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Declaration

I hereby declare I have written this diploma thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, May 2018

............................................
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Abstract

The master thesis is concerned with improvement, refinement and optimization of the

ventilation operation in a tunnel having complex both a structure and ventilation system.

This thesis can be divided into three main parts.

The first part deals with mathematical modeling of airflow dynamics in complex road

tunnels. Namely, it focuses on derivation of a linearized mathematical model. The result

of this part is a simplified simulation model of a tunnel containing mathematical model of

airflow velocity based on Kirchhoff’s laws for fluids dynamics, which includes all important

factors influencing the airflow dynamics in a tunnel, i.e. piston effects of vehicles, air

friction, effect of ventilation, etc.

The second part of the thesis presents how to derive concentrations model in a road

tunnel. Two types of such model are introduced. The steady-state model of pollutant

concentrations, which is the most used model in practice to describe behaviour of pollu-

tants in road tunnels, is developed as well as a dynamic model of pollutant concentration,

which stands on convection-diffusion equation.

The final part of the thesis suggests a possible improvement of the operational ven-

tilation control of a tunnel based on mathematical optimization. The aim of these im-

provements is to reduce energy costs while keeping the control performance, since the

ventilation in road tunnels forms a significant part of electricity costs. This objective is

achieved by finding more convenient method how to solve an optimization problem.

The results of all parts of the thesis are validated on the Blanka tunnel complex in

Prague, which is the largest city tunnel in Central Europe consisting of several entrance

and exit ramps. Achieved results depict how to improve the control algorithm in the real

operation. A comparison between couple of models of pollutant concentration and real

measured data is shown as well as the linearized model of airflow velocity. The developed

models, suggested improvements for the operational ventilation control and experimental

validation using measured data are the main contribution of the thesis.

Keywords: Airflow velocity, Road tunnel, Optimization, Linearizion, Blanka

tunnel complex, Pollution concentrations, Dynamic model.
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Abstrakt

Diplomová práce se zabývá vylepšeńım a optimalizaćı provozńıho větráńı v tunelu s kom-

plexńı strukturu i systém větráńı. Práci lze rozdělit na tři hlavńı části.

Prvńı část pojednává o matematickém modelováńı prouděńı vzduchu v silničńıch

tunelech. Konkrétně se zaměřuje na odvozeńı linearizovaného matematického modelu

rychlosti prouděńı vzduchu. Výsledkem této části je zjednodušený simulačńı model tunelu,

který obsahuje matematický model rychlosti prouděńı vzduchu založený na Kirchhof-

fových zákonech pro dynamiku tekutin. Tento model zahrnuje veškeré d̊uležité faktory

ovlivňuj́ıćı dynamiku prouděńı vzduchu v tunelu, jedná se o ṕıstový efekt vozidel, třeńı

vzduchu, vliv provozńıho větráńı, a daľśı.

V druhé části práce je vysvětleno, jak lze odvodit model koncentraćı znečisťuj́ıćıch

látek v silničńım tunelu. Jsou představeny dva typy tohoto modelu. Model koncentraćı v

ustáleném stavu, který je v praxi nejpouž́ıvaněǰśım modelem pro popis š́ı̌reńı znečisťuj́ıćıch

látek v silničńıch tunelech a dynamický model koncentraćı znečisťuj́ıćıch látek, který je

založený na difúzńı rovnici.

Závěrečná část práce navrhuje možná zlepšeńı ř́ızeńı provozńıho větráńı v tunelu na

základě matematické optimalizace. Ćılem těchto zlepšeńı je sńıžit spotřebu energie při

zachováńı stejných vlastnost́ı ř́ıdićıho systému, protože provozńı větráńı v silničńıch tun-

elech představuje významnou část spotřeby elektrické energie tunelu. Tato část si klade

za ćıl naj́ıt vhodněǰśı metodu pro řešeńı matematické optimalizace.

Výsledky všech část́ı diplomové práce jsou ověřeny reálnými daty z největš́ıho městského

tunelu ve středńı Evropě, kterým je tunelový komplex Blanka v Praze. Výsledky popisuj́ı,

jak vylepšit ř́ıd́ıćı algoritmus v reálném provozu. Nav́ıc, hodnoty vypočtené modelem kon-

centraćı znečǐsťuj́ıćıch látek i hodnoty dané linearizovaným modelem rychlosti prouděńı

vzduchu jsou porovnány s reálnými naměřenými hodnotami z tunelovém komplexu Blanka.

Hlavńı př́ınos diplomové práce je implementace zmı́něných model̊u, navržené vylepšeńı

ř́ızeńı provozńıho větráńı tunelu a ověřeńı dosažených výsledk̊u využ́ıvaj́ıćı naměřená data.

Keywords: Rychlost prouděńı vzduchu, Silničńı tunel, Optimalizace, Lin-

earizace, Tunelový komplex Blanka, Koncentrace škodlivin, Dynamický model.
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1. Motivation

1.1 Introduction

We stand at the dawn of the fourth industrial revolution, an idea that will open new

breakthroughs thanks to advancements in areas including artificial intelligence, robotics,

advance control theory, quantum computing and the Internet of Things. An other tech-

nological growth area in recent years has been Big data. All sort of data are tracked,

collected and analyzed. What is more, such data are also instantaneously logged and

saved in data storages. Road tunnels are affected by this phenomena as well. However,

the vast majority of road tunnels are equipped only by a minimum of data acquisition

devices in past years, on the other hand, modern road tunnels are being equipped with

sensor for measurement of physical quantities and this data are stored as well. Addi-

tionally, modern road tunnels regardless of theirs complexity, are equipped with latest

technologies, infrastructure and expert systems. These up-to-date devices are put in

place to ensure traffic safety in road tunnels so that the incidents can be prevented as far

as possible and their impact can be kept to a minimum.

Figure 1.1: An example of HMI of
a SCADA system of a road tun-
nel. [1]

Such an expert system which enables both data

acquisition, visualization and control is a supervi-

sory control and data acquisition (SCADA) system.

SCADA is an automation control system widely used

through numerous industry fields such as energy, oil

and gas, electricity, traffic and many more. The

SCADA system is emphasized, since several road tun-

nels complexes are controlled or monitored by such

advanced monitoring system. In addition, the system

provides numerous benefits such as redundancy ad-

justments, stable backups of time stamped data, se-

cure alarm system, etc. It may also use scripts that

detect problems in the system and quickly adjusts the plant from creating an outage.

SCADA systems have the advantageous availability of cloud computing, therefore they

1



CHAPTER 1. MOTIVATION 2

can report close to real-time accuracy and implement more complex algorithms. Other-

wise, these algorithms would not be implementable on traditional PLCs.

On the other hand, despite many supervisory systems do acquire a big amount of

operational data from a tunnel, these data are only logged and saved into convenient

data storage without future usage. This kind of data containing numerous useful process

variables of road tunnels would surely contribute to innovative developments in control

strategy design point of view. Measured data could be than used to develop a model of

process dynamics enabling to predict its future behaviour as well as to improve control

algorithm. This derived model might form a vital part of advanced control design e.g.,

model predictive control having many advantages over the classical control strategies,

where the model of process dynamics plays essential role.

Figure 1.2: A schematic front view of a
road tunnel with two lines. A jet fan can
be seen on the right side of the tunnel
tube. [2]

Furthermore, the transport sector has be-

come a major source of environmentally haz-

ardous emissions [3] in recent years. Road

tunnels have a significant importance in the

transport infrastructure as they are located in

valuables areas, for instance, cities, environ-

mentally sensitive locations, etc. Especially

in urban areas, they reduce impact on the sur-

roundings in terms of air and noise pollution,

where complex demands on the indoor IAQ

and ambient environment of road tunnels are

placed. On the other hand, they require ex-

tended design of tunnel technology, such as, traffic signs, ventilation and control systems.

First, well-designed ventilation system and airflow velocity control can significantly im-

prove conditions for evacuation, rescue and fire-fighting operations during fire. Second,

during the standard operation of a tunnel, the efficient system of ventilation may signifi-

cantly diminish electricity costs as well as improve quality of indoor environment and to

ensure a protection of the ambient environment, as the operational ventilation of a road

tunnel needs to keep pollutant concentrations inside the tunnel below defined limit values.

All these directives emphasize crucial importance of ventilation control.

To summarize, the following objectives are important for successful operation ventila-

tion control in road tunnels:

• maintenance of IAQ.

• protection of ambient environment,

• reduction of operational costs,
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Figure 1.3: Schematic illustration of the tunnel cross-section with inlet ramp and outlet
ramp U Vorĺıku and a place for both airflow extraction and fresh air supply. Traffic
direction is denoted by arrows.

1.2 Case study

The results are validated on the case study which is Prague’s road tunnel Blanka. The

Blanka tunnel is the largest city tunnel in central Europe consisting of complex geometry.

The Blanka tunnel complex in Prague forms the north-west part of the Prague City

Ring Road. It is a tunnel complex meaning that, it consists of three road tunnels; Bubeneč,

Dejvice and Brusnice, which are connected together through tunnel crossroads, say inlet

or outlet ramps, as depicted in the Figure 1.3. It comprises a northern and southern

tunnel tube supporting one-directional traffic. Besides the main two portals Malovanka

and Trója, exit and entrance ramps are in each tube at two locations; Prašný Most and

U Vorĺıku. The tunnel crossroads U Vorĺıku needs to be emphasized since measured data

from the mentioned crossroad are used within the emission model involved in this thesis.

The route pases urban development and partially also the historical center of Prague.

The average traffic intensity is in the tunnel more than 70.000 vehicles per day.

For longitudinal airflow velocity control, a total of 88 jet fans is installed in both

tubes enabling increase or decrease airflow velocity. In addition, the tunnel consist of

three ventilation machine rooms (VMR) for the extraction of polluted air and control of

fresh air supply, respectively.

Last but not least, data measured in the technology center of the tunnel are used

within this thesis for comparison purposes and to create dynamic model of pollution in

the program environment MATLAB [4].

1.3 Organization of the Thesis

The thesis is structured into 6 sections as follows: Section 2 states the goals which one

would consider as the optimal control system of complex road tunnel. In 3, the derivation

of the mathematical model of airflow velocity including its linearizion is presented. The

dynamic model of pollutant concentration is introduced within the Section 4. This section

provides a comparison of simulation and real measured data. The following Section 5 de-

scribes proposed improvement of current optimization-based control in the Blanka tunnel
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Figure 1.4: Aerial map of the Blanka tunnel complex in Prague, Czech Republic. [JS]

complex. This section also contains a comparison of simulation data between the current

and introduced approach. The thesis is concluded by Section 6 which summarizes the

resulting observations.



2. Optimal Control Strategy

How the longitudinal airflow velocity should be controlled and which is the most suitable

control algorithm? In road tunnels, usually several control techniques are used. Many of

them are closed-lop with various logic elements [5] and some of them are feed-forward due

to unreliable measurements of airflow velocity [6]. A recent published paper [7] introduces

nonlinear feed-forward control with the feedback model linearizion. PI controllers are used

for the vast majority of industrial processes.

Despite the PI controller has only two parameters for tuning, it is still difficult to find

proper values of the proportional gain and the integral time constant. Improving clas-

sical control techniques as well as introducing advanced control strategies of operational

ventilation control in road tunnels is desirable, because the standard control approach

such as a rule-based or the PID control is not applicable in this situation, since it is a

multiple input and multiple output (MIMO) system, which can not be easily decoupled.

In addition, electricity costs reduction can not be achieved using aforementioned stan-

dard approaches, because they do not take any optimization into account. Minimizing a

criterion, electricity costs in this case, can be accomplished only if the optimization-based

control approach is used. Hence, the task is to suggest an advanced operational ventila-

tion control in such complex tunnel taking some criteria into account, such as keeping the

IAQ and minimizing operation costs.

2.1 MPC control

Furthermore, the object desired to be controlled with the MPC control strategy is an urban

tunnel with several entrance and exit ramps. Usage of MPC might lead to optimize the

operational ventilation control for given criteria. What is more, the pollution in the tunnel

tube could be predicted according to appropriate model and measurements. Introducing

predictive control approach may significantly reduce electric power consumption while

keeping concentration of pollution within the required limits. The purpose of operational

ventilation is to reduce the harmful gases with sufficient amount of fresh air.

The goal structure of the MPC for operational ventilation is illustrated in Figure 2.2.

5
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Figure 2.1: On the left, the entrance ramp Prašný most can be seen. Additionally, a pair
of jet fans is located at the ceiling of the tunnel.

It consists of the plant, i.e., a road tunnel with complex geometry, a predictive controller

with feedback, an airflow velocity and concentrations sensors as well as its mathematical

models, which generate predictions of controlled variables in order to estimate future

behaviour of given system. Applying a such control scheme significantly increases ability

to fulfill requirements on robustness and disturbance attenuation. In the depicted control

scheme 2.2, the optimization block assembles the optimization task in order to minimize

a cost function given as

J =
N∑
t=1

(y(t)− yref)T Q (y(t)− yref) + uT (t)Ru(t) (2.1)

subject to:

x0 = real measurement (2.2)

x(t+ 1) = Ax(t) + Bu(t) (2.3)

y(t) = Cx(t) + Du(t) (2.4)

wherein t = 1, ..., N , where N denotes the length of receding horizon. The assembled

optimization problem is also conditioned by physical constraints

uLB ≤ u(t) ≤ uUB. (2.5)
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Figure 2.2: MPC controller block diagram.

The Model Predictive control (MPC) is a multi-variable control algorithm that minimizes

a cost function J denoted by Eq. (2.1), an internal dynamic model of processes described

by the Eq. (2.2) describing the plant and a history of past control inputs, to calculate

the optimal control inputs. Cost function (2.1) is composed of weighting matrices Q

and R penalizing deviation between measured manipulated variable y(t) and a requested

value yref likewise control inputs u(t), respectively. In this case, inequality constraints are

formed by soft-constraints and hard-constraints. The yref in cost function (2.1) forms the

soft constraint representing desired airflow velocity defined by a setpoint. On the other

hand, hard-constraints denote physical limitations of ventilation devices (jet fans and fans

in ventilation machine rooms). They are expressed by Eq. (2.5), where the vector uLB

and uUB mean lower and upper bounds on availability of ventilation devices. Equality

constraints are represented by dynamic models of the plant described by Equations (2.2),

where x(t) is a vector of states i.e., airflow velocity and pollutant concentration at given

time step, u(t) denotes system inputs at specified time step consisting of a number of jet

fans and fans in VMR to be switched on and traffic intensity.

Based on the optimization criteria, the predictive controller generates control signals

u(t) denoting the number of jet fans which are to be run. The control input is then

passed to the plant acting on end devices. Additionally, the feedback is provided by the

real measurement x0 and ventilation devices. The MPC task is recalculated at each time

step t. Typically for road tunnels, the sampling time of the MPC can be several minutes

with respect to the slow process dynamics.
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2.2 Obstacles for Successful Implementation of MPC

The future implementation of MPC supposes good knowledge of given system in order to

create a model of particular behaviour. A linear models of road tunnels process are usually

needed for MPC, since predictive control strategies are meant to be used. Such models

that provide sufficient description of process dynamics are key base for the MPC control

strategy. In order to control a process very accurately, a very precise model should be

created. As [3] emphasize, ”You can only control as precisely as you can model. Thus, if

a highly tuned controller is desired, the very accurate model is needed.” Nevertheless, it is

important to stress out, that unfortunately the typical MPC algorithm requires knowledge

of the process dynamic. The dynamic model of airflow velocity in the explicit form can

be found for tunnels without ramps which are usually highway tunnels. Obtaining the

dynamic model for complex road tunnels with connected ramps is challenging, as it is

described in Section 2.2.

Implementation of typical MPC algorithm assumes simplified linear models which

are not suitable for models of airflow dynamic in road tunnels. [8] Nevertheless, there

are several obstacles that complicate achieving the goal state. The proposed airflow

velocity model is not linear, thus its linearizion is inevitable. Additionally, the model of

pollutant concentrations is described by a partial differential equation making difficult

to use such model directly in the MPC controller. In order to implement models of

pollutant concentrations in a road tunnel, its structure is appropriately divided into several

sections. The pollutant concentration in the given section represents one system state. It

is convenient to divide the entire tunnel into as many sections as possible in order to keep

the accuracy of the model, however, by introducing new and new sections, the amount of

system states gets higher. MPC could therefore have problems with computational time

due to the tens of state variables and nonlinear process dynamics. For this reason, the

number of section is needed to be set very carefully. Furthermore, knowledge of traffic

distribution along the entire tunnel tube is required within the dynamic model of pollutant

concentration, particularly, an accurate traffic model requires knowledge of exact position

depending on time t of all vehicles in the tunnel. There are usually induction loops and

traffic cameras to measure the total number of cars which have passed through the tunnel,

thus an average value of vehicles passed through the tunnel is provided. What is more, the

traffic information is delayed up to several minutes, because the measurement is evaluated

after a certain time. For that reason, it is not possible to acquire exact information about

traffic distribution along the whole tunnel.
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2.3 Simplified Optimization-based Controller

Due to the aforementioned obstacles within implementation of the MPC controller in

the Blanka tunnel complex, nowadays, the ventilation control system is a feed-forward

controller with an adaptive logic. The feed-forward control is implemented via the static

optimization. The feedback part is provided by the adaptive logic represented by the re-

cursive least-squares algorithm with exponential forgetting. [8] It needs to be emphasized,

that the current, say predictive, controller is not a classical linear controller in the usual

sense. It is rather an optimization procedure that optimizes the trajectory of the output

signal, while minimizing the energy consumption ensuring the physical or technological

limitations of the system. A simplified steady-state model of airflow dynamics is used

within the current control strategy of the Blanka tunnel complex shown in Figure 1.4. On

the other hand, it has a few disadvantages though. First, optimization algorithm used in

the feed-forward part is non-convex, hence the global minimum of resulted optimal control

input is not ensured. Additionally, neither steady-state nor dynamic model of pollutant

concentrations is incorporated into current optimization-based control.

Detailed description of the feed-forward controller with parameter feedback adjustment

is provided in Section 5.4.

Thereafter, an attempt to improve the current optimization-based controller in the

Blanka tunnel complex will be suggested within the thesis. The linearized model of air-

flow velocity is derived and validated on the Blanka tunnel complex. The linearized

model causes that all constraints in the optimization task are convex. Second, the pol-

lutant concentrations models are derived and validated in Section 4. These models can

also be involved as constraints in the optimization task, and thus improve the overall

control performance. The last improvement deals with finding of the global solution of

the optimization task (5.1), which is described in Section 5.4. It concerns the comparison

between local and global method and estimates energy savings that might be achieved.



3. Airflow velocity model

The chapter presents a detailed insight into modeling of airflow dynamics. The desired

airflow controller performance is deeply influenced by the accuracy of the mathematical

model. Hence, a significant effort is required to be put on the development of the airflow

dynamics model. The non-linear mathematical model is based on the Bernoulli and

Continuity equation. This non-linear model is than used to derive a linearized model of

airflow velocity, which is suitable for the MPC control strategy and it is a crucial part of

the operational ventilation control in any road tunnel.

The major contribution of this Chapter 3 is linearizion of the steady-state model of

airflow velocity which is currently used within the optimization-based controller of oper-

ational ventilation (see Section 5.3) in the case study Blanka tunnel complex. Linearized

model of process dynamics could be used in the design of a controller, which is based on

quadratic programing (QP), and thus ensures the optimal solution of the optimization

task 5.4.

3.1 State of the Art

In general, there are three possible approaches of airflow modeling in a road tunnel;

Navier-Stokes equation, Euler equations and simplified one-dimensional models. The

most general description of airflow dynamics in a road tunnel is provided by the Navier-

Stokes equations. They are non-linear partial differential equations and are very accurate

since the airflow dynamics can be modeled in three dimensions. The disadvantage is

mainly theirs high demand on computational capacity, thus it is not convenient for the

design of advanced airflow velocity controller, such as MPC. Next, the Euler equation

can be obtained modifying the Navier-Stokes equations, particularly, by omitting terms

which describe viscous actions. In addition, simplified one-dimensional models are given

by Bernoulli equations and continuity equations. These simplified models are derived

from Euler equations as well.

The simplified models of airflow dynamics in road tunnels require simplifying assump-

tions. The following key of them need to be emphasized. First, one-dimensional model

10
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Text

Flow velocity vA

cross-section area

Figure 3.1: Longitudinally ventilated tunnel with no connected junction.

with lumped parameters is considered, i.e., ∂v
∂y

= ∂v
∂z

= 0 meaning the airflow velocity v

does not depend on the y and z coordinate in a given section of the tunnel. This as-

sumption significantly decreases computational demand. Second, the same direction of

the traffic as the direction of the airflow velocity is denoted by a positive sign. Next,

incompressible flow is considered, this means that the air density ρ is constant along the

entire tunnel tube as well as it does not depend on time. This is valid for a road tunnels,

where the average airflow velocity is about 7 m/s [9] These assumption simplifies complex

models of process dynamics allowing design of classical controllers like PID as well as

advanced controllers like MPC controller.

The road tunnel can be divided into several sections with set of parameters, such as

cross-section area, airflow velocity etc. A schematic illustration of the tunnel section is

depicted in Figure 3.1. The airflow velocity v is constant within the specified section.

Additionally, each section contains generalized Bernoulli equation describing the airflow

dynamics. Deriving of such simplified mathematical model of airflow velocity using the

Continuity and Bernoulli equation is described further.

3.1.1 Nonlinear airflow velocity model

First, the simple case of a road tunnel without entrance nor outlet ramps and with uni-

directional traffic is considered, as denoted in Figure 3.1. The Extended Bernoulli equation

can be used to estimated airflow velocity in a road tunnel. As mentioned above, however

the real liquid is compressible, the incompressible flow is consider in the thesis.

The Bernoulli equation for ideal liquid can be written for given two points in the

tunnel tube as follows:

p1 − p2 +
1

2
ρ(v1

2 − v22) = 0 (3.1)

where p1, p2 [Pa] denotes the static pressure at two different points in the tunnel, ρ [kg m−3]

is the air density and v1, v2 [m s−1] denote the airflow velocity at two given points of the

tunnel.
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For real flow and for a design of the operational ventilation controller, the Bernoulli

equation has to be extended. Taking into account air friction, influence of other pressure

changes and unsteady flow of air, the Eq. (3.1) is modified and it yields:

p1 − p2 +
1

2
ρ(v1

2 − v22)− ρ
∫ L

0

∂v(s, t)

∂t
ds+ ∆p(t) = 0 (3.2)

where L [m] is the length of the tunnel, ρ
∫ L
0

∂v
∂t

ds represents the pressure change generated

by unsteady flow and ∆p [Pa] is the total pressure change in the tunnel caused by pressure

losses and gains.

The airflow velocity is assumed to be constant along the entire tunnel section and

does only depend on time. For this reason, a simplification is introduced as follows

v(s, t) = v(t), this means, v1 = v2. Additionally, the same atmospheric conditions such

as, atmospheric pressure and temperature along the entire tunnel are considered and

therefore the static pressure p1 is equal to the pressure p2, i.e., p1 = p2. Taking into

account these assumptions the Eq. (3.2) is simplified to:

−ρ
∫ L

0

∂v(s, t)

∂t
ds+ ∆p(t) = 0. (3.3)

The Eq. (3.3) can be simplified even more since v(t) is only a function of time. Solving

the integral, the Eq. (3.3) is modified to:

−ρL
dv(t)

dt
+ ∆p(t) = 0. (3.4)

The term dv(t)
dtt

can be rewritten as a(t) and it is so called local acceleration. Thus, the

final state of simplification of Extended Bernoulli equation is as follows:

−ρLa(t) + ∆p(t) = 0. (3.5)

The steady-state model of airflow dynamics can be used in case the rate of change of

airflow is negligible compared to the sampling period of the model.

The total pressure change ∆p is influenced by several factors in a road tunnel and

they can be divided into minor and major losses. All pressure changes contributing to

the mathematical model can be defined as follows:

∆p(t) = ∆pfric(t) + ∆parea(t) + ∆ppist(t) + ∆pjf(t) (3.6)

where ∆pfric(t) [Pa] denotes the pressure loss given by air friction, ∆parea(t) [Pa] is local

area loss, ∆ppist(t) [Pa], means influence of passing cars trough the tunnel tube, ∆pJF(t)

[Pa] is the pressure change caused by running jet fans.
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Air friction

The pressure loss caused by air friction mainly depends on wall roughness, placement of

jet fans, sensors, etc. in tunnel tube, which forms an obstacle to the airflow. For that

reason the pressure in a section is decreased. This pressure loss can be computed as

follows:

∆pfric =
1

2
ρλ

L

Dh

v(t) |v(t)| (3.7)

where L [m] denotes the length of given section of the tunnel, Dh [m] is hydraulic diameter

of the tunnel and λ [–] is the dimensionless coefficient Darcy friction factor, which can be

determined using the Swamme-Jain equation [10]

λ =
1.318[

ln
(

ε
3.7Dh

+ 5.74
Re(t)0.9

)2] . (3.8)

The term ε [m] is relative roughness. For simulation purposes the ε was set to ε = 0.015 m.

Re [-] is the Reynolds number. It is a similarity number denoting whether the airflow is

laminar or turbulent. This coefficient depends on airflow velocity and viscosity as:

Re(t) =
|v(t)|Dh

ν
(3.9)

where the ν [m2 s−1] is the kinematic viscosity of air and it was set to ν = 15.07× 10−7.

The non-linearity in the Eq. (3.9) can be omitted and thus the friction factor λ is con-

siderable as constant value given as: λ = 0.022. [11]

Local area losses

The ∆parea(t) represents the pressure loss due to local resistances such as, merging and

dividing flows, cross-section area changes which depend on direction of airflow, shape of

transition or cross-section area. Generally it is a quadratic function of airflow velocity

and can be calculated as:

∆parea(t) = −1

2
ρζ (v,A,L, ...) v2 (3.10)

where ζ [–] is the resistance factor depending on airflow velocity and tunnel geometry. Par-

ticularly, in case of a tunnel without connected ramps, this pressure loss can be rewritten

providing detailed insight into terms which is composed of. Thus, it yields:

∆parea(t) = ∆pin(t) + ∆pout(t) + ∆pexp(t) + ∆pcon(t) (3.11)
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A1, v1 A0, v0 A0, v0 A1, v1

Figure 3.2: Sudden expansion an contraction of a tunnel section. Arrows denote direction
of airflow.

where ∆pin(t) [Pa] is the pressure loss at the entrance, however the ∆pout(t) [Pa] denotes

the pressure loss at the exit ot a tunnel tube, ∆pexp(t) [Pa] is the loss generated by

expansion of cross-section area and on the other hand the ∆pcon(t) [Pa] gives the pressure

loss caused by contraction of tunnel tube.

The entrance pressure loss can be calculated as:

∆pin(t) = −1

2
ρζinv(t)2 (3.12)

on the other hand, the exit pressure loss is given as follows:

∆pout(t) = −1

2
ρζoutv(t)2 (3.13)

where ζin [–] and ζout [–] are entrance and exit pressure loss coefficients, respectively.

According to [12], these loss coefficients can be defined as ζin = 0.5 and ζout = 1.

Moreover, an another influence that causes a pressure loss is a change of cross-section

area. Two types of shape transition are taken into account in the mathematical model

of airflow dynamics. These are sudden contraction and sudden expansion, as depicted in

Figure 3.2, since they are the most common changes in the shape of a road tunnel. The

sudden contraction can be determined in the following way:

∆pcon(t) = −1

2
ρζconv1(t)

2 = −1

2
ρ

(
1− A1

βA0

)
v1(t)

2. (3.14)

On the other hand, the sudden expansion can be calculated as:

∆pexp(t) = −1

2
ρζexpv0(t)

2 = −1

2
ρ

(
1− A0

A1

)
v0(t)

2 (3.15)

where v1(t) [m s−1] denotes the airflow velocity in the larger area, in comparison, v0(t)

[m s−1] represents the airflow velocity in the smaller one, A1 [m2] denotes the larger area

of the cross-section, however A0 [m2] corresponds to the smaller area of the cross-section

and β [–] is the contraction coefficient, which can be determined in the following way:
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[13]

β = 0.63 + 0.37 ·
(

A0

A1

)3

. (3.16)

The local area pressure losses are also caused due to merging or dividing flows in the tunnel

tube, particularly in tunnel crossroads. These types of pressure losses are neglected in

the mathematical model, because accuracy of the model is not significantly improved

compared to computational demands of such pressure losses (Eq. 3.15 and Eq. 3.14).

Jet fans effect

The pressure gain generated by running jet fans depending on the airflow velocity and its

angular velocity can be written as follows: [14]

∆pJF (t) = ηJFρv(t)2
QJF(t)

Q(t)
nJF(t)

(
vJF(t)

v(t)
− 1

)
(3.17)

where QJF(t) [m3 s−1] is the airflow provided by the jet fan, vJF(t) [m s−1] is the average

output airflow velocity of a jet fan, Q(t) [m3 s−1] is the airflow in the tunnel, ηJF [–]

denotes the fan efficiency containing the correction of influence of the jet fans placement

in the tunnel tube, nJF(t) is the number denoting the amount of jet fans, which run

simultaneously, AJF [m2] is the outlet area of the jet fan.

Piston effect of vehicles

Passing cars through the tunnel tube increase the airflow. In case the velocity of vehicles

is greater than airflow velocity, i.e. u > v, the term ∆ppist in the Eq. (3.6) is positive

and denotes pressure gain. Conversely, if u < v the piston effect causes a pressure loss.

Additionally, the mathematical expression of piston effect also covers the situation when

the direction of passing cars is opposite to the direction of the airflow. Thus, the pressure

change caused by piston effect of passing vehicles can be expressed as follows:

∆ppist =
ρ
∑

i Ni(t)cdiAvi

2A
· (vcar(t)− v(t)) |vcar(t)− v(t)| (3.18)

where cdi [–] is the drag coefficient of the respective type of vehicle, Avi [m2] is the frontal

area of the passing vehicle, vcar(t) [m s−1] is the vehicle velocity in the tunnel and Ni(t) is

the number of vehicles in the tunnel of the respective type.

The mathematical model differs three types of vehicles, which appears in a tunnel

most frequently. These are passenger cars, vans and heavy cars. Values of frontal area as

well as drag coefficients of selected vehicle type are presented in Table 3.1. Moreover, the
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Figure 3.3: Representative values of hourly traffic intensity in the Strahov tunnel. [15]

Vehicle Drag coefficient cdi [–] Frontal area Avi [m2]

Passenger cars 0.3-0.5 2-3
Vans 0.4-0.58 7-8.5
HGV 0.74-1.0 7-10

Table 3.1: Values of the frontal areas an drag coefficients of considered types of vehicles.

number of vehicles in a road tunnel section can be determined according to [11]

Ni(t) =
I(t)L

v(t) · 1000
(3.19)

where I(t) [veh/h] is the hourly traffic intensity in given section and time, v(t) denotes

the velocity of vehicles and L [m] express the length of given section.

The hourly traffic intensity differs, yet has a specific progress during the day. Figure 3.3

depicts the typical hourly traffic intensity of passengers cars during the day in a tunnel.

Neglected pressure changes

First, the stack effect is generated due to differences in temperature at the entrance and

exit tunnel portal. The air in a tunnel flows from the place with a higher temperature

to the place with a lower temperature, since the natural buoyancy exists. The pressure

loss due to stack effect is neglected in the mathematical model of airflow dynamics since

the Blanka tunnel complex is located in urban area and also the altitude change between

entrance and outlet portal is minor in comparison with piston or air friction pressure loss.

Nevertheless, it can play a role of a disturbance effect. Second, similarly to the stack

effect, the wind effect is very challenging to measure due to inaccuracy in wind speed

and its direction measurement. Thus, the pressure changes caused by wind at the tunnel
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portal are neglected, because of the suitable location in the terrain, especially in case of

the Blanka tunnel complex, which is situated in urban area.

3.1.2 Steady-state model of Airflow Velocity

The mathematical model of airflow velocity is simplified for the design of the operational

ventilation controller in the tunnel, because using the dynamic mathematical model of

airflow velocity in order to design the controller is a difficult task, as the implementa-

tion of the dynamic model is challenging and the controller is expected to require high

computational demands.

According to [16] the steady-state airflow dynamics can be considered during real

operation, thus the following relationship is assumed

dvair(t)

dt
→ 0 (3.20)

meaning that, it is supposed that changes of airflow velocity during real operation are

small enough compared to the controller step. Therefore, it is assumed that the airflow

velocity is time variable, but steady state in each time. The static is given by set of

non-linear algebraic equations as can be seen further in Section 3.1.3.

3.1.3 Modification of Bernoulli and Continuity equation

The mathematical model of airflow velocity may differ for tunnels consisting of several

entrance and outlet ramps being ventilated longitudinally and for road tunnels which

has no connected ramps and are equipped with airflow extraction system. Such tunnel

complex can be divided into several sections, see Figure 3.4, intended to have constant

geometry. In particular, a section is composed of following parameters: cross-section area,

slope of the road, hydraulic diameter, number of traffic lanes, etc.

As depicted in Figure A.1 Blanka tunnel complex consists of several entrance and

exit ramps, therefore the Bernoulli equations must be modified in order to fulfill pressure

equality on connected ramps. The Bernoulli equations are used to fully describe the

airflow dynamics in a road tunnel with connected ramps. As mentioned in Section 3.1.2,
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ramp

Section 5 

Section 6 

Section 7 Section  9 

Sec
tion

 8 

EntranceEx
it

Entrance
ramp
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tion

 2 

Section 4  Section 3  Section 1

Figure 3.4: A schematic representation of a road tunnel complex containing ramps. The
tunnel is divided into several sections with the constant geometry.
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Figure 3.5: A tunnel complex containing connected entrance and exit ramp. Traffic
direction is denoted by arrows.

the algebraic sum of pressure changes in a loop must be equal to zero: [17]

∑
i

∆pi = 0 (3.21)

where ∆pi [Pa] is the pressure change in the i-th section.

Eq. (3.21) represents the equivalent of the Kirchhoff’s voltage law, where the pressure

change is analogous to voltage. A tunnel crossroad depicted in Figure 3.5 can be described

by the set of Bernoulli equations as follows:

0 = ∆p1 + ∆p2 (3.22)

0 = ∆p2 −∆p3 + ∆p4 (3.23)

0 = ∆p4 + ∆p5 (3.24)

where ∆pi denotes the total pressure change in the i-th section of the tunnel.

Moreover, if the constant airflow velocity along the entire tunnel section is assumed as

well as the density of air, the continuity equation holds for the volumetric flow rates and

for the non-stationary flows [17]. Therefore, these sections can be than mathematically

connected via continuity equation, which is also called the mass-balance equation, and

thus represents the conservation of mass:

∑
i

Qvi = 0 (3.25)

where Qvi [m3 s−1] is the volumetric flow rate in the given section of the funnel. The

volumetric flow can be calculated as Qvi = A · v.

The tunnel complex in Figure 3.5 can be described by two Continuity equations since

there are two node points:

Q1 −Q2 −Q3 = 0 (3.26)

Q3 + Q4 −Q5 = 0 (3.27)
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The continuity equations also hold for cross-section area changes and extraction as

well as the supply of fresh air through the VMR.

3.1.4 Linearizion of the airflow velocity model

Although almost every physical system contains nonlinearities, usually its behavior within

certain operating range of an equilibrium point can be approximated by a linear model

with an uncertainty. The controlled system, in particular the model of airflow dynamics

in a road tunnel is non-linear, however, a linear model of the plant might be required in

the case of linear controller design. Linearizion of the steady-state airflow velocity model

may significantly contribute to the design of linear controller or convex optimization task.

Furthermore, linearizion of the simplified mathematical model of airflow velocity being

currently used in the case study Blanka tunnel complex, is introduced in this thesis.

The given non-linear Bernoulli equation (3.6), mentioned in Section 3, were simplified

and replaced with a general linear equation having the following form

f(v) = a · v + b (3.28)

where f(v) is a function denoting a pressure loss, a is a coefficient expressing the slope

of linearized function and b is the intercept. Therefore, the following equation has to be

found for the coefficients a and b

∆pj = a · v + b (3.29)

where ∆pj is the corresponding pressure loss, a is the slope of the line and b denotes the

intercept. Further, the slope of the line given by a can be determined as the derivative of

δpj evaluated at the specified point, i.e., the point of linearizion. Thus, the slope a can

be calculated as follows:

a =
d∆pj

dt

∣∣∣∣
v0

(3.30)

where the v0 denotes the point of linearizion. Thus, the linear function can be written as

f(v) =
d∆pj

dt

∣∣∣∣
v0

· v + b. (3.31)

The coefficient denoting the intercept can be calculated from the equality of functions 3.28

and a non-linear Bernoulli equation expressing particular pressure loss ∆pj evaluated at

the point of linearizion v0. Thus, it can be stated as

∆pj(v0) = f(v0). (3.32)
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Substituting (3.31) into (3.32) gives a formula for determining the intercept b of the

linearized function as follows:

b = ∆pj(v0)−
d∆pj

dt

∣∣∣∣
v0

· v0 (3.33)

In addition, however the Bernoulli equation (3.6) is linearized, the continuity equa-

tion (3.25) is not, because they are already linear with respect to vair.

Example: Linearizion of pressure loss due to friction effect

The above mentioned approach of linearizing Bernoulli equations is demonstrated on the

following example. The linearized function denoting the pressure change due to friction

effect is derived. Recall the formula expressing pressure loss due to friction effect given

as:

∆pfric =
1

2
ρλ

L

Dh

v2(t). (3.34)

and a linear equation f(v) = a · v + b described by the slope a and the intercept b. The

set of Eqs. (3.35) denotes how to calculate the a term from Eq. (3.28).

a =
d∆pj

dt

∣∣∣∣
v0

(3.35)

= ρλ
L

Dh

v(t)

∣∣∣∣
v0

(3.36)

= ρλ
L

Dh

v0 (3.37)

where v0 denotes the point of linearizion. The final formula expressing the term a is

derived, thus a = ρλ L
Dh
v0. The intercept therm b can be determined form the equality

given by the following equations:

∆pfric(v0) = f(v0) (3.38)

= a · v0 + b (3.39)

1

2
ρλ

L

Dh

v20 = ρλ
L

Dh

v0 + b (3.40)

thus, for the case of deriving linearized function of pressure change ∆pfric, caused by the

friction effect, intercept coefficient b can be calculated as

b =
1

2
ρλ

L

Dh

v20 − ρλ
L

Dh

v0. (3.41)
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Combining the Eq.(3.41) and the Eq. (3.35) yields:

flin(v) =

(
ρλ

L

Dh

v0

)
· v +

(
1

2
ρλ

L

Dh

v20 − ρλ
L

Dh

v0

)
(3.42)

3.1.5 Results of linearizion

The result of system linearizion is provided in this Section. The simulation of the lin-

earizion of the airflow velocity model proposed in Section 3 is performed for the Blanka

tunnel complex. A comparison of the non-linear and linearized steady-state model with

the real data is depicted in Figure 3.6 and 3.7 as well as in Figure 3.8. The steady-

state airflow velocity model currently used in the Blanka tunnel complex is linearized.

Additionally, the traffic intensity is also shown in these figures. The simulation is per-

formed for one day of operation when the ventilation system is out of order, e.g. system

maintenance, thus no additional flow is introduced by running jet fans, yet only natural

ventilation occurs during a day. In this situation, traffic intensity is the only input to the

mathematical model of airflow dynamics.

As can be observed, the linearized model provides satisfactory results compared to the
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Figure 3.6: Northern tube of the Blanka tunnel complex. Outlet ramp U Vorĺık̊u is
emphasized. Presented section of the Blanka tunnel are shown in Figure A.2.



CHAPTER 3. AIRFLOW VELOCITY MODEL 22

10/03/16-00:0003:00 06:00 09:00 12:00 15:00 18:00 21:00 10/04-00:00
0

1

2

3

4
A

irf
lo

w
 v

el
oc

ity
 

   
   

[m
/s

]

Airflow velocity at the corssroad Prasny most - exit ramp

-100

0

100

200

300

T
ra

ffi
c 

in
te

ns
ity

 
   

   
[v

eh
/h

]

Real Nonlinear Linearized

Traffic intensity

10/03/16-00:0003:00 06:00 09:00 12:00 15:00 18:00 21:00 10/04-00:00
0

5

10

A
irf

lo
w

 v
el

oc
ity

 
   

   
[m

/s
]

Airflow velocity in section 17

0

200

400

T
ra

ffi
c 

in
te

ns
ity

 
   

   
[v

eh
/h

]

Real Nonlinear Linearized
Traffic intensity

10/03/16-00:0003:00 06:00 09:00 12:00 15:00 18:00 21:00 10/04-00:00
0

2

4

6

A
irf

lo
w

 v
el

oc
ity

 
   

   
[m

/s
]

Airflow velocity in section 24

-200

0

200

400

T
ra

ffi
c 

in
te

ns
ity

 
   

   
[v

eh
/h

]

Real Nonlinear Linearized

Traffic intensity

Figure 3.7: Northern tube of the Blanka tunnel complex with exit ramp Prašný most.
Division of the Blanka tunnel complex into given sections can be seen in Figure A.2.

non-linear model and real measured data. Airflow velocity comparison in the north tunnel

tube is shown in Figure 3.6 and in Figure 3.7, where the time progress of airflow velocity

can be seen at the crossroads U Vorĺık̊u and Prašný most as well as at several tunnel

sections. On the other hand, obtained and measured airflow velocities in the southern

tunnel tube of the Blanka tunnel complex are depicted in sub-figures 3.8a and 3.8b within
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(a) Southern tube with Trója exit ramp.
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(b) Southern tube with Prašný most crossroad.

Figure 3.8: The southern tube of Blanka tunnel complex. Figure A.2 denotes tunnel
sections.
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Table 3.2: Mean absolute errors of the linearized steady-state and non-linear steady-state
model of airflow velocity for given section within the southern tube of the Blanka tunnel
complex. Location of given section is visible in Figure A.2.

MAE, m/s

Section
12

Section
24

Trója Section
1

Section
10

Prašný
most

Non-linear model 0.61 0.75 0.59 1.68 0.45 0.54
Linearized model 0.78 0.95 0.67 2.10 0.61 0.58

Figure 3.8.

As visible in all presented figures, values of airflow velocity obtained from the linearized

model and these provided by the non-linear model differs till the 6:00 AM as well as

from the 6:00 PM. However, at 6:30 AM the difference significantly decreases and these

two quantities achieve practically the same values within 7:00 AM and 6:00 PM. This

behaviour is expected and valid, since the linearized model can provide satisfactory results

only in a sufficiently small neighborhood of the linearizion point.

Data from the month March 2016 are evaluated, and the simulation is performed

within one entire day. The real measured data are denoted by the yellow line, however

the linearized model and non-linear are represented by the blue and red line, respectively,

and the violet dashed line shows the traffic intensity.

According to attached figures linearized model of airflow velocity provides valid results

compared to the non-linear model. This fact is also confirmed in Table 3.3 and Table 3.2

wherein the mean absolute errors are denoted. The difference between the mean absolute

error of non-linear model for depicted sections and the linearized model is not significant as

one could expect, it is quite small instead. Therefore, based on the aforementioned results

the linearized model of airflow velocity is suitable for the design of optimization-based

control with linear equality constraints representing the linearized model.

To summarize, significant contribution of this Section 3 is linearizion of the already

Table 3.3: Mean absolute errors of the linearized steady-state and non-linear steady-state
model of airflow velocity for given section within the northern tube of the Blanka tunnel
complex.

MAE, m/s

Section
2

Section
12

U
Vorĺık̊u

Prašný
most

Section
17

Section
24

Non-linear model 0.66 0.59 0.47 0.57 0.92 2.03
Linearized model 0.71 0.76 0.63 0.51 0.98 2.05
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developed airflow velocity model of the Blanka tunnel complex. The linearized model

can be included in the design of a controller, particularly, within the optimization pro-

cedure. Having a linearized model of the process dynamics, quadratic programming can

be applied to solve an optimization task, and thus improve the controller performance,

likewise ensure minimal electricity consumption. Finding the optimal solution (global

minimum) is guaranteed by the Quadratic programming that can be applied ones the lin-

earized model is found. Unlike the currently used controller in the Blanka tunnel complex

(see Section 5.3) does not ensure global minimum, solving the optimization task using

Quadratic programming approach does guarantee the optimal solution.



4. Emission model

Dynamic model of pollutant concentration based on convection-diffusion equation is intro-

duced in this section. The main contribution within this section is the implementation of

this dynamic model of pollutants. Moreover, the stability of developed dynamic model is

analyzed. Additionally, the steady-state model of pollutant concentrations in a road tun-

nel is derived. Finally, this section includes comparison of both models with against the

real data from the Blanka tunnel. Simulations have been carried out for several working

days of the week.

4.1 Introduction

The interest about air pollution has grown enormously in the last decades due to a better

comprehension of the dangerous effects that some pollutants have on human health. A

location where high concentrations can be expected are street canyon or road tunnels

in which there are high emissions of pollutants in relatively small volumes. [18] High

amount of venomous gases in a tunnel tube can be extremely dangerous for a human

being. Additionally, the major responsible source of air pollution in urban ares is a

vehicle traffic.

The combustion of fossil fuels by vehicles leads to road traffic emissions, which are sig-

nificant sources of primary air pollutants. Road traffic emissions remain highly relevant as

the most important emission source of air pollutant despite the successful implementation

of catalytic converters in gasoline vehicles. [19] The emitted substances include several

compounds, which are dangerous for human health.

However, carbon dioxide (CO2) is emitted in largest quantities contributing most to

the anthropogenic radiative forcing, CO emissions per vehicle have reduced significantly

due to usage of catalysts in vehicles. Thus, carbon monoxide is no longer key issue in

ventilation design, however it is mainly focused on particulate matter and Nitrogen oxides,

therefore measurements of only these gases is provided in the Blanka tunnel complex.

Nitrogen dioxide and particulate matter are harmful for human health, moreover nitrogen

oxides, NOx : NO+NO2, and carbon monoxide are secondary aerosols causing air pollutant

25
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problems of photo smog in the outflow ot most large cities. The precise information of

vehicle emissions passing through a road tunnel is crucial for the design of advanced

operational ventilation controller as well as contribution of road traffic to environmental

problems.

Emission factor (EF) which describes the emitted mass of a compound per driven

distance are used to characterize traffic emissions. The EF depends on many variables

such as size, type, fuel mode of the vehicle, road gradient and maintenance of the vehicle.

Estimation of amount of air pollutant due to traffic is a difficult task, because of the

diversity of above mentioned factors.

Therefore, modeling and calculation of air pollution due to traffic inside a road tunnel

is challenging. This chapter gives overview how to model pollution concentration due to

traffic inside a road tunnel, particularly, there exist two possibilities that describe the

propagation of pollutants in the tunnel.

4.2 Dynamic model

Widely used dynamic model of pollutant concentration in road tunnels stands on the

convention-diffusion equation [18]

∂c(x, t)

∂t
+ uair(t)

∂x(x, t)

∂x
= D

∂2c(x, t)

∂x2
+R(t) (4.1)

where c(x, t) [g/m3] is pollution concentration, which depends of the position x and time

t, uair(t) [m s−1] is the airflow velocity in the tunnel, D denotes the diffusion coefficient

[m2 s−1], R(t) [gm/m3/s] is the total amount of exhaust pollutants produced in specified

section of the tunnel and it is a function of position and time because vehicles move in

the tunnel and produce emissions in different locations and different times.

The pollutant production R mainly depends on so-called emission factor, number of

the given type of vehicle, vehicle velocity and volume of air in the specified position in

the tunnel tube [20]

R(t) =

∑
iNi(t)Eiucar(t)

Vair(t)
(4.2)

where ucar [m s−1] denotes the velocity of passing cars, Ni [–] is the number of vehicles of

the given type, Ei is the emission factor [g/m] and Vair [m3] denotes the volume of air in

the section and it is given as

Vair = AT · L (4.3)

wherein the AT stands for the cross-section are of tunnel tube at given position [m2] and L
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[m] is the length of the tunnel section. Production of vehicle emission highly depends on

so-called emission factor Ei, which depends primary on the vehicle type (van, passenger

car, truck, ...), slope of the road, etc. Tables containing these emission factors can be

found in many sources depending on the European standards. The most used emission

table for calculation of the emission factors in Europe is given by World Road Association

(PIARC)[21], however other source is the program MEFA used for computational purposes

of emission factors within the Czech Republic, which is developed by the company ATEM.

Values of longitudinal airflow velocities uair in tunnel are usually within the ±5m s−1.

The value of the diffusion coefficient D can be estimated around 1× 10−5 [m2 s−1] in gases,

however the values vary for different chemical substances. Therefore, the fraction being

multiplied by the D coefficient can be neglected in Eq. 4.1:

∂c(x, t)

∂t
+ uair(t)

∂c(x, t)

∂x
= R(t). (4.4)

The discretization of Equation (4.4) has to be performed in order to solve such equa-

tion. Nevertheless, the discretization is supposed to be accomplished in the way that

Equation (4.4) is stable. It has to be emphasized, that the differential scheme varies

for different airflow direction. Thus, in the case the airflow velocity is higher than zero,

uair > 0, the therm ∂x(x,t)
∂t

is substituted by forward difference and the fraction ∂x(x,t)
∂x

is

substituted by backward difference, and on the other hand, by forward difference in the

case of uair < 0. Therefore, substituting these differences into Eq. 4.4, for the case when

uair > 0, yields

ct+1
j − ctj

∆T
+ utair

ctj − ctj−1

∆x
= Rt (4.5)

and for the case when uair < 0 it is modified as follows

ct+1
j − ctj

∆T
+ utair

ctj+1 − ctj
∆x

= Rt. (4.6)

Equation 4.5 is rearranged and the therm ct+1
j is expressed in the following way

ct+1
j =

(
1− utair

∆T

∆x

)
ctj + utair

∆T

∆x
ctj−1 +Rt∆T, utair ≥ 0, (4.7)

and modifying Eq. 4.6 yields

ct+1
j =

(
1 + utair

∆T

∆x

)
ctj − utair

∆T

∆x
ctj+1 +Rt∆T, utair ≤ 0. (4.8)
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Stability of dynamic model

An important characteristic of a the dynamic model is stability. In order to provide valid

outputs, the derived mathematical model of pollutant concentrations has to be stable.

This is ensured if the values of the following two terms (4.9) and (4.10)

1− utair
∆T

∆x
(4.9)

1 + utair
∆T

∆x
(4.10)

fall inside the unit circle, therefore the following inequalities must be fulfilled.∣∣∣∣1− utair∆T∆x

∣∣∣∣ < 1, utair ≥ 0 (4.11)

∣∣∣∣1 + utair
∆T

∆x

∣∣∣∣ < 1, utair ≤ 0. (4.12)

Rearranging Eqs. (4.11) and (4.12), the following inequalities are obtained denoting

the stability condition for the dynamic model of pollutant concentration in a road tunnel

1−
∣∣utair∣∣ ∆T

∆x
≥ −1 (4.13)

∣∣utair∣∣ ∆T

∆x
≤ 2. (4.14)

The resulting inequality (4.14) expresses, how to properly choose the sampling time ∆T

and the difference between each section ∆x, where x denotes the distance inside the

tunnel from the entrance. Values of parameters ∆T and ∆x has to be chosen such that

the inequality (4.14) is satisfied and also the computational demand is taken into account.

4.3 Steady-state model

The steady-state model can be used when changes in pollution concentrations are big

enough compared to simulation step. Additionally, it does not require knowledge of

traffic distribution along the entire tunnel tube, thus demands on model input are lower

and more easy to accomplish compared to the dynamic model. Recall the simplified

diffusion equation (4.4) which is the base for the steady state mathematical model of

pollutant concentration as well. It is supposed that the system is time variable, however
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inside concentration 
cj 

uairjinside concentration 
cj+1 

 Lj - length of the tunnel section  Lj+1 - length of the tunnel section 

ambient
concentration 

cj-1 

ambient
concentration 

cj+2 

uairj+1

Figure 4.1: A graphical representation of pollutant concentration inside a tunnel contain-
ing several tunnel section.

steady state in each time, for this reason it is assumed that

∂x(x, t)

∂t
→ 0; (4.15)

meaning that changes in pollutant concentrations are fast enough under real operation

compared to the sampling time of the simulation. Therefore, taking into account the

previous assumptions, the partial differential equation (4.4) is modified to ordinary dif-

ferential equation:

uair(t)
dc(x, t)

dx
= R(t). (4.16)

The equation (4.16) is substitutable as follows

uair(t)
cj(t)− cj−1(t)

L
= R(t) uair ≥ 0 (4.17)

uair(t)
cj+1(t)− cj(t)

L
= R(t) uair ≤ 0. (4.18)

where the situation from Figure 4.1 is considered. The pollutant concentration cj is

assumed inside the tunnel, which is the average along the tunnel section as well as the

ambient pollutant concentration cj+2 and cj−1 at the tunnel portals. Therefore, concen-

tration inside the tunnel at given section can be calculated as follows

cj(t) =
R(t)L

uair(t)
+ cj−1(t) uair(t) > 0 (4.19)

cj(t) = −R(t)L

uair(t)
+ cj+1(t) uair(t) < 0 (4.20)

where the cj(t) denotes the pollutant concentration at j−th section, L is the length of

the section, R(t) represents produced pollutants by vehicles, uair(t) is the airflow velocity

and cj−1(t), cj+2(t) denote the ambient concentration.

The steady-state model of pollution concentrations is time-dependent, yet steady-state

in each moment in time. As expected, the result values are directly proportional to the

length of the given section and produced pollutants by vehicles and at the same time
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inversely proportional to the airflow velocity. It is key property within the tunneling

experts. [20]

4.4 Simulation results

The results of both concentration models are presented on the case study, the Blanka

tunnel complex. Resulted concentrations from the dynamic model are compared against

measured data and concentrations provided by the steady-state model.

Simulation inputs are traffic data, which are measured in the Blanka tunnel complex.

Emission factors used within the mathematical model of pollutant concentration depend

on traffic distribution according to the European emission standard EURO. Furthermore,

days 20. July 2016 to 25. July 2016 are chosen for simulation purposes. Within these

days the pollutant concentrations were not influenced by the running ventilation, as the

ventilation control system was under maintenance.

For the simulation purposes, the tunnel is divided into several sections with predefined

length, slope, hydraulic diameter, etc. The length of shortest section is set to 100m and

the time step is 10s. Thus ∆T = 10s and ∆x = 100m. For this reason, the following

inequality is raised

∣∣utair∣∣ ∆T

∆x
≤ 2 (4.21)

5 · ∆T

∆x
≤ 2 (4.22)

and for ∆T = 10s and ∆x = 100m, yields

0.5 ≤ 2. (4.23)

As can be seen from Eq. (4.23) the dynamic model is stable for chosen ∆x and ∆T .

The following Figures 4.2 and 4.3 depict comparison of measured and obtained data

in the tunnel section number 9 A.2. This specified section is chosen because measurement

device of nitrogen oxides is present A.1, thus a valid comparison is provided. Addition-

ally, the section 9 is located within the crossroad U Vorĺık̊u, where the simulation was

performed. Comparison of only NOx concentration is provided, because concentration

of carbon monoxide CO is not measured within the Blanka tunnel, since it is no longer

the major source of exhaust pollutants due to development of vehicle engines. However,

concentration of dangerous NOx can overstep the limit values.

The Figure 4.2 as well as the Figure 4.3 depict the time progress of nitrogen oxides

concentrations in the crossroad U Vorĺık̊u, particularly in the section umber 9 A.2. The
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Figure 4.2: Simulation day 21. July 2016.

black curve represents measured concentrations by a nitrogen oxide sensor located in the

section 9 A.2. The blue line depicts values of concentration provided by the dynamic

model of pollutant concentrations and the resulted values of concentrations given by the

steady state model are expressed by the green curve. It can be seen that both dynamic

and steady-state mathematical model provide satisfactory results, however modeled data,

especially results of the dynamic model shown in Figure 4.3a, differ a bit from measured

values, yet in acceptable boundaries. It has to be stressed out that according attached

Figures 4.2 and 4.3 the steady state model oscillates significantly compared to concen-

trations given by the dynamic model as can be seen mainly in the sub-figure 4.3a, 4.3c

and 4.3d, however values of nitrogen oxides provided by the dynamic model acquire greater

difference in value from measured concentrations compared to the steady state model.

If Figure 4.2 is inspected closer as well as Sub-figures 4.3b, 4.3c and 4.3d in Figure 4.3,

one may observe there is almost constant difference between measured concentrations and

values computed by the dynamic model. This situation can be clearly emphasized in

Figure 4.2 from the 5:30AM to 10:00AM likewise from 10:38AM to 8:55PM, as well as in

Figure 4.3b from 5:30AM to 6:00PM. Thus, it can be considered as an offset caused by

setting initial concentration c0amb to zero during the simulation. Additionally, it can be

noted that progress of pollutant concentration shown in Figure 4.3d is different compared

to Figure 4.3a, 4.3b and 4.3c. This happens due to the contrast in traffic distribution,

since the simulation day 4 4.3d is Sunday instead of a day within working week as it is in

the case of the rest figures.

The implemented dynamic model of pollutant concentration is a white box model,
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(a) Simulation day 1.
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(b) Simulation day 2.
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(c) Simulation day 3.
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(d) Simulation day 4.

Figure 4.3: Simulation results provided by the mathematical model of pollutant concen-
tration.

Table 4.1: Mean absolute errors of the dynamic and static model for given simulation
days.

MAE, ppm

Day 1 Day 2 Day 3 Day 4 Day 5

Dynamic model 1.15 1.18 0.98 0.57 0.47
Static model 0.63 0.76 0.78 0.66 0.71

because it is derived only based on physical processes in a road tunnel. No additional

identification of process dynamics refining the mathematical model is introduced. Inaccu-

racy of dynamic model of pollutant concentration can be caused by several factors, such

as the choice of the number of tunnel sections and theirs length as well as inaccuracies

in distribution of both EURO categories and types of vehicles. In addition, mean ab-

solute error (MAE) of resulting values estimated by both dynamic and static model of

pollutants, respectively, is computed for each simulation day. MAEs are shown in Ta-

ble 4.1. According to values of MAE in Table 4.1 both models provide resulting pollutant

concentrations in allowable limits.



5. Ventilation Control

This chapter is focused on the operational ventilation control in roads tunnels. In this

thesis the ventilation control is focused on complex road tunnels. As these types of tunnels

occur usually in cities, there are often requirements on the quality of ambient environ-

ment, in order to minimize car exhaust fumes from exit junctions to nearby environment.

Additionally, the operational ventilation should minimize electricity costs of ventilation

devices, such as jet fans and fans in ventilation machine rooms.

This chapter’s contribution is mainly in finding the appropriate method for the global

solution of optimization task for the current ventilation controller in the Blanka tunnel

complex, see Section 5.3. The algorithm is validated on the real data from the Blanka

tunnel complex and the results are compared to the current optimization algorithm, which

is the local one. The results of both algorithms (global and local) are compared in terms

of energy costs and based on these results achieved energy savings by using the global

method are estimated.

The first part of this chapter summarizes requirements and possibilities of ventilation

control in road tunnels. The second part of this chapter provides an overview of current

optimization-based controller in the Blanka tunnel complex. It also discusses the design of

control structure and its components. The third part gives a proposal of convenient opti-

mization algorithm solving the non-convex optimization tasks, which results in increasing

energy cost savings of ventilation devices. The last part shows findings and results of the

proposed global optimization approach.

5.1 State of the Art

There are still high demands on indoor air quality (IAQ), however the ventilation control

is mainly designed for fire ventilation in road tunnels especially located in urban areas.

Moreover, the operational ventilation is primarily focused on nitrogen oxides NOx and

PM because the combustion of engines and catalysts technology in vehicles have improved

significantly during past years, and therefore CO is no longer the dominating factor for a

design.[19]

33
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Both objectives have the same principle; to handle the longitudinal airflow velocity.

5.1.1 Possible control strategies of the operational ventilation

control

In recent years, there have been different control design techniques for operational venti-

lation control in road tunnels. These approaches can be separated into following areas:

• Rule-based control

• Fuzzy-logic control

• Optimization-based control

• MPC control

Rule-based control

The rule-based control strategy usually provides satisfactory results in case of road tun-

nels with no connected ramps and low demand on IAQ. Rule-based control strategies are

easy to implement using the Programmable Logic Controllers (PLC), because there is

not high demand on computational load, since the control algorithm contains only sets

of conditions. Thus in this case, any additional computational devices, such as compu-

tational server, are not required compared to predictive control strategies. Additionally,

rule-based control can not handle any optimization task, thus demands on minimizing

energy costs can not be covered.

The rule-based control is strictly defined meaning that control actions are predefined

according to a specific schedule. The time schedule is frequently used. Working days

compared to weekdays require different ventilation program since the traffic distribution

differs. Furthermore, hysteresis type of control is used in many cases. Typically, the rule-

based control approach comprises both hysteresis control and time-scheduled ventilation

control. For instance, a tunnel is ventilated naturally during night hours and predefined

number of jet fans is running during scheduled time table, e.g. within the peak traffic

hours for instance. And if the concentration of exhaust fumes reaches, say 70 %, of

limit value, the number of running jet fans is increased until the measured pollutant

concentration decreases below certain threshold.

Optimization-based control

Optimization-based control of operational ventilation is supposed to keep pollutant con-

centration under defined limit values. This control strategy also incorporates optimization
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part of control algorithm so that minimizes a criterion. In vast majority of road tunnels

the electricity costs of ventilation devices are minimized. Additionally, the advantage of

this control approach is applicability to complex road tunnels with connected ramps and

not only for highway tunnels as well as the ability to fulfill many requirements, such as

air quality and to handle many constrained input variables, thus it is also applicable to

MIMO systems. And thus, a model of process dynamics is required, particularly, model of

airflow velocity, pollutant concentration and traffic model have to be usually introduced.

In Ref. [22] dynamic model of airflow velocity and concentration was introduced. And

for example as Ref. [23], [24] denotes, a quasi-dynamic model of airflow velocity based on

Bernoulli and continuity equations is derived describing the behavior of process dynamics.

Optimization-based control design can not be considered as MPC control because

process variables estimation is not used within the control algorithm.

Fuzzy-logic control

Other approaches have applied fuzzy logic control (FLC). During the past several years,

fuzzy control has emerged as one of the most active areas for research in the applications

of fuzzy set theory, especially in the field of industrial processes, which are challenging

to control by conventional methods due to the lack of quantitative data regarding the

input-output relations. [25]

The term fuzzy refers to the fact that the logic involved can deal with concepts that

cannot be expressed as the ’true’ or ’false’ but rather ’partially true’. The fuzzy logic has

the advantage that the solution a problem can be cast in terms that human operators can

understand. [26]

This Fuzzy-logic control has some advantages over the traditional control systems, such

as PID. In many cases the mathematical model of process does not exist, or it is too com-

plex, or requires high demands on computational power and memory, therefore a system

based on empirical rules might be more effective. Additionally, fuzzy control can be used

to improve existing traditional system controller by adding an extra layer of intelligence to

the current control method.
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Figure 5.1: Schematic illustration of a fuzzy-
logic controller. [27]

Karakas [27] presented a fuzzy-logic

control design for the control of highway

tunnel ventilation. The proposed con-

trol structure aims to maintain only a

single process-state variable defined at

a set point. The controller is a fuzzy

logic controller, where its inputs are an
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error end a change of error and the out-

put being the required change in the controlled variable. For demonstration purposes,

the structure of mentioned controller is depicted in the Figure 5.1. There can be seen

blocks representing both fuzzification and defuzzification process, a controlled plant given

by a mathematical model and a module containing decision making components, such

as judgment algorithm, a set of defined rules and data base enabling inputs and outputs

to be fuzzificated and defuzzificated, respectively. According to the attached results, a

comparison of power consumption of ventilation devices is denoted. Author shows that in

the case where FLC control is applied the electric power consumption is 4,48 times lower

compared to the situation where classical control approach is used. The control system

was applied only on highway tunnel with no connected ramps and the possible extension

for a tunnel having complex structure is not discussed either.

Bogdan et. all [28] described a model predictive and fuzzy control algorithm for a

longitudinal ventilation system in a road tunnel. MPC controller is applied together

with fuzzy logic controller as the additional control layer. Since the model of process

dynamics in the tunnel describes real plant only to certain level, the fuzzy controller is

integrated aiming to provide steady state accuracy. It compares the required level of

pollutant with the measured value and adjust the jet fans prediction in order to keep

the pollution close to the defined level. Simulation results of proposed scheme show

that time response of the operational ventilation is much faster compared to the system

controlled by conventional controller. Moreover, energy consumption is reduced around

5 % for simulated situation. The simulated behavior and expected ventilation system

performance during real operation in the tunnel is also verified. Finally, it is shown that

the proposed algorithm keeps concentration of pollutants within predefined limits.

MPC control

Predictive control seems to be a promising control approach that can help to improve

properties of existing ventilation systems applied in many road tunnels. Model predictive

control is a control method or group of control methods which make explicit use of a

process model to obtain the control signal by minimizing an objective function. The main

benefit of MPC is its constraint handling capacity and an ability to cover multiple-input

and multiple-output system. Unlike most other control strategies, constraints on inputs

and outputs can be incorporated into the MPC optimization.[29] Another advantage of

MPC is its ability to handle future events as soon as they enter the prediction horizon.

Basic control design approaches, typically a PID type of control law does not involve any

future prediction. It deals with potential disturbance once it reaches it. On the other

hand, the feed-forward part can be added but the design could be somewhat ad hoc. The
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systematic feed-forward design is integrated with the constraint handling.

Even though the MPC has many important advantages mentioned above, implement-

ing the MPC control strategy in road tunnels is still limited because of several difficulties.

First, MPC algorithm is based on knowledge of process dynamics, thus it is required to

obtain the dynamic model for complex road tunnels with connected ramps. This task

is difficult, however the dynamic model in the explicit form can be derived for tunnels

without connected ramps, such as high tunnels. Second, in case of the Blanka tunnel com-

plex there is a lack of sensors, therefore many variables such as opacity or NOx have to

be estimated. Additionally, simplified dynamic models are assumed within typical MPC

algorithm, unfortunately these models are unsatisfactory for modeling airflow dynamics

in road tunnels.

Publication [30] and [31] provide simulation analyses of operational ventilation. Air-

flow dynamics in three-dimensions is created and simulated with derived predictive con-

troller. As authors emphasize, presented results confirm higher effectiveness of predictive

control approach, thus it is a perfect candidate to be used aiming to reduce effectively the

values of pollution inside the road tunnel tube. Unfortunately, they do not present any

experimental validation of designed predictive controller.

5.2 Ventilation requirements

There are two levels of ventilation in road tunnels, i.e. normal ventilation and fire ven-

tilation. The fire ventilation is not covered in this thesis, however the ventilation under

normal operation of road tunnel is discussed in the thesis.

5.2.1 Normal ventilation

The operational ventilation must ensure the desired quality of the indoor environment,

i.e it has to maintain the concentration of pollutants within defined limits. The carbon

monoxide, nitrogen oxides and opacity are usually considered as exhaust gases. Visibility

is the inversion value of opacity and it holds that the better visibility is in the tunnel,

the lower values of opacity are in the tunnel. There exist several organizations, such

as PIARC [21] or CETU [32] acting among Europe publishing recommendations how to

define limit values of pollutants concentration for respective type of a tunnel, because

there are no strictly given directives defining such boundaries. Limit values of pollutants

concentration used in road tunnel in the Czech Republic are denoted in the Table 5.1.

City tunnels are located in urban areas surrounded by the build up area, and thus

there can occur additional requirements to ensure also protection of outdoor environment

of the tunnel from pollutions of passed cars. The objective is to keep the polluted air
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Pollutant Limit value

carbon monoxide (CO) 70 ppm
nitrogen oxides (NOx) 10 ppm
opacity 0.005 m−1

Table 5.1: Limit values of pollutant concentrations.[21]

Figure 5.2: Schematic representation of ventilation machine rooms within Blanka tunnel
complex. [15]

inside the tunnel to be withdrew by ventilation shaft instead of being moved outside of

tunnel through exit ramps or main exit portal, because pollutants dissolve in the upper

atmosphere. [20]

5.3 Operational ventilation in Blanka tunnel

Figure 5.2 depicts a schematic view of the operational ventilation in the Blanka tunnel.

The tunnel is equipped with jet fans alongside both northern and southern tunnel tube

as well as ventilation machine rooms shown in Figure 5.2. It can operate in five different

states. The operational ventilation is activated as soon as the tunnel is not in a state

of emergency, e.g. during a fire. The exact switching conditions and transients between

states are described in the following Section 5.3.1.
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Figure 5.3: A state diagram of the state switch, which activates the required state of
operational ventilation based on several conditions. The fifth mode (pre-ventilation) of
operational ventilation is not depicted, because it is activated only in case of suspicion of
fire.

5.3.1 State switch

The required state of operational ventilation is activated by the state switch and it can

function in five states:

1. Natural ventilation.

2. Indoor environment quality control.

3. Protection of the ambient environment; first level.

4. Protection of the ambient environment; second level.

5. Pre-ventilation mode.

The state of operational ventilation is set based on the following parameters: traffic in-

tensity in the northern tunnel upstream of the Malovanka portal (Figure A.2), inside

NOx concentration and opacity, current operating time and outside air velocity at the
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Malovanka portal. Table 5.2 shows transient conditions between possible states of opera-

tional ventilation except the pre-ventilation mode, because it is activated only in case fire

pre-alarm is detected.

Transition Condition

T{1→ 3}
traffic intensity

≥
1000 veh/h

T{1→ 2} cmeas ≤ limit value

T{2→ 1} cmeas ≤ 0.75 · limit value

T{3→ 2} cmeas ≥ limit value

T{4→ 2} cmeas ≥ limit value

T{3→ 1}
traffic intensity

≥
800 veh/h

Transition Condition

T{3→ 4}
vout ≥ 0.75m s−1

and

traffic intensity ≤ 2250 veh/h

T{4→ 3}

vout ≤ 0.5m s−1

and

traffic intensity ≥ 1000 veh/h

or

traffic intensity ≥ 2250 veh/h

T{3→ 4}
vout ≤ 0.5m s−1

or

traffic intensity ≥ 2250 veh/h

T{1→ 4}

vout ≤ 0.5m s−1

and

traffic intensity ≥ 1000 veh/h

or

traffic intensity ≥ 2250 veh/h

Table 5.2: Transient conditions between given states of operational ventilation. cmeas

represents the measured values of pollutants concentration and vout is the airflow velocity
at the Malovanka portal.

State 1: Natural ventilation

Within this state, the tunnel is ventilated naturally, longitudinally due to the piston

effect of passing cars. Natural ventilation, State 1, is activated if and only if there is

low traffic intensity in the tunnel, i.e. it does not exceed 1000 vehicles per hour and

concentration of pollutants do not exceed limit values depicted in Table 5.1. Additionally,

State 1 is implicitly applied during night hours, i.e. from 9:00 PM to 6:00 AM, to reduce

noise produced by running fans. Moreover, there are no requirements for the IAQ and a

protection of the ambient environment within this state.

State 2: Protection of the indoor environment

State 2, Protection of indoor environment is switched on if the limit values of pollutant

concentrations are exceeded. The operational ventilation must ensure the enough supply
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(a) First level of protection.

(b) Second level of protection.

Figure 5.4: Schematic situation of the first and second level of protection, respectively.
Direction is denoted by arrows.[15]

of fresh air in the tunnel and dilute the polluted air, and thus satisfy given IAQ in the

tunnel. This state is deactivated when the values of concentration of pollutant concentra-

tions decreases bellow 75 % of the limit values. Possibly frequent switching between on

and off mode in this state of operation is avoided by used hysteresis type of control. The

automatic control should keep the values of pollutant concentrations in allowed range.

The range is defined about 10 % more than limit values of given concentrations.

State 3: First level of protection

The State 3 is activated according to the traffic intensity as shown in Figure 5.3 and

Table 5.2. The objective of this state is to maintain amount of air, which is exhausted from

the northern tunnel to Malovanka area, under defined limit. The goal state is depicted

in Figure 5.4a. The requirement is to keep the airflow in aerodynamic section 13, see

FigureA.1, lower than 200 m3 s−1. The airflow is decelerated mainly by the ventilation

room Střešovice and jet fans in the corresponding section.

Minimization of exhausted gases from the exit portal at Malovanka is the most complex

task from the operational ventilation point of view. Furthermore, within the State 3 there

are no additional requirements on the protection of other exit ramps in the Blanka tunnel

complex, despite the Malovanka exit portal.

State 4: Second level of protection

The State 4 is able to avoid extraction of polluted air from tunnel ramps U Vorliku, Prašný

most and mainly Malovanka, however it is more energy demanding that the first level of

protection. The ideal state of this Second level of protection is expressed in Figure 5.4b.
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The State 4 is activated based on the traffic intensity. Moreover, it is also switched on

according to the outside air velocity at the portal Malovanka, see Table 5.2. This state

is activated as soon as the airflow velocity decreases bellow 0.5 m s−1, since sufficient

dispersion conditions for NOx are not ensured if the airflow velocity is less than 0.5 m s−1

in the surrounding area of Malovanka portal.

The fresh air is provided through both tunnel ramps likewise VMR and the polluted

air is exhausted from the tunnel through ventilation machine rooms. Particularly, there

are dampers between the northern and souther tunnel tube on two places and also there

is the machine room Malovanka. The polluted air from the northern tunnel is moved to

the southern tunnel thanks to these dampers and the VMR Malovanka keeping the exit

portal Malovanka in lower pressure compared to the surroundings of the tunnel portal.

In addition, a minor part of the polluted air can be exhausted from the tunnel through

Troja exit ramps, because there are no strict demands on ambient environment, since

Troja ramps are situated outside build up area. Therefore, it is allowed to transfer air

through these ramps.

In other words, the State 4 ensures airflow in entrance ramps to be positive and airflow

in exit ramps to be negative. Compared to the State 3, the State 4 ensures requirements on

ambient environment of all mentioned exit ramps, not only of the exit ramp at Malovanka.

State 5: Pre-ventilation

The pre-ventilation state is switched on if there is a suspicion of fire in tunnel sections.

Special requirements on the longitudinal airflow velocity in a section are desired, if the fire

pre-alarm is detected. In such case, the longitudinal airflow velocity should not decreased

below 1.2 m s−1 in the tunnel section. The limit value of airflow velocity in case of fire,

i.e. 1.2 m s−1, is critical for the transmission of smoke during evacuation phase in the

fire-affected tunnel section.

5.4 Formulation of the optimization task

The optimization part is the core of the ventilation control system. This block assembles

and solve the optimization task. The aim of the controller is such that the optimal

control input is calculated based on several input parameters to fulfill al constraints,

while minimizing electricity consumption. The currently used controller in the Blanka

tunnel complex, depicted in Figure 5.5, is composed of a feed-forward and a feed-back

part. Resulting control inputs are mostly influenced by the feed-forward part of the

controller, thus the feed-forward part is only taken into account within this thesis.
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5.4.1 Feed-forward part

The currently used controller uses the simplified steady-state model of airflow velocity

described in Section 3, because the expression of a dynamic mathematical model of airflow

velocity for complex road tunnels is difficult and a controller using this model would be

computational time demanding.

The optimization task is assembled based on the tunnel data including NOx, traffic

data, opacity, fan data and according to the current state of the operational ventilation

provided by the state switch described in Section 5.3.1. In this case, the cost function is

given by the electric power of all ventilation devices including both jet fans and VMRs.

Additionally, constraints are represented by the mathematical model of airflow velocity,

required airflow velocities (soft constraints) and physical limitations of ventilation devices

(hard constraints).

The control approach is based on the non-linear mathematical optimization, where

the objective of the optimization task is to determine a minimum of a cost function. The

optimization task can be state in the following way [33]

x∗ = arg minf0(x)

subject to:

fi(x) ≤ 0, i = 1, 2, ..., r

hi(x) = 0, i = 1, 2, ..., s

(5.1)

where x is the real number vector of decision variables, x∗ is the optimal or suboptimal so-

lution of the optimization task (5.1), f0(x) is the cost function, fi(x) represents inequality

constraints, hi(x) denotes equality constraints and s, r is the total number of inequality

and equality constraints, respectively.

The optimization task is calculated in 15 min intervals, i.e. the sampling time of the

optimization task is 15 min. Actually, the feed-forward part of the high level controller

is represented by the optimization task, since no information about measured airflow

velocity is incorporated into the optimization.

5.4.2 Decision variables

The vector of decision variables is composed of airflow velocities, number of jet fans

which are to be run, the desired airflows in VMRs and so-called slack variables ensuring

the desired airflow velocities in individual section of the tunnel. The vector of decision

variables can be written down for the tunnel ventilation control problem in the following
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way

x =
[
v1, ..., vvn , n1, ..., nfn , Q1, ..., Qvqn , s1, ..., svn

]
(5.2)

where v1, ..., vvn are the airflow velocities in respective sections of the tunnel, n1, ..., nfn de-

notes the number of jet fans, which are to be run in the corresponding group JF1, ..., JFfn ,

Q1, ..., Qvqn represents the desired airflow in the given VMR and s1, ..., svn are the slack

variables belonging to the individual desired airflow velocities in corresponding sections

of the tunnel.

Adding slack variable si within the optimization task is a common practice to ensure

feasibility. A slack variable relaxes a hard constraint for airflow velocity vi to stay within

allowable bounds vi ∈ (vmin, vmax).[34]

Variables n1, ..., nfn and Q1, ..., Qvqn give the resulting control input. These variables

are hardly constrained, meaning that, there are a maximum number of jet fans to be

possibly run and maximum volumetric flow rate of respective ventilation machine rooms.

These hard constraints can be expressed as inequality constraints. In addition, number of

jet fans n1, ..., nfn , which are to be run, can posses positive or negative real values. The

positive sign stands for the star-up of jet fans in the driving direction, and on the other

hand, the negative sign means the start-up of jet fans against the driving direction.

vvn = 37 is the number of aerodynamic sections and airflow velocities, fn is the number

of groups with jet fans and qn = 11 is the number of VMRs, thus there are 114 decision

variables in total within the optimization tasks (5.1). Figure A.1 depicts division of the

Blanka tunnel complex into aerodynamic sections.

5.4.3 Cost function

The cost function f0 in the optimization task 5.1 represents summarized electric power of

all ventilation devices, particularly, jet fans and ventilation machine rooms, and penalties

when exceeding the desired range of airflow velocities

f0(x) =

fn∑
t=1

Pf,i +

qn∑
i=1

Pq,i +
vn∑
i=1

ai (vi − si)2 (5.3)

where Pf,i is the power of the i-th group with jet fans, Pq,i denotes the electricity power of

the i-th ventilation machine room, vi is a longitudinal airflow velocity in the i-th section

and si represents a slack variable corresponding to the airflow velocity in the i-th section.

Moreover, vi−si defines a variance of the airflow velocity from the desired range in the i-th

section and ai is a weight of penalty when exceeding the desired zone of airflow velocity.
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Jet fan power

According to the [35] the formula of the jet fan power Pf can be expressed as follows

Pf = Pref · ω3
R (5.4)

where Pj is the actual power of jet fan, Pref is the nominal power of a jet fan and ωR

denotes the relative speed of a jet fan, i.e. from 0 % to 100 % of nominal speed.

However the general formula (5.4) for the JF power is introduced, simplified relation-

ship is used to calculate the total power od jet fans in the ith group [15]

Pf,i = Pref,i · ni (5.5)

where ni is the number of jet fans which are to be run in the ith group, i.e. the decision

variable from the optimization task (5.1), ni is a real number, which is splitted between

jet fans with soft-starters and a jet fan with variable speed drive. [8]

The simplified formula (5.5) is used, because the relationship (5.4) is not suitable for

the optimization task (5.1), since there is a cubic dependence of the jet fan power on the

relative speed complicating the feasibility of the optimization task. Moreover, in almost

each fan group together with jet fans with soft-starters, there is one jet fan with a variable

speed drive enabling continuous speed regulation. Therefore, the decision variables are

required to be split into two groups (jet fans wit variable speed drive and jet fans with

soft-starters).

Power of ventilation machine rooms

The airflows in VMR are desired, because they are one of the decision variables in the

optimization task (5.1), thus a relationship of fan power and airflow is requested.

There is a cubic relationship of the fan power Pf on the airflow Qf [35]

Pf = Pref

(
Qf

Qref

)3

(5.6)

where Qf is the airflow of an axial fan in a VMR, Pref is the nominal power of an axial

fan and Qref is the nominal airflow of an axial fan in a VMR running at full speed.

A ventilation machine room is equipped with several axial jet fans. The relation-

ship (5.6) is valid if all axial jet fans have the same parameters, such as jet fan diameter,

nominal power and volumetric airflow rate. In addition, the characteristic (5.6) supposes

the parallel operation of all jet fans during the real operation.
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Figure 5.5: A currently used control structure of the operational ventilation in the Blanka
tunnel complex. It is formed by the feed-forward part and adaptive logic.

5.4.4 Optimization task constraints

The optimization task (5.1) is a constrained minimization problem. There are two type

of constrains, equality hi(x) and inequality fi(x) constraints, respectively. Equality con-

straints are represented by the mathematical model of airflow dynamics. In this case,

the equality constraints are non-linear, because the first Kirchhoff’s law denotes linear

equality compared to the second Kirchhoff’s law, which brings non-linear equality con-

straints, therefore the equality constraints hi(x) in the optimization task (5.1) depend

non-linearly on airflow velocities in respective tunnel sections. Additionally, inequality

constraints are given by hard-constraints, i.e. physical limitations of jet fans and VMRs,

and soft-constraints denoting required airflow velocities.

Desired airflow velocities are achieved using soft-constraints enhancing the feasibility

of the optimization task (5.1). There are strict demands on slack variables si rather on

decision variables v1, ..., vvn , while minimizing corresponding term
∑vn

i=1 ai (vi − si)
2 in the

cost function f0 (5.3), because there are usually requirements to keep the airflow velocity

in a tunnel section in desired bounds. The aforementioned term is composed of the slack

variables si corresponding to airflow velocities in individual sections of the tunnel and

ai representing weighting coefficient. Moreover, it penalizes the violation of the desired

bounds of airflow velocity, where the desired bound is defined by the slack variables si.

The coefficient ai sets a size of penalty, when exceeding the desired bounds of airflow

velocity.

5.4.5 Feedback part

The feedback part of the high level controller is represented by the compensation block

depicted in Figure 5.5. Deviations between the real measured data and the mathematical

model of process dynamics are compensated based on minimizing differences in continuity

equation and modification of pressure changes in Bernoulli equations. Detailed description
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of the feedback part of the controller is provided in [8].

5.4.6 Solution of the optimization task

Several problems raise within the described optimization problem. It is a non-linear

optimization problem, since the power of ventilation machine rooms depends non-linearly

on the volumetric airflow rate, as denoted in Eq. (5.6), constraints given by the set of

Kirchhoff’s equations are non-linear and relationships describing pollutant concentration

are hyperbolic in shape (Eqs. (4.19) and (4.20)).

Further, the optimization problem (5.1) is non-convex because the equality constraints

given by the mathematical model of airflow dynamics are not affine, i.e. the generalized

Bernoulli equation depends nonlinearly on airflow velocity v. According to [36], the so-

called Sequential quadratic programming (SQP) method can be used to find solution of

such optimization task like the introduced optimization problem (5.1) is. Detailed insight

into the algorithm is provided in [36] as well. Unfortunately, there is no guarantee that

the global optimum corresponding to the lowest possible value of cost function f0(x) (5.3)

is found, because the optimization task (5.1) is non-convex. The computational environ-

ment MATLAB [4] is used to solve described optimization task, particularly, the function

fmincon within the Optimization toolbox is used.

5.5 Finding a global solution

The main objective of the operational ventilation control is to ensure both IAQ and a

protection on ambient environment at surroundings of given exit portal of the tunnel

complex. Nevertheless the energy savings are not considered as the main goal, it is

convenient to achieve significant reduction in electricity consumption, because operational

ventilation forms important amount of energy costs of the tunnel operation. Thus finding

the global solution of the optimization problem (5.1) is currently being relevant subject

of an intensive research. There are several algorithms to determine a global minimum of

non-convex optimization tasks.[8]

According to [37], moment relaxation algorithms can be applied in order to find the

global solution, since the optimization task (5.1) is a polynomial problem. The moment

relaxation algorithm unfortunately can not determine the global solution of complex and

large-scale tasks. As it is known, the optimization problem (5.1) has 114 decision variables

and many constraints including several quadratic equality constraints and the demands

on the computational capacity are very high, therefore the moment relaxation algorithm

is unable to use for solving the optimization problem (5.1) in real-time.
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Figure 5.6: A comparison of electricity consumption within simulation day 1.

Other possible approach how to find the global solution of the optimization prob-

lem (5.1) is the branch and bounds algorithm based on linear programming relaxations

and envelope approximations.[38] The branch and bound approach is based on the prin-

ciple that the total set of feasible solutions can be evaluated systematically until the best

solution is found. It also uses a tree diagram of nodes and branches to organize the

solution partitioning. [39]. Moreover, the branch and bounds method computes better

and better outer approximations and these are used to determine lower bounds of an

optimization problem. However, the upper bounds are also calculated, they are used to

prune the branch and bounds search tree. Therefore, the lower and upper bound solver

needs to be appropriately set up before the algorithm starts.[8]

5.5.1 Simulation results

In this section the efficiency and contribution of the applied branch and bounds (B&B)

algorithm solving the given optimization problem (5.1) is analyzed. The branch and bound

approach solving the global optimization problem is also compared against the currently

used SQP algorithm for the local optimization. Unfortunately, the comparison is not

performed in real operation in the Blanka tunnel, nevertheless, computer simulations are

provided and analyzed. The B&B algorithm might be implemented in the real operation

in case of significant benefit in terms of power savings.

Unfortunately, the B&B algorithm is often slow (exponential worst case performance) [40],

in this case the B&B algorithm calculates the global solution of the optimization task (5.1)
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Figure 5.7: Evaluation of power consumption during simulation period.

in a reasonable time, yet the solution is still sensitive to choice of the lower and upper

bound solver. For the computational purposes, a MATLAB based modeling language

called YALMIP [41] is used. It can be used to model and solve optimization problems

typically occurring in systems and control theory. Moreover, the YALMIP toolbox makes

development of optimization problems uncomplicated. Rapid prototyping aiming to com-

pose the optimization task (5.1) can be done using standard MATLAB commands.[42].

There are three different optimization problems during the branching. Upper bounds

using a local nonlinear solver as well as lower bounds with defined solver and bound

tightening using a linear programming solver. Within the simulations, the lower bound

solver fmincon is chosen and the upper bound solver fmincon is set up. The linprog is

chosen for bound tightening.

In depicted Figures 5.6, 5.7 and ?? the comparison of power consumption between

the two approaches of finding the solution of the optimization problem (See Section 5.4),

i.e. local and global optimization method, respectively, is shown. The control system

calculates the optimum setting of ventilation devices every 15 min, allowing to consider

the constant electric power within each 15 min period. This fact can be observed in
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Month Energy savings [kWh]

March 2006.1
April 1453
May 221.3
June 324.2

Sum 3944

Table 5.3: Power saving during simulation months.

Figure 5.6, where the average power consumption in a 15 min period is displayed within

one simulation day. As evidenced, compared quantities differs from 9:00 AM to 0:15

PM and at the fall of the simulation day. Within these periods, proposed algorithm for

finding global solution of (5.1) provides better solution (optimal solution), and thus energy

costs are decreased. Moreover, based on this fact it is confirmed that the optimization

algorithm within the currently used controller in the Blanka tunnel complex does not

ensure the global minimum. Furthermore, during the rest of the simulation day both

methods find the global minimum, hence resulting values of power consumption equal.

The aforementioned behavior repeats among simulation days, as confirmed in Figure ??

and Figure 5.9. Data from the November 21st. to 24th. are evaluated in order to

examine deeper the power consumption during a day. All simulations during given days

are performed between 6:00 AM and 9:00 PM period.

In Figure 5.7, power consumption from March to June 2016 is compared. Electric

consumption is shown in the upper graph, while the power consumption savings in the

bottom graph. The blue columns presents resulting values of power consumption provided

by the SQP method and the green columns denote resulting value given by the branch and

bounds algorithm, in the first graph. On the other hand, power consumption savings for

corresponding months are shown in the second graph. All quantities express the average

daily values between 6:00 AM and 9:00 PM time section.

Based on aforementioned observations, power costs reduction is confirmed, when the

global optimization method (B&B), which is capable of finding the global optimum of

non-convex task, is applied. It is also proved that the Sequential quadratic programming

algorithm does not ensure finding the global minimum, in many occasions it provides

sub-optimal solution instead. In addition, however the global optimization method does

not require to set up initial conditions for the solution finding procedure, compared to the

local optimization method, it still provides valid solution in a reasonable computational

time. As visible in Figure 5.7 simulation horizon is four months. Power savings in each

month are shown in Table 5.3. During this period the power consumption is decreased

approximately by 4 MWh in total. Hence, the energy savings can reach 12 MWh per



CHAPTER 5. VENTILATION CONTROL 51

year, if it is assumed that total annual power consumption is directly proportional to the

total consumption during the simulation horizon.

Therefore, applying the proposed branch and bound method in order to find the global

optimum of the non-convex optimization task (5.1) successfully determines the optimal

solution. And thus, global optimization approach may lead to decrease considerable

amount of energy consumption of ventilation devices.
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Figure 5.8: Power consumption comparison along simulation day 3.
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6. Conclusion

This thesis contributes to problems of operational ventilation in the case study Blanka

tunnel complex having complex structure and ventilation system.

The first goal of the thesis was to implement the steady-state linearized model of air-

flow velocity in the Blanka tunnel complex. The linearized model can be further used

for the design of the operational ventilation control, especially, in the optimization pro-

cedure. Once the linearized model of process dynamics is found, quadratic programming

can be used to solve an optimization task contributing significantly to the operational

ventilation control design, because quadratic programming approach ensures finding the

global optimum compared to the currently used controller in the Blanka tunnel complex.

The second goal of the thesis was to implement the dynamic model and also the

steady-state model of pollutant concentrations. Section 4.4 provides comparison of both

models with measured data from Blanka tunnel complex. Although there are certain

level of inaccuracy between presented models and real data, denoted by Table 4.1, given

models provide values of pollutant concentrations in allowable limits. The results from

both models are satisfactory and they may lead to better performance of the controller

in terms of estimating values of given concentrations. The aforementioned deviations are

likely to be caused by ambiguous traffic information and distribution of passing cars within

EURO categories as well as due to choice of initial conditions of the dynamic model.

The last main goal deals with finding the suitable method for solving the optimization

task via global solution method. In Section 5.5.1, presented branch and bounds method

is validated and resulting power consumptions are compared with values of energy con-

sumption provided by the currently used controller in the Blanka tunnel complex based

on the SQP approach. The results confirm usability of proposed B&B algorithm and

they also stress out that electricity consumption of ventilation devices is reduced by using

proposed branch and bounds algorithm while keeping the controller performance.

The aforementioned objectives of the thesis were fulfilled and achieved results can

be applied on the Blanka tunnel complex in order to improve control performance and

decrease electricity consumption.
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Figure A.1: A schematic illustration of the case study Blanka tunnel complex divided into
aerodynamic sections. Position of measurement devices is shown as well as the position
of jet fans and ventilation machine rooms.



APPENDIX A. APPENDIX A 55

R
5

R
3

 1
 2

 3
 4

 5
 6

 7
 8

 9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

R
2

R
4

VM
R

Le
tn

á
VM

R
Tr

ój
a

R
6

Ex
it 

R
am

p
Tr

ój
a26 1

R
1

 E
nt

ra
nc

e 
R

am
p

M
al

ov
an

ka
VM

R
St

ře
šo

vi
ce

Ju
nc

tio
n

Pr
aš

ný
 m

os
t

Ju
nc

tio
n 

U
 V

or
lík

ů 

SO
U

TH
ER

N
 T

U
N

N
EL

 T
U

B
E

VM
R

Le
tn

á
R
1

R
2

Ju
nc

tio
n

U
 V

or
lík

ů 
R
4

R
3

Ju
nc

tio
n

Pr
aš

ný
 m

os
t 

VM
R

St
ře

šo
vi

ce
R
5

Ju
nc

tio
n

M
al

ov
an

ka
 

N
O

R
TH

ER
N

 T
U

N
N

EL
 T

U
B

E

28
27

26
25

24
23

22
21

20
19

18
17

16
15

14
13

12
11

10
 9

 8
 7

 5
 6

 4
 3

 2

Figure A.2: A schematic illustration of the Blanka tunnel complex divided into sections
including entrance and exit ramps. Location of ventilation machine rooms (VMR) is de-
picted. Requested airflow velocity direction is denoted by arrows, otherwise it corresponds
to the direction of passing vehicles.
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