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Abstract
Action selection is a term used to describe
a process of autonomous selection of steps
that lead an agent to a predetermined goal.
In this work, discovering object proper-
ties and the overall object category (e.g.,
material, or box, mug, etc.) by a robot
manipulator is the desired goal. Extract-
ing properties of objects from visual in-
put only is limited, especially regarding
physical/material properties like surface
roughness, stiffness, or mass. Here, hap-
tic exploration, i.e., mainly propriocep-
tive and tactile input during manipulation
of the object, is indispensable. Further-
more, unlike visual sensing, which is often
passive—images taken by a static camera—
haptic exploration is intrinsically active:
the particular way of manipulating the ob-
ject determines the quality of information
that can be acquired. Here, this idea is
formalized, and robot actions (compress-
ing or lifting objects) are assessed by how
much they are likely to reduce uncertainty
about specific object properties—their ex-
pected information gain. The most in-
formative action is then chosen. The ex-
pected information gain is calculated in
three different modes based on informa-
tion entropy, which is estimated for both
discrete probability distribution of mate-
rial composition of the object (e.g., plastic,
ceramics, metal) and continuous distri-
bution of each property like elasticity or
density. We use classification as a proxy
metric of how optimal are the choices of
the action selection algorithm. Overall
the mode optimizing for the information
gain of the continuous properties results
in the best classification. Learning of ob-
ject properties is accomplished in the form
of a Bayesian update from real measure-
ment actions. Such selection of actions
leads to more efficient learning about the
environment and, as a result, helps the
agent in navigating the real world, where
the unexpected shall be expected.

Keywords: haptic object exploration,
robot manipulation, robot grasping,
action selection, information gain,
information entropy

Supervisor: Mgr. Matěj Hoffmann,
Ph.D.

iv



Abstrakt
Výber prieskumných akcií je pojem po-
pisujúci proces autonómnej selekcie kro-
kov, ktoré vedú agenta k predurčenému
cieľu. V tejto práci, je cieľom skúmanie
vlastností a celkovo kategórie daného ob-
jektu (napr. materiál, krabica, šálka a
pod.) robotickým manipulátorom. Extra-
hovať vlastnosti objektu len vizuálne je
limitujúce, najmä v spojitosti s fyzikál-
nymi/materiálnymi vlastnosťami ako po-
vrchové trenie, tuhosť, či hmotnosť. V
rámci tejto práce je hlavným interaktív-
nym prvkom dotyk, teda najviac informá-
cii je získavaných z haptickej manipulá-
cie predmetom. Narozdiel od vizuálnych
vnemov, ktoré sú pasívne—fotografie za-
obstarané statickou kamerou—haptické
skúmanie je v samotnej podstate aktívne:
spôsob manipulácie priamo ovplyvňuje
množstvo informácií, ktoré je možné zís-
kať. V tejto práci je táto idea sformalizo-
vaná, kde sú volené ďalšie robotické akcie
(stláčanie, či dvíhanie objektov) na zá-
klade toho, ako je pravdepodobné, že na
základe danej akcie príde k zníženiu neis-
toty v rámci vlastností–teda na základe
ich očakávaného informačného zisku. Ak-
cia, ktorá prináša informácií najviac, je
zvolená. Očakávaný informačný zisk je po-
čítaný v troch rôznych módoch založených
na informačnej entropii. Informačná en-
tropia je odhadovaná ako pre diskrétne
pravdepodobnostné rozdelenie materiálo-
vej kategórie, tak i pre spojité pravdepo-
dobnostné rozdelenie vlastností, ako pruž-
nosť, či hustota. Používame klasifikáciu
ako proxy metriku toho, ako veľmi sú roz-
hodnutia algoritmu ohľadne selekcie akcií
optimálne. Mód optimalizujúci pre infor-
mačný zisk spojitej premennej vykazuje
najlepšie výsledky. Učenie sa vlastností
objektov je zabezpečené pomocou Bay-
esovskej aktualizácie z meraní priamo ma-
nipulátorom. Takýto výber akcií vedie k
viac efektívnemu učenie o okolí a ako vý-
sledok pomáha agentovi v navigácií reál-

nym svetom, kde je potrebné očakávať aj
neočakávané.

Kľúčové slová: haptické skúmanie
objektov, robotická manipulácia,
robotické uchopenie, výber akcie,
informačný zisk, informačná entropia

Preklad názvu: Výber prieskumných
akcií za účelom zistenia vlastností
predmetov robotickou manipuláciou
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Chapter 1
Introduction

1.1 Motivation

Since the industrial revolution, machines and other mechanical devices helped
to significantly raise the margins of production. Many processes could be
suddenly parallelized and later automated. Growing technological progress
brought more precise and vastly more efficient forms of construction, welding,
manipulation and much more, in the form of robotic manipulators.

The automation started in the industrial branches with highest demands
for efficiency and precision, such as automotive industry, microelectronics,
aviation and so on. Automation, heretofore a concept exclusively reserved
for hi-tech industries, became a part of the everyday, modern life. It takes
place in functioning and maintenance of stores, warehouses, households, trans-
portation and many more nuances of our everyday lives. The presence of
robotics switched from laboratory and factory exclusive to omnipresent. This
omnipresence of progressively competent and relatively intelligent machines
creates new robotic related decision-making and perceptive challenges. The
robotics are already an established part of the automated industry, bu their
applicability in everyday–life situations in an open and uncontrolled envi-
ronment is still not given. Such application requires integration of previous
experiences into the reasoning, successful interaction with the physical world
and also navigating the world, which was built by humans—for humans.

An average educated human, if presented with an object, is able to recognise
its shape, estimate the material properties and reasonably assess its weight
and/or center of mass from visual observation and/or haptic experience [1, 2].
That is, afterall, the everyday reality of being a human. However, to minimize
the uncertainty about their beliefs, they may also choose to interact more
intensely with the object. Grasping, lifting (relative weighing), rubbing with
fingers against its surface and so on. The more the person explores and
consequently learns about the object, the more confidence can be put into
the object categorization and therefore manipulation and utilization. This
thesis aims to tackle the challenges related to planning of the exploration and
learning from the environment with a robotic manipulator, whilst getting
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1. Introduction .....................................
inspired from the physical object-recognition routines of humans. This work

is a part of a collaborative project Interactive Perception-Action Learning for
Modelling Objects (IPALM) between five academic institutions in Europe [3].
The project’s purpose is to “develop methods for the automatic digitization
of objects and their physical properties by exploratory manipulations”.

1.2 Goals

The goal of this thesis is to create and formalize a framework for selecting
appropriate actions for better understanding of the inspected object. The
framework should provide a metric to evaluate the information gained from
previous actions. Based on the information gathered to that point, an
educated prediction could be expressed, possibly predicting how much learning
is expected to happen in any of the next possible actions. Based on this
metric, algorithmic approach should be utilized for choosing the action, which
promises the largest quantity of learning - information gain. This whole
framework should be constructed in a simulation and real life, to create a
proof of concept. As stated before, this thesis is part of IPALM project [3],
so a physical realization of this information gathering pipeline is desired.
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Chapter 2
Related Work

An action as primitive as grasping an object in the context of robotic ma-
nipulation can often prove to be difficult. This action often requires either a
very precise calibration of the robotic embodiment or an iterative approach.
Once the grasp of the object with a robotic manipulator is possible, the
grasp position, force and other parameters are often tailored to the particular
manipulator. Transfer of this knowledge (from concrete embodiment to an
abstract representation) is tackled in [4] by Felipe et al. Many corrective
practices are deployed (e.g. small variable movements in the grasping proce-
dures). This allows for a blind exploration strategy, where an arm follows a set
exploratory trajectory until contact is detected. This allows for a grasp to be
planned and executed. Learning about the object properties was out of the
scope of the work mentioned and this thesis offers a possible follow-up in the
whole process. The algorithm proposed in this thesis is primitive–independent.
Primitive–independent means that the algorithm proposed in this thesis does
not rely on any specific action, it only relies on the information gained from
such action (e.g. measurement mean and deviation).

Liarokapis et al. [5] proposed grasping techniques for underactuated grippers
that could discriminate between different objects using only a single force
closure grasp with force sensors. This underactuated sensing does not provide
complex understanding of the object’s pose and shape, but is on the other
hand able to recognize objects by training a random forest classifier and is
model-free. So the only data used for discrimination is the raw data from the
sensors. Interestingly, accuracy of the recognition did reportedly not drop,
while reducing the number of force sensors from 8 per finger to 2 per finger.
The compliance of the robotic hand used in the paper may be an obstacle in
future deployment of such approach in non-compliant grippers.

Attempt to grasp an object might be done with high precision in industrial
environment, although to be able to successfully grasp an object in general
conditions with limited knowledge and great uncertainty, a more complex
solution is needed. Nikandrova et al. [6] suggested an explorative extension
to the general grasping procedure. The cited paper focuses on maximizing the
stability of a grasp, while including also an exploratory sequence which helped
to learn needed information about the object, if necessary. This allowed for
many more successful grasps despite of having either incorrect prior knowledge
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2. Related Work.....................................
or a great measurement uncertainty. The initial grasping, similarly to this
thesis, is chosen via Bayesian inference based on the knowledge possessed
before the time of the first grasp attempt. The grasp with the maximal
expected stability is chosen. If this grasp was not expected to be stable
with relation to some threshold, exploratory action was chosen. This action
searches for the exact position of the explored object. A multivariate entropy
function regarding the object’s position is constructed and a minimum of
this landscape is found utilizing the MCMC (Monte Carlo Markov Chain)
method. The most stable grasp of that minimum is executed as an expected
most informative grasp and the information on location is updated.
In this thesis, MCMC methods are not needed, the entropy function is uni-
variate in every property and the shape is well understood.

Whether for just the proof of concept or an actual machine learning imple-
mentation, simulations might play a significant role in the learning about the
objects or about the expected informativeness of the grasps. The capabilities
of physics engine are quite welcome in most of the grasping simulations and
most commonly, MuJoCo and Gazebo are the ones used in such applications
[7]. MuJoCo simulator is also used to show some proofs of concept in this
thesis.

McGovern et al. [8] explored learning to estimate the center of mass (CoM) of
arbitrary objects. This was done by Q-learning in a simulation environment
Gazebo, which like MuJoCo, supports physics simulation. That was necessary
for the experimental learning. The CoM was firstly assumed to be the center
of the bounding box of the assessed object, which was incrementally (in small
steps) pushed to the edge of testing surface. This was iterated until the CoM
component in the explored direction was found with the demanded precision.
This procedure was repeated in all three axes and provided rewards for the
Q-learning algorithm to adjust weights in a neural network for faster and
more precise CoM assessment in the future.

Haptic exploration of the environment mostly relates to object detection,
pose recognition, elasticity estimation and so on. Nguyen Le et al. [9] focused
mainly on extracting friction information from arbitrary objects with the
combined use of vision and haptic exploration, which adds yet another ex-
ploratory action to the possible toolkit. Friction estimation is not only useful
for object recognition and classification, but also provides more efficient grasps
in the regions with higher friction. A probabilistic model is used to predict
the friction coefficients on the whole object. A prior from vision point-cloud
is filtered and segmented. Segments are explored via touch and the prior and
measurement information is combined to create a variable friction model. The
output of the model is a friction map and a confidence map. Their proposed
method does not make the assumption of homogenous friction which as a
result helps with grasping in the regions of highest friction density.
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Chapter 3
Materials and Methods

All the code used in this thesis is available at the dedicated Gitlab online
repository [10]. Complementary visual and audio-visual content is available
at the dedicated online Google Drive [11].

3.1 Experimental setup

In this section a description of different tools and approaches used for experi-
menting with action–selection is provided. Firstly, it is important to lay the
foundation of the working environment, which consists of object categories
and object properties. In order to navigate through this space a way of
interaction with the object possessing the category and properties is needed.
That is done based on theoretical evaluation of the current probabilistic belief
in property and category and acted out in the simulation and/or the physical
world. A visualization of the pipeline can be seen at the end of this section,
in the Fig. 3.28.

3.1.1 Theoretical model

The whole action selection process will be held in a variable space with only
four known materials. This simplification serves practical purposes, as the
functionality of the proposed action selection algorithm does not significantly
change with scale. Regarding the material properties, it is reasonable to expect
the variables to be normally distributed around the expected value. The same
assumption is made with measurements, which are assumed to be normally
distributed with a mean equal to the measured value and standard deviation
equal to the measurement error. Reference values were approximately chosen
from different sources [12, 13, 14, 15]. It is not important for this thesis to
prudently choose the parameters for each material, since it would be equally
useful to test the action selection on arbitrary materials A, B, C and D. The
choice of materials and their real world approximate equivalents is useful for
good intuition building. The standard deviations σREF for materials were
chosen to account for different alloys and slightly vague material definitions,
such as plastic and ceramic, where the name represents a wider group of
materials.

5



3. Materials and Methods ................................
Material Density [kg m−3] Elasticity [GPa]

Parameter µref σref µref σref

Steel 7900 250 200 10
Ceramic 2300 50 30 10
Plastic 1350 250 3 10

Aluminium 2705 180 70 20

Table 3.1: Table of reference materials and their normal parameters.

The table 3.1 consists of two types of material properties, that are of
interest in this thesis. The elasticity will be referred to via Young’s modulus.
In short, Young’s modulus is a constant of proportionality which puts into
perspective how does the change of length relate to the cross-sectional area,
when pushed or pulled with a force. The amount of stretch is proportional to
the original length and inversely proportional to the cross-sectional area [15,
Ch. 9.5] This is written as

E = stress
strain = F/A

∆L/L0
, (3.1)

where stress is the pressure applied (force F per unit area A) and strain is
described as the change in length ∆L to the original length L0. The units for
Young’s modulus are Pascals [Pa]. The action selection will be made from
the action space defined as follows:..1. Observe - The vision pipeline, provides material category prior; in the

future may also provide shape information...2. Grasp - As trivial as it may seem, grasping of a complex object, such as
a mug, is difficult without the shape information. Alternatively, grasp
attempts may be used to learn about the object shape, which is left for
further work. Grasping is a prerequisite for lifting...3. Squeeze - This action may needGrasp as a prerequisite, if the squeezing
is done with a gripper, opposed to a piston or a plate. The action provides
information about the elasticity...4. Lift - Lifting is useful for transportation and possibly the estimation of
the center of gravity. This action is a prerequisite for weighing...5. Weigh - Weighing may be done in different configurations, this will be
elaborated later. Torque sensors are useful for this application...6. Rub - This action is not yet available, but is being developed by other
participants from the IPALM project [9].

3.1.2 Physics Engine – MuJoCo

MuJoCo is a physics engine used for research, robotics development, machine
learning and many other disciplines with the need for physics. MuJoCo
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.................................. 3.1. Experimental setup

is one of the few physics simulators with a Soft-Body contact simulation
available which makes it the simulator of choice in many robotics applications
[16]. In fact, for robotics, it is the second most cited right after the Gazebo
simulator, which does not provide Soft-Body contact simulation. The name is
an abbreviaton for Multi-Joint dynamics with Contact. In this work, MuJoCo
is used mainly for the Soft-Body simulation. The engine is also later used to
simulate the control pipeline of the Kinova manipulator, which can be later
used similarly for the actual physical Kinova setup.

Squeezing: 2F-85 gripper imitation

To gather some simulation data for future reference for either simulation or
real-world application a squeezing setup was designed. Soft objects in four
different categories (very soft, soft, medium and hard) were created. The
MuJoCo Soft-Body simulation is not based on real world proxies, such as
Poisson’s constant, Young’s modulus or Hooke’s law, but rather focuses on
the particle-wise relationships of the particles in the soft object. This is
shown in a minimal example code Listing 1. An illustration of the Soft-Body
properties of such objects can be seen in the Fig. The basics of composite
Soft-Body object creation in MuJoCo are based on the bachelor’s project by
Michal Pliska [17]. 3.1.

<!-- Very soft -->
<composite type="box" count="10 10 10" spacing="0.0065">

<geom type="capsule" size=".002 .002" rgba="1 0.15 0 1" mass="0.003"/>
<joint kind="main" stiffness="1" damping="1"/>
<tendon kind="main" stiffness="1" damping="1"/>

</composite>

Listing 1: Soft object minimal example XML code for MuJoCo simulation.

(a) : Squeezing of a Very Soft
cube.

(b) : Squeezing of a Hard cube.

Figure 3.1: Squeezing with a 2F-85 gripper imitation in MuJoCo.

Four materials of different stiffness levels were used. The trajectory was
also varied with different end position goals: −1 and −2 cm. In other words,
each finger was trying to push its way to the other side through the cube.
The movement was obstructed by the soft object and the collision resulted
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3. Materials and Methods ................................
in force readings on the force sensors located on the fingers. The variation
in the end position goals mimics the gripper effort. An example of the data
gathered in this process are visualized in the Fig. 3.3.

The MuJoCo engine provides great possibilities for simulating motion of
physical objects and their collisions. While the simulation works great at
small speeds and small forces, the collisions must be computed for each time
step. This brings a lot of computational load and with great forces, the gripper
simply slips through the cube. This may be caused by the discrete nature
of the soft object, which is a composite of many capsules connected with
tendons. Those tendons have some stiffness, which can be either overcome if
set to low values (small stiffness), or will crash the simulation if set to high
values (large stiffness) and pressed upon with great force. Such “numerical
penetration” can be seen in the Fig. 3.2. More details on MuJoCo usage can
be found in [18].

(a) : Effort mov-
ing the fingers is
too great, it starts
to penetrate the
cube.

(b) : The fingers
got into the cube
and now are press-
ing against each
other.

(c) : The fingers of
the gripper are now
trapped inside the
cube.

Figure 3.2: Squeezing with a 2F-85 gripper imitation in MuJoCo.

The Subfig. 3.2(b) shows some white poles coming outward from the cube.
Those white poles are, in the full picture, the visualisation arrows of the
resulting contact forces. This is caused by the actual contact of the two
fingers pressing against each other. The plates used for the squeezing simulate
the size and overall shape of the Robotiq 2F-85 gripper used on the real
manipulator.

3.1.3 Simulation setup

In this section a more complex description of the simulation setup is provided.
In contrast with the previous section, where the squeezing was rudimentary,
here the whole manipulator is incorporated. The physics engine does not only
simulate the Soft–Body and two moving plates, but also needs to simulate
the dynamics of the whole manipulator. A Soft–Body cube is presented to
the manipulator. The manipulator then selects an action based on prior
knowledge and executes it. This can be either weighing, or squeezing as seen
on the Fig. 3.4.
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.................................. 3.1. Experimental setup
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Figure 3.3: Example of the time series data from the 2F-85 gripper imitation
sensors (top and middle) and a Stress-Strain curve (bottom) with the Young’s
modulus in the legend, of the Hard cube squeezing.

Despite the previous section showing high refresh-rate and high resolution
measurement, a more complex simulation pipeline inhibits the performance.
That is because many more parts are simulated at once. The pipeline con-
sists of Robot Operating System (ROS) and the MuJoCo simulator itself.
ROS is a versatile open-source middleware operating system. A big collec-
tion of community contributed code is available for the development of new
robotic systems. Applications in ROS are composed of many concurrently
running programs, the nodes. For the communication is between the nodes,
ROS implements interprocess communication patterns publisher/subscriber,
server/service and actions. It provides a good overview of the system’s control
by tools like RViz and RQt, hardware abstraction and implements messaging
protocols for simple and reliable communication. It is generally multipurpose,
but mainly used for research robotics, drones, humanoid robots etc. [19, p.
55, p. 147]

In this work, MoveIt motion planning framework for ROS is utilized, com-
manding the Kinova Gen3 manipulator inside of the MuJoCo simulation. An
essential part of this pipeline, connecting ROS and MuJoCo was provided
by my supervisor specialist Jan Kristof Behrens, MSc [20]. Building on
the provided core, I was able to connect the later described action selection
algorithm and the robot and proceed with designing the exploratory actions.

Density estimation via Weighing action

One way to learn more about the object is to assess its weight. Although,
considering that one tonne of feathers and one tonne of steel weigh, in fact,
the exact same amount, learning only about the weight is not alone sufficient.

9



3. Materials and Methods ................................

(a) : Weighing action por-
trayed in ROS visualization in-
terface RViz (left) and in Mu-
JoCo (right).

(b) : Squeezing action portrayed in
ROS visualization interface RViz
(left) and in MuJoCo (right) cube.

Figure 3.4: Visualization of actions in MuJoCo simulation.

The weighing action may be used to estimate the object’s average density,
which also needs the information about the shape, or to be more precise,
the volume. For this thesis, a simplifying assumption is made, that the
measured objects are cubes and their volumes are known. Knowing density
has greater value than knowing the mass alone, because it can be used for
object classification, or a more valuable learning / exploratory stimulus. The
mass is estimated based on output from the robot’s joint torque sensors. To
minimize the measurement error in torque reading, all possible robot axes
are aligned with the direction of the gravitational vector ~g. The torque is

 

Figure 3.5: Diagram of the weighing process.

calculated as
~τ = ~r × ~F , (3.2)

10



.................................. 3.1. Experimental setup

where ~r is the lever and ~F is the force acting on the lever. In the Fig. 3.5, it
can be seen, that the whole measurement process lies in one plane. Therefore
we can write

τ = ||~r || · ||~F || · sin θ, (3.3)

where θ is the angle between the lever and the force. The force acting on
the lever is the gravitational force ~Fg = m~g and the elbow (the fourth joint)
and the wrist (the sixth joint) are both in π/2 configuration. This effectively
means that the gravitational force is perpendicular to the arm connecting the
wrist and the elbow and parallel with the axis of the forearm, which is the
segment connecting the wrist and the end effector. Therefore we can write

τ = r ·m · ~g. (3.4)

The equation may be rearranged to yield the mass as

m = (τ − τ0)
r · ~g

, (3.5)

where τ0 is the holding torque of the empty gripper. This value is calibrated
at the beginning of the measurement.

Young’s modulus estimation via Squeezing action

Another way to learn additional information about the object’s properties
is squeezing or pressing. Similarly as with density, Young’s modulus is a
measure of the material’s intrinsic properties, which help with either object
classification or exploration. The process of estimating the modulus was
described in the previous sections, namely Eq. 3.1. An example of data
gathered directly from the ROS–MuJoCo simulation can be seen in Fig. 3.6.
Although simulation with the whole pipeline opposed to the bare physics of
previous Section 3.1.2 brings problems.
The model of Kinova Gen3 manipulator is described mainly in polygons
(meshes) and the physics of the contacts are handled by MuJoCo. Although
the immediate contact area of the gripper and the Soft-Body is a MuJoCo Box
object, the surrounding gripper and manipulator components are constructed
with meshes. This probably brings unwanted contacts while over-squeezing
and creates too many contact points, which results in shaking and sometimes
erratic behavior reminiscent of an explosion. What adds to the instability,
is simulating the friction. To successfully grasp and lift an object, an in-
dispensable amount of friction must be generated between the gripper and
the cube to resist falling. This has been stabilized by choosing the same
solver-constraint dimensions for friction in both object and the gripper.

Yet another limiting factor is the number of Soft-Body capsules per cube
facet. The amount of capsules dictates the resolution with which the solver
registers the collisions. There is a limit balancing the number of capsules
per facet size which dictates how strongly may the object be pressed with
the gripper, before unwanted penetration occurs. Such measurement with
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Figure 3.6: Example of the time series data from the squeezing of an arbitrary
soft object with 2F-85 gripper, obtained from the ROS-MuJoCo simulation.

Figure 3.7: Detail on the deformation of a cube in MuJoCo–ROS simulation.

penetration is unusable. Example of unusable measured data is shown in the
Fig. 3.8. This considerably limits the scale of stiffness, which is available for
direct squeezing. The exact cause of the difference between the bare MuJoCo
pressing and the more realistic squeezing with the Robotiq gripper is unknown.
It is suspected that the gripper translates all of the minute movements and
jitters of the whole manipulator which reflects on the robustness of every
movement. Another cause may be the fact that the bare MuJoCo pressing
is done in a linear motion, whereas the gripper squeezes in circular motion
allowing for some parts of the gripper to touch the cube sooner than the rest.

Creating a reference database for the squeezing comes with a challenge.
When measuring the squeezing data to create the database, a mass of 1 kg
was set to each measured cube. Five measurements were done for each cube
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.................................. 3.1. Experimental setup

and the average of the Young’s moduli was used as a referential value for
the database. Although when changing the mass of the cubes for experiment
purposes, the change in mass also slightly reflects in the Young’s modulus.
It is not clearly known, why this happens, but there exist a few possible
explanations. The physics engine also simulates the effects of gravity. The
Soft–Body is simulated by a network of joints and tendons. When the gravity
presses on the cube, it is generating pressure. The tendons are compressed
and make the cube pre-loaded. In this scenario, the gripper needs to not only
overcome the natural stiffness of the cube, but also the pre-loaded pressure
from the tendons. Another possible explanation is that with greater mass,
the inertia of each capsule is larger. Therefore the capsules resist motion to
a greater extent. The phenomenon of slightly variable elasticity biases the
measurement, based on how far is the current mass from the mass used to
measure reference.

Figure 3.8: Exemplary time series record of a penetration through the cube’s
faucet with the 2F-85 gripper imitation in MuJoCo. The Effort curve is resem-
bling a hill shape. The effort drops, when penetration occurs.

3.1.4 Hardware setup – Kinova Gen3, Robotiq 2F-85 and
Object properties

For the actual manipulating and overall interacting with the explored object a
Kinova Gen 3 manipulator is utilized, which provides 7 Degrees of Freedom. It
is an ultra-weight robot not suited for industrial settings [21]. Its dimensions
can be seen in the Fig. 3.9. Kinova also comes with its own API and ROS
packages, called Kinova ROS Kortex, which are utilized as in the real use as
in the simulation in MuJoCo. The Kinova Gen3 comes only as the body of a
manipulator, without the gripper. The gripper used is the 2F-85 by Robotiq
[22]. The number 85 represents a 85 mm wide-open range. The specifications
can be found in the Fig. 3.10. The important part of this gripper are its
contact pads. Area of these contact pads is considered the only contact area
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Total Weight 8.2 kg (no gripper)

Payload 4 kg (mid-range continuous; no gripper)
 
 4.5 kg (full-reach peak/temporary; no gripper)

 1.1 kg (full-reach continuous; no gripper)

Actuator joint range after start-up Infinite1 
(software limitation)

Maximum Cartesian translation speed Low-level:  40 cm/s (recommended)

 High-level: 30 cm/s

Power supply voltage 18 to 31 VDC, 24 VDC nominal

Average power 36 W (25 W in standby)

Peak power 155 W

Water resistance Arm: IP33

 Base / controller: IP33

Operating temperature -30 °C to 35 °C

Materials Carbon fiber

 Aluminium

Maximum reach 902  mm

Degrees of freedom 7 DoF

Actuator sensors Torque, position, velocity, current (motor), voltage,    
 temperature (motor)

Actuators Large: joints #1, 2, 3, 4

 Small: joints #5, 6, 7

KINOVA® Gen3 Ultra lightweight robot 
7 DoF Spherical

Technical Specifications

GENERAL*

Dimensions in mm

Figure 3.9: Blueprint describing relevant dimensions of the Kinova Gen3 7DOF
manipulator [21].

Figure 3.10: Detailed blueprint with all sizes dimensioned [22].

with the cubes. If the grasped object is too big, the gripper may squeeze the
cube in between the hard parts of the gripper’s inner knuckles, which may
distort the already noisy measurement. To avoid such cases, all of the objects
are of the same dimensions: 56× 56× 56 [mm]. For a more in depth insight
into the reference data, including mass and measured reference values, see
Tab. 3.2.

Material Dens. [kg m−3] Elast. [kPa] Side [mm] Mass [g]

Parameter µref σref µref σref a m

Black Cube∗ 451.09 28.53 17.25 14.11 56 85
White Cube 237.88 33.04 15.35 7.25 56 39
Yellow Sponge 25.62 27.35 7.18 5.66 56 4

Table 3.2: Parameters of the real-life reference objects. ∗ The Black Cube has
an additional weight ring mounted on the bottom. The dimensions of the ring
are neglected.

The objects were weighed and squeezed 10 times each, to extract an average
mean and a standard sample deviation for the object properties, see Fig. 3.12.
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................................ 3.2. Probabilistic reasoning

The weighing process is done identically as in the simulation—as described in
the Section 3.1.3. The objects were selected to create a setup that would make
it easy for the two objects to be ambiguous in one property and distinguishable
in the other. So two identical cubes, one White (Kinova White Cube) and
one Black (Kinova Black Cube) were used. Their elastic properties are almost
identical. To make those two objects measurably distinguishable, a metal
ring was adhesed to the bottom of the Black Cube. See Fig. 3.11(c). The
Black Cube was measured for elasticity with the ring adhesed, to account for
any elastic property changes. It turned out that the ring seemingly made
some structural changes to the way the cube is squeezed, probably pulling it
more together, providing greater resistance against squeezing. This reflected
on greater measurement inconsistency and a slightly larger Young’s modulus.
A reference database based on these objects is created for the purposes of

(a) : Proof of weight
for the White Kinova
Cube.

(b) : Proof of
weight for the Yellow
Sponge.

(c) : Proof of weight
for the Black Ki-
nova Cube with a
metal ring as an ex-
tra weight.

Figure 3.11: Three different cubes weighed, one with additional weight.

action selection. See, that on the Fig. 3.13 the Gaussians are cut-off at the
y-axis. This is due to physical absurdity of some properties being negative.
Although for the purposes of differential entropy computation, the whole
property distribution needs to be offset to account for the distribution as
a whole, not only a visible part, while handling the offset manually while
computing the Bayesian update.

3.2 Probabilistic reasoning

To reason about unknown properties of the outside world from the perspective
of a robot manipulator, a need arises for a robust world representation.
To represent the world in a useful manner, we need to account for the
imperfections of the robot’s sensors in a practical way, allowing us to further
infer information. In an attempt to quantify the imperfections of perception
(e.g. computer vision, haptic sensing), probabilistic reasoning comes in handy.
The main focus of selecting exploratory actions is via computing the values
of expected information gain. In the context of real life, there is no time
for taking great many measurements just to understand, what to explore
next. A more incremental way of incorporating the new information into a
world model is needed. There is not much space for real frequentist reasoning,
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(a) : Action: Weighing – of
the Kinova Black Cube with
ring.

(b) : Action: Squeezing – of the
Yellow Sponge.

Figure 3.12: Showcase of two actions, weighing (a) and squeezing (b).
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Figure 3.13: Reference of the real-world objects.

where we could perform N measurements and choose the one that is the most
informative. The goal is to choose the measurement that is currently believed
to be the most informative in advance. This set up calls for reasoning that
also takes into account a belief, formally known as a prior [23]. The proposed
formalism is called Bayesian reasoning.

3.2.1 Bayesian network

For a relevant and directed transfer of knowledge (information) between
different domains, some kind of information pipeline is needed. With use of
Bayesian reasoning an approach to solve this need is proposed: The Bayesian
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................................ 3.2. Probabilistic reasoning

Figure 3.14: Photograph of the actual setup at the university laboratory.

network. As defined by S. Russel and P. Norvig [23, Ch. 14], the Bayesian
network is a directed graph in which each node is annotated with quantitative
probability information. In short, each node corresponds to a random variable;
nodes are connected with arrows which show the directionality and each node
has a conditional probability distribution that quantifies the effect of the
parents on the node.

This definition is well-suited for representing random variables with well
known probability distribution. Although our model also contains connec-
tions based on the laws of physics (Fig. 3.15a), where the relationships are
certain. The Object shape node is not yet used; it is not in the scope of
this thesis. Simplifying the network by omitting the Object shape node (as
in Fig.3.15b) reduces the complexity significantly. Now, the volume is per-
ceived to be independent and only being a multiplicative constant for the
density approximation. With those simplifications, we may assume that with
measuring weight we are actually measuring the material density scaled by
some weight constant. Simply measuring the weight of an object without
this simplification does not provide any meaningful information, if the object
shape is not accounted for.
Regarding the terminology of stiffness versus elasticity, with our setup, only
measurement of elasticity via Young’s modulus is currently possible. Elasticity
is the measure of elastic deformation, whereas stiffness is the measure of
resistance to deformation regarding also the overall object shape. The Young’s
modulus describes the deformation without the effect of the physical shape
(although it is inversely proportional to the cross-sectional contact area, see
Eq. (3.1)) [15, Ch. 9].
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Material category
Prior

Object shape

Elasticity

Density

Volume

Mass

Stiffness

Surface
friction

(a) : Complete Bayesian network.

Material category
Prior Elasticity

Density

Surface
friction

(b) : Simplified Bayesian network.

Figure 3.15: Simplification of the Bayesian network.

3.2.2 Bayes theorem

Exploring the object properties with Bayesian reasoning requires a formula
for updating prior belief as the evidence accumulates. For this the Bayes
theorem is used. It can be symbolically written as:

posterior ∝ (prior × likelihood) (3.6)

Or more formally, following conventions by A.Gelman et al. in the Bayesian
Data Analysis [24]:

p(θ|y) ∝ p(θ)p(y|θ) (3.7)

where θ is the examined property, y is the data, p(θ) is the prior distribution,
p(y|θ) is the data distribution and p(θ|y) is the posterior density, although
still unnormalized. To gain posterior information, that is comparable with
other (physical) domains, normalization is needed as follows:

p(θ|y) = p(θ)p(y|θ)
p(y) = p(θ)p(y|θ)∑

i∈I p(θi)p(y|θi)
(3.8)

where p(y) is referred to as the data or evidence, or in the summation form, i
represents one event (e.g. property or a category) from the set of I events
(e.g. properties or categories). The evidence is the sum (or an integral in
a continuous case) of all the possible events of θ weighted by each event’s
probability. Another way to express the nominator in the Eq. (3.8) is in
form of joint probability distribution, which denotes how likely it is for two
(or more) random variables to occur simultaneously, written as:

p(θ, y) = p(θ)p(y|θ) (3.9)

3.2.3 Bayesian inference

Inference is an act of creating a guess or forming an opinion based on informa-
tion possessed beforehand. This is especially true for Bayesian inference. To
infer in a Bayesian manner means to utilize Equation (3.8) in it’s discrete or
continuous form according to a given prior and newly obtained information.
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................................ 3.2. Probabilistic reasoning

The equation (3.8) should be rewritten for the purposes of this example in
the following way:

p(m|ε̂) = p(m)p(ε̂|m)∑
i∈I p(mi)p(ε̂|mi)

(3.10)

where p(m) is a short notation for P (M = material) and ε̂ is the noisy
measurement (and ε is the true value of the measurement). Using this
equation to update our prior belief is called the Bayesian update. The
probability of the noisy measurement given the queried material p(ε̂|m) can
be obtained via marginalizing over the true measurement value ε as follows:

p(ε̂|m) =
∫
p(ε̂|ε)p(ε|m)dε (3.11)

where the p(ε̂|ε) is the probability density function of the noisy measurement
and p(ε|m) is the probability density function of the material’s property,
where ε is the distribution’s mean value. Both of these variables are assumed
to be have normal distributions N (µ, σ2). The integral (3.11) can be solved
either in closed form [25] or numerically. For better clarity, ε is exchanged for
the µε to further emphasize that the value in question is actually the mean:∫

p(ε̂|ε)p(ε|m)dε = p(ε̂|µε)p(µε|m)dµε (3.12)

=
∫
N (ε̂|µε, σ2

ε)N (µε|µprior, σ
2
prior) (3.13)

= N (ε̂|µprior, σ
2
prior + σ2

ε) (3.14)

This follows from the general properties of normal distributions and namely the
fact that expected value (and variance) of a sum of two or more independent
random variables is simply the sum of the expected values (or variances) of
mentioned variables. Formally:

E[X1 +X2] = E[X1] + E[X2] (3.15)
V ar[X1 +X2] = V ar[X1] + V ar[X2] (3.16)

In conclusion, to obtain the p(ε̂|m) the measurement ε̂ is simply evaluated
from the distribution as

ε̂ ∼ N (µprior, σ
2
prior + σ2

ε) (3.17)

.

3.2.4 Example of Bayesian inference

Using the methods described in the previous Section 3.2.3, an example can
be created.

First, let us assume a categorical prior distribution described by a proba-
bility mass function (PMF). This function represents a discrete probability
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3. Materials and Methods ................................
distribution of the current belief, where the sum of the probabilities is always
one. This belief represents a material category. As stated in sections before
(namely 3.1.1), the variable space consists of four random variables represent-
ing the materials.
The prior PMF can, for example, take on such values:

P (M = Ceramic) = 0.7
P (M = Aluminium) = 0.15

P (M = Plastic) = 0.1
P (M = Steel) = 0.05

(3.18)

A density measurement is performed, represented as a normal distribution:

ε̂ ∼ Nε(µ = 3150, σ2 = 300) [kg m−3] (3.19)

The categorical distribution represented by the PMF only represents the
amount of belief among categories, although this information is not reflected
into the overall shape (e.g. mean or variance) of the following distribution.
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Material density [kg. m 3]
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Ceramic
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Aluminium
Measurement

Figure 3.16: Material density – Prior distributions from reference values and a
hypothetical measurement.

Using equations (3.12-3.14), versions of normal distributions (as seen on
Fig. 3.16) are updated to take form (3.17), where the µprior (resp. σprior) is
the mean density (resp. standard deviation) value for the material. This
process is repeated for each material in the variable space. This makes the bell
curves wider and shorter. That can be seen on figure 3.17. The distributions,
now containing also the measurement error, are used. The measurement’s
mean is evaluated for each and every normal distribution in the variable space.
On the figure, the function values are indicated by circles filled with color
corresponding to the evaluated material.

The value of the measurement’s mean in respect to each material mi

corresponds to the term p(ε̂|mi) from the Eq. (3.10). So the Bayesian update
can be, for example, shown for Ceramic:
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Figure 3.17: Widened distributions for each prior. Transparent Gaussians in
the background indicate the previous shape of the distributions - before adding
measurement error. The dots on the vertical line representing the measurement
are the concrete likelihoods for each category with relation to the measurement.

P (M = Ceramic|ε̂) = P (M = Ceramic)P (ε̂|M = Ceramic)∑
i∈I p(mi)p(ε̂|mi)

(3.20)

= p(c)p(ε̂|c)
p(c)p(ε̂|c) + p(a)p(ε̂|a) + p(p)p(ε̂|p) + p(s)p(ε̂|s) (3.21)

= 0.7 · 2.36 · 10−4

0.7 · 2.36 · 10−4 + 0.15 · 5.07 · 10−4 + 0.1 · 2 · 10−8 + 0 (3.22)
.= 0.6848 (3.23)

Where:

p(m) is short for P (M = Material)

p(ε̂|m) is shot for P (ε̂|M = Material)

c, s, p and a are short for Ceramic, Steel, Plastic and Aluminium
respectively

Repeating the process above for each material results in a complete step of
Bayesian update. To show the updating ability of this framework, the exact
same measurement and update are repeated ten times, resulting in ten steps
of Bayesian update, shown in the Table 3.3. The relevance of the Bayesian
inference starts to show just after a few first steps, flipping the belief around
after two iterations. This shows, that no matter how imprecise the prior
may be, the updating process is able to handle inconsistencies. However
the amount of measurements needed to breach some confidence threshold is
affected both by the prior consistency and measurement error. The greater
the inconsistency and error, the more measurements are needed to converge
the inference.
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N-th step Ceramic Aluminium Plastic Steel

0 0.700 0.150 0.100 0.050

1 0.684 0.316 0.000 0.000
2 0.502 0.498 0.000 0.000
3 0.320 0.680 0.000 0.000
4 0.180 0.820 0.000 0.000
5 0.092 0.908 0.000 0.000
· · · · · · · · · · · · · · ·
10 0.002 0.998 0.000 0.000

Table 3.3: 10 steps of the Bayesian update.

3.2.5 Obtaining a prior

To create a representation of current information, a distribution encompassing
the reference data and the probability distribution of the material is desired.
A one dimensional Gaussian Mixture Model (GMM) is constructed. All of
the information about the distribution is kept upon construction and used for
the purposes of Bayesian inference, as shown in the previous Subsection 3.2.4.
Reference data are provided at the initialization—this data is not learned,
nor updated in any way throughout the algorithm. For better clarity, see the
provided visualization 3.18.

Material probability distribution The prior for a  
(GMM)(PMF)

M1 M2
M3

M4

 
M1 M2 M3

M4

 

Reference Data for Material Properties 

Figure 3.18: Flowchart of the prior Gaussian Mixture creation.

Following the diagram 3.18, two Gaussian Mixture Models, one for each
property, are created. Both can be seen on the Fig. 3.19.
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Figure 3.19: Example of a resulting Gaussian Mixture Model.

3.3 Action selection

Action selection is the core of this work. The action repertoire is shown in the
Section 3.1.1. The goal is to purposefully choose an action from the repertoire
based on the information known beforehand (the current prior distribution)
and an expected value of measurement constructed via sampling from the
a priori distribution. A posteriori distribution is used, when measurements
have already taken place. It is important to note that the action selection is
cyclic, so what is the a posteriori (or simply posterior) distribution in the
i-th iteration, is perceived as the a priori (or simply prior) distribution in
the following i+ 1 -th iteration.

3.3.1 Information theory

To study and quantify the amount of learning that can be accomplished, tools
and techniques described in the topic of Information theory can be utilized.
For any action selection to take place, a decision based on some quantity must
be made. Information theory studies the quantification, transfer, storage
and general communication of the information. Information theory is built
on top of a publication by Claude E. Shannon, A Mathematical Theory of
Communication [26]. Information theory has practical implications in fields
of statistical physics, computer science, probability and statistics and much
more. T. M. Cover and J. A. Thomas describe Information theory as a formal
representation of the extreme points of the set of all possible communication
schemes [27, Ch. 1]. One extreme (minimum) is the Data compression limit,
known as entropy, and the other extreme (maximum) is the Data transmission
limit, known as channel capacity. The former is crucial for action selection,
and will be discussed in the following sections.
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3.3.2 Entropy and differential entropy

Entropy is a function of some probability distribution which underlies the
communication form of the information. In simpler terms, the entropy, in
the discrete case, represents the average amount of information needed to
represent an event drawn from a probability distribution for a random variable.
This can be viewed as the measure of “surprise”. The entropy of a random
variable X is defined as

H(X) = −
∑
x

p(x) log2 p(x), (3.24)

where p(x) stands for the probability mass function. The expression (3.24)
is called discrete information entropy, or shortly entropy. The unit of the
discrete information entropy is bit. It is derived from the base of the logarithm
(e.g. when a natural logarithm is used, the unit is called a nat). Alternative
notation may be used, where the properties of logarithm are used, H(X) =∑
x p(x) log2

1
p(x) .

The Eq. (3.24) can be also written for the continuous form as

H(X) = −
∫
x
fp(x) log2 fp(x), (3.25)

where the fp(x) stands for the probability density function. The expression
(3.25) is called differential information entropy, or shortly differential entropy.
The differential entropy is uniteless. Although similar looking, information
entropy for discrete and continuous cases are not interchangeable.

David J.C. MacKay in his book Information Theory, Inference and Learning
algorithms proposes usage of a term ensemble, instead of a sole term random
variable, [28, Ch. 2]. The author defines an ensembleX as a triple (x,AX ,PX),
where the outcome x is the value of a random variable, which takes on
one of a set of possible values, AX = {a1, a2, ...aI}, having probabilities
PX = {p1, p2, ...pn}, with P (x = ai) = pi, pi ≥ 0 and

∑
ai∈AX

P (x = ai) = 1.

This notation is best suited for a discrete random variable or a set of random
variables. In this work, discrete entropy and differential entropy are both
used, therefore a uniform and brief notation

∑
x (or

∫
x) is used (as opposed to

the notation from the aforementioned book
∑
x∈AX

). The fact that a random
variable takes on values with some non-negative probability where the sum
of probabilities is equal to one is generally assumed in both continuous and
discrete cases.

3.3.3 Action selection algorithm

For a robot to autonomously learn object properties through exploration, an
algorithmic approach based on some metric is needed. As outlined earlier, the
metric for the action selection in this work is, logically, the expected change
of entropy, i.e. the information gain. Randomly choosing an action is also an
option, but the information gain of a repeated measurement (assuming the
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consistency of measurement error) is often times close to zero. In this way,
randomly choosing an action despite of having the information about mea-
surement history would not be effective, although vastly easier to implement.
To decide between specific actions (i.e. what property to measure), various
approaches are possible.

3.3.4 Differential entropy of a property belief

Computing the differential entropy of a property belief is done in a continuous
way by numerically approximating the equation (3.25) with its discrete form
(3.24). To compute this entropy a probability density function (PDF), which
would represent the current belief, is needed. This PDF is hard to obtain in a
closed form with such Gaussians, as seen on Fig. 3.16. A numerical approach
was chosen, where the PDF as seen in Fig. 3.20b, is constructed as a sum
of each N (µi, σ2

i ) weighted by its probability. This results in a distribution
called Gaussian Mixture Model, which contains information about the chosen
material property, their mean values µi, their variances σ2

i and also the
probability for each material being the correct category for the explored
object. For better clarity see Fig. 3.18. This material category probability
is recorded in the probability mass function (PMF), as seen on Fig. 3.20(a).
On the same picture, a material referred to as a joker is mentioned. This is a
supplemental material category, that represents any other unknown material
in the prior. More in-depth description and explanation is provided in the
following sections.
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(a) : PMF representing the material
probability distribution.
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(b) : PDF representing the object
density prior.

Figure 3.20: Comparison of the material probability distribution (a PMF) and
the object density prior (a PDF).

To clarify the figure above, it is obvious from (a) that the material Ceramic
has the highest probability of being the correct material category for the
explored object. However, the maximum peak in (b) is above Aluminium.
This is simply because of the fact that the Ceramic has a greater variance in
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parameters (in the sense of how much can material properties change, while
still being categorized as Ceramic), opposed to the Aluminium, which is very
strict in its material properties definition, and therefore has smaller variance.

The differential entropy of a property belief can be formally written as H(P),
where the P stands for “property”. As mentioned before in the Section
3.3.2, differential entropy has no units as opposed to discrete entropy. The
approximation of the integral with a sum does not mean that the entropy is
now described in bits. The entropy is computed as

H(P) = −
∑
x

h · f̄P(x) log2 f̄P(x), (3.26)

where the h is the step size (or bin size), and the f̄P(x) is the numerical
approximation of the continuous probability density function fP(x).

3.3.5 Material entropy

To actually make an informed decision based on the information gain, an
educated estimate is needed to update the prior distribution with Bayesian
update. The educated estimate is obtained by simulating measurements.
This is called measurement emulation and is done simply by sampling the
prior distribution expanded with the measurement error. This is done in
closed form, similarly as described in the Subsection 3.2.5, where each single
Gaussian of the Gaussian mixture is widened as in the Eq. (3.17). Sampling
the distribution draws N points, that follow the probability density function.
In other words, the higher the peak, the more likely is the point to be drawn.
This can be seen in the Fig. 3.21. For purposes of this work, let N = 100.
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Figure 3.21: Sampling from the emulation.

The red dots in the Fig. 3.21 represent an expected measurement. In the
sections before, a notation ε̂ for the noisy measurement value was used. Now
ε̂ will be used to denote the emulation of the noisy measurement value. The
emulation represents an expected measurement based on the prior knowledge.
That is the reason why the prior PDF with incorporated measurement error
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is used for the measurement sampling. It is worth noting that the actual
measurement is expected to be a single normal distribution. The reason the
samples in the figure above follow a Gaussian mixture distribution and not a
single Gaussian is that the confidence (i.e. the material belief represented
with the PMF) also plays role in the shape of the PDF. Simply put, we believe
the measurement could measure various materials, and we expect to be so
with some probability for each material.

Computing the Material entropy is not difficult. The probability of each
material is expressed in the probability mass function, and computing its
entropy means only to use the Equation (3.24) for discrete probability distri-
butions. But to learn some information, (i.e. compute the information gain)
an Average expected entropy is needed. The information gain is computed as

H(M)− E[H(M |P̂)], (3.27)

where H(M) is the Material entropy and E[H(M |P̂)] is the Average expected
entropy. The M stands for “material”, P stands for “property” and P̂ stands
for the property emulation. In Fig. 3.15 we have previously shown that the
material properties Pi are the children of the PMF, not the other way around.
This means that our current material belief dictates the expected properties,
and the expected properties dictate the parameters of the PMF only through
the Bayesian update.

To obtain the Information gain from the Equation 3.27, we first need to
compute the Average Expected Entropy value as

E[H(M |P̂)] = 1
N

N∑
n

H(M |ε̂n) (3.28)

where the ε̂ represents individual measurement emulations for the current
property P , M stands for the material, N is the number of samples and P̂ is
the emulated property.

To compute each entropy emulation of a property for each material H(M |ε̂n)
the Bayesian update must be done first as described in the Subsection 3.2.3.
Afterwards the entropy is computed according to the Equation (3.24). After
this is done for all of the samples, an average of those possible entropy
outcomes is made. So in result, the Information gain does not represent how
much we will learn or have learned, but how much do we expect to learn on
average if a measurement is taken in the domain of this property. The step
from the Probability Mass Function to the Probability Density Function was
previously explained in the Subsection 3.2.5. The general outline of the whole
process is shown in the Figure 3.22 below.

3.3.6 Differential entropy of a property with relation to a
property emulation

Computing the property entropy provides yet another way to assess the
amount of gained information. As seen in the Subsection 3.3.4, it is also
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Average Expected Entropy Bayesian Update for
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Expected Information Gain 

Figure 3.22: Object material category – outline of expected information gain
calculation.

possible to compute the entropy for a continuous variable. The whole property
belief is a Gaussian mixture, which is the continuous distribution referred
to. Computing solely the differential entropy does provide some information,
but the information is not alone sufficient. It is impossible to describe a
continuous variable with finite number of bins, because there will always exist
a finer binning describing the variable. The difference between the current
differential entropy and the expected differential entropy is what matters in
this case. This approach is similar to the Subsection 3.3.5, just in a continuous
sense. The Expected differential information gain is the difference between
the prior differential entropy and the expected differential entropy, formally
written as

H(P)− E[H(P̂)], (3.29)

where P is the property and P̂ is its emulation. The emulation, as opposed to
the discrete measurement emulation, now encompasses all possible expected
measurements at once, in a single distribution.

Both H(P) and H(P̂) are calculated as stated in the subsection about Differ-
ential entropy of a property belief 3.3.4. The expected differential entropy
E[H(P̂)] could be obtained as in the previous subsection, although it is
possible to account for all of the possible expected measurements by using
the whole emulation without actually sampling from it. This makes the
emulation more robust and no average of measurements is needed. Although,
this approach brings an important caveat.

Once the PDF is created and updated with an actual, real-world measurement,
the comfort of closed-form solutions is lost from that point. The real-world
measurement is incorporated via element-wise multiplication and then nor-
malized. This approach is nonetheless valid, but makes it very difficult to
create an emulation (i.e. prior widened with the measurement error) in a
closed form, as it was in the previous Subsection 3.3.5. Instead, a convolution
of the prior distribution with a Gaussian representing a general measurement
is done. The general measurement is created as a Gaussian with the mean in
the middle of the working window and the sigma of the measurement – the
measurement error. The working window refers to the numerical range of
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bins, upon which the Gaussian Mixture Model (GMM) is constructed. In
python’s numpy library, this can be represented as: numpy.linspace(start,
end, num_of_bins). A window of the same length is used for both GMM
and the general measurement. When the GMM and the general measurement
are constructed, they are convolved resulting into a distribution refered to, in
the previous section, as the emulation. More formally written as

f̄ε(x) = f̄P(x) ∗ ḡε(x), (3.30)

where f̄P(x) is the Gaussian Mixture Model for the property P, ḡε(x) is the
general measurement distribution and f̄ε(x) represents the emulation distri-
bution. For the sake of notation consistency, bars were added above all of
the distributions, to address the discrete implementation of those operations.

Calculating the posterior distribution for further differential entropy calcula-
tion is done by element-wise multiplication of the prior and the emulation:

ȳ(x) = f̄P(x)� f̄ε(x). (3.31)

After the posterior is acquired, the entropy E[H(P̂)] is computed using Eq.
(3.26). The rough outline of this process is shown in the Figure 3.23.

Prior (PDF)

Expected Information Gain 

Emulation Posterior Distribution

Expected Differential Entropy

Figure 3.23: Outline of the Expected differential information gain calculation.

3.3.7 Bayesian Message Passing

It is important to clarify the current chain of events in the Bayesian network.
Currently the Bayesian network is only updated back to the Material Category
Prior node. This provides new information for the category only. The
information from one child node (e.g. Density) which got to the parent node
(e.g. Material Category) does not travel further into other child nodes. Such
process is called Belief propagation and requires a message-passing algorithm.
This would be very beneficial for the robustness of the belief propagation.
The current belief is propagated only in the parent-child pair in each mea-
surement episode. There is currently no message-passing in between the child
nodes. This is left for further work, as the difficulty level of such algorithm is
out of the scope of this thesis. The belief propagation can be seen on the Fig.
3.24.
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Figure 3.24: Network without the message passing in between child nodes.

A proper visualization of the inference process can be seen on the Fig. 3.25.
In the left top corner, there is a red arrow pointing from the Initial PMF:
Π0 to the Initial PDFs ρ10 · · · ρn0 . This symbolizes the creation of the initial
PDFs from the initial prior PMF, as described in the Subsection Obtaining a
prior (3.2.5). The first decision of action selection algorithm was, for example,
to measure property1. This measurement updates the Material Category
prior (recall the previous Fig. 3.24) and the appropriate property PDF, in
this case ρ1. Other PDFs ρn are not changed. They would only change, if
aforementioned message-passing algorithm would be implemented. So those
PDFs are in a sense detached from the Material category, they only govern
the action selection Modes (Modes will be described later) and can provide
argmax of the latest belief.
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Measurement:  Initial PDF:   

Property

Property
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Property

Property

  Measurement:  

  

  

Property

Property

  

for property
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Figure 3.25: Visualization of 2 exemplary measurement episodes.

3.3.8 The Action selection algorithm

To select the most suitable action with the highest information gain, a
few different metrics can be used. Two similar algorithms that differ in
whether they seek to maximize the information gain of discrete or continuous
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probability distributions are presented below.

Mode 1: Material category optimization

In the Algorithm 1, only the Discrete Information Gain is optimized for. This
results in a discrimination process that seeks changes to the probabilities of
the material category (the PMF) and ignores the uncertainty of the continu-
ous probability distributions for individual object properties. In other words,
this approach acknowledges that some measurement is expected on average
to make greater differences between the probabilities of each material. Alg. 1
utilizes theory from the Section 3.3.5 for computing the discrete entropy,
referred to as ComputeDiscreteEntropy(). The BayesianUpdate() is applied in
the form described in the Subsections 3.2.3 and 3.2.4.

Algorithm 1: Discrete Material Information Gain optimization.
1 max_info_gain := 0
2 if prior is available then
3 PMF := prior
4 else
5 PMF := uniform_prior
6 end
7 assert ground_dict exists
8 foreach property in ground_dict do
9 GMM := BuildGaussianMixtureModel(property, ground_dict, PMF)

10 prior_disc_entropy := ComputeDicreteEntropy(PMF)
11 GMM σ̂ := ApplyMeasurementError(GMM )
12 samples:=Sampler(GMM σ̂)
13 foreach sample in samples do
14 temp_PMF := BayesianUpdate(PMF)
15 disc_entropy := ComputeDiscreteEntropy(temp_PMF)
16 append disc_entropy to disc_entropies_list
17 end
18 E[disc_entropy] := Mean(disc_entropies_list)
19 info_gain_disc := prior_disc_entropy - E[disc_entropy]
20 if info_gain_disc > max_info_gain then
21 max_info_gain := info_gain_disc
22 planned_measurement := property
23 end
24 end
25 return planned_measurement

Mode 2: Property optimization

Optimizing for the Differential Property Information Gain is another metric
to gauge the expected information gain. The differential information gain
‘lives’ in a different variable space as opposed to its discrete counterpart. One
of the reasons is the fact that the differential entropy may be negative [27,
Ch. 8]. That stems from the basic definition of entropy. Discrete entropy
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can describe only a discrete phenomenon in the discrete world, in a finite
number of steps, i.e. bits (or nats). To describe the information in the same
manner as the discrete entropy does, means to slice the continuum into a
discrete world with many bins. This is called quantization. And the measure
of differential entropy is only as good as its quantization. This means that
no matter how fine your quantized bins are, you can always go finer. this
implies that with finer bin resolution comes more precise approximation of
the differential entropy.

Algorithm 2: Differential Property Information Gain optimization.
1 max_info_gain := 0
2 if prior is available then
3 PMF := prior
4 else
5 PMF := uniform_prior
6 end
7 assert ground_dict exists
8 foreach property in ground_dict do
9 f̄P := BuildGaussianMixtureModel(property, ground_dict, PMF)

10 f̄ε := ApplyMeasurementErrorToGMM(f̄P)
11 ȳ := ElementWiseMultip(f̄P , f̄ε)
12 prior_diff_entropy := ComputeDifferentialEntropy(f̄P)
13 posterior_diff_entropy := ComputeDifferentialEntropy(ȳ)
14 info_gain_diff := prior_diff_entropy - posterior_diff_entropy
15 if info_gain_diff > max_info_gain then
16 max_info_gain = planned_measurement
17 planned_measurement := property
18 end
19 end
20 return planned_measurement

The Algorithm 2 describes the optimization for the differential informa-
tion gain, which is calculated for each currently measurable property. This
algorithm simply describes the whole process from the Subsection 3.3.6. The
notation in the algorithm is consistent with the notation in the aforementioned
subsection.

Mode 3: Hybrid sum optimization

This type of optimization does not need its own algorithmic description.
It simply optimizes for the sum of the Discrete Material and Differential
Property Information gain. This is not mathematically correct, as the discrete
and differential information gains live in different variable spaces (see the
previous part). However, it is possible to use this unitless number as an
abstract proxy metric for the optimization. This would mean that the choice of
the next planned action would be judged based on the sum of info_gain_disc
and info_gain_diff from the Algorithm 1 and 2 respectively. The property
with the highest expected hybrid sum is chosen.
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3.3.9 Measurement uncertainty and a placeholder category

The main goal of the action selection framework is to gain more information—
or reduce the uncertainty—about an object being inspected. At the beginning
of this work, it was stated that the variable space will be consisting only of
four materials. That is correct, although there may come a situation where
an object is measured, that does not fit with any of the referential data. The
algorithm would slowly converge to the closest variable in the variable space,
although that may not be appropriate. For such special cases, a placeholder
category is introduced.

Unexpected Real Measurement

It is important to expect the unexpected. The Bayesian update has also some
shortcomings. The denominator of the Bayes theorem (see Eq. (3.10) and Eq.
(3.8)) is a discrete sum, which assumes that all of the categories are known
and defined. A problem occurs, when a measurement of a material that
shows much greater or smaller quantity of property than currently known,
is measured. For example, let us assume, that the measurement error is
infinitely small, effectively rendering the measurement absolutely trustworthy.
A measurement of the elasticity of some diamond gemstone is taken, return-
ing the Young’s modulus of approximately 1000 GPa. The hardest material
that we currently have in the reference database (and consequently in the
PMF) has the Young’s modulus of for example 300 Gpa. Such ”diamond
measurement” would be numerically unstable (as the inferred value would be
very close to zero).

Even if it was possible to make the computation numerically stable, the
Bayesian update would just update the probability of the ”hardest” material
(i.e. a material closest to the current measurement) and would therefore
loose precision. After a few steps of repeated measurements and inference,
the probability in the PMF would converge to the category closest to the
measurement. This may be perceived as a feature, not a problem, because
the algorithm would come as close as possible to describing the real object
measured, in terms of the current property.

This naïve approach updates the probability of a material, but the interde-
pendency between material properties does not need to be straightforward.
For example, an object, that is very stiff does not need to be heavy (e.g.
carbon fibre) and vice versa. So the verdict of the algorithm should not be
the material closest to the measurement, but an unknown material. This
unknown ”placeholder” material will be referred to as a joker for apparent
reasons.

The joker is a uniform distribution that helps to avoid numerical problems
and allows the probability to converge to an unknown category. In the case,
where the measurement mostly resembles the unknown category throughout
the properties, the information about the mean value in each property and
the attributable sigma for the property would get lost. For such cases a
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distribution, where the measurement is incorporated directly numerically
(not indirectly through the discrete form of Bayesian update) is kept. This
distribution is kept for each property separately, recall Fig. 3.25. The visual
representation of this uniform joker distribution can be seen on the Fig. 3.26.
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Figure 3.26: An example showing some arbitrary prior distribution, measurement
distribution and a uniform distribution labeled joker.

In the Fig. 3.26, the measurement uncertainty σ is not accounted for in
the Example Prior distribution. The Gaussians are shown as is. To show
the numerical shortcomings of a possible object measurement of an unknown
category, the Subfigures (a) and (b) in the Figure 3.27 were created.
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(a) : The widened example prior
(including the measurement error)
without the joker uniform distribu-
tion yields a value very close to zero,
that is p(x) = 1.67 · 10−28.
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(b) : The widened example prior (in-
cluding the measurement error) with
the joker uniform distribution yields
a significantly more reasonable num-
ber, that is p(x) = 3.35 · 10−5.

Figure 3.27: Comparison of some example prior distributions with and without
the joker uniform distribution added.
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3.3.10 Connection to IPALM database

In the IPALM project [3], various objects from various datasets are used for
the project related experiments. The most populated dataset is the YCB
dataset [29], which was also used to teach a neural network detectron 2 for
the prior acquisition [30, 31]. The YCB dataset consist of everyday objects
such as plates, cutlery, a water pitcher, a hammer, a tennis ball and many
more. Generating good gripper poses for grasping such objects is difficult and
still in progress by other members of the IPALM project. Simply put, those
objects are too complex and therefore too difficult to measure in this thesis.
More simple objects such as cubes are used to rule out difficulties with shape
and non-homogenous density (e.g. a plastic bottle filled with air). For future
use, a common structure for measurements, model properties and database
reference was co-developed with other IPALM members. JavaScript Object
Notation (JSON) files are used for cross-platform data storage. The goal
for common data structures is unification and flexibility. If common ways of
storing data are implemented, the parsing of such file is then straightforward.
An example of such unified data structure can be seen in the Listing 2.

[{
"object_name": "item",
"measurements": [

{
"name": "density",
"value": {

"sigma": 1000,
"mean": 7337.799079987667,
"units": "kg.^{-3}"

}
},
{

"name": "elasticity",
"value": {

"sigma": 1000,
"mean": 4969.761122576146,
"units": "Pa"

}
}

],
"object_id": "1"

}]

Listing 2: Example of a measurement data structure.
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Figure 3.28: An overview diagram of the action selection pipeline.
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Chapter 4
Experiments and Results

The action selection governs what exploratory actions are chosen to learn
about properties of an object and possibly disambiguate between priors—it
does not provide classification directly. The updating of the belief is done with
the Bayesian update from a provided measurement. The belief (previously
described in the form of the Gaussian Mixture Model or a Probability mass
function describing the probabilities of known materials) is used after an
arbitrary number of measurements to perform classification. The convergence
of the classification is used as a proxy metric to judge the performance of the
action selection.
The algorithm has undergone various tests in different circumstances. Firstly,
a fully virtual experiment was conducted. This type of experiment tests
the core of the algorithm, while having manual control over the simulated
measurements. The simulated measurement mean was perturbed with random
uniform noise, which substituted for the wider range of items described in some
more vaguely defined categories, such as ceramic or plastic. That decision was
made, because various items of slightly different properties are grouped and
called ceramic, although it might be actually made of silica, resin, porcelain,
various alloys and so on. All of the measurements were constructed manually,
perturbed with aforementioned noise and the measurement sigma was chosen
according to criteria described in the Section 4.1. The perturbation is added
to the measurement mean. The density perturbation is randomly chosen
from the range of 〈−20, 20〉 bins (where the length of the density window is
≈ 9000 bins) and the noise for elasticity is chosen from a smaller range of
〈−10, 10〉 bins (where the length of the elasticity window is ≈ 500 bins, but
the material definitions for elasticity are much wider, which is noticeable on
the Fig. 3.19 from the introductory Section 3.2.5).

Secondly, the other variation of testing was done also virtually, but with the
help of a modern real-time physics simulator. The nature of the simulation
brings its own perturbation, which left great opportunity for the action
selection demonstration. For more details on the implementation, see the
section on Virtual setup 3.1.2. The nature of the perturbation is elaborated
on later.

For evaluation purposes a terminology was established as follows:
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4. Experiments and Results................................
.Correct prior - a prior is perceived as correct, when the most likely

category is the same as the Truth. Incorrect prior - a prior is perceived as incorrect, when the most likely
category differs from the Truth..Proper measurement - a measurement is considered proper, if the
measurement error is in range: σε ∈ (σref, 2σref 〉..Noisy measurement - a measurement is perceived as noisy, if the
measurement error is larger than 3σref..Convergence - if the algorithm ends with the most likely category,
where the P (M) ≥ 0.6 and the category corresponds with the Truth, it
is perceived to converge to the correct category..Divergence - if the algorithm ends with the most likely category that
differs from the Truth with P (M) ≥ 0.6, or if the argmax (P (m)) = joker,
it is perceived to diverge from the correct category..Weak convergence - if the algorithm ends with the most likely category,
that corresponds with the Truth and P (M) < 0.6, it is perceived to
converge weakly to the correct category.

The terminology above is then completed with a uniform prior and six
different contexts of measurement type an prior type are created as follows:..1. Correct prior, proper measurement..2. Incorrect prior, proper measurement..3. Uniform prior, proper measurement..4. Correct prior, noisy measurement..5. Incorrect prior, noisy measurement..6. Uniform prior, noisy measurement

4.1 Virtual Experiments

To showcase the workings of algorithms from the Section 3.3.8, we conduct
an exemplary experiment. Experiments are run in aforementioned varied
settings—contexts, to measure the performance in terms of a correct classifi-
cation rate, although the algorithm is not inherently a classifier. Even with
a wrong classification, the algorithm might learn valuable information, for
example, in the form of the argmax of each property belief, which yields the
most likely mean value. For each context and each mode, 10 steps of the
algorithm were done. Each test was repeated 5 times to rule out random
flukes. In total, 90 tests are provided (6 contexts × 3 modes × 5 repetitions
= 90).

Note: It is necessary to point out, that the criteria for Proper and Noisy
measurement are only usable, if the examined object has known properties.
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Otherwise, no assumption of proper or noisy measurement can be made, if
there exists no clue, what to compare the deviation with, in the reference bank.

Correct prior, proper measurement

Such a setting does not provide any great challenge, since everything is set
up right. In this scenario all three Optimization Modes (Mode 1, 2 and 3
from the Subsection 3.3.8) converged to the correct category.

Incorrect prior, proper measurement

This setting is actually very similar to the Correct prior, proper measurement,
because the Bayesian update will overcome the wrong prior. Although the
Mode 1 diverged in 3/5 tests, Modes 2 and 3 converged every time.

Uniform prior, proper measurement

Uniform prior is a very useful test case, as it really narrows down into what
is the entropy selection worth. Mode 3 converged only in 1/5 tests, Mode 1
did not converge at all, but Mode 2 converged in all 5 tests.

Correct prior, noisy measurement

This setting was no problem for the Modes 2 and 3, although the strictly
discrete Mode 1 did diverge in 5 out of 5 times.

Incorrect prior, noisy measurement

Incorrect prior and noisy measurement are quite a difficult setting, as there is
not much to work with. Modes 1 and 3 diverged completely each time, Mode
2 is on the edge between weak convergence and convergence in 5/5 tests.

Uniform prior, noisy measurement

In this setting, only Mode 2 was successful, with 5/5 converged tests. Mode
1 and 3 diverged.

Overview in tables

In the following tables, the results of the 90 tests are provided. The detailed
logs from the testing are available in the online GitLab repository [10]. Letters
used in the tables: C stands for convergence, D stands for divergence and
W is weak convergence. In the brackets, next to the letters is the amount of
tests, in which the Mode converged to the correct category.

It is possible to conclude that the Mode 2 is currently the best option for
optimization. It seems, that the strictly discrete Mode 1 has problems when
the measurement is not proper. This mirrors into the Hybrid sum (Mode
3) and drags its performance down. Although there was divergence in some
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Correct Prior Incorrect Prior Uniform Prior

Proper Meas. 4/0/1 2/0/3 0/0/5
Noisy Meas. 0/0/5 0/0/5 0/0/5

Table 4.1: Mode 1 – Virtual simulation, tests are noted in the order: C/W/D.

Correct Prior Incorrect Prior Uniform Prior
Proper Meas. 5/0/0 5/0/0 5/0/0
Noisy Meas. 5/0/0 4/0/1 5/0/0

Table 4.2: Mode 2 – Virtual simulation, tests are noted in the order: C/W/D.

Correct Prior Incorrect Prior Uniform Prior
Proper Meas. 5/0/0 5/0/0 1/0/4
Noisy Meas. 5/0/0 0/0/5 0/0/5

Table 4.3: Mode 3 – Virtual simulation, tests are noted in the order: C/W/D.

cases, it is still possible to extract the argmax of the properties and use these
against a reference.

4.2 Simulation Experiments

Similarly as in the previous section, the terminology used is the same, but
the actual measurement simulation is read from the physical interaction with
the object, as opposed to manually creating the measurement based on the
reference and perturbing with the random uniform noise. The way MuJoCo
simulation creates all of the physically simulated objects can be seen in the
Fig. 4.1.

In this section only two materials were used for clear and easy showcase of
the action selection. Creating more original materials with clear differences
in properties is of great difficulty. The reasons were in detail explained in the
Section 3.1.3.
From the previous section, it is apparent that the Mode 2 is the most useful.
That is because of the fact that the Mode 2 is less likely to be set off course
by the measurements with mean values non–corresponding to the ones in the
reference bank, in comparison to Mode 1. It is intuitively understandable
from the Fig. 4.2, that the two materials are ambiguous in the elasticity and
distinguishable in the density. This should intuitively result into the action
selection algorithm choosing always the more distinguishable action first. And
that is actually the case. This shows the validity of the entropy-based action
selection. This observation was made with Mode 2 in all contexts containing
Good Prior or Bad Prior. However, it needs to be pointed out, that the
differential entropy of the Gaussian Mixture changes, based on the interplay
between the Material probability distribution (the PMF) and the reference
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Figure 4.1: A visualization showing all physically–simulated objects as perceived
by the MuJoCo engine. Green and Red are materials A and B. Two floating
blocks on the right represent the cameras on the real setup.
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Figure 4.2: Graphical representation of the reference materials A and B for
Simulation Experiments.

database (from which, as described in the Section 3.2.5, the Gaussian Mixture
Model is constructed). This may, in special cases, alter the planned action.
The Uniform Prior places the same expectation on both Gaussians in the
Elasticity, which renders the Mixture more narrow than in the case of density.
In the case of entropy, it is possible to say that the narrower the overall
distribution, the smaller the expected entropy. And the smaller the expected
entropy, the larger the information gain. The Gaussian Mixtures of both
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properties are illustrated in the Fig. 4.3.
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Figure 4.3: The reference materials A and B with the Gaussian Mixture Model
shown as Mix.

The example mixture from Fig 4.3 corresponds to 0.2763 differential informa-
tion gain for Elasticity and 0.4236 differential information gain for Density.
The aforementioned prior and measurement context corresponds to the first
row and the third column of Tab. 4.4. The algorithm chooses its first action as
expected in almost every case, except for the rows 3 and 6, where the uniform
prior is used. That is because of the fact, that the context with uniform
prior generates the Gaussians in the elasticity property with a relatively same
height which is not the case with a non uniform prior. With a non uniform
prior the distribution with lower probability drags down the other one. On
the special occasion of uniform prior and proper measurement, the elasticity
Gaussian Mixture Model is narrower (provides more information gain) than
the density. Here is the table with the numbering convention of the context
again, for easier readability and reference:..1. Correct prior, proper measurement..2. Incorrect prior, proper measurement..3. Uniform prior, proper measurement..4. Correct prior, noisy measurement..5. Incorrect prior, noisy measurement..6. Uniform prior, noisy measurement

The following are the results for the action selection in the simulation. The
verdict overall converged to the correct prior everytime. Those measurements
are not perturbed with random noise as was the case in the previous section,
an error is naturally introduced with the imperfect squeezing in the simulation.
That is because of the way the Soft-Bodies are constructed in the MuJoCo
simulation. Changing the mass of each capsule in the Soft-Body changes not
only the overall weight, but also the net inertia and therefore the resistance
against motion. Relating the elasticity, the reference samples were taken
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Context Actions in
Mode 1 Mode 2 Mode 3

1 W W W
2 W W W
3 W S W
4 W W W
5 W W W
6 W S S

Table 4.4: Overview of first planned actions by the action selection algorithm
in given prior and measurement contexts. The letter S stands for Squeezing and
W stands for Weighing.

for objects of the same weight, only the Stiffness parameter was varied.
Therefore having an object of other weight with the stiffness same as in the
reference results in a slightly different measurement of Young’s modulus. Such
difference does not vary between independent measurement, those are very
consistent. The measurements provided are not exhaustive and serve only as
a proof of concept. More thorough testing with various squeezing angles and
cube sizes and more iterations, is left for further work. The results are shown
in the Tables 4.5 to 4.7. The notation is the same as in the previous section.

Correct Prior Incorrect Prior Uniform Prior
Proper Meas. 3/0/0 3/0/0 3/0/0
Noisy Meas. 3/0/0 3/0/0 3/0/0

Table 4.5: Mode 1 – Physical Simulation, tests are noted in the order: C/W/D.

Correct Prior Incorrect Prior Uniform Prior
Proper Meas. 3/0/0 3/0/0 2/0/1
Noisy Meas. 3/0/0 3/0/0 3/0/0

Table 4.6: Mode 2 – Physical Simulation, tests are noted in the order: C/W/D.

Correct Prior Incorrect Prior Uniform Prior
Proper Meas. 3/0/0 3/0/0 2/1/0
Noisy Meas. 3/0/0 3/0/0 3/0/0

Table 4.7: Mode 3 – Physical Simulation, tests are noted in the order: C/W/D.

The results seem promising. Upon closer examination, the good results may
be caused by the small variable space (i.e. Material A, Material B and
the Joker), and the relatively large σref of those materials. In the section
before, the mean of the measurement was randomly perturbed so the Mode
1 usually diverged which is not the case here. Although in this simulation,
regarding the Modes 2 and 3 in the cases with Uniform prior, the action
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4. Experiments and Results................................
selection is occasionally prone to error. Although, the statistical sample of
the test bank is not large enough to rule out potential statistical flukes. The
automation of the testing process was inhibited due to seemingly random
ambiguous trajectories of the robotic manipulator that sometimes throw the
object away due to centrifugal force while rotating. Such measurements
had to be manually scrapped, because the results of such test automatically
diverged and were not distinguishable from the real divergence caused by an
actual measurements.

4.3 Real-World Experiments

To conclude the series of action selection tests, real-world experiments are
conducted with the Kinova mainpulator. For detailed setup description see
Section 3.1.4. A series of experiments similar to those in the pveious subsec-
tions is done. However, tests in this section lack the division into contexts
with a Proper or Noisy measurement, because the actual measurement from
the manipulator is used as is. That means that only three contexts are now
used, which are:..1. Correct prior..2. Incorrect prior..3. Uniform prior

The definitions of the prior correctness is in accordance with previous sections.
The sigma of density measurement was estimated as an average of material
standard sample deviations from the Table 3.2. The sigma for elasticity
measurement with the gripper Robotiq 2F-85 was obtained by evaluating a
set of measurements with deformable objects (provided by Shubhan Patni
and Matěj Hoffmann). The sigma values are shown in the Table 4.8. For

Property Density [kg m−3] Elasticity [kPa]

Meas. Error σD = 29.64 σE = 4.091

Table 4.8: Real-world measurement errors for properties.

each Mode and each Prior type (i.e. Correct, Incorrect or Uniform), 2 tests
consisting of 3 algorithm steps were done, where each measurement was
taken as an average of 3 measuring samples of the object. Weighing action is
remarkably precise in comparison with the squeezing. The Young’s Modulus
is estimated as the slope of a line, which is linearly regressed on the measured
data. This approximately serves as a Young’s modulus estimation. The data
processing part was provided by another IPALM member, Shubhan Patni.
There are a few different ways to extract the Young’s modulus from the time
series data, such as tangent modulus, maximum slope method or chordal
modulus [32, p. 17]. Due to the technical restrictions of the gripper, linear
regression is deemed as the most useful. Data is first filtered to smooth out
the motor current spikes from the inner controller of the gripper. However,
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not all datapoints can be filtered efficiently without destroying too much
information from the times series data—see Fig. 4.4(a) for correct and (b) for
incorrect estimation. Because of such limitations, more than one elasticity
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(a) : Accurate measurement without excess effort points caused by
the gripper’s controller. The linear regression of Young’s modulus
here is 17 kPa.
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(b) : Noisy measurement with excess effort points caused by the
gripper’s controller. The regression of Young’s modulus here is 0.49
kPa.

Figure 4.4: Visualization of Young’s modulus estimation.

measurement was needed to decrease the impact of such errors. The Robotiq
2F-85 gripper is designed for stable grasp, not for incremental measurement.
In contrast with the Kinova joints, the gripper lacks torque sensors. The
results of conducted tests can be seen in the Tab. 4.9. The imbalanced

Correct Prior Incorrect Prior Uniform Prior
Mode 1 2/0/0 2/0/0 2/0/0
Mode 2 2/0/0 0/0/2 0/1/1
Mode 3 2/0/0 0/0/2 0/0/2

Table 4.9: Results for all Modes, tests are noted in the order: C/W/D.

precision of weighing and squeezing reflects heavily to the testing process.
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4. Experiments and Results................................
The Mode 1 successfully converged to the correct category in 6 out of 6
tests. That is mostly because of the action selection algorithm choosing
the weighing action every time. That is intuitively correct, given that the
objects are very similar in the elasticity and distinguishable in the density,
see Fig. 4.5. The Mode 2 failed in the settings where the prior is different
from the measurement. After the first measurement update (which is almost
every time the density—see Tab. 4.10) squeezing action is chosen, which
produces imprecise measurements and causes the classification to fail. With
only two actions available, this means that the action selection provides
proper classification only with weighing measurements in the scope of three
steps of the algorithm.
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Figure 4.5: Reference of the real-world objects. Note: this figure is also displayed
in the Section 3.1.4. It is also placed here for the reader’s convenience.

Mode Prior
Correct Incorrect Uniform

Mode 1 W W W
Mode 2 W W S
Mode 3 W W W

Table 4.10: Overview of first planned actions by the action selection algorithm
in given prior contexts. The letter S stands for Squeezing and W stands for
Weighing.

The squeezing is chosen only in the Mode 2 (only differential information
gain) with Uniform prior. This is due to the same reasons as explained in
the previous Section 4.2. It is only a matter of how far are the mean values
in the property from each other, how great are their deviations and also how
much belief is put into the categories in question. The real-world tests serve
mostly as a proof of concept. To rule out potential statistical flukes, a more
thorough testing with more varied Action and Variable space (e.g. friction
estimation developed by other IPALM members [9]) will be necessary.
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4.3.1 Results

From the metric used, the Mode which brings the best classification results is
the Mode 2 with 88.89% accuracy. Mode 3 and Mode 1 follow with 64.81%
and 55.56% accuracy respectively. The accuracy is computed as the number of
successful classifications over the overall number of classifications throughout
all environments (i.e. over Virtual, Simulation and Real-World environments,
to arrive at a most general classification metric possible). The metric is
summarized in Tab. 4.11. The importance of each testing environment is

Accuracy
Mode 2 88.89 %
Mode 3 64.81 %
Mode 1 55.56 %

Table 4.11: Overview of the different Mode accuracy results.

naturally weighted by the amount of tests done in such environment. For
clarity, the Virtual setup is assumed to give greater insight into the validity
of action selection steps, therefore a greater number of tests are accounted
for which naturally biases the accuracy calculation in favor of the Virtual
environment testing, and therefore in favor of the optimization Mode 2. It is
important to repeatedly note, that the second Mode chooses actions, which
generate measurements that update the prior belief. The Modes simply differ
in the way of computing entropy and consequently information gain. The
reason that the Mode 2 has the best results probably stems from the fact
that it takes into account the object in greater complexity—evaluates the
entropy of the properties. The Mode 1 does not provide such possibility and
often chooses the wrong action only optimizing for the larger information
gain in the categories. The Mode 1 may then intentionally choose the action
that would, for example, choose the more noisy action, because it promises
to bring greatest information gain, although this often means choosing the
unknown category—joker.
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Chapter 5
Conclusion

In this thesis, an algorithmic approach based on information gain from discrete
and continuous information entropy is proposed, implemented and tested.
Such algorithm may find use in interactive settings, where the environment is
changing constantly and the agent needs to gather and update information
all the time. Choosing the action with the most learning potential accelerates
information gathering and provides more information overall. In this thesis a
situation simulating the real world is created, where the goal for the manipu-
lator is to gather information about the object properties and/or category.
The algorithm is comprised of the prior evaluation via entropy, measurement
emulation based on expected measurement error, expected information gain
calculation from information entropy estimation and finally Bayesian update
after conducting the actual measurement. In this thesis the whole algorithm is
explained in theoretical detail and implementation is available at [10]. Three
optimization Modes are proposed. Each of those Modes is tested in Virtual,
Simulated and Real-World environment. Each testing environment brings its
own advantages and disadvantages. The Virtual environment allows for quick
evaluation, but lacks the specific problems that arise in the actual Real-World
testing. On the other hand, it can be argued that the absence of the technical
difficulties allows for a clearer, less biased, evaluation of the action selection
process.

The Simulation environment, as opposed to the Virtual environment, is better
in revealing implementation problems, such as problems with the actual
grasping, kinematics and other object-gripper interactions that are not ac-
counted for in the latter. Simulating physical contacts comes with its own
technical setbacks, such as numerical instabilities, unwanted Soft-Body object
penetration, and other simulational inconsistencies.

The Real-World is the desired implementation environment. Such environ-
ment brings measurement imperfections. It is hard to conclude how much
do the measurement errors cloud the judgment of the action selection algo-
rithm, because the classification metric used is only a proxy. The resulting
classification is inherently dependent on the measurement precision, which
may in conclusion return wrong classification even though the right action is
chosen. The simulational difficulties, real-world problems with measurements
and other related topics are discussed in the next section.
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Chapter 6
Discussion and Future Work

Throughout the work on this thesis, plenty of complications and technical
difficulties occurred, mainly concerning the simulation environment in Mu-
JoCo. The MuJoCo physics engine is very complex and allows to apply all
sorts of conditions and restrictions on the behavior of the Soft-Body objects.
Majority of such work was out of the scope of this thesis, although it would
probably prove very useful. The main problem was the stability of squeezing
simulation, which depended on the mass of the individual Soft-Body capsules,
the stiffness of the tendons and joints, the spacing between the capsules and
conditional restrictions of the free dimensions. All of this interacts with the
simulation of friction. Aforementioned points complicate the assembly of a
larger database which could be then used for reliable simulating of robotic
interaction with the Soft-Body objects. The database used in the Section 4.2
is too small to account for more complex prior-measurement contexts, which
would test the performance of the action selection algorithm into greater
depth. With the current database, only a distinction between the two objects,
which were ambiguous in one property and distinguishable in the other, could
be made. On the other hand, the action selection was able to reliably choose
the intuitively optimal action, as it chose the action which would discriminate
the objects to a greater extent.

The real-world measuring apparatus in the form of the Kinova manipulator
and 2F-85 gripper are very user-friendly for operation. Although the feedback
from the gripper is not designed for such stiffness estimations, nevertheless it
is used. In everyday robotics, it is not reasonable to expect having professional
tools available at all times for the manipulator. In this thesis, it is shown
that even a general-use manipulator can be useful for object exploration
and possibly classification. This paves the way to more independent robotic
manipulation and exploration.

The action selection algorithm provides the desired metric for choosing the
optimal action. When the classification diverges as explained previously, it
is actually a convergence to an unknown category, called joker. This also
provides valuable information that the measurements are not on par with
the database. That effectively lowers the overall uncertainty in the category.
If such case occurs, argmax–information on the maximum argument of the
Gaussian Mixture Model–is provided by the action selection pipeline in the
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6. Discussion and Future Work ..............................
measurement logs for both properties and could be further utilized [10].The
size of the Bayesian network (see Fig. 3.15(b)) does not yet call for larger
inference models. Using large inference models utilizing frameworks such as
STAN or PyMC proved to be quite difficult and was not yet needed for the
scale of the current Bayesian network. Although with increasing size of the
Action and Property repertoire, a larger inference model would be beneficial
as it could also provide message passing and parameter regression of the
multinomial distributions automatically via MCMC algorithms and so on.

6.1 Future Work

Complex grasping, shape and friction exploration

In this thesis, all objects grasped and squeezed were homogeneous cubes.
Gripping of such objects is straightforward. If grasp is successful, measure-
ments such as squeezing or weighing can take place. However if the object is
of a more complex shape (e.g. mug, bowl) the grasp can prove to be difficult.
For such cases an exploratory grasping sequence may be implemented, which
would combine visual information from the robot’s on-body camera and the
tactile information from the gripper as suggested by Nikandrova et al. [6]. In
this setting, more complex grasps may be executed. Additional information
for a better grasp may come from a friction map estimation and grasping in
the areas of high friction density, as proposed by Nguyen Le et al. [9] Such
grasping information pipeline would be beneficial for the action selection
algorithm described in this thesis, as the usefulness of the action repertoire
would rise.

Message Passing and Statistical Modeling

Regarding the Bayesian network in this thesis, the current belief is propagated
only in the parent-child pair in each measurement episode. There is currently
no message-passing in between the child nodes. A message-passing would
help with providing information from one property among others, resulting
in a more whole belief about the explored object. For such message pass-
ing a statistical modeling framework would be needed to handle all of the
informational interaction.

Reliable MuJoCo Soft-Body Simulation Dataset

MuJoCo provides a great amount of settings for simulating the physics of Soft-
Body objects. The potential of the physics engine was not completely fulfilled
in this thesis. Simulation of composite Soft-Body objects, which are not only
box or ellipse shaped should be possible. This could lead to simulation of
the manipulation and stiffness of more complex bodies of non-trivial shape.
Such simulation would provide important insight into testing of different
grasps and overall manipulations. It would also provide a larger database of
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Soft-Body objects that would allow for the action selection algorithm to be
more thoroughly tested.

Utilizing directly Information from a Visual prior

In this thesis, prior probabilities were chosen ad hoc, depending on the prior–
measurement context needed for action selection testing. The original plan was
to use prior probabilities from the Object Category and Material inference [30].
However, the image inference network is not completely deployment-ready and
provides only a shape-material dependent information. The neural network
implemented in the mentioned project is called detectron2 and provides only
limited prior information. The information on material is dependent on
category and vice versa. The subsequent work could provide independent
category and material prior, because the current inference is biased. If some
cups used for training are usually made of ceramic and are white, the output
will be cup:ceramic. However, this does not infer the material directly but
from the information that cups are usually ceramic. Nevertheless, setting the
initial prior is not essential for the action selection algorithm, which is why it
is left for further work.

Alternative performance measures for the action selection algorithm

Another way to measure the performance of the action selection algorithm
would be to compare the information gain with random action selection
as a baseline. With the current setup with only two actions, it requires
vast amounts of measurements to extract any useful information about the
comparison with random agent. Against random agents, the odds are 50:50 in
this case. Such comparison would make sense provided that the manipulator
action repertoire comprises of at least 3 or more actions. This alternative
performance measure is left for further work, until there are more actions
available.
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Appendix A
Action selection – Virtual

The attached file kruzland-action-sel-virtual.zip contains the basic
software for the virtual setting for the Action selection algorithm. For more
information refer to the README.md file. The other contexts of actions are
above the attachment size limit and are located at the previously provided
GitLab repository [10].
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