 cm plastic spacers.

� Propeller guards - Propeller protections are independent from each other, and each
propeller has its guard. Each guard is mounted on the base frame.

It is sufficient to design the most common type of UAV, the quadcopter (basic structure
is on figure 3.1). There is no added value of more complicated platforms for this thesis. The
size of the frame was chosen to have a diagonal (from one motor diagonally to the opposite
one) of 200 mm. Such dimension was selected based on different reasons. The idea was to
build a vehicle that is as small as possible and explore how small can be an autonomous
helicopter that still fit into the MRS UAV laboratory. So far, the smallest UAV within the
MRS laboratory has a diagonal size of 330 mm which carries a large computer (Intel NUC) and
numerous extra equipment. It is expected to use a much smaller Raspberry Pi computer and
only a lightweight camera for localization. Therefore the dimensions could be much smaller.

Next, the size of the propellers was set between 4 - 5 inches. This was selected based on
the common knowledge and parameters of similarly sized vehicles on the market. Furthermore,
an estimate of the total weight was created. Similarly, as in table 3.1 with only approximated
frame weights. The final estimate of the total weight was compared to an average maxi-
mal thrust of motors with 4-inch propellers. This provided theoretical maximal thrust force
generate by the motors and proved that it is capable of carrying the whole vehicle.

The final design of the frame is in figure 3.2. The main focus was put on the arm
sections, where the space for propeller guards is needed. The center section of the frame was
modelled to provide mounting holes for the second layer of the frame and sensor equipment.
The frame was skeletonized to mak it as light as possible. More detailed view is on figure 3.4.
The realisation of designed model is then depicted on figure 3.5 during an experimental flight.

Carbon fibre was chosen as a construction material. Its properties such as high stiffness,
low weight to strength ratio or high tensile strength make it a suitable material. Additionally,
based on the guideline [23] the thickness of the base frame was selected to 4 mm. The thickness
of the propeller guards and top part of the frame was picked to 2 mm.

The UAV was designed in such a way that it allows for two configurations. The propellers
can be placed either under the base frame or on the top. A more conventional way is to equip
the vehicle with 4-inch propellers and put the motors to face upwards. This configuration is
sufficient to fly. However, the potential is not maximized as a lot of space is consumed by
the second layer of the frame, which occurs between the propellers and the space under the

1Freecad 3D free open-source parametric modelling application
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Figure 3.2: The full design of a custom UAV that is prepared to fit 5-inch propellers under
the base frame.

vehicle is free. More innovative configuration uses the 5-inch propellers that are placed under
the vehicle. This requires rotating the motors to face downwards. Another profit comes from
the special use of the protective guards, which can serve as legs.

3.2 Components

To choose all the propulsion components that are suitable, it is convenient to use the
online tool eCalc. This tool allows for a selection of different propulsion subsystems and finds
the optimal components. The only assumptions made before were about the expected weight
of the aircraft, size of the frame and size of the propellers. A table that sums up the weight
of each component and total weight is in table 3.1. The resulting parameters provided by the
online tool are shown in figure 3.3.

As mentioned in [24], an important parameter for designing a multi-rotor vehicle is
maneuverability. Maneuverability is a key parameter that defines how easily can the vehicle
maneuver in a space. However, this variable is immeasurable, thus a relation with a thrust-
to-weight ratio is proposed. Thrust-to-weight ratio is defined as a ratio between a maximal
thrust generated by a vehicle to a vehicle’s total weight. As the author justifies, the ratio
should not be lower than 2:1, which is an optimal solution. Our design provided theoretical
a ratio of 2.7. It is over the optimal value, however, it is not wrong, as the vehicle will have
higher manoeuvrability than is necessary.

Following list briefly summarizes the final components that were chosen

� Motors - Graupner Ultra 2806-2300 kV motors are great combination of low weight
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Figure 3.3: Result of eCalc design of the drive components and its flight characteristics.

and great power. They come from a category of brushless DC motors that work on
switching DC current on several windings. Such switching creates a magnetic field that
then makes the motor rotate. The size of the motor can be deduced from the number
2806 in the name. It means that the motor has diameter 28 mm and its inside height
is 6 mm. Another parameter that specifies the motor is the revolutions per minute per
volt of an unloaded motor usually denoted as kV. In our case it is 2300 kV. And because
used voltage is 14.8 kV, the theoretical maximal RPM can be calculated as

maxRPM = 2300 · 14.8 = 34080 RPM. (3.1)

� electronic speed controllers (ESCs) - Turningy Multistar BlHeli32 ARM is electronic
that provides a connection between autopilot and motors. In particular, it typically
converts the desired motor speed scaled to the range [0, 1] that comes from the autopilot
to 3-phase signal that excites the motors. The ESCs can be additionally programmed to
allow braking, acceleration or change direction of spinning. Our choice of the controller
can work with current up to 30 A.

� Propellers - Graupner 5030 are two-blade plastic props that are compatible with the
chosen motors. They are 5-inches long and have a 3-inch pitch. Propeller’s pitch is
a measurement of how far the propeller would move for one revolution in an ideal
fluid. The lower-pitched propellers are more efficient, but the torque they produced is
lower. On the other hand, higher-pitched props are less efficient, because they cause
more turbulence which lowers the lift. In our case, the middle pitched propellers were
selected.
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Component Specifications Weight [g]

Frame Custom 157
Prop. guards Custom 40
2nd frame layer Custom 4 x 43
Motors 4 x Grauptner 2206-2300 KV 4 x 33
ESCs 4 x BlHeli32 4 x 3
Propeller 4 x Graputner 5030 4 x 4
Battery Tattu R-line 1800 mAh 200
Autopilot Pixhawk 4 mini w/o case 18
Transmitter Optima Sl 2.4 GHz 22
Camera Bluefox 45
Rangefinder Garmin Lidar-Lite 23

Total weight 818

Table 3.1: Summary of used components with their weights.

� Battery - TATTU R-Line - 4S 1800 mAh 14.8 V is a small Lithium-Polymer battery
that provides a power source to all motors, ESCs, an autopilot, an onboard computer
and possibly to sensory equipment. Its 1800 mAh capacity is enough power to all the
components while the flight is still reasonably long.

� Onboard computer - Raspberry Pi 4B is a single board computer that provides a
computational capability to allow for necessary computations. It has 8 GB RAM mem-
ory. Its dimensions, together with a quad-core processor’s, make it suitable for small
autonomous vehicles. This computer is capable of running any UNIX-based operating
system. Hence it can be connected to autopilot and provide communication via MAVlink
protocol [25]. It also provides several USB ports, an RJ-45 ethernet connector, general-
purpose input-output (GPIO) pins, therefore many external components can be added.

� Autopilot - Pixhawk 4 mini is a lightweight open-source autopilot that provides attitude
stabilization and controls the vehicle. It includes two accelerometers, two gyroscopes,
a barometer and a magnetometer to provide feedback to the control loop. The 32-bit
ARM processor allows for the implementation of multiple Kalman filters that filters the
sensed data. The Pixhawk 4 Mini is a smaller version of the Pixhawk 4, which is widely
known.

� Radio receiver - Optima SL 2.4 GHz is a single line radio receiver that passes information
from the RC controller with a compatible radio transmitter to the autopilot. It works on
public 2.4 GHz frequency and provides eight channels for communication. In practice,
four channels are taken by the sticks operating roll, pitch, yaw and thrust, and the other
four channels are user-specified to fit the application.
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Figure 3.4: Detail on designed model.

3.3 Sensory equipment

This section provides information about the sensors that were used on the designed
vehicle.

� Visual odometry camera - Miniature camera mvBlueFOX together with high resolution
miniature SuperFisheye lens provides fast and quality image information for a visual
based state estimation. The lens provides view greater than 180° with a resolution
up to 5 MP. Camera itself can be connected to the computer via USB. Camera is
further equipped with a Inertial Measurement Unit ICM - 42688 - P. The IMU is a
6-axis high precision motion tracking device, that includes 3-axis gyroscope and 3-axis
accelerometer. With this combination, a monocular visual-inertial system (VINS) can
be used.

� Rangefinder - The vehicle can be optionally equipped with a Garmin Lidar-Lite. It is a
laser rangefinder that works up to 40 m with a resolution of 1 cm. The accuracy of the
measurement is ± 2.5 cm in the height up to 5 m and ± 10 cm in the heights over 5 m.

3.4 Localization

This section provides information about visual odometry (VIO) localization algorithm
that is used on the designed platform. Self-localization of UAVs using visual odometry is a
popular topic as it can provide state information based only on one or two cameras. Author
in [26] summarized and compared multiple algorithms. A localization algorithm VINS-Mono
was chosen based on his work.

3.4.1 VINS-Mono

This algorithm was developed by authors from Hong Kong University [27]. It provides
a state estimation based on a single monocular camera and IMU. They provide a robust
procedure for estimator initialization. It then uses a non-linear optimization-based method
to obtain odometry by fusing IMU measurements and feature observations. The algorithm
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can also reuse a map by saving and loading it efficiently. The maps can be further merged
thanks to a global pose graph optimization. Their work proved that their system is complete,
versatile and reliable and therefore fits the purpose of this thesis.
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Figure 3.5: Detail photos of the real model during experimental flight. The model is equipped
with all necessary sensors, including VIO camera.
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4 System description

Knowledge of the UAV’s dynamics is important when predicting a system’s behaviour
and providing feedback control. If the dynamics is not complicated and the system itself is
simple, it is often sufficient to omit the system’s description and empirically tune necessary
parameters. This, however, might be quite dangerous as the behaviour of the system is un-
predictable. Moreover, as the number of parameters included in the system grows, it becomes
more and more challenging to find the right values. Therefore, when dealing with complicated
systems, providing a mathematical model is necessary. Such a model provides information
about the system states evolution and responses to the different inputs. This technique is
called a Model-Based Design.

The approaches to the modelling of the dynamical system differ based on how much
about the system is known. It can be structured as follows,

� Whitebox model - This term means that all dynamics of the system can be described
using mathematical equations, based on, e.g., Hamiltonian or Lagrangian mechanics.
This model is based purely theoretically, and no data are needed to tune any parameters.

� Greybox model - This model is used when only partial information about the system
is known. It contains unknown parameters, and experimental data are necessary to get
the unknown parameters.

� Blackbox model - This expects no information about the inner workings of the model.
The only thing that is known is the response to inputs.

In our case, mathematical description is known, and multiple assumptions are made to provide
a sufficient model, yet still not over-complicated. Therefore, the system is modelled as a
Greybox.

4.1 Coordinate systems

Multiple coordinate systems are presented to provide a clear description of the dynamics
of the vehicle. Figure 4.1 depicts how the systems are oriented. World coordinate system W
with axis {e1, e2, e3} is a fixed frame in the world. It provides the base point for further
orientation in the world. The position and orientation of the vehicle are expressed w.r.t this
system. Next system is the body frame B, this frame is aligned with a mechanical frame of
the UAV. Last system is an untilted body frame U , it has an origin in the centre of the UAV
but is rotated only around the z-axis.

To allow for the transformation between frames, the rotation matrix R is used to rep-
resent a rotation from a child frame to a parent frame. To achieve this, the rotation matrix is
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Figure 4.1: UAV’s coordinates frames. Position and orientation of a UAV in the world frame
W is given by a position vector r and rotational matrix R(φ, θ, ψ). The rotation matrix is
given by the intrinsic Tait-Bryan angles, also known as roll, pitch and yaw.

expressed by intrinsic Tait-Bryan angles. It means that the matrix is obtained by continuous
rotation around all three axes in the order z-y’-x”. Intrinsic represents that the next rotation
is done around an already rotated system. These rotation angles are further known as φ, θ
and ψ and the corresponding matrix is obtained by (4.1).

R = Rz(ψ) ·Ry(θ) ·Rx(φ), (4.1)

where each Ri represents the rotation around i-axis. This results in the final rotation matrix,

R =

 c (ψ) c (θ) c (ψ) s (φ) s (θ)− c (φ) s (ψ) s (φ) s (ψ) + c (φ) c (ψ) s (θ)
c (θ) s (ψ) c (φ) c (ψ) + s (φ) s (ψ) s (θ) c (φ) s (ψ) s (θ)− c (ψ) s (φ)
−s (θ) c (θ) s (φ) c (φ) c (θ)

 . (4.2)

The rotation matrices are square matrices and belong to a special orthogonal group
SO3. This gives to the matrices the following important attribute

R−1 = RT , (4.3)

which simplifies the transformations. Instead of computing an inverse of a matrix, it is possible
to simply transpose the matrix and get transformation in the opposite direction.

4.2 UAV dynamics

A study of UAV’s dynamics had already attention of many researchers and is considered
as done. For example, the author in [28] describes multiple ways how to get the differential
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equations of the quadcopter dynamics. He provides a unified basis for future research. Its
description of final differential equations are following,

mr̈ = mge3 + Rfd + Rfe (4.4)

Iω̇ = mgS(rg)R
Te3 + S(Iω)ω + m + me (4.5)

Ṙ = RS(ω), (4.6)

where m is a robot mass, r = [x, y, z]T is a position vector, R ∈ SO3 represents
a rotational matrix from world frame to body frame, fd = [0, 0, fd]

T is a desired output
collective thrust force, fe = [fex, fey, fez]

T presents an external disturbance force, 9.81 m s−2

is a magnitude of gravitational acceleration, e3 is a z-axis unit vector, I ∈ R3×3 is vehicle’s
moment of inertia, S(x)y is a skew symmetric operator and it equals x×y, rg = [xg, yg, zg]

T

is a position on center of in the body frame, ω is the vector of angular rates [p, q, r]T in the
body frame, m = [me,me,me]

T is the vector of controlled torque and me = [mex,mey,mez]
T

is the external torque in the body frame.

The equation (4.4) describes translational dynamics and comes from the 2nd Newton’s
law. The rotational dynamics are described by (4.5) and (4.6) describes the rotational matrix
R evolution. Based on the [29], dynamics of the vehicle are simplified to a single rigid-body
description, omitting equation (4.5). It is mostly due to a fact that quadcopter uses smaller
fixed-pitched propellers. Omitting part of the dynamic lowers the accuracy of the model, but
it was already proved to provide sufficiently. Furthermore, as mentioned in [14], the system
is treated as decoupled.

The next assumption is made about the inner stabilization loop. Using an autopilot, such
as Pixhawk, allows simplifying the model as the autopilot provides an attitude stabilization.
Hence, instead of providing the desired thrust to all four propellers, the inputs can be a desired
roll rate (pd), pitch rate (qd), yaw rate (rd) and a collective thrust (Ud). If the autopilot
is properly tuned, it converts input to the output as a first-order transfer function [10].
Equations 4.7-4.10 describing this behavior:

L{q}
L{qd}

=
K1

T1s+ 1
, (4.7)

L{p}
L{pd}

=
K2

T2s+ 1
, (4.8)

L{U}
L{Ud}

=
K3

T3s+ 1
, (4.9)

L{r}
L{rd}

=
K4

T4s+ 1
. (4.10)

To include this dynamics to the model, it was converted back to the time domain via
the inverse Laplace transformation. Differential equation for pitch rate q evolution is then

q̇ = − q

T1
+
K1

T1
qd. (4.11)
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The dynamics of the collective thrust U(4.9) is not well defined. The thrust itself is not a
measured variable. An important variable that is needed in the model is collective thrust force
fd, which represents an actual force exerted on the vehicle. As mentioned in [29], collective
thrust force can be simplified to the quadratic function of the angular speed of the propellers.
The conversion of the thrust U to collective thrust force fd can be then approximated as

fd =

(
U − bt
at

)2

. (4.12)

This approximation is necessary to provide the correct model in all circumstances, including
takeoff and landing [10]. However, for the purpose of the linear model, it is expected that also
the thrust works only around an equilibrium point. The dynamic is therefore simplified to
conversion from desired thrust Ud to desired acceleration z̈d,

L{z̈d}
L{Ud}

=
K3

T3s+ 1
. (4.13)

Following sections further focus on a linear model which includes already the linearized
form of the equations. Complete list of the nonlinear equations is depicted in the section 8.2.2.
The linear model is necessary to allow implementation of LKF. The equilibrium point was
selected as hover point, where

φ = 0, p = 0, θ = 0, q = 0, ψ = 0, r = 0, fd = mg, fx = 0, fy = 0, fz = 0. (4.14)

It is expected that the absolute values of the roll and pitch will not be large.

4.2.1 Attitude system

The attitude system describes dynamics on the horizontal plane. It concerns the dy-
namics connected with roll and pitch. Complete states of the subsystem around x-axis are
xx = (x, ẋ, θ, q, fx) with the input ux = qd. Similarly, y-axis - xy = (y, ẏ, φ, p, fy) with the
input uy = pd. By calculating the 4.4, the equations describing the attitude dynamics are

ẍ(W) = gθ +
1

m
fx, (4.15)

ÿ(W) = −gφ+
1

m
fy. (4.16)

By combining these equations with the differential equations of the attitude (4.7, 4.8), the
continuous state space representation of linearized subsystem is then following

Ax =


0 1 0 0 0
0 0 g 0 1

m
0 0 0 1 0
0 0 0 − 1

T1
0

0 0 0 0 0

 ,Bx =


0
0
0
K1
T1
0

 ,Ay =


0 1 0 0 0
0 0 −g 0 1

m
0 0 0 1 0
0 0 0 − 1

T2
0

0 0 0 0 0

 ,By =


0
0
0
K2
T2
0

 .

(4.17)
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4.2.2 Altitude system

The equations are similar to the attitude system. States of the z-axis subsystem are
xz = (z, ż, z̈d, fz) with the input ux = UD. Differential equation given by 4.4 is

z̈(W) = z̈d +
1

m
fz. (4.18)

Notice, that the equation does not include gravitational acceleration g. It is given by the
choice of the equilibrium point, which is hovering and the vehicle already counteracts the
gravity. The conversion of desired thrust Ud was simplified as described above by equation
4.13 and its differential equation is

...
z d = − z̈d

T3
+
K3

T3
Ud, (4.19)

where the z̈d is desired acceleration in the body frame. Here it also represents only the
divergence from the necessary acceleration to hover the vehicle. By combining above equations,
the state space representation is

Az =


0 1 0 0
0 0 1 1

m
0 0 − 1

T3
0

0 0 0 0

 ,Bz =


0
0
K3
T3
0

 . (4.20)

4.2.3 Yaw subsystem

The last system describes the behaviour of the yaw (ψ) angle. It is simpler compared
to the previous systems and contains only two states xψ = (ψ, r) with input of uψ = rd.
Corresponding state space representation is

Aψ =

(
0 1
0 1

T4

)
,Bψ =

(
0
K4
T4

)
. (4.21)

4.2.4 Overall system

Connection of described subsystems creates complete model of the UAV. It is described
as

A =


Ax 0 0 0
0 Ay 0 0
0 0 Az 0
0 0 0 Aψ

 ,B =


Bx 0 0 0
0 By 0 0
0 0 Bz 0
0 0 0 Bψ

 . (4.22)

4.3 Discretization

For the purpose of this thesis, the system needs to be discretized. Following equation
describes the necessary conversion continuous and discrete system,

ẋ = Acx + Bcu → xk+1 = Adxk + Bduk, k ∈ Z, (4.23)
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where subindex c denotes continuous and d discrete. Based on the nature of the problem and
the computational sources of the Raspberry Pi, the sampling rate is set to ∆t = 0.01 s. The
discretization method that is used is called Forward-Euler method and the continuous system
can be converted by following

Ad = (I + ∆t ·Ac), Bd = ∆t ·Bc. (4.24)
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5 System identification

In order to find the unknown model parameters, the system has to be identified. This
requires performing test flights to obtain real data of the system. There are several methods
how to obtain identification parameters. The classical methods divide into two categories:
based on the time and frequency domain. The principal behind the identification is to excite
all possible poles and zeros, which defines the dynamics of the system. Step response or
frequency response is the most common identification method. However, to use them, it is
expected that the system is stable. This condition does not hold for the purpose of UAV and
using such methods might cause damage to the system and its surroundings. Therefore, using
another method is preferable. Another option is to use an optimization-based method, where
the input data are fitted to the resulting output.

Linear model that is described in previous chapter 4 has eight unknown parameters
(K1, T1, . . . ,K4, T4). Parameters are coefficients of first-order transfer functions, which makes
it four pairs and thanks to the complete decoupling of the system, each pair of the parameters
can be identified separately. Test flights that were performed for the purpose of identification
were operated by a human operator, and data were recorded from an onboard Pixhawk
autopilot. In order to excite all dynamics of the system, it would be ideal for adding a white
noise (zero-mean signal) to the reference input. Unfortunately, it is not possible in the case
of manual flying.

5.1 Optimization method

The optimization method based on least squares method was used instead as an iden-
tification method. Main advantage of this method is its universality. Any data can be used
for the purpose of the identification and no given maneuver, such as step, is not necessary.
Although the system might not be excited enough, it is expected that it will be sufficient for
the purpose of the LKF. Because the equations that are to be fitted are first order transfer
functions, it can be rewritten to following form

xk+1 = Pxk +Quk, (5.1)

where P,Q are unknown parameters, that are to be find.

A method that can solve similar problems is called Least squares method. It is a type of
regression method which solves overdetermined system of equations, where is more equations
than variables. It works by minimizing the sum of squares of the residuals r. Residuals are
defined as

r = Aq− b, (5.2)
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Figure 5.1: Input data for the y-axis identification. The graph on the right depicts the RC
input that corresponds to the roll angle and left shows a generated attitude rate setpoint.

where A ∈ R(n−1)×2, B ∈ R(n−1)×1,q ∈ R2×1 for n equals number of measurements. More
precisely the parameters P, Q are obtained as

q =
(
P, Q

)T
, A =


x1 u1

x2 u2
...

...
xn−2 un−2

xn−1 un−1

 , B =


x2

x3
...

xn−1

xn

 . (5.3)

5.1.1 Attitude system

The attitude system describes dynamics along the horizontal plane. If the mechanical
design was symmetrical in all directions, it would be possible to assume that the attitude sub-
systems are identical. However, it is not satisfied in this work, and both attitude subsystems
were identified separately.

Several test flights were made to gather data. Although the reference coming from
the RC controller is a desired attitude, not attitude rate, the Pixhawk autopilot solves this
internally. It includes an own attitude controller that takes this attitude reference on input
and controls attitude by producing an attitude rate setpoint, that is further internally process
to control the vehicle. Therefore, input data that were used to identify the y-axis subsystem
(figure 5.1) depicts both the RC-command and attitude rate setpoint. In order to obtain the
parameters, both the attitude rate and attitude rate input signal had to be filtered first as
it included a large noise component. Then, the least squares method was used to obtain first
estimate of parameters which was then empirically tuned to find the best fit:

K2 = 0.9255, T2 = 0.0580. (5.4)

The subsystem was further tested by comparing an open-loop estimate with measured
data. The result is in figure 5.2. Data obtained in open-loop fit very well the attitude rate
and the attitude. But a comparison of velocity and position does not fit very well. It is
caused by the bias in the attitude angle, which then propagates to the velocity and position.
Notice that the first integration of this bias results in ramp drift, and another integration
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Figure 5.2: Comparison of the estimated values and measurements on the y-axis.

into position makes the drift squared. This, however, is not a problem as the proper filtering
method (chapter 6) can work with bias.

The subsystem of the x-axis was identified in the same way. The input data can be seen
in figure 5.3. Parameters that we obtained from this identification are

K1 = 0.2255, T1 = 0.0580. (5.5)

Figure 5.4 then depicts the comparison of estimated open-loop values with the measured
values. In this case, the result fits worse than the y-axis subsystem. Although the attitude
rate fits very well, the attitude already shows a slight drift. This error further propagates to
the velocity and position.

5.1.2 Altitude system

For the purpose of the altitude subsystem, the UAV was equipped with a laser range
finder. Figure 5.5 shows data that were used to identify the altitude subsystem parameters.
In this situation, the input signal was shifted due to the thrust necessary to compensate the
gravity acceleration. The obtained values are:

K3 = 14.0100, T3 = 0.1545. (5.6)

It can be seen in figure 5.6, that the acceleration fits very well. However, the position and the
velocity integrate again some bias included in the acceleration, which makes the estimated
value drift significantly.
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Figure 5.3: Input data for the purpose of x-axis identification. RC input is depicted in the
graph on the right and generated attitude rate command is on the left.

Figure 5.4: Graphs comparing estimations of the identified system and the measured data
provided by Pixhawk autopilot.
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Figure 5.5: Identification data for the altitude subsystem. Graph shows the RC input data
that corresponds to acceleration in UAV’s z-axis.

Figure 5.6: Resulting comparison of the estimations and the measured data of the altitude
subsystem.
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Figure 5.7: RC input data for the yaw subsystem identification, the input directly corresponds
to the yaw rate rd command.

Figure 5.8: Comparison of estimates generated by identified model and measured data of the
yaw subsystem.

5.1.3 Yaw subsystem

The last system describes the behaviour of the yaw (ψ) angle. This subsystem was
identified in the exact same way as the previous subsystem. Input data that were gathered
for the purpose of identification are in figure 5.7. Parameters K4, T4 were identified to be

K4 = 1.0011, T4 = 0.1089. (5.7)

Comparison of the open-loop estimated data can be seen on figure 5.8. The attitude
rate fits very well. The integrated attitude angle holds the shape of the curve nicely, but it
has a significantly different magnitude.

5.1.4 Conclusion

This chapter presented an identification of the dynamics of the UAV. Several test flights
were conducted to gather the necessary data. Data that were used were obtained by the
onboard Pixhawk autopilot. Pixhawk itself provides all the state information, but only the
accelerations, attitude, attitude rate and height are measured. The rest of the states is only
estimated. The estimated states were included for the purpose of verifying the identified
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model. All the parameters were identified, and the comparison of the open-loop estimation
with Pixhawk data was provided. The comparison of the velocity and the position did not fit
very well, which is given by the fact that it was estimated by the integration of attitude rate.
Therefore, all the noise and bias components included in the measurement were amplified and
propagated further. This behaviour is normal and will be solved by closing the control loop
and using the proper state estimation method (chapter 6).
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6 State estimation

Providing precise state information is critical for reliable feedforward control of fast
unstable dynamical systems, such as the multirotor UAV. Data from sensors are often not
directly usable as they can be noisy, or the value can be biased. Using the raw sensor data
directly for a control might conclude in crashing the vehicle. There are also scenarios when
a certain part of the information is not directly measured (i.e. cannot be measured) and
also cannot be easily derived from other data. At such a moment, there is a need for the
implementation of a state estimation method. Observation methods provide state estimates
based on input data and measurements coming from the sensors. These methods can be
divided based on the approach to the system, as deterministic or stochastic, and also based
on the system model form, as linear or nonlinear.

This chapter focuses on methods of state estimation. It describes classical deterministic
state observer and then moves to the well-known Kalman filter (KF). KF has many variants.
Therefore, first is described the general concept of this filter and then presented linear version,
Linear Kalman filter (LKF) and nonlinear solution, Unscented Kalman Filter (UKF).

6.1 State observer

If the linear system is considered deterministic, the observation method is called State
observer. It means that there is no randomness in the development of the system states, and
therefore certain input sequences will always result in the same output. Let us have a LTI
discrete system,

xk+1 = Axk + Buk, (6.1)

yk = Cxk + Duk. (6.2)

If there is no feedback connected to this system, equation 6.1 can be considered as an open-
loop state observer. Observed state values are usually denoted as x̂k. Hence, to be precise,
state vectors in 6.1 should be changed to this notation to present the state observer. This
observer expects a perfectly identified model. Otherwise, it will not work. Any disturbance in
the measurements moves the prediction of the system away from the real state. It may then
happen that the observation returns completely wrong data.

This can be improved by closing the loop and connecting the data back. Such a system
is called a closed-loop state observer and is depicted in 6.3. By creating the feedback loop,
the original system 6.1 extends for the correction part given by multiplication of difference of
real system output y and the observed output ŷ. The closed-loop observer has following form

x̂k+1 = Ax̂k + Buk + L(y −Cx̂),

ŷk = Cx̂k + Duk,
(6.3)
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where the matrix L is so-called Luenberger’s observer. If the system matrices A and C
observable, the eigenvalues of the new system matrix (A−KC) can be shifted anywhere and
make system asymptotically stable. There are methods for placing the desired eigenvalues:

� Direct method - The desired characteristic polynomial is compared with a characteristic
polynomial of the closed loop system, parameters of K are then derived from system of
equations,

� Transformation to the observable form - If the system can be converted into a observable
canonical form, it can be used to place poles to desired location,

� Systems duality - Placing poles of the observer represents a dual problem to placing
poles of the state feedback. Therefore duality principle can be used and match system
matrices as transposed matrices of the state observer.

A necessary condition to place all the eigenvalues arbitrarily is that the system is observable.
However, asymptotic stability is possible to reach still if the system is only detectable. It means
that the system includes non-observable poles, but these poles are stable. State observer at
this form does not work for nonlinear systems.

6.2 Kalman Filter

Although the state observer might be useful, most real-world systems are not deter-
ministic. Even a simple system, such as a resistor, has only part of its range that can be
approximated linearly but then becomes highly nonlinear. Therefore different observation
methods have to be used. Every measurement variable entering the system usually includes
a certain amount of noise, which makes tracking such a system further difficult. A very fre-
quent method that provides a solution for stochastic systems is Kalman filter. The Kalman
filter is a recursive algorithm that provides information about state estimates x̂t+τ in a way
that minimises a squared error. Given the application, KF can be used to smooth past data
(τ < 0), filter present data (τ = 0) or also for future state prediction (τ < 0). It is widely
used in engineering or economics and can be found in trajectory tracking, navigation, fea-
ture tracking or control systems. KF has multiple different variants and can work even with
nonlinear systems.

The conceptual solution of the filter is common for all further variants, and it is based
on probability theory. Assuming that the noises in the system are Gaussian, the system state
can be treated as random variable X and can be described by normal (Gaussian) distribution.
This is described by notation

X = N (x̂, σ2) (6.4)

which indicates that system state X is Gaussian random variable with mean value x̂ and
variance of σ2. The idea behind the KF is to treat the system states as random variables and
represent them by probability density function (pdf) given by 6.4. Then propagate it as the
system evolves from the model and correct the development by data from sensors.

In the context of a stochastic system, the mean value is then given by a deterministic
part of the model and uncertainty of the variables is given by covariance matrices. The
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deterministic part of the equation is the same as in the state observer (equation 6.1). If the
condition of Gaussian white noise holds, state estimate can be represented by a conditional
pdf 6.5, where x is a data vector and Dt−1 represents past data information. The conditional
mean value equals the mean square (MS) estimate [30], which minimises means square error
and it represents all the necessary state information. The value given by following equation
is often called apriori information,

p(x(t)|Dt−1) = N (x̂,P). (6.5)

The noise in the system is divided into process noise and measurement noise, and the
condition of white, zero mean-value and uncorrelated noise must hold to reach an optimal
performance of the filter.

The KF algorithm itself can be divided into two steps; data update, also called filtering
step and time update, known as prediction step. Assuming that the data are initiated by the
equation 6.5. Filtering step represents an update of predicted the state information given the
data to the current step. Its probabilistic definition can be described as

p(x(t)|Dt) = p(y(t)|x(t),u(t)) · p(x(t)|Dt−1), (6.6)

where y(t),u(t) are measurements and input data respectively. The product combines an
output equation density function and apriori state information given by past data.

The next step makes a shift in the time step. It predicts next state estimate and is given
by equation following equation

p(x(t+ 1)|x(t),Dt) = p(x(t+ 1)|x(t),u(t),y(t)). (6.7)

Note that next step prediction does not need past data Dt and simplifies to using only
x(t),y(t),u(t). This allows for the recursive character of the filter as only the last system state
estimate is needed to remember. The prediction step is given by the differential equations of
the system.

6.2.1 Linear Kalman filter

Consider a discrete linear stochastic system,

xk+1 = Axk + Buk + vk,

yk = Cxk + Duk + ek.
(6.8)

where vk denotes process noise and the similarly output includes measurement noise ek. For
the purpose of optimality [31], the noises have to be white, zero-mean, uncorrelated and have
known covariance matrices Qk and Rk,

vk ∼ (0,Qk),

ek ∼ (0,Rk),

E[vkv
T
j ] = Qkδk−j ,

E[eke
T
j ] = Rkδk−j ,

E[vke
T
j ] = 0,

(6.9)
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where δk−j is the Kronecker delta. E[−] represents the mean value of a variable. Covariance
matrices has to be symmetric positive semi-definite, Qk,Rk � 0 [30].

By combining the joint pdf for the system state and output equation with equations
for finding conditional values of normally distributed variables, the correction step has the
following form,

Kt = Pt|t−1C
T (CPt|t−1C

T + R)−1,

x̂t|t = x̂t|t−1 + Kt(yt −Cx̂t|t−1 −Dut),

Pt|t = Pt|t−1 −Pt|t−1C
T (CPt|t−1C

T + R)−1CPt|t−1.

(6.10)

The matrix P represents a covariance matrix of the new density function. The prediction
step describes the evolution of both the system state and uncertainty in time. System state
evolution is based on the systems natural evolution, and covariance update comes from the
Lyapunov equation. It is denoted as

x̂t+1|t = Ax̂t|t + But,

P̂t+1|t = APt|tA
T + Q.

(6.11)

This closes the LKF iteration and completes the algorithm.

LKF is a very powerful tool and is very frequently applied in the real-world systems.
Even though the condition of white Gaussian noises is undoubtedly problematic, LKF is still
the best linear state estimator even if the condition does not stand [30].

6.2.2 Nonlinear Kalman Filter

As already mentioned, linear systems do not exist. That is why there is a need to
use more advanced filters based directly on the nonlinear systems. The general form of the
nonlinear system is described as follows.

xk+1 = f(xk,uk,vt), (6.12)

yk = g(xk,uk, et), (6.13)

where the function f() describes state transition function and g() represents output function.

The most widespread nonlinear state estimator is the Extended Kalman Filter [30].
Its principal is similar to LKF and also uses the linearised model to update and predict
states. Nevertheless, instead of using one fixed linearised model, EKF constantly creates a
new linear approximation based on the estimate of the current state. Although it is not an
optimal nonlinear filter, it is usable, as optimal filters are usually on infinite-dimensional [30].
EKF proved to be useful in many applications and still is frequent in systems. But it is
difficult to tune this filter, and its estimates can be often unreliable as there is always an
inevitable linearisation error in the system. There are also improved filters based on EKF,
that are attempting to minimise this error. For example, iterative EKF, which iterates during
the data update step to provide the best posteriori estimate, or higher-order EKF, that higher
elements from Taylor series when approximating state and output equations. But the problem
with linearisation error persists.
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A completely different approach is presented with the Unscented Kalman Filter (UKF)
algorithm. This algorithm was first presented in [32]. Its key contribution lies in a different
approach to propagation of the mean and covariance. Instead of using linear approximation,
it uses the unscented transformation for this purpose. This transformation is based on two
principles; first, it is easy to transform a single point rather than whole pdf. Second, for a
given pdf it is relatively simple to find a sample of points that represents its proper form.
Let us have an estimate of x̂ with its covariance P. Given this information, it is possible
to find a set of deterministic vectors called σ-points, which represents current probability
density function (pdf). To get the transformed density function, each σ-point is transformed
separately and from transformed points then restored the transformed pdf. This process is a
key principle behind the unscented transformation.

σ − points are defined as

x0 = x̂ ; w0 =
k

n+ k
,

xi = x̂ + Si ; wi =
1

2(nx + k)
; i = 1 . . . nx,

xi = x̂− Si ; wi =
1

2(nx + k)
; i = n+ 1 . . . 2nx,

(6.14)

where xi are the σ-points, nx is size of state vector, k controls the distance of sigma points
from the mean x̂, wi are weighting coefficients, Si are direction vectors of weighted covariance
matrix P and can be obtained as (nx + k)P = STS. Matrix S is also know as Cholesky
factor and the direction vectors are its columns. The process of obtaining the transformed
parameters of new pdf are

x̂ =

2nx∑
i=0

wixi, Pxx =

2nx∑
i=0

wi(xi − x̂)(xi − x̂)T . (6.15)

The knowledge of this transformation allows to introduce the UKF algorithm. It is again
based on the filtration and prediction step. In case of the correction step, lets assume that
predicted state x̂t|t−1 and its covariance Pt|t−1 are known. σ-points xσi are transformed by
equation yi = g(xσi ) and then used to compute necessary components to update actual state
with its covariance,

ŷk =

2nx∑
i=0

wiyi

Pyy =

2nx∑
i=0

wi(yi − ŷ)(yi − ŷ)T + R

Pxy =

2nx∑
i=0

wi(x
σ
i − x̂)(yi − ŷ)T .

(6.16)

The prediction step is designed similarly. At this case, assume known corrected state x̂t|t
and its covariance Pt|t. Required transformation to new state prediction is done by generating
new σ-points and transforming them through the state transition equation (6.12), as xk+1 =
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f(xσi ). Resulting formulas for setting state prediction are

x̂k+1 =

2nx∑
i=0

wixi,

Pk+1 =

2nx∑
i=0

wi(x
σ
i − x̂)(xσi − x̂)T + R.

(6.17)

The UKF is a great improvement compared to the more known EKF. Its main advantage
is in the transformation of the probability density function, which does not require comput-
ing any derivatives. Only computationally difficult is in computing the direction vectors Si.
Overall, the UKF is a great choice for the purpose of this thesis, where the studied model is
highly nonlinear. Furthermore, successful implementation of UKF was already presented for
the same purpose [14].

6.2.3 KF verification

Verification of the performance of the filter is an important step. The filter itself is
sensitive, and many parameters can be tuned to optimise its behaviour. To verify a KF, there
are multiple ways how to check the performance. The optimal general method would be to
compare the filtered data to a ground truth value via a certain metric, such as Root mean
square error (RMSE). Unfortunately, providing a ground truth is difficult. One option would
be to use a system like motion capture that would provide very precise data. But even then,
only available ground truth data would be position and 3D orientation. Velocity or attitude
rates would have to be derived and would not be without error. There is no such system
currently presented in the MRS group.

Nevertheless, the filter performance metric can be also defined by innovations and allow
checking the consistency of the filter. The consistency of a filter is defined as an attribute that
shows that the filter increases the accuracy with an increasing number of samples. Innovation
is represented as

εk = yk −Cx̂k|k−1, (6.18)

and it describes the amount of new information added to the filter. Similarly to the system
states, the variance of innovations is represented by matrix Z. It is defined as

Zk = E[εkε
T
k ] = CPt|t−1C

T + R. (6.19)

If the filter performs well, the innovation εk should have zero mean value and the
covariance Zk. Multiple tests can be then applied to check the performance of the filter [33],

� Innovation magnitude bound test - The first test checks if the innovations are consistent

with innovations covariance. Innovations should be bounded by value ±2
√
σ2
k. It shows

that innovation is unbiased, and the bound itself represents the 95 % confidence level.
Only less than 5 % innovations can cross the bound to satisfy the test.
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� Normalised innovations squared χ2 test - This test checks the unbiasedness of innova-
tions through χ2 test. For this purpose, the squared normalised innovations are com-
puted as,

qk(i) = εk(i)Z
−1
k (i)εk(i), (6.20)

where i is the number of trials of KF. It is necessary to provide an estimate of sample
mean q̄ to test for the unbiasedness. That is done by averaging values of normalised
innovations and creating a form of a moving average. This estimate of sample mean q̄
is then tested on the confidence bound [r1, r2]. This interval comes from the hypothesis
H0, that is defined as

P (Nq̄ ∈ [r1, r2]|H0) = 1− α, (6.21)

where α is the 5 % outer bound. If value Nq̄ fits in this interval, the hypothesis is
accepted, and the filter is unbiased.

� Innovation whiteness test - Last test, also known as autocorrelation test, is trying to
show that time-averaged correlation

r(τ) =
1

N

N−τ−1∑
k=0

εTk εk+τ (6.22)

is zero mean within allowable statistical error. This correlation should be normalised by
r(0). Apart from the peak at τ = 0, all other values should be disturbed around zero
mean value. The oscillations around zero value should be random. For large enough
samples N , the variance can be represented as 1/N . Hence the values should be within
the gate of ±2σ. Again, at least 95 % should fit within this region

Although the theory is clear and should be simple to use these methods to tune and
verify the filter, multiple factors make the process difficult. All the above theory expects
that both the noise covariance matrices and model are known precisely. However, it is not
usually correct in practice, and it is necessary to be aware of the different effects that the
modelling imperfections. Following list summarizes the effect of wrong choice of the noise
variance parameters,

� Underestimating σq or σr results in exceeding the 95 % confidence bound given by 2σ.
Furthermore, the sample mean does not fit in the confidence bound given by χ2 test
because the normalised squared innovations are more significant than expected. The
combined process and measurement noises levels are low.

� Overestimating σq or σr shows behaviour where the innovations are well within the
95 % confidence bound given by 2σ and do not even exceed the bound. The sample
mean again does not fits the confidence bound given by χ2 test The normalised squared
innovations are lower than expected. The combined process and measurement noises
levels are too high.

When dealing with a wrong model of the system that does not behave as expected, this model
incorporates the filtration with an additional error. Such a problem is called mis-matched filter
problem. This error might result in a drift of the mean value, which makes the data unreliable.
A solution to this problem might be to increase the process noise covariance matrix Q. This
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should increase the Kalman gain and result in a more precise following of the measurements.
However, this works only in the case of a small model mismatch. If the error were too large,
the KF would not be able to compensate at all.
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7 Admittance control

The physical interaction of humans and robots requires a specific control design that
provides adequate actions. Several methods exist for the interaction of a robot with a mechan-
ical environment, where a mechanical environment usually represents a human. Author in [12]
sums the methods to indirect force control [34], Impedance control, Admittance control and
full-state interaction [35]. The methods that are more examined in this work are Admittance
and Impedance control. These methods are very similar, and they are often summed up as
Impedance control [4]. In a certain way, they can be seen as the opposite of each other. The
choice of the control depends on the relationship between the controller and the controlled
system.

The key attribute that differs between these two control approaches is based on the
definitions of admittance and impedance [4]. A system that takes motion as input and produces
force is referred to as impedance. On the other hand, a system is defined as admittance when
it receives force inputs and produces motion outputs. The definition of the control approaches
is then simple. In the case of the Impedance control, the controller behaves as impedance and
the controlled system as admittance, and for the Admittance control, it is other way around.
Given this definition, Admittance control is suitable for this work. The UAV can be seen as
a form of impedance that produces force, and the Admittance controller then processes this
force to the resulting change of motion.

Admittance and Impedance control aims to establish a necessary action to satisfy a
dynamic behaviour between reference trajectory and external force. This behaviour can be
described as

Md(r̈d − r̈r) + Dd(ṙd − ṙr) + Kd(rd − rr) = −fe, (7.1)

where fe is vector of external force acting on the vehicle, rd is a desired position vector, rr is a
reference position vector. Matrix Md is a symmetric positive definite matrix that represents
the desired inertia of the system. Matrices Dd,Kd > 0 are positive matrices that represents
damping and stiffness, respectively [4]. A diagram showing the application of the controller is
depicted in figure 7.1. In order to use this control technique for an interaction with a human,
it is essential to choose the matrices correctly. This also involves defining the type of expected
interaction and desired behaviour. For the purpose of physical interaction, it is acceptable
to define desired acceleration r̈ and velocity ṙd to zero as the control of the UAV will be
purely driven by force. Furthermore, if the position of the UAV is expected to recover after
an external push, the stiffness should be set K > 0. On the other hand, setting K = 0 results
in entirely omitting a position and makes the control only for appropriate reference in velocity.
In that case, the UAV can be freely dragged through space. In order to solve the (7.1), it can
be seen as second order differential equation and transformed to

r̈r = −M−1Dṙr + M−1fe, (7.2)
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Admittance

control

Position

controller
UAV

rr ω, U

f
r

rd

Figure 7.1: Overall pipeline of a general Admittance control [4]. The UAV produces a force
vector F and information about current state r. Admittance controller then processes the
desired state rd together with force f and produces a reference state rr for a position controller.
Controller then combines the reference with the actual state and generates control input the
UAV, at this example attitude rate ω and desired collective thrust U .

where ṙr can be seen as a state variable and fe as input. This equation can be further differ-
entiated and implemented into the control pipeline.
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8 Implementation details

This chapter focuses on the implementation aspects First, the details about the simula-
tion model that was created in the Gazebo simulator are described. Moreover, details about
the Kalman filter implementation are presented, in particular the choice of the covariance
matrices. The next part focuses on the Admittance control and its implementation into the
MRS control system. The last part of the section mentions details about the real hardware
model of the UAV.

8.1 Gazebo model

The hardware model of the UAV (described in chapter 3) was implemented the Gazebo
simulator chapter 2. This model allowed to test the parts of this work safely in the virtual
space and reduce the risk of breaking the real hardware. Resulting model is depicted in
the figure 8.1. In order to make the model as realistic as possible, it was necessary to find
characteristic parameters of the model. The key attribute is the characteristics of the motors.
The simulation requires the knowledge of a real maximal thrust force to provide the best
similarity to the real model. The derivation of these parameters is described in section 8.2.2.
Other parameters as mass and the inertia matrix could be then either derived or explicitly
measured.

Gazebo simulator provides a set of services that allow interaction with a model phys-
ically. These services were crucial and allowed for estimation and Admittance control veri-
fication. The most relevant service for this work is /gazebo/apply body wrench. This service

Figure 8.1: Simulation model of the UAV implemented in the Gazebo simulator. The model
corresponds to the design described in chapter 3.
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allows to apply force for a certain time duration to a specific part of the model and can be
therefore used to simulate physical human interaction.

8.2 Kalman filter implementation

The Kalman filter was built based the model of the UAV dynamics described in chap-
ter 4. Multiple data sources are used for the filtration because no sensor provides complete
information about all the states. Information about the position and velocity were obtained
from VIO, and information about the attitude and attitude rate was provided by Pixhawk
autopilot. Furthermore, the estimators were extended to also include data from Global Posi-
tioning System (GPS) due to problematic behaviour of the VIO in certain situations. Both
the LKF and UKF were implemented in such a way that it is possible to choose the source
of the data before a flight.

An essential aspect concerning the KFs is tuning of the apriori information about pro-
cess noise Q and the measurement matrices R. The matrices should be positive definite,Q,R �
0, because they represent the covariance between variables. The choice of these matrices gives
the filter its characteristics. Both the matrices are closely related, and therefore it is more
about finding the right balance. On one hand, it might be desirable to provide well filtered
smooth data, then values of Q should be much lower than R. However, if it is more necessary
to follow the measured data, the choice of the matrices should be vice versa. In practice, the
matrices should be estimated from the measured sample of data. There are several methods
for this purpose, the most known is Autocovariance least squares (ALS) and its derivations.
Authors in [36] tested the performance of such methods and were comparing them to the
maximum likelihood method. Although the methods give a reasonable estimate of the covari-
ances, it is difficult to perform such an estimation. Therefore the covariance matrices at this
work were tuned empirically.

The next significant factor in the KF process is the choice of initial state x̂0 and state
covariance matrix P0. As mentioned in [33], the initialisation is desirable for the LKF, but it
is not essential as the system will take longer to settle. However, initialisation is critical in the
case of the nonlinear UKF filter. One of the possibilities is to set the initial state information
from the measurements y and the state covariance as the process noise matrix multiplied by
a constant factor k. It can be written as follows

x̂0 = y, P0 = kQ, (8.1)

where the factor is typically k = 10. This method was used to initialize both estimation
algorithms in this work.

8.2.1 Linear Kalman filter

Linear Kalman filter was implemented based on the linear model described in chapter 4.
This model was then identified in chapter 5. The noise matrices were empirically tuned to
provide reliable information for the underlying controller. The process noise matrices are
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following,

Qx,y =


0.001 0 0 0 0

0 0.001 0 0 0
0 0 0.01 0 0
0 0 0 0.1 0
0 0 0 0 1

 ,Qz =


0.001 0 0 0

0 0.001 0 0
0 0 0.01 0
0 0 0 1

 ,

Qψ =

(
0.01 0

0 0.1

)
.

(8.2)

The measurement covariance matrices are divided based on the type of measurement and are
defined as

Rpos,vel,att =

0.1 0 0
0 0.1 0
0 0 0.1

 ,Rrate =

10 0 0
0 10 0
0 0 10

 . (8.3)

Subscripts pos and vel indicates position and velocity measurements, respectively. These ma-
trices were used for both the VIO and GPS measurements. Subscript att shows measurement
covariances for attitude information coming form Pixhawk autopilot. Similarly, rate indicates
Pixhawk measurement of attitude rate.

8.2.2 Unscented Kalman filter

Nonlinear equations presented in chapter 4 had to be unified and slightly modified for
Unscented Kalman Filter implementation. The thrust dynamics are not simplified as in the
LKF and includes now their whole dynamics, which comes from the assumption that desired
force ft ∼ ω2 . Instead of using direct conversion from input thrust T ∈ [0, 1] to acceleration
in z-axis z̈u (see (4.13)), it first uses (4.12) to convert the input thrust T to desired input
acceleration z̈d. It can be described as

L{z̈u}
L{z̈d}

=
K5

T5s+ 1
. (8.4)

To find the parameters at, bt included in the (4.12), a test flight had to be conducted. By
putting multiple different weights to the UAV, making the vehicle hover and then reading
the amount of thrust, pairs of (thrust, weight) are obtained. This information is then used to
reconstruct the thrust-to-weight curve, which can be approximated, for example, by the least-
squares method. The parameters that were obtained form the real experiment are following

at = 0.57787, bt = −0.57853. (8.5)

This curve is essential for modelling the UAV in the simulator. The necessary parameter, the
maximal force produced by a single motor, can be found in the curve as the force with full
throttle divided by the number of motors.

The input of the model is therefore different and is defined as u = (pd, qd, zd, rd).
Complete state vector can be represented as x = (r, ṙ,R, p, q, z̈u, fe), where r = (x, y, z) is a
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position vector, R is a rotation matrix, that can be represented by Tait-Bryan angles, φ, θ, ψ,
the p, q, r are roll-rate, pitch-rate and yaw-rate, respectively. The differential equations are

ṙ = ṙ,

r̈ = Rfd + Rfe +mge3,

Ṙ = RS(ω),

ḟe = 0,

q̇ = − 1

T1
q +

K1

T1
qd,

ṗ = − 1

T2
p+

K2

T2
pd,

ṙ = − 1

T4
r +

K4

T4
rd,

...
zu = − 1

T5
z̈u +

K5

T5
z̈d.

(8.6)

Notice that parameters T1,K1, T2,K2, T4,K4 are the same as in the linear model and its
values can be found in chapter 5. However, the change in the thrust dynamics introduced
new parameters T5,K5, which were identified similarly to the other parameters. The pro-
cess and measurement covariance matrices were selected the same parameters as described
in section 8.2.1.

8.3 Admittance control

Implementation of the Admittance control is based on the details described in the
chapter 7. The control itself does not work as the last element that outputs signals directly to
the autopilot but instead produces position and velocity reference for the underlying position
controller. The position controller that is used in this work is called SE(3) Controller and is
based on [17]. The controller can handle different combinations of inputs, including position
and velocity, which is suitable for this work. Given this structure, the Admittance control
implementation is referred to as an Admittance tracker, not the controller.

It is expected that the physical interaction is exerted while the UAV is hovering in the
space. Furthermore, the environment’s stiffness is omitted, which means that the vehicle can
be moved simply in the space. The expected complete situation is following. The vehicle is
hovering in the space. When physical contact is sensed, the vehicle undertakes this force and
starts to move in the direction of this force. Once the force is released, the UAV will fluently
decrease its speed until it stops moving completely.

Detection level fd is introduced to prevent reacting to even the smallest exerted force,
or possibly to a force caused by other effects. Furthermore, the mentioned force level needs
to be exceeded for a certain amount of time td. The Admittance tracker is designed as a
simple state automaton to allow this behaviour. Figure 8.2 depicts graphically its structure.
It consists of three states,

� IDLE state is active when the vehicle waits for a contact. It detects a present acting
force, and once the magnitude of this force ‖f‖ overcomes the detection level fd, it
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starts to measure time. If the force is applied longer than the given time td, it switches
to FOLLOW state. When this state is active, the tracker outputs a reference to a
constant position.

� FOLLOW state includes an implementation of the Admittance control. It is initialised
by the current speed of the vehicle and then modifies this velocity based on the applied
force f . This relationship is given by differential equation (7.2). At this state, the vehicle
is controlled purely by the output reference velocity. It simultaneously keeps track of
the magnitude of this force, and when the force is lower than mentioned detection level,
it switches to SLOW DOWN state.

� SLOW DOWN state serve only as a transition between the above states. If the vehicle’s
speed is still large, switching suddenly to a position control with the current position
might cause unwanted huge control action. Therefore, at this state, the velocity is con-
tinuously lowered by a factor of 0.99. Once the reference velocity ṙr is low enough, the
state is switched back to the IDLE.

To provide smooth and responsive behaviour, it was necessary to tune correctly all
parameters. Parameters concerning the transition between states were set to

fd = 0.3 N, td = 0.2 s. (8.7)

This means that it is necessary to apply force greater than fd for a time larger than td. Next,
it was necessary to tune parameters concerning the behaviour of the admittance behaviour
itself, it is described by differential equation (7.2). The parameters of inertia M and damping
D were set to

M =

0.9 0 0
0 0.9 0
0 0 0.9

 , D =

0.5 0 0
0 0.5 0
0 0 0.5

 . (8.8)

It is necessary to compensate parasitic forces in order to control the vehicle solely by the
external force. This force might be given by the controller error or possibly by the unbalanced
vehicle. Therefore this part of the force is taken as offset and is removed internally in the
Admittance tracker.

Idle

state
Waiting Admittance Waiting

Slow

down

‖f‖ > fd ‖f‖ < fdτ = td τ = td

‖ṙr‖ < c

‖f‖ < fd ‖f‖ > fd

Figure 8.2: A flow chart describing an inner working of the Admittance tracker. It consist
of three main states and two condition states. The condition states represent a timer and
switch between main states happens only if the condition is satisfied for time td. fd represents
condition on force magnitude and c condition on velocity vector magnitude.
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9 Experiments

This chapter presents the final experiments that were performed to verify the proposed
solution to the given problem. The first part focuses on the verification of the KF, it provides
experiments of both the LKF and UKF individually. Then the methods are compared during
one experiment to see an immediate difference between them. Further, the estimation of
external forces is verified. The last section demonstrates the behaviour of a complete system,
where the state estimators are connected with the designed Admittance tracker.

Unfortunately, it was not possible to perform the experiments in the real world. The
choice of the computer turned out to be inadequate, and only the VIO processing was con-
suming almost the whole computational sources of the Raspberry Pi. Together with the
computational demands of the MRS system, it was not possible to perform autonomous real-
world experiments. Therefore the experiments showing the capabilities of the designed system
are performed only in the Gazebo simulator.

Another problem was raised during the simulation of physical interaction while directly
pushing the vehicle. The implementation of Visual odometry in the Gazebo is not perfect.
Although it worked reliably during normal simulated flight and most of the experiments
are performed based on these data sources, the VIO failed when there was an explicit force
applied to the model. Once this happened, even a small force of 1 N caused a significant
jump in the direction of the push. This problem was compared to data from the GPS data.
GPS was stable, and there was no jump in the measurements data. Hence the problem was
in the implementation of the VIO. Based on this problem, experiments, where the UAV is
physically pushed in the simulation, are performed with odometry based on the GPS and
IMU from Pixhawk autopilot.

9.1 Kalman filter verification

The verification of the filters consists of multiple simulated flights that verify their
performance. The filters are also compared on the same simulated flight. The last experi-
ment shows the ability of the estimators to obtain the external force that is applied to the
UAV. The root mean square error comparison between the estimation and measurements is
provided. Together with the innovation magnitude test, it provides a metric to define the
filter’s performance. Description of this method innovation magnitude test can be found in
section 6.2.3.

9.1.1 Linear Kalman filter

The verification of the LKF is depicted in the figure 9.1. It shows the performance
of the filter on the x-axis. The conducted experiment for this purpose was flying around a
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Figure 9.1: Verification of the LKF filter. The graph shows an estimation of the states in the
x-axis. Specifically, it shows a position x, velocity ẋ, pitch angle θ and pitch rate q. The last
graph depicts the estimated force at all axis. Notice the constant force offset in the x a y axis.
Verification in other axis can be found in the appendix B.
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Method x [m] ẋ [m s−1] θ [rad] q [rad s−1]

LKF 0.061 0.0093 0.0039 0.0335

Table 9.1: Table shows a RMSE of the estimated values and measurement data in all states
of x-axis subsystem estimated by the LKF. The error values corresponds to the figure 9.1.

Figure 9.2: Innovation magnitude test of the pitch rate q estimated by the LKF. The graph
indicates overestimated noise covariance matrices of the filter.

hovering point in each axis. Verification in other axes than is presented here can be found
in appendix B. Notice that the data are not very noisy, and significant filtration can be seen
mainly in the attitude rate. Significant deviation from the measured data can be found in
the graphs in the position. This deviation becomes significant (larger than 20 cm) during
higher pitched manoeuvres (θ > 0.08). This error is expected as the linear model works
only around equilibrium, which is the hovering point. The model incorrectly estimates the
attitude rate already, and this error is further propagated to other states. Root mean square
error between the estimated and measured states is in table 9.1. The last graph shows the
estimated forces in all axes. Notice that the UAV has a constant disturbance in the horizontal
axes. These disturbances are caused by the vehicle’s design, which is not symmetrical or might
be unbalanced.

The innovation magnitude test was performed on the pitch rate q data from the figure 9.1
and is depicted on figure 9.2. It can be seen that the innovations do not cross the confidence
bound. This behaviour signalizes that the choice of the process noise Q and measurement
noise R was overestimated.
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Figure 9.3: Verification of the UKF filter. The graph shows estimation of the states in the
x-axis. Last graph depicts the estimated force at all axis, the estimator . Verification in other
axis can be found in the appendix B.
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Method x [m] ẋ [m s−1] θ [rad] q [rad s−1]

UKF 0.0120 0.0024 0.0008 0.0293

Table 9.2: Table showing a RMSE of the estimated values with measurement data. The error
values corresponds to the figure 9.3.

Figure 9.4: Innovation magnitude test of the pitch rate q with the confidence bounds from
data estimated by UKF. The result indicates that the combination of the measurement and
process noise are overestimated.

9.1.2 Unscented Kalman Filter

The UKF was verified in the same way as the LKF. A test flight was conducted, and
the performance of the filter can be seen on the figure 9.3. The picture again depicts only
the x-axis states. For complete verification, see appendix B. The UKF tracks the measured
data reliably, and there is no deviation visible from the graphs. Also the table 9.2 shows lower
error values. The only higher error can be seen in the attitude rate, which is given by the
noisy measurements. The innovation test of the pitch rate q was also performed (figure 9.4.
Similarly to the LKF innovation test, the innovations do even come close to the confidence
bound, which means that the apriori noise parameters are overestimated.

9.1.3 Comparison

Both of the estimators were also tested together simultaneously. Instead of flying around
the hovering point, there is a step reference on the position in this experiment. Steps of 0.5 m,
1 m and 5 m were performed and the result can be seen on the figure 9.5. This experiment
provides comparison only in the x-axis. From the graph, it is possible to see that both the
algorithm were able to track the current state. Only significant divergence (over 1 m) can be
seen in the LKF estimation of the position. It is the same effect that occurred in the LKF
verification, but here the pitch angle was much higher (up to 0.5 rad). Notice that the position
estimated by the LKF corrects to the correct value after the step back. It is given by the fact,
that same step in the opposite direction causes same deviation, which in this case corrects
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Method x [m] ẋ [m s−1] θ [rad] q [rad s−1]

LKF 0.5049 0.0180 0.0055 0.369

UKF 0.0132 0.0066 0.0023 0.0321

Table 9.3: Table showing a RMSE of the estimated values with measurement data. The error
values corresponds to the figure 9.5.

the prediction. Comparison of the filters in the mean of the RMSE can be see in table 9.3.
The UKF is had a lower error at every state variable.

The last experiment focused on the ability to estimate the external forces correctly. This
experiment is depicted in figure 9.6. The experiment consisted of applying a direct force to the
model in the simulation. Three pushes had a duration of 3 s with the magnitude of 1, 2 and
3 N. The graph shows that both estimators quickly tracked the generated force. UKF behaves
more aggressively, and oscillations occur on a higher impact. This would require tuning the
filter parameters to optimize the transition. LKF shows smooth and fast estimation. Notice
the constant offset between reference and the estimation. It is caused by the parasitic force
that is present during the whole flight and offsets the measurements. This parasitic force can
be also seen in figure 9.1 and figure 9.3. This parasitic force is further recorded and used as
an offset to provide correct estimations.

9.1.4 Summary

The experiments proved that both estimators work. A key attribute, the external force
estimation, was precisely estimated by both methods. Even though the error of LKF estimates
can be significant in the estimation of other variables, the LKF still can be used under certain
circumstances. The position controller should be tuned and constrained to prevent significant
attitude angles. This manoeuvre moves the linear model further from its equilibrium and
makes the LKF prediction unreliable. The controller was slightly constrained even during the
above experiments. Notice that the response to the steps in the figure 9.5 is very smooth and
slow. Nevertheless, both methods can be used for Admittance control.

9.2 Admittance control

Previous experiments proved that both estimation methods work, and it is expected
that they will behave similarly while flying with the Admittance tracker. Therefore to verify
the Admittance tracker in the simulation, only the UKF is used. Whether to use UKF or LKF
in the real experiments depends on the situation and circumstances. The UKF provides more
reliable data. On the other hand, it is prone to encounter a numerical error when calculating
direction vectors for the generation of the σ-points. The LKF might not be that precise but
is numerically stable and less computationally demanding.

The experiment that verifies the working and shows the capabilities of the Admittance
tracker can be seen on the figure 9.7. It shows the situation where the UAV is exposed to
three pushes in the x-axis direction. The first impact is represented as 3 s long push with the
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Figure 9.5: Comparison of the state estimation between a reference VIO data, LKF and UKF
estimates in the x-axis. The graphs show the position x, velocity ẋ, pitch angle θ and attitude
rate q. The UAV responded to the three continuous changes in the position of magnitude
0.5 m, 1 m and 5 m.
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Figure 9.6: Comparison of the external force estimation, where three pushes with different
magnitude alongside x-axis were applied for the time of 3 s. The comparison between refer-
enced force, force estimated by UKF and LKF is in the first graph. Second graph shows the
position deviation in the x-axis.

magnitude of 1 N. It smoothly initiated the change of the position, and after the force was
released, the UAV continuously slowed down. The next two impacts were represented as short
impulses to the system, the first one with magnitude 3 N and the second one with 3 N in the
opposite direction. The UAV correctly initiated the movement in the direction of the applied
force, and after releasing the force, it started to slow down smoothly.

The tracker was tuned by the parameters described in the chapter 8. The parameters
were based on the [14]. Another experiment was conducted to examine the effects of these pa-
rameters on the behaviour of the UAV. The first experiment focused on the effect of changing
inertia matrix M. For this purpose was the damping matrix D fixed to a value described in
the chapter 8. The resulting effect is depicted in the figure 9.8. With increasing values on the
diagonal, the UAV becomes less responsive and more force is required to move the vehicle.
On the other hand, if the values are lowered, the UAV become much more reactive to the
external force, and even slight touch makes the vehicle fly further away. It corresponds to the
virtual increasing the moment of inertia of the aircraft and confirms the intended behaviour.

A similar experiment was also performed to simulate the behaviour when the damping
matrix changes. The inertia matrix was fixed for this experiment and set to the value presented
in chapter 8. The results are in figure 9.9. The effect on the vehicle is similar to changing
the inertia matrix for the values that are lower than 1. However, if the damping is higher, it
can be seen that the vehicle’s velocity is damped very significantly. This behaviour can be
helpful in situations where fast manoeuvres are not wanted. Similarly to the inertia matrix,
here also, the name damping matrix confirms the behaviour.
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Figure 9.7: Data showing the working of the Admittance tracker in the x-axis. The first graph
shows the reference and estimated force. The second graph depicts the change in the position
during the physical interaction. Red areas highlight the time when the force was applied.
Video showing the functionality in the simulation can be found at http://mrs.felk.cvut.

cz/smrcka2021thesis

Figure 9.8: Influence of the inertia matrix parameters to the behaviour of the UAV in response
to the 2 s long impact of 1 N. Upper graph shows the position x response and lower plot the
velocity ẋ.
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Figure 9.9: Data showing the influence of the different damping parameters to the behaviour
of the UAV. The graph shows the response on 2 s long impact of 1 N
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10 Conclusion

This thesis presented a solution to the challenge of the physical human-UAV interaction.
The solution included the design and build of a small interaction safe aircraft. Implementation
of two different state estimation methods that are used to estimate an external force was
presented. Last, the thesis dealt with the implementation of the Admittance control. The
complete system was integrated into the MRS system pipeline.

Design of the UAV is described in the chapter 3. The vehicle was built as small as
possible to fit all the necessary equipment, and its final dimension is 200 mm in diameter,
which makes it currently the smallest UAV in the MRS laboratory. The intended localization
method is visual odometry (VIO), however as it turned out, the computational resources
provided by the Raspberry Pi 4 were not enough. Therefore the vehicle was tested only in a
manual flight. Manual flights were sufficient to provide identification of the model chapter 5
and implementation of a realistic model into the Gazebo simulator. Dynamics of the UAV
were studied in chapter 4. The external force was added to the model, and both the nonlinear
and linear models were presented. State estimation was studied in detail in order to estimate
the external forces acting on the vehicle without additional sensory equipment (chapter 6).
The Linear Kalman filter and nonlinear Unscented Kalman Filter were implemented. The
Admittance control was implemented to enable physical interaction and made the system
suitable for such situations. It is described in the chapter 7. Its dynamics were wrapped into
the Admittance tracker to allow smooth operation. Implementation details were presented in
chapter 8 and described the choice of all parameters that were necessary to be tuned.

Chapter 9 presented experiments that have been conducted. Firstly, the estimation
methods were verified and compared with each other. The verification showed that both the
LKF and UKF were able to estimate the external forces very well. Both of the methods
could also provide reliable information about the UAV’s complete state and allow simulation
flight. However, the LKF performed less precisely overall, and deviation could be found in
all the states. This behaviour is, however, expected as its model expects only small attitude
angles. Therefore, both methods are suitable for the task, but the UKF’s performance is more
consistent over variation of situations and manoeuvres. Then several experiments verified the
performance of the implemented Admittance tracker. The tracker worked well and performed
a smooth reaction to the external forces. The last experiment focused on different inertia and
damping matrices that define the tracker’s dynamics.

10.1 Future work

Work presented in this thesis provided good basics into the problem of the physical
interaction between humans and UAV. Future work will be to equip the constructed vehicle
with a more powerful computer and verify the system in real-world experiments. A great
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focus will be put on tuning the parameters of the KFs because the innovation magnitude
test showed that the presented values were overestimated. Lastly, more focus will be put on a
study of the overall stability of the system. This analysis is crucial for performing real-world
interaction experiments with humans.
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[11] T. Tomić, C. Ott, and S. Haddadin, “External wrench estimation, collision detection,
and reflex reaction for flying robots,” IEEE Transactions on Robotics, vol. 33, no. 6, pp.
1467–1482, 2017.

59/68

https://www.suasnews.com/
http://docs.px4.io/master/en
https://www.sciencedirect.com/science/article/pii/S0140366420300189
https://www.sciencedirect.com/science/article/pii/S0140366420300189


BIBLIOGRAPHY

[12] A. Keemink, H. van der Kooij, and A. Stienen, “Admittance control for physical human-
robot interaction,” International journal of robotics research, vol. 37, no. 11, pp. 1421–
1444, Sep. 2018, sage deal.

[13] S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, and D. Sallé, “Ad-
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A CD Content

In Table A.1 are listed names of all root directories on CD.

Directory name Description

thesis the thesis in pdf format
src/thesis latex source code
src/odometry sources for the estimation task
src/model sources for the simulation model
src/control sources of the admittance tracker implementation
src/cad complete cad model with stl files

Table A.1: CD Content
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Figure B.1: Additional data of the LKF verification, graphs show the altitude data.

Figure B.2: Additional data of the LKF verification, graphs show the yaw subsystem data.
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Figure B.3: Additional data of the LKF verification, graphs show the y-axis data.
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Figure B.4: Additional data of the UKF verification, graphs show the y-axis subsystem data.
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Figure B.5: Additional data of the UKF verification, graphs show the attitude subsystem
data.

Figure B.6: Additional data of the UKF verification, graphs show the yaw subsystem data.
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