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Abstract

This thesis handles the conception of numerical optimizations and presents Python libraries,
which are able to solve optimization problems. It compares their usability, stability and
computing possibilities. All these aspects were tested on two specific industrial processes
- control of the tunnel ventilation and heating systems control in buildings. A functional
code in Python programming language for performance optimization of tunnel ventilation
represents the outcome of this thesis.

Abstrakt

Tato bakalářská práce se věnuje pojmu numerické optimalizace a prezentuje knihovny pro-
gramovacího jazyka Python, které je možné použít pro řešení optimalizačních úloh. Zároveň
porovnává jejich použitelnost, stabilitu a výpočetní schopnosti. Všechny tyto aspekty byly
testovány na dvou konkrétních průmyslových procesech - řízení ventilace v tunelech a řízení
tepelných systémů v budovách. Výstup této práce představuje funkční kód v jazyce Python,
který má za úkol optimalizovat výkon při ventilaci tunelu.
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Chapter 1

Introduction

In the last century, the term “mathematical optimization” was brought to light thanks to
works of great mathematicians like Fermat, Lagrange, Newton or Gauss. They defined the
important basics, which created a path for the nowadays known definition of numerical
optimization. This field had been developed during decades, but the ’boom’ of this concept
has took place in the last 20 years, when the computer-time came. It was almost impossible
to solve even simple optimization problems by ourselves, but with computers, there was a
chance to improve and use this strong concept. It is spreading out through many fields - like
economics, chemistry, energetics and many others.

Numerical optimization is in these days an important part of control systems, because
we can achieve many savings through this ‘tool’. At our faculty we are using optimization
for ventilation control of complex road tunnels, chemical processes, or heating of buildings
[24, 10]. To show the potential of this method, let us show you an example. Our control
department has been using optimization, accurately Model predictive control, for heating
system of our faculty building and the savings has been between 15 and 30 percent of energy
in comparison to the previous heating control system [10].

The aim of this thesis is to find and test possible Python libraries, that can be utilized
for numerical optimization of some processes. The numerical computing environment MAT-
LAB is usually used for this purpose. It is very popular in academic domain and verified in
practise and can be described as a stable and robust software, but it is really expensive in
commercial sphere. Therefore small companies can not afford this software, so Python and
some of its libraries offer a great chance to create software tools also for such clients. This
thesis should find Python libraries, which could be a serious competition for MATLAB.

1
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1.1 Outline of the thesis

• Chapter 1 - Introduction presents the subject and aims of this thesis.

• Chapter 2 - Numerical Optimization explains this concept, divides it into the
sub-fields and shows us some practical examples.

• Chapter 3 - Python libraries lists all the used software and describes their possi-
bilities to solve different types of optimization. This part includes few sample codes,
which demonstrate the differences among the libraries.

• Chapter 4 - Testing of code for special industrial processes describes the im-
plementation of this thesis. That means comparison of used software for two concrete
industrial processes - Heating control of the CTU1 building in Prague and the Venti-
lation control of the tunnel Blanka.

• Chapter 5 -Conclusion describes the advantages and disadvantages of tried software,
chooses the best possible Python library for tunnel ventilation control and presents
possible future improvements.

1The abbreviation ‘CTU’ presents the Czech Technical University in Prague.



Chapter 2

Numerical optimization

Before starting writing a code, we should first understand, what numerical or mathematical
optimization means. The word ‘optimal’ is often used, but not always correctly. To describe
something as optimal, we first have to define the conditions, for which we can consider this
solution is truly optimal. Mathematical optimization or just optimization has two parts
- objective function (or cost function) and constraints, which define the set, in which we
are looking for the optimal solution. In general first we have to define an optimization
problem and then we seek the best solver for this problem. Let us define the mathematical
optimization problem.

For optimization variable x = (x1, ..., xn)

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ...,m.
(2.1)

The f0 : Rn −→ R is the objective function and fi : Rn −→ R are constraint functions
and the constants bi represent the bounds of the constraints [5, pp. 1].

Our demanding optimal solution x∗ has to fulfil for any real z, which satisfies the con-
straints f0(z) ≥ f0(x

∗). This vector x∗ is global extreme and “the smallest objective value
among all vectors that satisfy the constraints” [5].

2.1 Sub-fields of numerical optimization

Although the optimization can be divided into many sub-fields, we will have a closer look
only at few of them - especially on that sub-fields, that will used for our industrial processes.

2.1.1 Convex optimization

This sub-field studies the cases, when the objective function and the constraint set are convex
(concave) for minimization (maximization). And this case guarantees, that we are able to
find global minimum (maximum) of this function. Therefore a lot of mathematicians
and engineers try to describe an optimization problem as a convex or concave, because it
ensures that they will find the sought optimum. Mr. Boyd and Mr. Vandenberghe wrote an
important script [5] about this part of numerical optimization.

3
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2.1.1.1 Least-squares problems

This sub-field is one of the simplest convex optimization problems, because it does not
contain any constraints and the objective function is a sum of squares of terms: [5, pp. 4]

minimize ‖Ax− b‖22 =
k∑

i=1

(aTi x− bi)
2, (2.2)

where the aTi are rows of the matrix A ∈ Rk×n and b ∈ Rk represents a vector. This simple
optimization problem is often used e.g. for data fitting.

2.1.1.2 Linear programming

In case the objective function is linear and the set defined by constraints using only the
linear functions, we can describe it as linear programming [5, pp. 6].

minimize cTx

subjected to aTi x ≤ bi,
(2.3)

where c ∈ Rn is vector, a1, ..., am and b1, ..., bm ∈ R present the scalars.

2.1.1.3 Semidefinite programming

This type of convex optimization can be described by the following equations :

minimize cTx

subjected to x1F1 + ...+ xnFn +G � 0

Ax = b,

(2.4)

where are G,F1, ..., F2 ∈ Rn×n and A ∈ Rp×n the matrices , c ∈ Rp, b ∈ Rm vectors [5, pp.
168].

2.1.1.4 Quadratic programming

This subgroup has a convex quadratic objective function and constraints are affine [5, pp.
152].

minimize
1

2
xTPx+ qTx

subjected to GTx ≤ h

Ax = b,

(2.5)

with matrices P ∈ Rn×n
+ , G ∈ Rm×n, A ∈ Rp×n and vectors q ∈ Rn, h ∈ Rm and b ∈ Rp.

We want to clarify as well, that the term quadratic programming is sometimes used
for non-convex optimization. Therefore it is important to understand, that not all the
optimization problems with quadratic objective function are convex.
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2.1.2 Other optimization problems

It is natural that not every optimization problem can be described by convex programming,
so let us look at some other types of programming.

2.1.2.1 Non-linear programming

Most of the systems in our world are described by non-linear function and therefore the
non-linear programming is concerned with cases, where the objective or constraints include
some non-linear parts. Solvers for non-linear optimization problems are essential the right
setting of initial condition, because the local minimum instead of the global would be found
mostly. With variable initial conditions we can find different values of an objective function.

2.2 Practical examples of using optimization

As we will discover in the upcoming chapter, there are plenty usages of optimization. Mr.
Boyd and Mr. Vandenberghe name three illustrative examples for understanding this concept
in their books [5, 6].

2.2.1 Embedded optimization

In the last decades the size of computers and their components decreased and therefore it
became beneficial to optimize the device sizing in electrical circuits. For this problem the
objective function is a power consumption, the variables are widths and lengths of
the device and the constraints are manufacturing limits, timing requirements and
maximum area [5, 6].

2.2.2 Portfolio optimization

When investing in assets there is a big risk of loosing invested money and so it would be a
competitive advantage to possess a control system, that would find the most risk-free way
for your investment. For this purpose the objective function could be overall risk or return
variance, the variables amounts invested in different assets and the budget, maximum
and minimum investment per asset and minimum return would be our constraints. And
by this way we can decrease the risk of loosing our money [5, 6].

2.2.3 Data fitting

In this case we are looking for the best fitting model for our observed data. The objective
function can represent the measure of misfit or prediction error, the variables model
parameters and constraints can feature prior information and parameter limits [5, 6].
An example is figured in the picture 2.2.3.
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Figure 2.1: An example of using optimization for data fitting [5, 1].

2.2.4 Model predictive control (MPC)

This is a concept of advanced control systems, such as heating control of intelligent buildings,
or control of chemical processes. This method works with complex dynamic behaviour of the
system and is aiming mainly to “minimize the performance criterion in the future, that would
possibly be subject to constraints” [2]. To understand this concept easily imagine a chess play.
We are planning during this play e.g. five moves ahead although we are not absolutely sure,
what the opponent will do. In the MPC, as in chess, there are dependent and independent
variables [2].

As an illustrative example of MPC, we can present the heating control of a building,
where we can calculate with the weather forecast and according to it, it will change the
control of our system. During winter’s nights the rooms of the building are getting colder
(e.g. below 15 degrees Celsius) and in the morning we need the rooms to be warm. Even if
someone sets the heater to its maximum at 6 or 7 p.m., at 8 p.m. there still will not reach
the regular temperature of 20 degrees. Such a way of heating control - a thermostat is simple
to implement, but is not sustainable in our modern society, which is increasingly demanding
energy. Solution is the MPC, that maintains the temperature (e.g. about 19 degrees) and
controls the heaters to achieve the optimal temperature before first people will come. This
style of control is also more beneficial for our economy and ecology.



Chapter 3

Python libraries

In this chapter we focus on possible Python libraries, which can be used for numerical
optimizations. We concentrate on the ability of solving different optimization problems and
a usage of these libraries and their licenses etc.

3.1 Licenses

Before we start with the first Python library, let us look on the types of licenses. For this
work it is important to have an overview of all kinds of licences, because we are looking for
a software, which is free and can be used for commercial purposes. There are few terms to
understand before we begin with the specific licenses.

Copyright is defined according to Wikipedia as “a legal concept, enacted by most gov-
ernments, giving the creator of an original work with exclusive rights to it, usually for a
limited time” [19]. It gives the author(s) rights to say, who can use his (their) ideas and who
will profit from them. This concept belongs into Intellectual property law, but it slows down
all new development in ‘software-world’.

That is why Richard Stallman came up with the idea of copyleft along with the free
software [21]. It ensures, that the software will be always open to anyone and everyone can
use it for any purpose. The only condition is, that any new code based on another code with
copyleft license should follow the same idea - having the open code. This should ensure free
and quicker development of new software.

3.1.1 GPL

GPL is the most popular and most used license for free software and its abbreviation means
General Public License. This license “guarantees end users (individuals, organizations, com-
panies) the freedom to use, study, share (copy) and modify the software” [21]. It is copyleft
license, which declares, that any new software, which would be using code GPL licensed,
should have the same license - the GPL license.

The author has to provide the open code - not just binary - with the GPL license to
allow others to use his code. This license can be used for commercial purposes, but always
needs to follow the rules of it - added license and open code.

7
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Originally this license was written by Richard Stallman for GNU project [21]. Nowadays
there are three versions of this license, due law gaps, which enabled to some users to misuse
this idea. Third current version is naturally most used today.

3.1.2 BSD, CPL and MIT licenses

‘Berkeley Software Distribution’ [18], ‘Common Public License’ (published by IBM) [20] and
MIT license [17] are more permissive than GPL, because there are not copyleft licenses. The
author can use the code, without necessity of using the same license as well. There are more
types of BSD licenses and some of named licenses are compatible with GPL and some not.
Below this subsection, you can find the table (3.1) with an overview of the free licenses.

GPL BSD New BSD CPL MIT
Copyleft Yes No No No No

GPL compatible Yes No Yes No Yes
Linking code with
another license No Yes Yes Yes Yes

Table 3.1: Overview of the licenses for free software [21, 18, 20, 17].

The issue of using some software with different licenses is not so simple and we have to
be sure, that we are able to use them. Essential for our work is the fact, that we can use the
code with any of the licenses named above for commercial purposes, but with GPL license
we have to provide also an open code.
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3.2 Python libraries for optimization problems

Seeking a stable optimization software written in Python language is not a simple task,
because almost all of these libraries are made by volunteers and are free of charge, therefore
they are not so perfectly tested as a commercial software and they can contain errors.

Now we will define a simple example of a optimization problem1, which helps us to
demonstrate the differences among Python libraries, which will be tested for the control of
industrial processes.

minimize x21 + x22 + 3x1x2 + 8x2

subject to 2x1 + 3x2 ≥ 0

x1 + 2x2 ≤ 10

4x1 + 5x2 = 0

100 ≥ x1 ≥ −80
180 ≥ x2 ≥ −200

(3.1)

3.2.1 SciPy and its package Optimize

The abbreviation "Scientific Python" suggests, that SciPy is “open-source (BSD-new license)
software for mathematics, science, and engineering” [16]. In this library we can find a lot
of useful packages, however for our purpose we concentrate on the package Optimize, which
includes some of commonly used optimization algorithms. This package provides two useful
function, which can be used for constrained minimization of multivariate scalar functions:

• fmin_cobyla
This function solves non-linear problems and minimizes an objective function using
the Constrained Optimization BY Linear Approximation (COBYLA) method. The
constraints can be defined only in the form g(x) ≥ 0 and this makes the fmin_cobyla
more difficult to use. The equalities need to be described as inequalities. And we can
achieve it through following trick, which we explain using the equation from optimiza-
tion problem (3.1). The equation

4x1 + 5x2 = 0 (3.2)

can be rewritten as two inequalities and it describes the same case.

4x1 + 5x2 ≥ 0

−4x1 − 5x2 ≥ 0
(3.3)

The following example demonstrates how to formulate and solve the optimization prob-
lem (3.1) via the function fmin_cobyla.

1Optimization problems are usually not defined with specific initial conditions, but for this illustrative
example we set the initial conditions to x01 = 10, x02 = 20.



CHAPTER 3. PYTHON LIBRARIES 10

import s c ipy . opt imize as opt

def ob j e c t i v e ( x ) :
return x [ 0 ]∗∗2 + x [ 1 ]∗∗2 +3∗x [ 0 ] ∗ x [ 1 ] + 8∗x [ 1 ]

def cons t r1 (x ) :
return −2∗x [ 0 ] − 3∗x [ 1 ]

def cons t r2 (x ) :
return x [ 0 ] + 2∗x [ 1 ] − 10

def cons t r3 (x ) :
return 4∗x [ 0 ] + 5∗x [ 1 ]

def cons t r4 (x ) :
return − (4∗x [ 0 ] + 5∗x [ 1 ] )

def cons t r5 (x ) :
return x [ 0 ] + 80

def cons t r6 (x ) :
return −x [ 0 ] − 100

def cons t r7 (x ) :
return x [ 1 ] + 200

def cons t r8 (x ) :
return −x [ 1 ] − 180

s o l = opt . fmin_cobyla ( ob j e c t i v e , [ 1 0 , 2 0 ] , [ constr1 , constr2 , constr3 , constr4 ,
constr5 , constr6 , constr7 , cons t r8 ] , rhoend=1e−7)

print s o l

Listing 3.1: Sample code of using function fmin_cobyla, which solves the optimization prob-
lem (3.1).

• fmin_slsqp
This function can be used only for optimization problems with only several variables,
which is its disadvantage. It minimizes an objective function using Sequential Least
SQuares Programming. This function has, in comparison to fmin_cobyla, the equality
constraints, lower and upper bound of optimization variables as inputs.
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3.2.2 CVXOPT

“CVXOPT is a free (GPL license) software package for convex optimization based on Python
programming language” [1]. The abbreviation for this library is obvious - ConVeX OP-
Timization. The authors of this library are Martin Andersen, Joachim Dahl and Lieven
Vandenberghe. We name few optimization problems, which should CVXOPT be able to
solve:

• Linear Programming

• Quadratic Programming

• Semi-definite Programming

For quadratic programming CVXOPT serves the function qp, whose inputs are in general
following matrices (P ,G,A) and vectors(q,h,b):

minimize
1

2
xTPx+ qTx

subject to Gx ≤ h

Ax = b

(3.4)

We can rewrite our sample optimization problem (equation n. 3.1) using matrices and
vectors:

minimize 1
2

[
x1 x2

]
·
[
2 2
4 2

]
·
[
x1
x2

]
+
[
0 8

]
·
[
x1
x2

]


−2 −3
1 2
1 0
−1 0
0 1
0 −1

 ·
[
x1
x2

]
≤



0
10
100
80
180
200


[
4 5

]
·
[
x1
x2

]
= 0
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The script for solving the optimization problem with CVXOPT can we see in the following
listing.

from cvxopt import s o l v e r s , matrix

P = matrix ( [ 2 , 4 , 2 , 2 ] , ( 2 , 2 ) )

q = matrix ( [ 0 , 8 ] , ( 1 , 2 ) )

G = matrix ( [−2 ,1 ,1 ,−1 ,0 ,0 ,−3 ,2 ,0 ,0 ,1 ,−1] , (6 ,2))

h = matrix ( [ 0 , 1 0 , 1 00 , 8 0 , 1 80 , 2 00 ] , ( 6 , 1 ) )

A = matrix ( [ 4 , 5 ] , ( 1 , 2 ) )

b = matrix (0 )

x0 = matrix ( [ 1 0 , 2 0 ] , ( 2 , 1 ) )

# so l v e r CVXOPT
s o l=s o l v e r s . qp (P, q , G, h , A, b , x0 )
print ( s o l [ ’ x ’ ] )

Listing 3.2: Sample code of using library CVXOPT for solving the optimization problem
defined by (3.1).

This listing shows, that the function qp is similar to MATLAB quadprog function (sub-
subsection 4.2.2.1), which has almost the same inputs like qp (missing lower and upper
bounds for qp).

3.2.2.1 Examples of using CVXOPT

In the book Convex optimization [5] we can discover a lot of optimization problems, which
were solved by CVXOPT, e.g. for data fitting, depicted in 2.2.3, was utilized the function
qp.

3.2.3 CVXPY

This Python library is being developed at the Stanford university and should handle to solve
problems, which are described in natural mathematical form. CVXPY presents a modelling
language for CVXOPT software. This software is in the beginning of development, because
CVXPY is in the version 0.0.1 [11]. Therefore it can not solve our optimization problems,
which are too complex2, because it causes problems with memory consumption.

2Our optimization problem obtains more than 600 variables.



CHAPTER 3. PYTHON LIBRARIES 13

3.2.4 APMonitor

APMomitor is the on-line optimization software with BSD licence, which was developed for
large-scale3 problems. The input is differential-algebraic equations (DAE) and with them
can be described almost every optimization problem and APMonitor should be able to solve
them.

The speciality of this software is its own modelling language, with which we describe the
optimization problem in APM-file. APMonitor offers two different interfaces - the one for
MATLAB and the other for Python, which we apply in this thesis.

To solve our sample optimization problem, defined by equation (3.1), we have to first
write the APM-file (listing 3.3) with its unique modelling language.

Model Example
Var i ab l e s

x [1 ]=10 , >=−80 , <=100
x [2 ]=20 , >=−200 , <=180

End Var iab l e s

Equations
minimize x [ 1 ] ∗ x [ 1 ] + x [ 2 ] ∗ x [ 2 ] + 3∗x [ 1 ] ∗ x [ 2 ] + 8∗x [ 2 ]

2∗x [ 1 ] + 3∗x [ 2 ] >= 0
x [ 1 ] + 2∗x [ 2 ] <= 10
4∗x [ 1 ] + 5∗x [ 2 ] = 0

End Equations
End Model

Listing 3.3: Sample code in APMonitor modelling language, which implements the optimiza-
tion problem (3.1).

3A large-scale problem describes such an optimization problem, whose number of variables and constraints
is greater than 1000 [4].
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Now we apply the Python interface to send the APM-file to the APMonitor server, where
this problem would solve. We can accomplish it by running this following code (3.4).

from apm import ∗
from random import rand int
#se rv e r
s = ’ http :// xps . apmonitor . com ’

# app l i c a t i o n + random number
a = ’ zk ’ + s t r ( rand int (2 , 999 ) )

#c l e a r s e r v e r
apm( s , a , ’ c l e a r a l l ’ )

#load model
apm_load ( s , a , ’ t ex t . apm ’ )

#change s o l v e r
apm_option ( s , a , ’ t ex t . s o lv e r ’ , 3 )

#so l v e
output = apm( s , a , ’ so lve ’ )
p r i n t output

#r e t r i e v e s o l u t i o n
( csv , s o l u t i o n ) = apm_sol ( s , a )

#open root f i l e
apm_web_root( s , a )
#open s o l u t i o n in web browser
apm_web_var( s , a )

Listing 3.4: Python interface for sending the APM-file to the server.

3.2.4.1 Examples of using APMonitor

This software is utilized e.g. for biology - cell cultivation, or blood glucose response of an
insulin dependent patient, for aerospace system an unmanned Aerial systems. In chemistry
industry it is implemented e.g. for minimizing Gibbs free energy and there are much more
APMonitor applications in energetics, financial, or mechanical systems - more information
about APMonitor usage could be found on their website [3].
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3.2.5 OpenOpt

This open-source (BSD license) project, made by junior researcher at National Academy of
Sciences of Ukraine Cybernetics Institute, Dmitrey L. Kroshko, is intended to create univer-
sal ‘tool’ for solving optimization with Python libraries or packages [8]. This project seems
to be really interesting for testing one optimization problem with more solvers by changing
only few lines of code. This package should handle to solve following optimization problems:

Matrix Problems Group

• Linear Problems (LP),

• Quadratic Problems (QP),

• Linear Least Squares Problems (LLSP),

• Semi-definite Problems (SDP).

Non-Linear Problems Group

• Non-Linear Problems (NLP),

• Global Problems (GLP).

from numpy import matrix
from openopt import QP
# de f i n e s the matr ices o f the QP problem .
Q = matrix ( ’ 2 2 ; 4 2 ’ )
p = [ 0 , 8 ]

A = matrix ( ’−2 −3; 1 2 ’ )
b = [ 0 , 10 ]

Aeq =[4 ,5 ]
beq = 0

lb = [−180 ,−200]
ub = [ 100 , 8 0 ]

#func t i on QP has not as an input the i n i t i a l c ond i t i on s
p = QP(H=Q, f=p , A=A, b=b , Aeq=Aeq , beq=beq , lb=lb , ub=ub)
r = p . _solve ( ’ q lcp ’ , i p r i n t = 0)

Listing 3.5: Sample code of using OpenOpt with the solver ’glpc’ for our sample optimization
problem defined by (3.1).



Chapter 4

Testing of code for special industrial
processes

After having introduced the conception of optimization and the Python libraries, we are
going to discuss the implementation of this bachelor thesis, which is the testing of Python
libraries for the specific industrial processes, that we want to control. Therefore we start
this chapter with a brief definition of the industrial processes, where we are applying some
of the optimization software. Following this part we are going to test the written software
and discuss the results and their correlation with MATLAB. The most important aspects
of the comparison for this work will be a CPU time, resulting values of the objective
functions and a feasibility of the outputs.

4.1 Industrial processes

Although there are many industrial processes, which could be optimized, we are interested
in this work in HVAC technology [22]. The HVAC (meaning heating, ventilation, and air
conditioning) is a technology used for the design of medium to large industrial or office build-
ings. This method belongs to the mechanical engineering, but with advanced types of HVAC
technology architects or electrical engineers work as well. Nowadays the price of energy is
increasing and we are running out of some important energy sources, control of HVAC tech-
nologies can help us to spare lot of energy and reach sustainability. For specific information
about HVAC systems please look to Wikipedia [22]. Both of the industrial processes, we
want to optimize, are covered under HVAC technologies.

4.1.1 Tunnel ventilation control

The first question, that might come to your mind, is why there is even any need of ventilation
for tunnels. In tunnels and other industrial building there are strict air quality requirements
and therefore the tunnels need to be ventilated. The larger and complex tunnels demand the
advanced ventilation control, because the monthly energy costs for them are within the range
of millions Czech crowns. According to the fact, that the ventilation control can manage

16
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savings between 20 and 30 percent, the initial investment into this advanced control system
will return.

Nevertheless the complex or long-distance tunnels require ventilation otherwise the un-
ventilated exhaust gas can cause death of the drivers. Control ventilation could be helpful
by special occasion, e.g. in case fire breaks out inside of a tunnel and then the control of jet
fans can also save human lives.

Prague, the capital city of the Czech Republic, has over one-million inhabitants and
during the day there are lots of traffic jams, thus there was a big pressure on the municipality
of Prague to build the City Ring Road. The tunnel complex Blanka was projected as the
part of the Prague City Ring and it should become with 5.5 kilometres the longest city
tunnel in central Europe in 20141. Due to the fact, that the Blanka is a city tunnel, the
air quality requirements are much higher then by tunnels in open landscape, because the
leak of exhaust gases should be minimize at the exit junctions, which lead to the parts of
inner Prague [9]. For this reason it was necessary to find the right settings of jet fans flow
rate securing their minimum energy consumption in compliance with the strict air quality
constraint.

Figure 4.1: Finishing works of the mined tunnel Královská obora, a part of the tunnel
complex Blanka [12].

The tunnel complex Blanka, whose part is figured in the the picture 4.1, is described
as a non-linear system by 74 variables, which describe the air-flow rate in different tunnels
sections, number of running jet fans and also the air-flow in four ventilation machine rooms.
This optimization problem is defined by non-linear polynomial objective functions and the
non-linear constrains are only in the form of the inequalities [24, 9].

Ventilation of a tunnel in general is working in three different modes - normal operation,
fire ventilation and preventilation. The last named mode starts when there is a suspicion of
a fire outbreak, which can be indicated by camera, smoke or heat detectors. If the suspicion
is confirmed by the traffic controller, the fire ventilation starts. The normal operation modes
divide we into three sub-modes: natural airflow (or zero level protection), first and second

1The year 2014 is the estimated time of the Blanka completion [9].
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level protection. Both, the first and second level protection, maintain the values of nitrogen
oxides and carbon monoxide under the defined limits according to the law and it minimize
the exhaust of cars from all exit tunnel junctions [9].

In case any of the limits should be exceeded, the ventilation optimization is required to
choose the best action, by setting the jet fans speed in such way, that the performance of all
devices will be minimized and will satisfy the constraints.

4.1.2 Control of building heating system

The energy costs for big buildings are about hundreds of thousand Czech crowns and there-
fore it is meaningful to minimize these expenses for energies.In 2010 the team from our
department had a unique chance to find out the impact of using MPC for heating of the
Czech Technical University building at Dejvicka (part of Prague). This building (fig. 4.2) is
divided into three blocks B1,B2 and B3 and the parts B1 and B2 are insulated in contrast to
non-insulated sector B3. This gives our faculty a great opportunity to find out the influence
of insulation on the control heating system (fig. 4.3).

Figure 4.2: The nearest block in front is B1, on the right side from the block B1 are blocks
B2 and B3 [7].

Figure 4.3: A sketch of the building [7].
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Now let us formulate the MPC problem for the heating control of the CTU building. For
our linear, time-invariant, discrete model of our heating system

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(4.1)

we are looking for the best control by minimizing the following objective function

J =
N−1∑
k=0

q(k)(y(k)− z(k))2 + r(k)u(k)2, (4.2)

where the N refers the horizon2 of the prediction. This objective function has to subject
to following constraints:

umin ≤ u(k) ≤ umax

yr(k) ≤ z(k)

|u(k)− u(k − 1)| ≤ 4max,

(4.3)

where umin and umax are the lower and upper bounds of the control signal. The variable z(k)
has to be greater than the desired value yr. The term 4max presents the maxim possible
change of the control signal [10].

What is important for this thesis is the fact, that this MPC problem can be rewritten
into the convex quadratic programming, which makes this problem solvable with such opti-
mization functions like MATLAB quadprog or CVXOPT qp. These optimization problems
are described with more than 600 variables and more than 800 constraints3.

4.2 Comparison

In this part we are coming to the crucial part of this thesis, where we will compare the
Python libraries also with MATLAB. The most important aspects for our comparison are
the ability of achieving the minimum of the objective function and the stable solution,
the CPU time of software. The commented codes can be found in the appendix A, whose
results are discussed in this section.

4.2.1 Ventilation control of the tunnel Blanka

Finding the optimum of running fans for their minimum energy consumption in compliance
with the strict air quality constraints for the tunnel complex Blanka is defined as a non-
linear problem. The selection of right initial conditions is really important for non-linear
solvers, because all possible solvers will find a local minimum, which can differ with variable

2As mentioned before, MPC works with future possible variables and the horizon presents the time
interval, which is used for the prediction. In each step k has to be the optimization recalculated and the
horizon moves one step forward, otherwise the prediction will not work and the MPC will fail.

3For the 128-hour horizon, there are over 3300 variables, 1500 inequalities and 2800 equalities. Therefore
all these optimization problems can be described as large-scale problems.
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initial conditions. Despite the solution among solvers will be different, that they can be still
usable. For the testing all software we have prepared four scenarios of ventilation control -
the preventilation, zero, first and second level protection. You can see all the results4 in the
table 4.1.

4.2.1.1 MATLAB and fmincon

Above defined non-linear problem was in other project [24, 9] solved with MATLAB fmincon
function [13], which is used for constrained non-linear optimizations defined as

minimize f(x)

subject to c(x) ≤ 0

ceq(x) = 0

Ax ≤ b

Aeq x = beq

lb ≤ x ≤ ub.

(4.4)

For solving this problem we call fmincon [13] function with the following code.

x = fmincon ( f , x0 ,A, b , Aeq , beq , lb , ub , @nonlcon )

function [ c , ceq ] = nonlcon (x )
c = . . . % Compute non l inear i n e q u a l i t i e s a t x .
ceq = . . . % Compute non l inear e q u a l i t i e s a t x .

The f address the objective function, x0 are initial conditions, A and b represent the in-
equalities, Aeq and beq equalities. The values of lb and ub are lower and upper bounds for
the optimization variables. The input function nonlcon describes the non-linear equalities
and inequalities.

4.2.1.2 SciPy

Among all possible optimization functions, that SciPy offers, we choose fmin_cobyla for
this non-linear programming. Sample code of using fmin_cobyla can be found in the listing
n. 3.1. With exception of the second level protection, the results coincide with MATLAB.
The process time differs from MATLAB strangely, because the Zero level protection takes
almost the same time when using MATLAB (6 s) than SciPy (7.8 s). On the other hand
other modes using SciPy take at least double the computing time than MATLAB uses.

For the last scenario - second level protection - SciPy find nonsensical value of the objec-
tive function. As a result for this scenario the fmin_cobyla wrote down that it is infeasible
to find solution and according to this fact, we can not use this solution for the control. It is
not suitable to use this library for the control.

4All optimization problems were solved on the computer with the dual core processor with a frequency
1.33 Ghz.
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Used software Computing time [s] Objective function [kW] Feasible solution
Scenario: Preventilation
MATLAB (fmincon) 2.51 83.3 Yes
SciPy (fmin_cobyla) 11.21 83.3 Yes
APMonitor (APOPT) 0.04 83.3 Yes
OpenOpt (ralg) 15.42 104.0 Yes
Scenario: Zero level protection
MATLAB (fmincon) 6.07 85.9 Yes
SciPy (fmin_cobyla) 7.76 272.9 Yes
APMonitor (APOPT) 0.03 85.9 Yes
OpenOpt (ralg) 47.21 245.4 Yes
Scenario: First level protection
MATLAB (fmincon) 7.11 176.5 Yes
SciPy (fmin_cobyla) 17.54 176.9 Yes
APMonitor (APOPT) 0.04 176.5 Yes
OpenOpt (ralg) 60.7 281.5 Yes
Scenario: Second level protection
MATLAB (fmincon) 42.75 1462.7 No
SciPy (fmin_cobyla) 22.15 -153.1 No
APMonitor (APOPT) 0.11 1473.3 No
OpenOpt (ralg) 85.85 1886.7 No

Table 4.1: Overview of the achieved results for the ventilation control of the Blanka tunnel.

4.2.1.3 APMonitor

This on-line software (using APOPT solver) shows with its results and process time, that it
can well compete with MATLAB. The values of the objective function, except the second
level protection, are the same as MATLAB found and the process times for all test cases
are under 1 second. Due to this results APMonitor software much quicker then MATLAB.
Thanks to its precise solution and quick CPU time APMonitor ‘wins’ among these libraries
for this non-linear programming.

4.2.1.4 OpenOpt

For solving a non-linear problem we are using the solver ‘ralg ’ written by Mr. Kroshko. We
wanted to try the solver ‘ipopt ’, which is a solver for MATLAB as well, but we had problems
with adding the pyipopt5 to the Eclipse platform and that is why we could not utilize it.
NLP (Non-Linear Problems) include lots of solvers, but not all of them could find the feasible
solution.

Despite all these problems, the solver ralg found feasible solution except for the second
level protection. The values differ from MATLAB and it might be caused by shifting the
initial values. The ralg solver had a problem with the initial conditions, because they must
fulfil the equation Aeq x = beq. After shifting all the initial conditions with respect to this
equation, the ralg could find feasible values of the objective function. Because the values
are higher, compared to other solvers, we do not recommend OpenOpt for this non-linear
programming problem.

5Pyipopt (new BSD license) allows user to use the ipopt solver via Python language [23].
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4.2.2 Heating system control of CTU’s building

Model predictive control, which is translated into the quadratic programming, should end
up always with the same objective function outcome for any used solver. So we will only
compare the process times and the values of objective variables. For testing the software we
prepared three scenarios - MPC with horizon of 24, 64 and 128 hours. An overview of the
results is written in the table 4.2.

4.2.2.1 MATLAB and quadprog

The project [10] using MPC for heating control of our university building was held in 2010
and for solving we used MATLAB function quadprog [14], which can solve quadratic pro-
gramming. In case we want to solve following problem

minimize
1

2
xTHx+ fTx

subject to Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub.

(4.5)

we can use following script.

x = quadprog (H, f ,A, b , Aeq , beq , lb , ub , x0 )

The inputs A,b,Aeq,beq,x0, lb and ub are the same as for MATLAB fmincon function
(subsubsection 4.2.1.1). Matrix H presents the quadratic coefficients and vector f the linear
coefficients.

4.2.2.2 CVXOPT

This Python library has the function qp for the quadratic programming, which we used
for finding the minimum of our objective function. The qp takes for every scenario at least
double process time then MATLAB, but the results are fine - the minimum was found.

4.2.2.3 OpenOpt

For quadratic problems OpenOpt includes CVXOPT solver as well. Using it is naturally
slower then just CVXOPT itself. However we focused on the solver ‘qlcp’ (MIT license),
which was developed by Enzo Michelangeli and IT Vision Ltd. MPC for 24 hour takes even
less time then MATLAB quadprog, the other scenarios are with OpenOpt 1.6 slower than
quadprog.
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Software Computing time [s] Objective function [kW]
Scenario: MPC of 24-hour horizon
MATLAB (quadprog) 3.69 1717.8
CVXOPT (qp) 8.74 1717.8
OpenOpt (qp) 3.37 1717.8
Scenario: MPC of 64-hour horizon
MATLAB (quadprog) 41.88 5041.7
CVXOPT (qp) 107.64 5041.7
OpenOpt (qp) 55.24 5041.7
Scenario: MPC of 128-hour horizon
MATLAB (quadprog) 271.94 5817.1
CVXOPT (qp) 885.55 5817.1
OpenOpt (qp) 420.17 5817.1

Table 4.2: Overview of the achieved results for the heating system.



Chapter 5

Conclusion

This thesis presented at its beginning a theoretical background of the optimization supported
by few practical examples, followed by introduction of the Python libraries for solving opti-
mization problems, where the principles of their implementation have been shown.

One of the main objectives of this thesis, was testing optimization libraries for Python
and for the heating system control of the CTU building we found two usable libraries -
OpenOpt with qp function and its solver ‘qlcp’ and CVXOPT with its qp function. Both
of these software products found the minimum, however OpenOpt solved the problem two
times quicker than CVXOPT.

The ventilation control of the Blanka tunnel was a bit more interesting, because the
results differ among all used libraries. These non-linear optimization programs tested on
four different scenarios brought interesting results. Every optimization functions, including
MATLAB, were not able to find feasible solution for the second level protection.

OpenOpt and its solver ‘ralg’ achieved feasible optimum, but its disadvantage are higher
result values of the objective functions and longer CPU time in comparison with other tried
libraries. This was possibly caused by the shift of the initial conditions, which was requested
by the solver ralg as the origin initial conditions did not satisfy the equality constraints.
We can conclude this part about OpenOpt, that it is not the right choice for our non-linear
problem.

Testing the SciPy function fmin_cobyla for non-linear system optimization pleasantly
surprised with good CPU time and the achieved values, which slightly differ from MATLAB
results, except for the last mode - second level protection. For this scenario the COBYLA,
as all the others, did not find any feasible solution. However this software could be used for
this kind of optimization problems.

The last tested software was the APMonitor, which achieved incredible results. The
solution of APMonitor was almost identical as in the case of MATLAB and the CPU time for
all scenarios did not take more than 1 second, it is almost fifty times quicker then MATLAB.
This is really the advantage of this free software. This software is available only on-line and
therefore needs to be connected to the internet to solve the optimization problem. According
to this disadvantage, there is a need of the backup control strategy in the case we want to
use this software in the real-time control.

24
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Due to the fact that these software are easily able to compete with MATLAB, we rec-
ommend them even for commercial use e.g. for smaller companies that cannot afford buying
MATLAB.

The resulting functional Python codes for the optimization of tunnel ventilation control,
using the APMonitor software and the fmin_cobyla function, are on the attached CD along
with other tested libraries for both the tunnel ventilation and the heating system control.

As far as the future progression is regarded, I see a possibility in the new developing
modelling language CVXPY and testing the stability of APMonitor, because this software
impressed us with its results. Hereafter to expand and base on this thesis we would like to
create functional APMonitor code for quadratic programming - more specific for the heating
system of the CTU building.
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Appendix A

Implementation

This chapter presents the commented codes using the Python libraries named above. We
begin with the quadratic programming and then we show the codes for solving the non-linear
programming. The comments are stated in the listings. The version of Python [15], which
was used for this project, is 2.7 and this fact should be respected. Because it is possible, that
in other version the results could differ from mine, presented in this text. The reason, why
we are using the 2.7 version, is simple - the development of some software, we were testing,
stopped e.g. 5 years ago. The version 3.0 of Python is 2 years old and some of the Python
libraries do not support this new version.

28
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A.1 Quadratic programming

Bellow are the codes, solving MPC for 24-hour horizon, using CVXOPT and OpenOpt as
well. The codes for 64 and 128 hours horizon differ in small details. We obtained MAT-file
with matrices and vectors, which are the inputs of MATLAB function quadprog (see 4.2.2.1),
which we used for solving this optimization problem.

A.1.1 CVXOPT

from cvxopt import s o l v e r s , matrix
# ma t f i l e i s Python l i b r a r y
# prov ided by authors o f CVXOPT
from mat f i l e import read
import time

# to d e t e c t the CPU time we have to d e f i n e
# the i n t i a l time o f t h i s proces s
t0 = time . c l o ck ( )

# reading the matrices , vec tor s ,
# tha t are the input f o r MATLAB quadprog
model = read ( ’qp_24 .mat ’ )
Q = model [ ’Q ’ ]
p = model [ ’ c ’ ]
x0 = model [ ’ x0 ’ ]
G = model [ ’A ’ ]
h = model [ ’ b ’ ]
A = model [ ’Aeq ’ ]
b = model [ ’ beq ’ ]
lb = model [ ’ lb ’ ]
ub = model [ ’ ub ’ ]

# qp s o l v e r CVXOPT fo r Quadratic programming
s o l=s o l v e r s . qp (Q, p , G, h , A, b , x0 )

#pr i n t i n g the found op t im i za t i on v a r i a b l e s
print ( s o l [ ’ x ’ ] )

Listing A.1: Code is solving quadratic programming using CVXOPT libraries.

We can see under this text a part of the output of this code without founded optimization
variables1.

pcost dcost gap pres dres
0: 9.9043e+02 -2.7489e+04 3e+04 6e-02 6e-09
1: 1.3526e+02 -8.7258e+03 1e+04 2e-02 3e-09

...
10: 1.7178e+03 1.7178e+03 1e-02 7e-10 4e-09
11: 1.7178e+03 1.7178e+03 4e-04 8e-12 4e-09
Optimal solution found.

1The reason, why we do not present the founded variables, is simple - the length of variables vector is 636
for 24-hour horizon.
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A.1.2 OpenOpt

from numpy import diag , matrix , i n f
from openopt import QP
import s c ipy . i o as s i o
import time

# to d e t e c t the CPU time
t0 = time . c l o ck ( )

# reading matrices , vec tor s ,
# tha t are input f o r MATLAB func t i on quadprog
model = s i o . loadmat ( ’qp_24 .mat ’ )
Q = model [ ’Q ’ ]
c = model [ ’ c ’ ]
x0 = model [ ’ x0 ’ ]
G = model [ ’A ’ ]
h = model [ ’ b ’ ]
U = model [ ’Aeq ’ ]
v = model [ ’ beq ’ ]
lbm = model [ ’ lb ’ ]
ubm = model [ ’ ub ’ ]

’ ’ ’
Tes t ing the OpenOpt us ing the qp func t i on from CVXOPT
pp = QP(H=Q, f=fm , A=G, b=h , Aeq=U, beq=v , l b=lbm , ub=ubm)
w = pp . _solve ( ’ cvxopt_qp ’ , i p r i n t = 0)
f_opt , x_opt2 = w. f f , w. x f
’ ’ ’

# OpenOpt wi th i t s q l c p s o l v e r
p = QP(H=Q, f=c , A=G, b=h , Aeq=U, beq=v , lb=lbm , ub=ubm)
r = p . _solve ( ’ q lcp ’ , i p r i n t = True )
f_opt , x_opt1 = r . f f , r . x f

print x_opt1

print time . c l o ck ( ) − t0 , " seconds proce s s time"

Listing A.2: Code is solving quadratic programming using OpenOpt libraries.

The output:

------------------------- OpenOpt 0.45 -------------------------
solver: qlcp problem: unnamed type: QP
iter objFunVal log10(maxResidual)

0 0.000e+00 1.36
1 1.718e+03 -13.83

istop: 1000
Solver: Time Elapsed = 2.25 CPU Time Elapsed = 3.66
objFunValue: 1717.8208 (feasible, MaxResidual = 1.49073e-14)
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A.2 Non-linear programming (NLP)

In this section the codes for the ventilation control of the Blanka tunnel in first level protec-
tion mode will be shown. For the other modes are the codes very similar. Written scripts
for NLP, using different libraries, have some common parts, which will be discussed in this
part. We obtained MAT-file with matrices and vectors and two M-files ’criteria.m’ and
’nonlinearConstraints.m’, which are the entries of the function fmincon (see 4.2.1.1).

The inputs have to be read for every library:

import s c ipy . i o as s i o

# The M− f i l e ’ c r i t e r i a .m’ pre sen t the o b j e c t i v e f unc t i on
# which i s wr i t t en f o r MATLAB fmincon
f o = f i l e ( " c r i t e r i a .m" , ’ r ’ )

# non l inear c on s t r a i n t s
nc = f i l e ( " non l i n ea rCons t ra in t s .m" , ’ r ’ )

# read the MAT− f i l e wi th matr ices and v e c t o r s
model = s i o . loadmat ( ’ tun1 .mat ’ )
x0 = model [ ’ x0 ’ ]
A = model [ ’A ’ ]
b = model [ ’B ’ ]
Ainq = model [ ’ Ainq ’ ]
binq = model [ ’ Binq ’ ]
lb = model [ ’ lb ’ ]
ub = model [ ’ ub ’ ]

The M-files are having the MATLAB syntax, but we required the Python syntax, so we
created functions for rewriting the optimization problem using regular expression operations:

# input s t r i n g − output s t r i n g
# Replac ing the charac t e r ’^ ’ i n t o Python charac t e r s ’∗∗ ’
# fo r the power and r ep l a c e e−0 to e−

def geteq ( f o ) :
foo = l i s t ( f o )
# we ge t the s t r i n g o f the m f i l e
f oo = "" . j o i n ( foo )
foo = re . sub ( "e−0" , "e−" , foo )
foo = re . sub ( "\^" , "∗∗" , foo )
return f oo

# input s t r i n g − output s t r i n g
# ge t from the t e x t decimal number
# and t h i s number decrease by one
def minus1str ing (u ) :

d = Decimal (u)
d = d−1
u = s t r (d)
return u
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# input s t r i n g − output s t r i n g
# change the equat ion from MATLAB in to python syntax , x (1) in t o x [ 0 ]
# because MATLAB s t a r t the index ing from 1 and Python from 0.
def changeequ ( t ext ) :

A = l i s t ( t ex t )
for i in range ( l en (A) ) :

i f A[ i ] == ’ ( ’ and A[ i−1]== ’x ’ :
A[ i ]= ’ [ ’
i f A[ i +2] ==’ ) ’ :

b = A[ i +1]
b =minus1st r ing (b)
A[ i +2]= ’ ] ’
A[ i +1] = b [ 0 ]

else :
b = A[ i +1] +A[ i +2]
b =minus1st r ing (b)
A[ i +1] = b [ 0 ]
A[ i +2] = b [ 1 ]
A[ i +3]= ’ ] ’

A = "" . j o i n (A)
return A

And these functions are called by the following code. However the function geteq is not
called for APMonitor, because its modelling language uses for the power the character ‘ ^ ’
in comparison to ‘ ** ’ in Python language.

# fo r ep r e s en t s the M− f i l e f o r the o b j e c t i v e f unc t i on
f oo = geteq ( f o )
out1 = re . f i n d a l l ( " f =.∗ ; " , f oo )
out1 = "" . j o i n ( out1 [ 0 ] )

# crop the f i r s t ’ f =’ and l a s t char ’ ; ’
out1 = out1 [2 : −1 ]
# mod i f i ca t i on from MATLAB sy tax in t o Python syntax
objequ = changeequ ( out1 )

# nc rep r e s en t s the m f i l e f o r non−l i n e a r c on s t r a i n t s
nco = geteq ( nc )
out2 = re . f i n d a l l ( "c =.∗ ; " , nco )
out2 = "" . j o i n ( out2 [ 0 ] )

# trimming the f i r s t par t ’ c=[ ’ and l a s t char ’ ; ’
out2 = out2 [3 : −1 ]

# mod i f i ca t i on from MATLAB sy tax in t o Python syntax
nonl incon = changeequ ( out2 )

OpenOpt and SciPy used eval function for calling the strings as a function:

def f ( x ) :
return eva l ( objequ )

def c ( x ) :
return eva l ( nonl incon )
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After we have described the common parts of code, we concentrate ourselves on each
library separately.

A.2.1 OpenOpt

The main difference between OpenOpt and other optimization libraries was the shifted initial
conditions, which have to fulfil the equality constraints. We achieved the shift of the initial
conditions with the following MATLAB script.

x00 = A\B’
save x00 x00

# This i s the main d i f f e r e n c e in comparison to o ther so f tware .
# The vec to r ( array ) x00 pre s en t s the s h i f t e d i n i t i a l cond i t i on

x00 = s i o . loadmat ( ’ x00 .mat ’ ) [ ’ x00 ’ ]
x0 = x00

# requ i r ed c on s t r a i n t s to l e rance , d e f a u l t f o r NLP i s 1e−6
conto l = 1e−7
# ( d e f a u l t g t o l = 1e−6)
g t o l = 1e−7

# Optimizat ion problem so l v ed by NLP
p = NLP( f , x0 , c=c , Aeq= A, beq=np . t ranspose (b ) , lb=lb , ub=ub ,

g t o l=gto l , c on to l=conto l , i p r i n t = 50 , maxIter = 10000 ,
maxFunEvals = 1e7 , name = ’NLP_1 ’ )

# The only u sab l e s o l v e r was the r a l g .
s o l v e r = ’ r a l g ’
# Other p o s s i b l e s o l v e r s f o r NLP
#so l v e r = ’ a lgencan ’
#s o l v e r = ’ i pop t ’
#s o l v e r = ’ s c i py_s l s qp ’

# so l v e the problem
r = p . s o l v e ( so lve r , p l o t=0)
print r . x f

The output for this function is

------------------------- OpenOpt 0.45 -------------------------
solver: ralg problem: NLP_1 type: NLP goal: minimum
iter objFunVal log10(maxResidual)

0 -1.382e+02 0.39
50 7.083e+02 0.51

100 6.606e+02 -1.11
...
1200 2.815e+02 -7.09
1216 2.815e+02 -7.74

istop: 3 (|| X[k] - X[k-1] || < xtol)
Solver: Time Elapsed = 63.8 CPU Time Elapsed = 63.66
objFunValue: 281.50647 (feasible, MaxResidual = 1.81469e-08)
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A.3 SciPy

The function fmin_cobyla is able to order only inequality constraints in the form ‘greater
than or equal to zero’.

c(x) ≥ 0, (A.1)

which is the opposite to the constraints of the function fmincon2. Therefore we have to
create an additional script for this type of non-linear constraints:

nonl incon = changeequ ( out2 )
# negat ion o f MATLAB non−l i n e a r c on s t r a i n t s
nonl incon = "−(" +nonl incon+ " ) "

Due to the function fmin_cobyla has no matrix inputs, we use all matrices and vectors
to define the constraints as functions. For this purpose the following lines of the code were
written :

def c on s t r a i n t s (A, b , Aeq , beq , lb , ub ) :
W = [ ] ;

# i n e q u a l i t i e s
for k in range ( l en (A) ) :

W. append ( equ (A[ k ] , b [ k ] , 1 ) ) ;

# e q u a l i t i e s
for l in range ( l en (Aeq ) ) :

W. append ( equ (Aeq [ l ] , beq [ l ] , 1 ) ) ;
W. append ( equ (Aeq [ l ] , beq [ l ] , −1) ) ;

# con s t r a i n t s r e qu i r ed to conta in
# lower and upper bounds as w e l l
for m in range ( l en ( lb ) ) :

W. append ( bounds ( lb [m] , 1 ,m) )
W. append ( bounds (ub [m] ,−1 ,m) )

# add non l inear c on s t r a i n t s
W. append ( nonlin_con )
return W

# func t i on f o r g e t t i n g the equa t i ons in
# form coe f0 ∗ x [ 0 ] + coe f1 ∗ x [ 1 ] + . .
# which d e s c r i b e the c on s t r a i n t s
def equ (v , o , s i gn ) :

def eqq (x ) :
e = 0 ;
for i in range ( l en (v ) ) :

e = e + v [ i ]∗ x [ i ] ;
e = −e + o ;
e = s i gn ∗e ;
return e

return eqq

2MATLAB fmincon has the inequalites in the form ‘less than or equal to b’ (see 4.2.1.1).
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# bound pre s en t s a vec t o r o f lower or upper bounds
# typeb t e l l us i f i t i s lower or upper bound
def bounds (bound , typeb , p o s i t i o n ) :

# typeb i s number equa l to 1 or −1, because the c on s t r a i n t s
# shou ld be in form f ( x)>=0
# and f ( x ) >= lower bounds , so 1 i s f o r lower bounds
# fo r upper bounds the typeb i s va lue o f −1
def eqq (x ) :

e = 0
e = typeb ∗( x [ p o s i t i o n ]−bound )
return e

return eqq

And after formulating all these functions we can call the optimization solver:

s o l = opt . fmin_cobyla ( ob j e c t i v e , x0 , c on s t r a i n t s (Ainq , Binq ,A,
np . t ranspose (B) , np . t ranspose ( lb ) ,
np . t ranspose (ub ) ) )

print ( s o l )

The outcome of this script will be:

Return from subroutine COBYLA because the MAXFUN limit has been reached.

NFVALS = 1000 F = 1.769076E+02 MAXCV = 8.156324E-01
X = 4.004098E+00 3.492428E+00 3.494510E+00 -2.814438E+00 6.987696E+00

3.131990E+00 8.399274E+00 6.814438E+00 4.688918E+00 -2.071884E-01
3.067661E+00 2.894468E+00 2.951190E+00 2.230097E+00 2.419339E+00
3.205326E+00 2.307246E+00 3.277442E+00 3.590347E+00 4.112666E+00
3.445041E-01 5.402998E+00 4.081875E-01 4.266271E+00 1.380575E+00
4.029696E+00 8.606481E-01 3.938769E+00 3.506115E+00 5.158560E+00
5.461499E+00 3.299591E+00 1.845160E+00 3.228737E+00 5.666814E-03

-8.144377E-01 -8.144377E-01 -8.144377E-01 -4.080345E-02 -9.185041E-02
2.685019E+00 1.843853E+00 3.841599E+00 -8.144377E-01 3.783045E+00

-4.320360E-01 -8.120521E-01 -2.735501E-01 -8.144377E-01 -8.144377E-01
1.327228E+00 -7.432064E-01 2.216051E-01 -8.144377E-01 -1.025439E-01
3.034339E-01 4.741008E-01 6.720970E-01 1.252761E-01 -8.144377E-01

-8.144377E-01 4.765310E-02 3.944932E+00 -6.174588E-01 1.645533E+01
2.179169E+00 6.893543E-01 8.144377E-01 -8.144377E-01 4.173955E-01
1.514751E+00 2.342190E-01 3.901419E-01 5.250312E-01
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A.4 APMonitor

This software uses its own modelling language, therefore we have to first define the optimiza-
tion problem into the APM-file using this language. We do not rewrite the problem manually,
but we prepared a Python code for this purpose, which contains some above named parts
of codes - like functions minus1string, changeequ and the parts of codes for reading the files
with mat and m extensions.

In comparison to the other libraries, APMonitor requires to have its own APM-file with
the defined optimization problem, therefore we formulate following functions:

# The inpu t s are va l u e s o f c o e f f i c i e n t s , k p r e s en t s the p o s i t i o n o f x
# and z i s a s t r i n g . The re turn o f t h i s f unc t i on i s the s t r i n g z .
def co e f ( coe , k , z ) :
# i f the c o e f f i c i e n t i s p o s i t i v e

i f coe > 0 :
# i f the c o e f f i c i e n t i s equa l one
i f coe == 1 :

z += s t r ( "x[% i ] + " %(k ) )
else :

# check ing i f the coe f . i s and an i n t e g e r or a f l o a t
i f ( f l o a t ( coe)− i n t ( coe ))==0:

z += s t r ( "%i ∗x[% i ] + " %(coe , k ) )
else :

z += s t r ( "%f ∗x[% i ] + " %(coe , k ) )

# i f the va lue o f the coe f . i s n e ga t i v e
# or equa l to zero − but t h i s f unc t i on
# w i l l not be c a l l e d i f the coe i s equa l to 0
else :

# i f we are not a t the beg inn ing o f a row
# we have to d e l e t e l a s t two charac t e r s ’+ ’

i f z . endswith ( "\ t " )!= True :
z = z [ : −2 ]

# c o e f f i c i e n t i s equa l to minus one
i f coe == −1:

z += s t r ( "− x[% i ] + " %(k ) )
else :

# check ing i f the c o e f f i c i e n t i s an i n t e g e r or a f l o a t
i f ( f l o a t ( coe)− i n t ( coe ))==0:

z += s t r ( "%i ∗x[% i ] + " %(coe , k ) )
else :

z += s t r ( "%f ∗x[% i ] + " %(coe , k ) )
return z
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# inpu t s : matrix M and vec t o r n , e s p e c i f i e s i f t h i s case i s
# e q u a l i t y or i n e q u a l i t y and fo r ep r e s en t s the APM− f i l e
def intoapmcon (M, n , e , f o ) :

z =’ ’
for l in range ( l en (M) ) :
# in APM− f i l e needs to be equat ion and
# inequa t i on s o f f s e t by 2 t a b u l a t o r s

z +=s t r ( "\ t \ t " )
for k in range ( l en (M[ 0 ] ) ) :

i f M[ l ] [ k ] != 0 :
#c a l l the coe f f unc t i on

z = coe f (M[ l ] [ k ] , k , z )

# l a s t 2 charac t e r s ’+ ’ d e l e t e
z = z [ : −2 ]

#
i f z != ’ ’ :
# i f e q u a l i t y

i f e== True :
i f ( f l o a t (n [ l ])− i n t (n [ l ])==0):

z += s t r ( "= %i \ r \n" %(n [ l ] ) )
else :

z += s t r ( "= %f \ r \n" %(n [ l ] ) )
# i f i n e q u a l i t y

else :
i f ( f l o a t (n [ l ])− i n t (n [ l ])==0):

z += s t r ( "<= %i \ r \n" %(n [ l ] ) )
else :

z += s t r ( "<= %f \ r \n" %(n [ l ] ) )
# wr i t e the s t r i n g z i n t r o APM− f i l e

f o . wr i t e ( z )
# c l e a r the z s t r i n g
z = ’ ’
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After we defined all these functions, we call them to create the APM-file:

# opening the APM− f i l e and ’w ’ i n d i c a t e s f o r ’ wr i t e ’
f o = f i l e ( " tun1 . apm" , ’w ’ )
f o . wr i t e ( ’ ! d e f i n e the non−l i n e a r problem \ r \n ’ )
f o . wr i t e ( ’ Tunnel P r ev en t i l a t i on \ r \n ’ )

# va r i a b l e s are de f ined as x [ 2 ] = x_02 , >= l b [ 2 ] , <= ub [ 2 ]
f o . wr i t e ( ’ \ tVar i ab l e s \ r \n ’ )
for i in range ( l en ( lb ) ) :

f o . wr i t e ( "\ t \ t x[% i ]=%d , >=%s , <=%s \ r \n" % ( i , x0 [ i ] ,
lb [ 0 ] [ i ] , ub [ 0 ] [ i ] ) )

f o . wr i t e ( ’ \tEnd Var iab l e s \ r \n\ r \n ’ )

f o . wr i t e ( ’ \ tEquat ions \ r \n ’ )

# ob j e c t i v e f unc t i on
f o . wr i t e ( "\ t \ tminimize " + objequ + "\ r \n" )
fo . wr i t e ( "\ r \n" )

# i n e q u a l i t i e s
intoapmcon (Ainq , binq , Fa l se )
f o . wr i t e ( ’ \ r \n ’ )
f o . wr i t e ( ’ \ t \ t ’+nonl incon+’<= 0\ r \n ’ )

# e q u a l i t i e s
intoapmcon (A, b , True )

f o . wr i t e ( "\ t End Equations \ r \n" )
fo . wr i t e ( "End Model\ r \n" )

# c l o s i n g the APM− f i l e
f o . c l o s e ( )
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This code generates the following APM-file (only parts are shown):

! d e f i n e the quadrat i c problem
Tunnel P r ev en t i l a t i on

Var iab l e s
x [0 ]=3 , >=0.1 , <=8.0
x [1 ]=2 , >=0.1 , <=8.0
x [2 ]=2 , >=0.1 , <=8.0
x[3]=−1 , >=−2.0 , <=6.0
. . .
x [70]=0 , >=0.0 , <=324.0
x [71]=0 , >=0.0 , <=144.0
x [72]=0 , >=0.0 , <=300.0
x [73]=0 , >=0.0 , <=152.0

End Var iab l e s
Equations

minimize 30∗x [34]+30∗x [35]+30∗x [36 ]+1 .894 e−05∗x [62]^3+4.6341 e
−05∗x [62]^2+0.00025936∗x [62]+30∗x [37]+1∗x [63]+30∗x [38]+30∗
x [39]+30∗x [40]+30∗x [41]+30∗x [42]+30∗x [43]+30∗x [44 ]+9 .6337 e
−06∗x [64]^3+5.1554 e−05∗x [64]^2+0.00059053∗x [64 ]+0.6875∗ x
[65]+30∗x [45]+30∗x [46]+11∗x [47]+30∗x [48]+30∗x [49 ]+1 .725 e
−05∗x [68]^3+0.00038627∗x [68]^2+0.0009038∗x [68 ]+0.94937∗x
[69]+30∗x [50]+30∗x [51]+30∗x [52]+30∗x [53]+30∗x [54]+45∗x
[55]+30∗x [56]+30∗x [57 ]+1 .894 e−05∗x [70]^3+4.6341 e−05∗x
[70]^2+0.00025936∗x [70 ]+0.9375∗ x [71]+30∗x [58]+30∗x
[59 ]+1 .6389 e−05∗x [72]^3−2.0539 e−05∗x [72]^2+0.00025371∗x
[72 ]+0.86582∗x [73]+30∗x [60]+30∗x [ 6 1 ]

(336 .6768 + 526.9625 + 269.354 + 663.1107 + 292.9413+
(1703 .3612 + 754.4265 + 731.0216 + 1200.5601 + (846 .2185
+ 1535.7976 + 246.8501 + 168.2056 + 554.2413 + 1112.3964 +
700.1472 + (851 .1074 + 1839.1069 + 2351.2275 + 442.9933 +
67.7862 + 183.8235 + 237.3012 + 319 .865) ∗x [ 1 ] ∗ 9 4 . 6 / ( x

[ 0 ] ∗ 8 3 . 7 ) + 47.3757 + 46 .9582) ∗x [ 8 ] ∗ 6 4 . 5 / ( x [ 6 ] ∗ 8 6 )+
25 .7245) ∗x [ 1 1 ] ∗ 9 4 . 4 / ( x [ 1 0 ] ∗ 9 4 . 7 ) ) ∗1000/(3600∗x [ 1 2 ] ∗ 9 3 . 6 )
−10 <= 0

83.700000∗x [ 0 ] −94.600000∗x [ 1 ] − x [ 6 2 ] = 0
94.600000∗x [ 1 ] −94.600000∗x [ 2 ] + x [ 6 3 ] = 0
94.600000∗x [ 2 ] −70.200000∗x [ 3 ] −75.700000∗x [ 4 ] = 0
75.700000∗x [ 4 ] + 62∗x [ 5 ] −86∗x [ 6 ] = 0

. . .

−0.968563∗x [ 2 6 ] −8.376621∗x [ 2 7 ] −1.451443∗x [ 2 8 ] −41.504485∗x
[ 2 9 ] −1.309420∗x [ 3 0 ] −1.851736∗x [ 3 1 ] −2.947873∗x [ 3 2 ] +
15.659847∗x [ 5 6 ] + 11.403578∗x [ 5 7 ] + 17.625244∗x [ 5 8 ] +
17.625244∗x [ 5 9 ] + 10.568120∗x [ 6 0 ] = −277.821076

−2.947873∗x [ 3 2 ] + 10.846014∗x [ 3 3 ] −17.374082∗x [ 6 1 ] = 29.566143
End Equations

End Model

This generated APM-file we can send to the APMonitor server via Python code mentioned
in the listing 3.4.
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And the outcome is following:

--------- APM Model Size ------------
Each time step contains

Objects : 0
Constants : 0
Variables : 75
Intermediates: 0
Connections : 0
Equations : 36
Residuals : 36

fippr_files: rto.t0 does not exist
Number of state variables: 75
Number of total equations: - 35
Number of slack variables: - 1
---------------------------------------
Degrees of freedom : 39
Number of bound variables: - 2

----------------------------------------------
Steady State Optimization with APOPT Solver
----------------------------------------------
File apopt.opt does not exist.

Iter Objective Convergence
0 3.32060E+02 1.09365E+00
1 4.32628E+02 3.49581E-01
2 2.03171E+02 6.12844E-02
3 1.92393E+02 1.52030E-02
4 1.79781E+02 1.35017E-03
5 1.77550E+02 2.27988E-03
6 1.76562E+02 2.14067E-03
7 1.76543E+02 4.26098E-05
8 1.76542E+02 2.86093E-06
9 1.76542E+02 7.66997E-08

Iter Objective Convergence
10 1.76542E+02 1.43832E-08

Successful solution

---------------------------------------------------
Solver : APOPT (v1.0)
Solution time : 0.08499999999999999 sec
Objective : 176.54182060990627
Successful solution
---------------------------------------------------
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