Bachelor’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Mobile Robot Navigation on Rough Terrain

Vratislav Besta

Supervisor: Ing. Jan Chudoba
Field of study: Cybernetics and Robotics
January 2023

ii

Acknowledgements

I would like to express my deepest thanks
to my supervisor, Ing. Jan Chudoba, for
his invaluable guidance and insights.

My sincere thanks also go to my friend
Be. Toméas Fiala for the engaging on-
topic debates we have had throughout
our studies.

Last but not least, I would like to thank
all the developers of the software I use in
this thesis for their contribution and for
showing me the beauty of the open-source
world.

iii

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

In Prague, January 10" 2023

Author’s signature

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o
dodrzovani etickych principt pii pripravé
vysokoskolskych zédvéreénych praci.

V Praze dne 10. ledna 2023

Podpis autora prace

Abstract

Rough terrain poses a great challenge to
the navigation task due to its diversity
and traversability estimation as opposed
to flat surface areas. This bachelor’s thesis
deals with the point-to-point navigation
of a mobile skid-steered ground robot in
an unknown, primarily outdoor, rough-
terrain environment.

The first part reviews state-of-the-art
mapping methods, especially Simultane-
ous Localization and Mapping (SLAM)
algorithms.

The second part presents a design of
the navigation system and the implemen-
tation of the proposed method as a Robot
Operating System (ROS) project. The
designed method incorporates Lidar Iner-
tial Odometry via Smoothing and Map-
ping (LIO-SAM) algorithm for pose esti-
mation and registration of lidar scans. A
continuously created 2.5D traversability
map serves as an underlay for the path-
planning task, which utilizes a combina-
tion of the global and local planner, using
the Dijkstra and the Dynamic Window
Approach (DWA) algorithm, respectively.

Subsequently, several experiments are
conducted in a simulator to show both the
constraints of the proposed method and
the ability to plan a traversable obstacle-
free path through a given environment.

Keywords: mobile robot, rough terrain
navigation, traversability map, ROS,
Gazebo simulator, LIDAR

Supervisor: Ing. Jan Chudoba

Czech Institute of Informatics, Robotics
and Cybernetics,

Jugosldavskych partyzanu 1580/3,

160 00 Prague 6, Dejvice

iv

Abstrakt

Nerovny terén predstavuje velkou vyzvu
pro ulohu navigace diky své rozmanitosti
a odhadu jeho sjizdnosti oproti rovnym
plocham. Tato bakalarska prace se zabyva
navigaci z bodu do bodu smykové rizeného
pozemniho mobilniho robotu v neznamém,
primarné venkovnim, nerovném prostiedi.

Prvni ¢ast shrnuje state-of-the-art me-
tody mapovani, predevsim algoritmy si-
multanni lokalizace a mapovani (SLAM).

Druhé ¢ast predstavuje navrh navigac-
niho systému a jeho implementaci v po-
dobé Robot Operating System (ROS)
projektu. Navrzend metoda vyuziva al-
goritmu lidarové inercidlni odometrie po-
moci vyhlazovani a mapovani (LIO-SAM)
pro odhad polohy a registraci lidarovych
skent. Prubézné tvorena 2.5D mapa sjizd-
nosti slouzi jako podklad pro tlohu plano-
vani cesty, vyuzivajici kombinaci global-
niho a lokalniho planovace, které v poradi
pouzivaji Dijkstriav algoritmus a algorit-
mus konceptu dynamického okna (DWA).

Nasledné je v simulatoru provedeno né-
kolik experimentd ukazujici omezeni a
schopnost navrzené metody naplanovat
bezkolizni sjizdnou cestu skrz dané pro-
stfedi.

Klicova slova: mobilni robot, navigace
v nerovném terénu, mapa sjizdnosti,
ROS, Gazebo simulator, LiDAR

Pteklad nazvu: Navigace pozemniho
robotu v nerovném terénu

Contents

1 Introduction

1.1 Context
1.2 Specification

2 Sensors of mobile robotics

3 Review of three-dimensional
SLAM methods

3.1 Approaches
3.2 Lidar SLAM methods
3.2.1 Loosely coupled methods. . ..
3.2.2 Tightly coupled methods. . ..

4 Three-dimensional terrain
representations for navigation

5 Navigation method

5.1 Selected approach............

5.2 Transformations of sensor

measurements

5.3 Lidar-inertial odometry via
Smoothing and Mapping

(LIO-SAM) ...
5.4 Probabilistic terrain mapping . .
5.5 Traversability estimation
5.6 Global traversability map

5.7 Kinematics of the robotic

platform
5.8 Planners....................
5.8.1 Global planner............
5.8.2 Local planner.............

6 Implementation

6.1 Used software

6.1.1 Robot Operating System

(ROS) ..o
6.1.2 ROS Visualization (RViz) ...
6.1.3 Gazebo simulator

6.2 Robotic platform
6.3 Sensors
6.4 Method implementation in ROS
6.41 LIO-SAM
6.4.2 Probabilistic terrain mapping
6.4.3 Traversability estimation. ..
6.4.4 Global traversability map ..
6.4.5 Path planning

6.4.6 Setting goals using offline

Googlemaps
6.5 Launch of the navigation system
with simulator.................

FHEEEE

i~

20)

—

7 Experiments
7.1 Hardware setup
7.2 Simulated experimental platform
7.2.1 Robot Husky
7.2.2 Sensor suite 48|
7.2.3 Sensor placement
7.3 Navigation system settings
7.4 Simulation preparation
7.4.1 ODE settings..............

7.4.2 Assets for the simulated scenes 53|
7.4.3 Process of generating a
georeferenced SDF terrain from a

topographic LAZ point cloud. . ..
7.5 Performed experiments

7.5.1 Traversability estimation

reflecting robot specifications. . . .
7.5.2 Navigating from an enclosed

ATCA v vttt e 61
7.5.3 Navigating through a complex

environment 63
7.5.4 Navigating through a

reconstructed real environment .. [66

7.6 Limitations of the proposed

68|
7.6.1 Expected limitations
7.6.2 Observed limitations 69

8 Future work 71
9 Conclusions 73
Bibliography 75

83

A SDF model generation with
mesh2sdf tool

B Derivation of the quantile function
for CEP (Circular Error Probable)

C Navigation experiments - video (87
D Attachments

Figures
2.1 Wheel incremental optical encoder.
2.2 MEMS accelerometer and

EYTOSCOPE. v v veveeeeeaeaennn 6]
2.3 The Global Navigation Satellite
System (GNSS).

3.1 A classic framework of the
graph-based SLAM method..

4.1 Visual comparison of selected map
representations..................

5.1 Diagram of the proposed

navigation method.
5.2 Transformation of sensor

coordinate frames.
5.3 The structure of LIO-SAM. 23
5.4 The illustration of frames in the

probabilistic mapping.
5.5 The process of traversability

estimation...................... 27

5.6 Global traversability map update
and relocation of global map’s
OTigin. .. oo vi i

5.7 Kinematics of a four-wheeled
robotic platform.

6.1 The implementation diagram of
sensor part of the navigation system.
6.2 The implementation diagram of
the odometry part of the navigation

6.3 The implementation diagram of
the mapping part of the navigation

6.4 The implementation diagram of
the traversability estimation part of
the navigation system............

6.5 The implementation diagram of
the global map part of the navigation

6.6 The implementation diagram of
the path planning part of the
navigation system. 45|
6.7 Launch file structure of the ROS
project

vi

6.8 Overview of the running

simulation...................... 46|
7.1 Dimensions of the robot Husky .
7.2 A model of robot Husky with

adjusted collision boxes.

7.3 Placements of lidar sensor on the
robot.

7.4 Relations of sensor coordinate
frames with respect to robot’s body

52

7.5 The process of generating an SDF
terrain from a LAZ topographic point
cloud. 56

7.6 Interpolation of GPS coordinates
in the designated point in the Skyline

Drive Road Area dataset. 57
7.7 The platform_ playground.world

SCEIE. + v vttt ettt o8|
7.8 The ramp_ playground.world

SCEME. v vttt ettt 08

7.9 Traversability of a 15cm kerb and a
30° ramp depending on 4, and

7.10 The traversability of various kerbs
and ramps, using
(Smazs "maz) = (0.3,0.15) [rad, m] .
7.11 The robot traversing a 20° ramp.
7.12 The empty_ playground.world
scene.
7.13 Process of navigation attempting
to navigate from an enclosed area.
7.14 Comparison of the ground truth
positions and the estimated poses of
the robot by the LIO-SAM during

navigation from an enclosed area. .
7.15 The forest_terrain.world scene.

7.16 Heigh map and traversability map
of the ground surface of the
forest terrain.world.............

7.17 Comparison of the ground truth
positions and the estimated poses of
the robot by the LIO-SAM during
navigation through the
forest_terrain.world.

7.18 move__base costmap and the
estimated robot poses during
navigation in the
forest_ terrain.world scene.

7.19 Ground truth estimated poses of
the robot in ten conducted runs of
the navigation method in the

forest_ terrain.world scene.
7.20 Reconstructed terrain of the
Skyline Drive Road area
7.21 Height map of the
skyline_ drive_ road.world scene. . .
7.22 Traversability map of the
skyline_ drive_ road.world scene. . .

7.23 Global traversability map with
the ground truth robot poses during
navigation in the
skyline_ drive_road.world scene. . .
7.24 move_ base global costmap with
the ground truth robot poses during
navigation in the
skyline_ drive_road.world scene. . .

A.1 Folder structure of a generated
SDF model.

vii

Tables

3.1 Comparison of the reviewed
three-dimensional lidar SLAM
methods.

7.1 Selected specifications of the robot

Husky.
7.2 Selected specifications of the
Velodyne Puck lidar sensor.

7.3 Specifications of the CHR-UM7
orientation sensor.

7.4 The list of the parameters used for
the simulation of the CHR-UM7

7.5 Selected specifications of the Duro

GNSS Receiver 50/
A.1 The list of valid parameters for
the mesh2sdf. iR3

U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

Student's name: Besta Vratislav Personal ID number: 491903
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics

\ Y,
[l. Bachelor’s thesis details

Bachelor’s thesis title in English:

Mobile Robot Navigation on Rough Terrain

Bachelor’s thesis title in Czech:

Navigace pozemniho robotu v nerovném terénu

Guidelines:

Topic is targeted on an implementation of navigation method for mobile robot in rough terrain. Input of the method is a
target position to be reached. Method has to map robot surrounding environment, evaluate its traversability, plan a suitable
path and generate control commands for robot, which will lead him along this path.

» Do a research on environment mapping methods and sensors suitable for the specified task.

« Design a method for the destination point navigation. Discuss the suitable sensoric equipment with the supervisor.

« Implement the designed method and test it in a simulator and/or (according to real conditions) with a laboratory robot.
« Evaluate performed tests and discuss capabilities and limits of the designed method.

Bibliography / sources:

[1] THRUN, Sebastian, Wolfram BURGARD a Dieter FOX. Probabilistic robotics. Massachusetts: MIT Press, c2006. ISBN
9780262201629.

[2] Kelly, A. (2013). Mobile Robotics: Mathematics, Models, and Methods. Cambridge: Cambridge University Press.
doi:10.1017/CB09781139381284.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Chudoba Intelligent and Mobile Robotics CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant;

Date of bachelor’s thesis assignment: 10.01.2022 Deadline for bachelor thesis submission: 10.01.2023
Assignment valid until: 30.09.2023

Ing. Jan Chudoba prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

L Supervisor's signature Head of department’s signature Dean'’s signature

[ll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Chapter 1

Introduction

. 1.1 Context

Mobile robotics technology has advanced significantly in the last two decades,
making it a more accessible tool for various industrial sectors, particularly
in the field of logistics, where autonomous carriers are commonly used in
warehouses and distribution centers. These robotic platforms are capable of
safe autonomous navigation in flat, often human-occupied environments.

Recent advancements in sensor technology, computational hardware, and
decreases in manufacturing costs have expanded the scope of mobile robotics
applications to more challenging outdoor and urban environments, including
uneven and rough terrain. These developments have opened up new areas
of application for mobile robotics, including agriculture, rescue missions,
security, and inspections.

Overall, the use of mobile robotics has allowed for significant automation
of processes that previously required human operators, resulting in increased
efficiency and reliability.

The process of autonomous mobile robot navigation involves safe travel to
pre-defined locations in both known and unknown environments. In order to
navigate through an unknown environment, a robot observes its surroundings
using onboard sensors, creating an inner map, in which it must be able to
determine its location. One solution to this problem is the Simultaneous
Localization and Mapping (SLAM) method, which utilizes measurements
from various sensors such as wheel encoders, Inertial Measurement Unit
(IMU), lidar, camera, and Global Positioning system (GPS).

The continuously built inner map is divided into obstacles and traversable
areas based on robot’s specifications, for example maximum traversable grade,
wheel diameter, and ground clearance, resulting in a traversability map. This
map serves as the basis for a path planning algorithm, typically a combination
of global and local planning, to find an obstacle-free path to the target goal.
The global planner uses the entire map to plan the path to the goal, while
the local planner takes into account dynamic obstacles in the robot’s mapped
proximity and generates corresponding motion commands.

3

1. Introduction

. W) Specification

The objective of this thesis is to design and implement a point-to-point rough
terrain navigation method for a ground mobile robot. This will involve the use
of a SLAM algorithm, traversability estimation on the inner map, obstacle-free
path planning, and generating motion commands for the robot. The state-
of-the-art SLAM methods will be reviewed to determine the most suitable
approach for the selected sensor equipment. The method will be implemented
as a ROS Noetic project, comprising packages written predominantly in
C++ programming language. However, the complete implementation of all
components of the navigation system is beyond the scope of a bachelor’s
thesis, and therefore, existing implementations of selected components will be
integrated in the form of ROS packages. Furthermore, the navigation method
will be restricted to static environments only. The resulting system should
allow the user to set a target goal through an user interface, and offline maps
will be integrated for this purpose. Finally, the performance of the resulting
navigation system will be experimentally evaluated on various terrains in a
simulator.

Chapter 2

Sensors of mobile robotics

In this section, we introduce the sensors used in mobile robotics with an
emphasis on those employed by SLAM methods. The working principle of
each sensor is described in detail, along with a discussion of the advantages
and disadvantages of using them.

B Wheel encoders

One way to measure the distance or velocity of a robot is to use incremental
rotary encoders, which are mechanically coupled with the wheel axles. There
are several types of incremental encoders, but this description will focus on
those based on the optical principle.

An optical incremental rotary encoder consists of a rotary disk with evenly
spaced opaque zones and a combination of two light emitters and receivers
shown in Figure |2.1a. These optical components are arranged in such a way
that the binary signals produced by the receivers, when an angular rate is
applied to the disk, form a quadrature signal depicted in Figure 2.1bl This
means that the phase shift between the two signals is a quarter of the period,
allowing for the determination of the rotational direction of the disk.

The wheel angular rate can be deduced from the measured pulse count of
the encoders, and the wheel’s traveled distance can then be calculated using
the wheel circumference.

emmiter receiver

L
QO

LT
Q. 11

(a) : The working principle of the optical encoder (b) : The quadrature signal de-
and placement of the pairs emmiter/receiver, re- pending on the direction of rota-
spectively. tion.

Figure 2.1: Wheel incremental optical encoder.

2. Sensors of mobile robotics

Wheel encoders provide a simple solution to estimating the velocity and the
distance travelled by a robot. However, this approach relies on the assumption
of ideal robot kinematics, which is rarely met in practice. For example, wheel
odometry can become inaccurate when the wheels are not equally pressurized.
Additionally, when a robot is operating on rough terrain, its tires may slightly
deform or slip, leading to inaccurate pose estimation using this method [I].
Therefore, the use of wheel encoders is not suitable solution for navigation
on rough terrain.

M Inertial measurement unit (IMU)

In mobile robotics, the IMU is often in the form of a microelectromechanical
system (MEMS) that consists of three orthogonally placed accelerometers
and gyroscopes, and sometimes magnetometers. This configuration allows
for the measurement of linear acceleration along each of three orthogonal
axes and angular rate around these axes, which can be used to estimate the
orientation of the sensor and therefore a robot.

The MEMS accelerometer typically operates on the principle of differential
capacitance, where motion of the system leads to a change in capacitance
that is measured to determine the acceleration acting on the system along
the axis of the accelerometer (shown in Figure [2.2a)).

- |

C=c
springs mass d=dy=d
N =
A

B E, 3 =

a

-0 =

x displacement
-~

H =T B =

dy=d +x

constant oscillation

change in

(a) : The working principle of differ- capacitance ¢

ential capacitance MEMS accelerom-

eter. C; denotes the capacitance, d; (b) : The working principle of differential
denotes the distance between the op- capacitance MEMS gyroscope. The red frame

posing plates. When the system ac- constantly oscillates. When an angular rate w
celerates, the inner mass is displaced, is applied to the system, the occurring Coriolis
resulting in a change in d;, which force Fc displaces the inner mass that results
changes the difference between Cj. in a change of capacitance described in (a).

Figure 2.2: The working principles of accelerometer (a) and gyroscope (b)
forming the MEMS IMU.

Similarly, the MEMS gyroscope uses the principle of differential capacitance
to measure acceleration caused by the Coriolis force, which occurs when an
external angular rate is applied to a moving body (shown in Figure .

Accelerometers and gyroscopes, which constitute an Inertial Measurement
Unit (IMU), are prone to substantial time and temperature drifts, resulting in

6

2. Sensors of mobile robotics

non-negligible errors over time. A drift occurs,e.g., when the displaced inner
mass does not return to its original position entirely, leading to offset in the
measurements. However, accelerometers and gyroscopes have a fast response
time, allowing for high sample rates. Despite their potential for inaccuracy
over time, IMUs are still a more suitable choice for estimating the position
of a robot operating on rough terrain compared to wheel odometry and its
drawbacks. Additionally, IMU position estimates can be combined with other
types of odometry, such as GPS [2], to provide a more accurate estimate.

B Laser scanner

Laser scanners, also known as lidar (acronym of Light Detection and Ranging),
are well-established sensors in mobile robotics [3] that use Time of Flight
(ToF) method to measure the distance to objects. This method involves the
use of laser to emit light, which is reflected off of objects and detected by the
lidar. The distance to the object is determined by half the distance that the
light travels form the laser to the photodetector.

There are two main categories of lidar: solid state and electromechanical.
The electromechanical lidars can be further divided into single plane and
multi plane, depending on their vertical and horizontal field of view and their
ability to provide 3D scans of their surroundings. While single plane lidars
are sufficient for navigating and detecting obstacles on flat surfaces, robotic
platforms operating in uneven and outdoor environments often require lidar
capable of 3D scanning.

In conclusion, multi-channel lidars provide dense mapping of the surround-
ing environment. Furthermore, lidar technology can be used both during
the day and at night, and its measurements are not affected by changes
in air temperature, unlike sonar [4]. However, lidar measurements become
inaccurate when attempting to measure distance to reflective surfaces or to
objects at a small angle. Furthermore, the effect of refraction negatively im-
pacts the accuracy of lidar measurements in conditions such as heavy rain or
low-hanging clouds. Despite these limitations, lidar remains a robust method
for dense terrain mapping, providing a solid foundation for the navigation
task, and can also be used for odometry purposes.

B Optical camera

Cameras are a common device in mobile robotics, providing a wealth of
information about a robot’s surroundings. A typical monocular camera
consists of a lens assembly that focuses a wide angle of light to create a clear
image. At the back of the camera is a CMOS (Complementary Metal Oxide
Semiconductor) sensor, which consists of the Bayer mosaic filter and an array
of photodiodes that detect the visible light spectrum, and sometimes also
infrared. The current pulses are then read row by row to create a digital
output, resulting in a final image.

A combination of two monocular cameras, called a stereo camera, can be
used to estimate the depth of each pixel. However, this configuration fails

7

2. Sensors of mobile robotics

to estimate the depth of monochromatic flat surfaces. This problem can be
addressed by adding an infrared dot pattern emitter, which adds features
to the captured scene to better register the two images and improve depth
estimation.

Despite its popularity in visual odometry [5] and mapping methods for
providing dense maps, the use of cameras is limited by their susceptibility to
changing light conditions and the high cost of processing their data.

B Global Navigation Satellite System (GNSS) receiver

The GNSS receiver is a device used to determine its geographic position
by receiving signal transmitted by constelations of satellites [6] (e.g. GPS,
Gallileo, and GLONASS).

Transmitted signal consists of messages containing the satellite’s pose and
a timestamp indicating when the message was sent. Trilateration is then
used by receiver to calculate its geographic position based on signal received
at least from four satellites (shown in Figure 2.3a)). This process involves
calculating the distance between each satellite and the receiver based on the
time difference between the timestamp and the current time measured by the

receiver.

1)
¥

2
i
Prime meridian

,",\lal}[tu
—

£
' o
‘(\v or | Mongitude, "~

(a) : The estimation of geographic posi- (b) : The WGS84 LLA coordinate system.
tion (red) using trilateration and conste- The orthogonal axes denote the Earth-
lation of four satellites S;. Centered, Earth-fixed system (ECEF).

Figure 2.3: The Global Navigation Satellite System (GNSS).

While satellites use precise atomic clocks, most GNSS receivers imple-
ment time measurement using quartz crystals, which introduce errors in the
calculated distances from satellites. To minimize this error, four satellites
are typically used instead of the three that would be theoretically sufficient.
However, using a single GNSS receiver still results in a sub-meter level of
accuracy at best, due to errors that arise when the signal is propagated
through the atmosphere.

The Real-Time Kinematic (RTK) method enhances the estimated position
to centimeter-level accuracy by adding a second, stationary receiver, which

8

2. Sensors of mobile robotics

communicates with the moving one. By using this combination of receivers,
the atmosphere propagation errors are significantly reduced. In addition, RTK
achieves centimeter-level accuracy through the use of advanced correction
algorithms, which are outside the scope of this work.

This thesis utilizes the World Geodetic System (WGS84) LLA (latitude,
longitude, altitude) coordinates (see Figure 2.3b)), also known as geodetic
coordinates, to determine the geographic position of a given point. The
origin of the coordinate system is located at the center of mass of the Earth.
Latitude represents the angle between a point and the Earth’s equator, while
longitude is the angle between a point and the Prime Meridian. Altitude is
defined as the height above mean sea level. The WGS84 LLA coordinate
system is widely used, including by the Global Positioning System (GPS).

One of the limitations of using Global Navigation Satellite System (GNSS)
to estimate the pose of a robot for navigation purposes is a significant
deviation in latitude and longitude and poor accuracy of altitude estimation
due to errors in estimating distances to satellites. Additionally, GNSS is
often unreliable in urban and forest environments [2], making it unsuitable
for continuous pose estimation. However, GNSS can be used in combination
with other types of odometry to correct for drift over time.

10

Chapter 3

Review of three-dimensional SLAM
methods

B 31 Approaches

In [7], three main paradigms for SLAM have been observed: Extended Kalman
Filter (EKF), Particle Filters (PF), and Graph-based methods. The first
two approaches can be broadly classified as probabilistic methods. The
graph-based methods can be classified as non-linear methods.

B EKF methods

EKF-based methods represent the estimated robot and landmarks in the
environment as a state vector. The error covariance matrix, which stores
uncertainties in the state estimates, is updated along with the state vector
using EKF algorithm and grows with the area explored by a robot. However,
the number of values in the covariance matrix increases quadratically, leading
to computational inefficiency.

B PF methods

Particle Filters methods estimate the real state of the robot and observed
landmarks by taking a number of samples, each representing a guess of a
real state [7]. The probabilistic methods, in general, do not incorporate loop
closure, which can reduce over-time cumulative errors.

B Graph methods

Graph-based techniques [§] aim to find a solution to the SLAM problem
by optimizing a graph consisting of vertices representing, typically, robot
pose estimates and, in some cases, landmarks. The edges connecting exactly
two vertices represent odometry between two robot poses, or for example,
range measurement between a robot pose and an observed landmark. One
popular approach is the use of a factor graph, a type of bibartite graph. This
representation distinguishes between two types of nodes: variables, usually
representing robot pose estimates and observed landmarks, and factors, which

11

3. Review of three-dimensional SLAM methods

represent constraints in the form of functions that relate two variables. The
edges of a factor graph always connect a variable with a factor. Non-linear
optimization methods are then applied to the factor graph to minimize a
certain error function. Loop closure can be integrated to the factor graph by
adding loop-closure factors between two variables with the same information.
The advantages of graph-based methods over probabilistic approaches include
efficient updates and linear memory usage, as well as the ability to reduce
cumulative errors through loop closure, resulting in more accurate estimates
and the ability to cover larger environments.

B State-of-the-art graph-based SLAM scheme

The classical framework of many recent graph-based SLAM techniques consists
of three main components [9]: an odometer link, an optimization link, and
a closed-loop detection link. The odometer link uses sensor data, such as
lidar, camera, or IMU measurements, to estimate poses of the robot bonded
with factors, thereby constructing a graph of poses. These types of odometry
are referred to as lidar odometry, visual odometry and inertial odometry,
respectively. The scheme of a typical graph-based SLAM is shown in Figure
3.1

sensor data odometer link optimization link optimized graph

v

¥

b

closed-loop detection link

Figure 3.1: A classic framework of the graph-based SLAM method.

B Further division of SLAM methods

State-of-the-art SLAM methods using different types of sensors can be further
divided into tightly and loosely coupled approaches [I0]. The following
explanation incorporates the use of lidar and IMU measurements. Loosely
coupled methods typically incorporate IMU measurements to assist lidar
odometry, but are not involved in the optimization process. Tightly coupled
systems, on the other hand, combine inertial and lidar measurements together
for state estimation, often by adding different types of factors to the factor
graph.

SLAM methods can be also categorized according to the used types of
sensors as lidar and visual SLAM. Thanks to the above-stated advantages
of the lidar, for example the robustness to variations in illumination and
weather conditions [I1], this thesis will prefer the use of lidar SLAM method
over visual SLAM. State-of-the-art lidar SLAM methods based on non-linear
optimization are summarized in the next section.

12

3.2. Lidar SLAM methods

. 3.2 Lidar SLAM methods

Bl 3.2.1 Loosely coupled methods

Beginning with the loosely coupled methods, in [12], Zhang and Singh in-
troduced a lidar odometry and mapping scheme called LOAM, which has
become a foundation for latter subsequent methods. LOAM uses a scanning
device consisting of a 2D lidar, constantly rotating in 3D space, resulting in
a distorted point cloud when the device is in motion. The scheme consists
of three modules: feature extraction, lidar odometry, and lidar mapping
[13]. Lidar odometry is performed through feature matching rather than the
computationally expensive matching of entire lidar scans. These features are
extracted from scans based on local roughness, and classified as edge or planar
features. The lidar mapping module takes a set of multiple lidar frames,
combined using lidar odometry, which is registered and merged with the
global map. Optionally, IMU measurements can be incorporated to provide
an initial guess for lidar odometry scan matching. However, this method
suffers from drifts during long-during mapping due to the lack of loop closure
detection.

The later A-LOAM [14] presents a computationally optimized version of
LOAM, using lidar measurements only.

SC-A-LOAM, presented in [I5], builds on the A-LOAM implementation
and adds loop closure through scan context (SC) [16]. In SC, a point cloud is
divided into azimuthal and radial bins, each containing the maximum height
of all points within the bin. These bins are then arranged into a matrix to
form a robot-centric global point cloud descriptor. A loop is detected based
on similarity score, represented as the normalized sum of cosine distances
between collumn vectors of two descriptors.

F-LOAM, presented in [I7], employs the feature extraction method from
LOAM. However, the lidar odometry process is accelerated by replacing
the iterative motion estimation from LOAM with the extrapolation of the
previous two pose estimates.

In [18], Shan and Englot proposed a ground-optimized version of LOAM,
called LeGO-LOAM, which is suitable for ground vehicles. This method
relies on the presence of a ground plane, which is segmented from the point
cloud. The edge and planar feature extraction is the same as in the LOAM
method. Lidar odometry scan matching is performed through a two-step
Levenberg-Marquardt optimization process. The first step matches only
planar features, estimating the z coordinate, roll, and pitch of the robot pose.
The second step incorporates estimates from the first step and matches edge
features, resulting in estimates of xz, y coordinates and yaw. As with LOAM,
IMU measurements can be incorporated to provide an initial guess for feature
matching. LeGO-LOAM employs pose-graph optimization using the iSAM2
[19] algorithm with loop detection based on the Euclidean distance between
two poses.

LeGO-LOAM-BOR [20] represents a computationally optimized version

13

3. Review of three-dimensional SLAM methods

of LeGO-LOAM that has been enhanced of scan context loop detection,
resulting in SC-LeGO-LOAM [21].

In [13], Chen et al. proposed a method called R-LIO that uses a multi-
channel rotating lidar to obtain spherical coverage of the surroundings. Addi-
tionally, IMU measurements are incorporated to de-skew point clouds and also
serve as an initial guess for lidar odometry, which utilizes frame-to-submap
matching with the feature matching method from LOAM. Loop detection is
based on submap-to-submap Iterative Closest Point (ICP) [22] matching.

B 3.2.2 Tightly coupled methods

The HDL Graph SLAM method, presented in [23], estimates lidar trajec-
tory through iterative NDT scan-matching and uses a pose graph for map
optimization with constraints, namely: IMU gravity vector direction, IMU
orientation, GPS measurements. The method also detects the floor plane
using the RANSAC [24] algorithm and includes it as a constraint. Loop
closure is achieved through NDT scan-matching between selected candidates
based on the Euclidean distance between two poses. The graph optimization
is performed using Gauss-Newton method.

The LIO-M method, presented in [25], consists of two parallel components:
a tightly coupled lidar-IMU odometry that optimizes all pose estimates within
a local window, and a second component that aligns lidar scans to the global
map using information from the optimized poses.

In [I0], Shan et al. presented LIO-SAM scheme, which uses a factor graph
optimized with the iISAM2 algorithm and incorporates four factors: the IMU
pre-integration factor, the lidar odometry factor, the GPS factor, and the
loop-closure factor. The IMU pre-integration estimates the motion of lidar
with high frequency and serves as an initial guess for the feature-based scan
matching in the lidar odometry, which uses the feature extraction method
from LOAM. The method also employs sliding window approach, in which
only the features from the last IV scans are used in feature matching process,
resulting in faster lidar odometry. Loop detection is based on the Euclidean
distance between two poses.

The SC-LIO-SAM method [26] enhances the LIO-SAM method with a
more sophisticated loop detection using scan context.

The intensity and ambient value of points was leveraged in feature extraction
process from LOAM to remove unnecessary feature points, resulting in TA-
LIO-SAM method [27].

In [28], Wang et al. proposed the LIO-CSI method, which is built on the
LIO-SAM method and integrates semantic information to facilitate odometry
and loop detection. In the lidar odometry, the semantic information removes
dynamic objects, improving accuracy in dynamic environments. The semantic
information is obtained using a Sparse Point-Voxel Neural Architecture Search
(SPVNAS) [29] deep learning network.

In recent years, there have been several methods that tightly couple multiple
lidars, such as M-LOAM [30], and MILIOM [31] that additionally incorporates

14

3.2. Lidar SLAM methods

IMU measurements.

In [32], Wang et al. proposed D-LIOM method, which can also incorporate
multiple lidar inputs. Unlike most previous methods that use feature matching,
the D-LIOM registers raw point clouds with a probability map. The method
also integrates lidar odometry, IMU pre-integration, and gravity constraint
into a local factor graph, forming a submap. Loop detection is performed by
matching projected 2D submaps with the help of the RANSAC algorithm.

Characteristics of the above mentioned methods are summarized in the
Tab. 13.1.

15

method lidar IMU GPS T/L loop closure implementation ROS support
LOAM [12] v optional X L X ROS (Kinetic, Melodic)
A-LOAM ([14] v X X - X ROS (Kinetic, Melodic)
SC-A-LOAM [15] v X X L scan context ROS (Melodic)
F-LOAM [17] v X X - X ROS (Melodic)
LeGO-LOAM [I§] v optional X L ICP scan matching ROS (Kinetic, Melodic)
LeGO-LOAM-BOR [20] v optional X L ICP scan matching ROS (Kinetic)
SC-LeGO-LOAM [21] v optional X L scan context ROS(Kinetic)
R-LIO [I3] v v X L submap—to—submap ICP X
matching
HDL Graph SLAM [23] v optional | optional | T NDT scan matching ROS (Melodic, Noetic)
LIO-M [25] v v X T X ROS (Kinetic, Melodic)
keyframe-to-keyframe
LIO-SAM [10] v v optional | T ICP matching with ROS (Kinetic, Melodic), ROS2 (Foxy)
distance threshold
SC-LIO-SAM [26] v v optional | T scan context ROS (Kinetic, Melodic)
keyframe-to-keyframe
IA-LIO-SAM[27] v v optional | T ICP matching with ROS (Kinetic, Melodic)
distance threshold
LIO-CSI [28] v v optional | T semantic-based X
M-LOAM [30] multiple X X T X ROS (Kinetic, Melodic)
MILIOM [31] multiple v X T X X
D-LIOM [32] multiple | v/ X T | submap-to-submap RANSAC ROS (Noetic)

matching

Table 3.1: Comparison of the reviewed three-dimensional lidar SLAM methods, including used sensors, loop closure method, and ROS support
of available implementations. T /L stands for Tightly-coupled/Loosely-coupled sensor fusion.

Chapter 4

Three-dimensional terrain representations
for navigation

In the past three decades, several methods for representing 3D terrain have
been proposed as they are essential for many navigation systems. The early
approaches [33] used 3D cubic grid of equally-sized volumes, called voxels,
to discretize the mapped area. However, this method has high memory
requirements, is costly to copy when the mapped area needs to be extended,
and requires the size of the mapping area to be predetermined.

Another approach is to create the terrain out of direct range measurements
in the form of point clouds [34][35]. This allows for easy maintanance and
expansion of an existing map by simply appending a vector of points. In [36],
point cloud maps are utilized for path planning with ground mobile robot.
On the other hand, this representation does not track free and unknown areas
and storage of larger ammount of points becomes inefficient with growing
dense map. This map representation is shown in Figure |4.1

Figure 4.1: The visual comparison of the different map representations. Point
cloud, elevation map, multi-level surface map, and voxel map based on the octree
structure, respectively. Obtained from [42].

A popular approach to 3D environment modeling is the use of 2.5D maps
called digital elevation maps (DEM) (illustrated in Figure [4.1)), which are
represented as a 2D grid with a height value assigned to each cell [37]. A
shortcoming of this method is the inability to capture overhangs occuring in
the environment. Although, this representation does not represent the actual
environment, thus may pose restrictions to certain applications, overhangs
higher than the robot can be ignored, which results in a sufficient terrain
approximation for ground mobile robot navigation [3§]. The 2.5D approach
was enhanced by storing multiple height values for each cell, leading in multi-

17

4. Three-dimensional terrain representations for navigation

level surface (MLS) map (shown in Figure 4.1)), introduced in [39] that enables
to represent overhangs in general, and multi-level buildings.

However, a more accurate representation of a generic 3D surface provides
a voxel approach using octree structure (shown in Figure |4.1), originally
proposed in [40]. This method distinguishes between free and unknown
space and occupied voxels represent leafs in a tree structure. The octrees
allow incremental map building, meaning that the map does not need to
be initialized until measurements are integrated. Further advantage of this
method is the capability of providing multi-resolution maps based on the spec-
ified octree depth. Early works focused on estimating voxel occupancy with
boolean approach [41] whereas the most recent methods prefer probabilistic
representation [42].

Three-dimensional surface can be represented probabilistically using 3D
Normal Distribution Transform (NDT) [43], where each cell of a 3D voxel
grid contains three-dimensional normal distribution. Path planning using
this method was introduced in [44].

A surface can also be represented with triangular meshes [45][46]. In [47],
the mesh surface is utilized for shortest path navigation using vector fields.
However, the mesh creation from raw range measurements is computationaly
expensive and with new incoming measurements the process has to be repeated.
Additionally, a concatenation of two overlapping meshes requires a costly
recomputation of significant parts of the meshes.

18

Chapter 5

Navigation method

B 51 Selected approach

An effective navigation approach relies on accurate robot localization, and
mapping, when an environment, in which the robot operates, is not known
beforehand. Simultaneous Localization and Mapping (SLAM) techniques
address this issue by providing estimates of robot’s position in time and
generating a map of the environment that can be used for path planning. In
this thesis, we decided to incorporate lidar for SLAM due to its advantages
over visual approach.

After reviewing various lidar-based SLAM methods (see chapter 3) and
assuming the navigation method to be deployed on a middle-sized robot,
methods that utilize a single lidar sensor, as it covers most of the robot’s
surroundings, were considered to be sufficient. However, accumulated errors
(i. e. drift) during long-term navigation can result in inaccurate estimates of
the robot’s position in relation to the actual environment, potentially leading
to navigation system failure. SLAM methods that incorporate loop-closure
can partially mitigate this problem, and are therefore preferred for integration
into the navigation method. We also favor a method with a pre-existing ROS
implementation, which would facilitate its integration.

One candidate that meets these criteria is the LeGO-LOAM method and
its subsequent versions. However, these types of methods assume a flat
ground surface, which may not be present in rough and uneven terrain.
Another possibility is the LIO-SAM method, which produces a smaller pose
estimation error in a single run compared to HDL Graph SLAM method
[48]. In addition, LIO-SAM incorporates IMU measurements and, optionally,
GPS measurements, which can be used to set a designated goal, providing an
advantage over the SC-A-LOAM method. From the remaining candidates
(including versions of LIO-SAM), we selected the pure LIO-SAM method for
our navigation system due to its simplicity compared to SC-LIO-SAM and
TA-LIO-SAM.

The next part of the navigation system involves the traversability estimation
of the mapped terrain. For this purpose, we use a geometric-based approach
that estimates traversability based on geometric features, e. g. slope and
roughness. While LIO-SAM generates a point cloud map of the environment,

19

5. Navigation method

TRANSFORMED PATH
SENSOR ODOMETRY MAPPING PLANNING CONTROL
MEASUREMENTS
LIDAR PROBABILISTIC
TERRAIN
s MAPPING
estimate on
MU Ly LI0-SAM TRAVERSABILITY LocaL | | | [veocrry
3 ESTIMATION PLANNER [~ COMMANDS

local fraversability T A

h
map globaf

path | | replanning
A 4

GLOBAL
PLANNER
A

initial position global traversability map

Figure 5.1: Diagram of the proposed navigation method.

it does not provide dense representation of the terrain, which is necessary for
precise traversability estimation.Therefore, we only use the provided odometry
and utilize the work of Péter Frankhauser et al. [49], which uses the estimated
robot poses from LIO-SAM and raw lidar scans to create a robot-centric 2.5D
local elevation map of the surrounding terrain. While more memory-efficient
map representations such as voxel maps based on octrees (as discussed in
chapter 4) exist, the chosen map representation, implemented as 2D array,
allows for simplier geometric-based traversability estimation and faster search
capability during path planning. The resulting 2.5D local traversability maps
are then merged to provide a global map.

With reliable traversability maps available, path planning methods can be
used to generate a safe path to a designated goal through the environment.
For this, we use a combination of a global and local planner. The global
planner employs Dijkstra’s algorithm and receives target goals in the form of
GPS coordinates. The local planner utilize the Dynamic Window Approach
(DWA) algorithm to leverage the robot’s motion model in obstacle avoidance
and to prompt the global planner to replan the route when an obstacle
intersects the current global path. The local planner also generates motion
commands for the robot in the form of a twist velocity (v,w).

A diagram of the designed navigation method is shown in Figure [5.1].
The following sections provide more detailed descriptions of each of the
aforementioned parts of the navigation system.

. 5.2 Transformations of sensor measurements

To incorporate measurements from different types of sensors into for example
lidar-inertial odometry, the measurements must be taken from a coordinate
frame we want to estimate the odometry for, in our case, robot’s body frame.
Placing sensors in the same location is possible in simulation, however, this
approach is not applicable to a physical robot. Therefore, sensors are mounted

20

5.2. Transformations of sensor measurements

on the specific locations on the robot and their data are transformed using
homogeneous transformation matrices into robot’s body frame (depicted in
Figure 5.2). The homogeneous transformation matrix

R4 | dA
TA
B_< OB 1B>’

represents the transformation of a coordinate frame B with respect to the
frame A, and consists of rotation matrix R4 € SO(3) and translation vector
dg € R3.

Figure 5.2: The visualization of transformations of sensor coordinate frames
into robot’s body frame.

The transformation of a point cloud

Pr, = (PlL Pip - PNL>
of N points
xr
yL
Dip, = 2L
1
from lidar frame L to the robot’s body frame B, the following transformation
is applied:
Pp =TPP;.
When transforming measurements of the linear acceleration
gz,
ar = | Qy;
a,

from IMU frame I to the robot’s body frame B, the acceleration of origin of
B with respect to the coordinate frame of I is

dw I I
a:a1+axr3+w1><(w1><r3),
where
Wa;
wr = ny
Wy,

21

5. Navigation method

is angular velocity of the robot with respect to the I frame, and r]I3 is
the translation vector between I and B with respect to the I coordinate
frame. Then a relative rotation between I and B frame is applied to obtain
acceleration values in B frame:

ap = R}? a.
The same rotation is applied to obtain angular velocity vector:
wp = RIBw I

When transforming GPS WGS84 LLA data, the measurements are first
transformed into Cartesian coordinates using Equirectangular projection [50]:

rg = R(A—Xo)cos¢1, ya=R(d— o), z2a=10

where A is the longitude, ¢ is the latitude, @ is the altitude, ¢¢ is the central
parallel, ¢1 are the standard parallels, A\g is the central meridian, and R is
the radius of the globe. Then a homogeneous transformation is applied to
obtain projected measurements in the B frame:

rpB itel
YB B | YG
z - TG
B G
1 1

B 53 Lidarinertial odometry via Smoothing and
Mapping (LIO-SAM)

The LIO-SAM is a tightly-coupled lidar-inertial odometry technique that
iutilizes a factor graph containing one type of variable representing the state
of the robot and four factors: IMU preintegration, lidar odometry, GPS, and
loop closure. The factor graph is optimized using the iISAM2 algoritm [19]
upon the incorporation of a new robot state. An overview illustrating the
addition of measurements and factors (described further) is depicted in Figure
5.3 The method uses sensor measurements that are transformed according
to the previous chapter.

The state of the robot, which is represented by its body frame B, is
expressed as [10]

T = (RT, pT, vT, bT) T (5.1)

where R represents the rotation matrix, p is the position vector, v is the
speed, and b represents the IMU bias. The transformation from B to the
world frame W is represented as

T—<1: 11)>BSE(3).

22

5.3. Lidar-inertial odometry via Smoothing and Mapping (LIO-SAM)

Y, Y ¥ ™ FanY Py TN
(xp) L X1 f X) -[XW ’/ x4) ess L=) \\L‘HIJ LA
e A S = A L/ ANy

T 3] f1a> vee (R I ooy woe R Fiar sos <R
88 ® 4

™
IMU measuramants Lidar framas Lidar kayframe Fe 2 oee <K > Lidar sub-keyframes 7% GPS measurament '_‘4/‘ Robot state node

IML preintegration Lidar odometry GPS factor Loop closure Scan matching
fator factor AN - -

Figure 5.3: The structure LIO-SAM, utilizing a factor graph, along with the
incorporation of sensor measurements. Obtained from [10].

The IMU preintegration adops the method described in [51], which defines
the angular velocity and acceleration measurements from the IMU at time ¢
as

‘:)t = w¢ + b‘: + TL;J, (52)

a; = RPW (a; — g) + b} + n, (5.3)

where @ and a; represent the raw IMU measurements in B. b, is the bias
and n; denotes white noise. The rotation matrix from W to B is represented
by RfW and the gravity vector in W is denoted by g.

The IMU preintegration method in [51] estimates the motion of the robot
in terms of velocity, position, and orientation at time t + At, where At is the
sampling period of the IMU, as

Vit At = UVt + gAt + RXVB((A}t - bg — n?)At, (54)

1
DPt+at = Pt + veAt + ngtz RWB(ar — b — n) AL, (5.5)
R A¢ = R Pexp((@ — b — ny)At) (5.6)

under the assumption of constant wy and a; during the integration. According
o [51], the relative motion of B between two timesteps ¢ and j can be written
as:

Av;j = wa(vj —v; — glty;), (5.7)

1
Apij = RPY (pj — pi — vildtyj — 59At?j), (5.8)
AR;; = RFVRYP. (5.9)

The lidar odometry utilizes the feature extraction method from [12], which
evaluates the smoothness of incoming lidar points over a local region as:

c= | H Z (pi,j - pi,k)Hv (510)

‘ ‘ Hp%J‘ keS k#j

where p; j is a j-th point in ¢-th lidar scan and S represents a set of consecutive
points of p; ;. By applying lower and upper threshold to c values, edge F;* and

23

5. Navigation method

planar F} features can be obtained, forming a lidar frame F; = {F¢, F'}. The
authors introduce the concept of keyframes, which represent a new robot state
x; along with the associated lidar frame [F; that is added to the factor graph
when a specific threshold on the robot’s change in pose is exceeded. In order to
enhance the real-time performance of the method, a sliding-window approach
is implemented, which incorporates features of the N most recent keyframes
{Fi_n,...,F;}, referred to as sub-keyframes, which are transformed into W
using the associated transformations {’_l"iv_VB7 o ,TiWB }.

Two separate voxel maps M¢, MP containing edge and planar features,
respectively, are created from the sub keyframes and downsampled to elimi-
nate duplicate features. A newly-obtained keyframe F;1 is then transformed
into W, using the initial transformation TW1 produced from the IMU prein-
tegration step, and is matched to the voxel maps using a scan-matching
technique.

The scan-matching process finds the closest correspondences of F§, |, F?, |
in the voxel maps M, M? respectively. During the scan-matching process,
the closest edges and planar patches from M¢ and M? are found for each
of F§,; and F? 41 features, respectively, and the distances between these
correspondences are calculated according to [12] as:

‘(pa_l,k - pf,u) X (pf+1,k - pf,v”

de, = ; 5.11
- |pz€,u - pf,v| ()
(p2+1,k Pf,u) »
d. = pf,u pz,v) X (pp,u _pi,w) (5 12)
PP = PLy) X (Ph — Pl

5 9

where de, denotes the distance between an edge feature p? 1,k € Fiq and
an edge formed by two edge features pr, pf’v € My, and dp, denotes the
distance between a planar feature pf +1.k € F? +1 and a planar patch formed
by three planar features pz w pz 0> pf’ w € M?.

Minimizing the sum of these distances by adjusting TW1 using the Gauss-
Newton method yields the optimal transformation between the last two robot
states [10],

AT = TPVTH P, (5.13)

which is added as a lidar odometry factor to the factor graph. The result of
lidar odometry is subsequently used to estimate the IMU bias.

The GPS factor incorporates absolute measurements to address the issue
of drift during long-term navigation. A new GPS factor is only added if the
covariance of the estimated robot position exceeds the covariance of the GPS
measurement.

Loop closure is performed upon the addition of a new state x;4+1 to
the factor graph. All prior states within a specified Fuclidean distance
relative to x;41 are searched. Using the scan-matching process from li-
dar odometry, a new keyframe F;;; is matched with all sub-keyframes
{Fj—m,...,Fj,....,Fjzm}, m € N, corresponding to each of the searched

24

5.4. Probabilistic terrain mapping

candidates ;. The obtained relative transformations AT} ;41 are added to
the factor graph as loop closure factors.

. 5.4 Probabilistic terrain mapping

The probabilistic terrain mapping method, as described in [49], generates
probabilistic terrain estimates in the form of a grid-based robot-centric
elevation map. This method was originally intended for use with relative
proprioceptive-based localization, such as wheel odometry. The method
distinguishes between two types of map updates: map update from range
measurements, which updates the map with new data, and map update from
robot motion, which propagates the uncertainty of robot pose estimates into
the robot-centric map.

The notation in the following definitions may differ from [49] in order to
conform to the notation used in this thesis. The authors introduce four
coordinate frames (illustrated in Figure 5.4)): the world-fixed frame W, the
robot body frame B, the sensor frame (in our case, the lidar frame) L, and
the map frame M. The method assumes the existence of a known static
transformation Tf and an available pose estimation T , where the rotation
matrix RYBV can be written as

RY = R¥ (v) RE(0,9), (5.14)

where R}%V (v) represents the rotation of the B frame about 1 around the

vertical axis e}, and RB (0, ¢) represents the rotation between B and B with
pitch 0 and roll ¢ angles. The transformation TAL} is user-defined, with the
rotational matrix Rf/‘, such that e/ and e are aligned, and the yaw angle
between W and M is equal to the yaw angle between W and B. The position
of a map grid cell is defined as P; = (z;, yi, }All), where x; and y; denote the
horizontal position, and hi represents the estimated height of the terrain.

Figure 5.4: The illustration of frames used in the probabilistic mapping, where
W is the world frame, B is the robot body frame, L is the lidar frame, and M is
the local elevation map frame. The p indicates the projected height of a point P,
obtained from the range measurement pr, in the M frame. Inspired by [49].

25

5. Navigation method

A newly-obtained point pg, is transformed into the M frame, resulting in a
new height measurement p:

p:(o 01 O)TI{V[(pLT 1)T, (5.15)

which is approximated by a Gaussian distribution $ ~ N (p,02). The variance

UZQ) is obtained from:

oy = JpELJ] + JrEpw Jg, (5.16)

where the Jr and Jg are Jacobians for the lidar measurement and the L
frame rotation:
dp Op

“op T ORY

The X, denotes the covariance matrix of the lidar model, and X RY represents
the covariance matrix of the sensor rotation.

The method employs a one-dimensional Kalman filter to fuse the new
measurement (p,07) into the current estimate (Bi—h‘ff%i,l)’ resulting in a

Jr (5.17)

new estimate (ﬁi,a%i) [49]:

27 . 2 ~ 2 2
- Jphz_l +0h, 4D 2 Thi% 518
Y 024 02 I R R (5.18)
p hi—1 hi—1 p

Because the map is formulated in a robot-centric manner, it is necessary
to update the map, i. e. h and O'}QL, upon a motion of the robot with respect
to the W frame. The approach chosen in [49] involves extending each cell i
with the spatial covariance matrix:

U?E,min 0 0
Yp = 0 0rmin 0|, (5.19)
0 0 0}211,

2

where O'}QLZ_ is calculated using the aforementioned Kalman filter, and O min»
2

are initialized with (g) , where d denotes the side length of the cell, i.

e. resolution.

For time k+1, the estimated position #pyg, , , p of a point P in the coordinate

2
Uy,min

frame Mjy1, associated with the estimated robot frame Bk+17 can be written
with respect to M1 as [49]:

~ -1
o o Bt1 A
TMiy1 Py = _TBk:-}-le—{-l o (RMk+1> erBk—i-l (5 20)

AMe |1 .

The propagation of Xp, for rar, p, ~ N (P, p;» X P, k) can be written as
9
Spt1 = Zpk + I JE + JrRERI R, (5.21)

26

5.5. Traversability estimation

where 32, and X represent the uncertainty of robot pose estimate between
reference frames By, and By with [49]:

o B 5B
rékygk-fl ~ N(rékaék-{q’ ZT), RBi+1 ~ N(RB,;:_H’ ER). (5.22)

The Jacobians J,, Jg from [5.21 are calculated as [49]:

o 8er+1Pi Jn — aer-l-lPi (5 23)
" 0fs g R o pB ‘
BiByy1 8R1§’k+1

The height estimates }All for the cells (x;,y;) are stored in a matrix that
corresponds to the size of the elevation map. This matrix is then passed on to
the traversability estimation method, which is described in the next section.

B 55 Traversability estimation

The navigation method employs a geometric-based approach to estimate
terrain traversability, which involves evaluating the geometric properties of
a surface - specifically, slope and roughness - to determine its suitability for
traversal. To accomplish this, the method retrieves an elevation map

E | where mg,ng € N,
mpegXng

with resolution s € R+, and applies a series of mathematical expressions
(as depicted in Figure |5.5). The traversability of each cell, corresponding
to an entry of E, is calculated as a normalized weighted sum of slope and
roughness. Additionally, cells classified as unknown, i. e. corresponding
entries of E that contain a NaN (Not a Number) value, within a defined
radius r, € R around the robot are treated as obstacles. This prevents the
robot from encountering potentially hazardous situations, such as the risk of
falling off a cliff. The following paragraphs provide a more in-depth analysis
of each aspect of the traversability estimation process.

SMOOTHING
LOCAL LOCAL
WEIGHT IMAGINARY
ELEVATION MAP PATCHING ROUGHNESS FUNGTION OBSTALES RAVERSABILITY
MAP MAP
NORMALS
TO SLOPE
SURFACE
Figure 5.5: The process of traversability estimation, resulting in the local
traversability map.

Let
S(E):{em- ERHG{L...,WLE} /\jE{l,...,nE}}

be the set of all entries of E. Henceforth, we will be referring to E as elevation
layer.

27

5. Navigation method

B Map patching

An elevation layer that has been retrieved often includes isolated cells with
unknown values, which can cause difficulties in path planning. However, if
the resolution of the elevation layer is small, compared to the robot’s wheel
diameter, it is possible to approximate the values of these isolated cells using
the surrounding elevation values without posing a risk to the robot. The
neighboring cells, within the radius r,, € Rs, of an unknown cell (7, j):

r 2
Ni,jz{nmnk,zesw)A(z’—k>2+<j—z>2<(;") A(kyémzw)}

are utilized to approximate the elevation of the unknown cell with the median:

1
Dij = 5 Z N 1- (524)

nk,leNi,j

Let
P

mpgXng

containing p; ; on the (4, j)-th position, be a patch layer. The
S(P)={pijeR|ic{l,....mg} Nje{l,...,ng}}

represents the set of all entries of P.

B Map smoothing

The patch layer can be smoothed by calculating the mean of the cells sur-
rounding cell (4, j) within a radius of r4 € Rs, including cell (i,) itself:

2
My, = {mm Imis € S(P) A (i— k)2 +(j—1) < (”s) } (5.25)

This process is represented by the following equation, which calculates the
mean m; ; for cell p; ;:

1
mi; = —— M| 5.26
1,] ’M,L7j| Z k,l ()

mk,leMi,j

We will refer to
M

mpXng

that contains m; ; for (i, j)-th entry, as a smoothed layer.

B Roughness calculation

The surface roughness for cell (i,j) is calculated as an absolute value of
difference between the corresponding patched (/5.24) and smoothed (/5.26)
layer values:

rig = |pij —mijl (5.27)

28

5.5. Traversability estimation

B Normals to surface

The method adopted for calculating a normal to the surface within a cell (4,)
involves the eigen decomposition of a correlation matrix of neighboring cells
M; ; defined in (5.25). It is assumed that there are at least three neighbors.
The cell (i, j) of a patch layer can be represented as a vector

Vi = (Z J pi,j)T

Let Mvi’j be a set of vectors and vy € Mvm. be a vector corresponding to
the element my; € M; ;. The neighboring cells in the form of vectors are
used to compute a correlation matrix

T

1 1

> vk,zvk,zT—m SNooea | Y wky

| v’*7| Vg1 EMoy, ; | Viil vp €My, ; Vg1 EMoy, ;

Bij =

By performing the eigen decomposition of the correlation matrix using
i;=VAVT,

unitary eigenvectors represented as the columns of matrix V' and a diagonal
matrix A of eigenvalues are obtained. The eigenvector corresponding to the
lowest eigenvalue is the resulting normal vector

T
m,j:(nxm Ty, nzi’j) . (5.28)

B Silope calculation

The local slope of the surface within the cell (i, j) is calculated using the
z-coordinate of (5.28)) with the following equation:

84,5 = arccos(ny, ;) (5.29)
that results in an interval of possible values:

Sij € <0, 721-> s

where 0, 5 correspond to a flat/vertical surface, respectively.

B Weight function

The traversability is estimated using a normalized weighted sum of s; ; (5.29)
and r; ; (5.27):

Si P
tij =« (1 -) + (1 S) , (5.30)

Smaa} Tmaa:
where a,8 € R are weights and Sz, Tmaz € Rsg are parameters that
correspond to the maximum allowed slope and roughness of the surface,

29

5. Navigation method

respectively. We consider oo = 5 = 0.5 to give a role of slope and roughness
in the traversability estimation the same importance. Additionally, ¢; ; < 0 is
considered as non-traversable, therefore represents an obstacle.

Let
mpgXng

containing t; ; of the (4, j)-th position, be the traversability layer. All un-
defined ¢; ; in T corresponding to cells (,j) within a pre-defined radius
around the robot are considered as non-traversable. This results in the local
traversability map.

B 56 Global traversability map

The global traversability map serves as the basis for the global planner to
plan a route to the desired destination. The method used to create this
map involves the continuous stitching, or merging, of updates of the local
traversability map M;.

At the navigation system startup, the global traversability map M, is
initialized with the first available M;. When a new update of M is received,
a new global traversability map M, is created by merging the old global
traversability map Mg, with the current M;. This results in M, with a size of
the bounding box that encloses the overlapping M, and M;. This process is
illustrated in Figure |5.6a, where the two-dimensional vectors rps My, s TMM,,
and rarag, represent the relative translation of M, , My, , M; frames with
respect to the map frame M of the LIO-SAM. The relative position described
with translational vectors is sufficient as the orientation of all mentioned
frames is identical.

The translational vector r MM, depends on the angle § between T Mg, M,
and the positive z-axis of the M frame (shown in Figure 5.6b)):

TMM,, if 6 ¢ <0, g)

10 0 0 , B
(0 O) (rang, — Tvnag,) + <O 1) TMM,, if 0 € (5,7)

TMM;, — TMM,,: if 0 € (m, %7‘()
10 0 0 .
() TMM,, + (0) (P, — Ty,), if 0 € <%7r,27r)

00 1
(5.31)

TMMHn =

30

5.7. Kinematics of the robotic platform

—— e — = =

0,
=
_____ I X ~~ X
My=M, 1L v

(a) : A new global map M,, (dashed) as (b) : Positions of the new global map
a result of merge of an old global map M, frame (red, green) according to the
My, (gray) and local map M; (blue). magnitude of 6.

Figure 5.6: The process of updating the global traversability map (a) and
locations of the updated global map’s origin, depending on the orientation of
the translational vector between the old global map and the local traversability
map (b).

The dimensions of M,, corresponding to 6 are:

1 T . x
STM,, M, T (mz nz) ,if 0 € (0, 73)

' <_01 (1)> Mgy My (mgo nZ)T’ if6 €5 m
o) 1

T 5
"o _1 TMgoMl—i-(mgo ngo> ,if 6 € (m, 5m)

1 0 T .
1 () T M, M, + (ml ngo) ,if 0 € (3w, 2m)

0 —1
(5.32)
, where r denotes the resolution of the local traversability map, (my;, n;) are
dimensions of Mj, and (myg,, ng,) are dimensions of My, .

When merging overlapping global and local traversability maps, the global
map M, is overwritten with values from the local map that have been
classified as traversable or as obstacle. Cells classified as unknown are not
considered in this process in order to prevent the global map from erasing
mapped areas where the local map has incomplete information.

B 5.7 Kinematics of the robotic platform

The navigation method assumes a four-wheeled skid-steered mobile robotic
platform. According to [52], a four-wheeled platform can be described using
the two-wheel differential drive kinematics [53].

Authors of [52] assume the robot’s body frame with its origin in the center

31

5. Navigation method

of an area defined by the ground contact points of the left and right wheels
and with y axis aligned with the front of the robot. Velocities (v, v,) represent
the linear velocity of left and right wheels, respectively, with respect to the
robot’s frame. The vector v = (v;,v,) represents the robot’s translational
velocity in its body frame, while w, represents the angular velocity around
the robot’s z axis. The Instantaneous Center of Rotation (ICR) of the moving
platform, denoted as ICR,, = (x;cR,, YICR,), is defined in the robot’s frame,
along with the ICRs for left and right treads: ICR; = (xzicr,, yicr,) and
ICR, = (zicR,, YicRr,)- By analyzing Figure |5.7a, the following relations

can be derived:
—

Ticr, = —2, (5.33)

z

v — U

TICR, = oy (5.34)

Wz
TICR, = m’ (5.35)

Wy

v

YICR, = YICR, = YICR, = wi (5.36)

z

where oy, a, are correction factors that affect (v;,v,). We assume an ideal
symmetrical kinematic model [52]:

a=o=0aq, Ycr, =0, ZICR = —ZICR, = TICR,- (5.37)

’ ICR, ! LICR,

.’/: J }’J T v . o
\,_4 i y v i v
. . T x @,

A

(b) : A four-wheeled platform de-
(a) : General description of a moving four- scribed with an ideal differential
wheeled platform. drive (dashed).

&—~

-

Figure 5.7: Kinematics of a four-wheeled robotic platform in the motion plane.
The left figure (inspired by [52]) illustrates a motion of a generic four-wheeled
platform, where ICR,, is the Instantaneous Center of Rotation (ICR) of the
moving platform, and ICR;, IC R, are ICRs corresponding to left and right
wheels, respectively. The v represents translational vector of a moving robot,
w, the angular velocity, and (v, v,) linear velocities of left and right wheels,
respectively, all of the above with respect to the robot’s body frame. The right
figure illustrates the conversion of a four-wheeled platform to an ideal differential
drive.

Under these assumptions, the four-wheeled platform can be described using
an ideal differential drive model, as shown in Figure [5.7bl In this model, the

32

5.8. Planners

ground contact points of the ideal differential drive coincide with the ICRs
of the four-wheeled platform and the center of mass is coincident with the
robot’s body frame. Equations (5.34), (5.35) and assumptions (5.37)) can be
used to calculate the velocities (v, v,) yielding the following equations:

Uy — TICR * Wz _ Vy + XICR - Wy

v =) Uy

. . (5.38)

The parameters x;or and « can be obtained through a simple experimental
procedure described in [54]. In this procedure, the authors set v, = —v; to
achieve in-place rotation of the robot around its z axis. The value of z;oR is
then calculated using
[vpdt — [udt
2¢ ’
where ¢ represents the actual angle of rotation. The value of « is obtained
from a straight motion of the robot using

o
“r [updt + [vdt’

where d represents the actual distance travelled by the robot. In this thesis,
we assume that a = 1, and xjor to be provided by the manufacturer of the
used robotic platform, introduced in section [7.2.1. Velocities v; and v, are
then used to set instantaneous angular velocities of each wheel pair using w,
and v, from the local planner.

TICR ~ (5.39)

(5.40)

. 5.8 Planners

The navigation system employs a hybrid approach that combines both global
and local planning strategies. The global planner retrieves an updated global
traversability map in order to determine the shortest path from the robot’s
current pose to a target goal. The robot is represented as a two-dimensional
point that coincides with the top-down projection of the origin of the robot’s
body frame. To prevent collisions, obstacles are inflated by a half of a diagonal
of the robot’s footprint. In addition to providing a path to an unmapped
location, the system also allows for path planning in areas that are initially
unknown. As a result, it is necessary to incorporate a local planner that can
adjust the planned trajectory based on newly-mapped obstacles in order to
ensure collision avoidance.

B 5.8.1 Global planner

The global planning employs the Dijkstra’s algorithm [55] with the worst-case
performance O(|E|+ |V |log |V|) (using a Fibonacci heap min-priority queue),
where |E| is the number of edges and |V| is the number of vertices, in our
case, cells . This algorithm is preferred over greedy algorithms, for example
A*, due to its ability to provide a guaranteed shortest path at the cost of
increased computational complexity in certain situations. The pseudo-code
of the Dijkstra’s algorithm is shown in Algorithm |1}

33

5. Navigation method

Algorithm 1 Dijkstra’s algorithm

Require: map, initialPose, targetPose
1. for each cell ¢ in map: // Initialization

2: if ¢ is not obstacle:

3: distance of ¢ < oo

4: parent of ¢ «+— UNDEFINED

5: add c¢ to Unwvisited set

6: distance of initialPose < 0

7

8: while Unwvisited is not empty do // Main loop
9: d < cell in Unwvisited with minimum distance
10: if d = targetPose

11: S < retrievePath()

12: return S

13: remove d from Unwvisited

14: for each neighbor n of d still in Unwvisited:
15: tmp < distance of d + edge(d, n)

16: if tmp < distance of n:

17: distance of n < tmp

18: parent of n < d

19: end while
20:
21: fn retrievePath():

22: P + empty path

23: d + targetPose

24: if parent of d is DEFINED or d = targetPose:
25: while d is DEFINED:

26: insert d at the beginning of P

27: d < parent of d

B 5.8.2 Local planner

The local planning employed in the navigation scheme utilizes the Dynamic
Window Approach (DWA) [56], which is derived from the motion dynamics
of a robot. The planner accesses an up-to-date local traversability map to
provide information on surrounding obstacles, and a global path, which it
follows. If the global path collides with obstacles in the local traversability
map, the local planner notifies the global planner to re-plan the route.

The planner is restricted to circular trajectories, which are defined by
the translational and rotational velocities of the robot, denoted as v and w,
respectively. Velocity control commands for the robot are searched directly
within a two-dimensional space of v and w. This search space is further
reduced to include only admissible velocities V, that ensure safe trajectories,
meaning that the robot, moving with the given velocities, is able to stop
before reaching the nearest obstacle on the corresponding circular trajectory.
A dynamic window is then applied as a final restriction to the V,, resulting

34

5.8. Planners

in velocities V,. that the robot is able to reach within a short time interval
based on the robot’s maximum acceleration.

A number of N velocity pairs (v;,w;) are sampled from the V., and evaluated
using an objective function [56]

G(vi,w;) = o(a - heading(v;, w;) + B - dist(vi, w;) + v - vel(vi, w;)),

yielding a cost for each curvature. The velocity pair with the highest cost is
then used to control the robot.

The objective function consists of a weighted sum of the results of three
functions. The heading function represents the difference between the heading
of the target goal and the heading of the predicted robot pose. The dist
function represents the distance to the nearest obstacle intersecting the
circular trajectory. The wvelocity function evaluates the progress of the robot
that follows the given trajectory. The weighted sum is smoothed with o
function. A pseudo-code of the DWA planner is provided in Algorithm |2}

Algorithm 2 Dynamic Window Approach

Require: robotPose, targetPose, veyrr, Wewrr, Umazs @maz, Map
1: vy « forwardVelocity(robotPose, Umaz, Wmnaz)
2: V, < DynamicWindow (veyrr, Wewrrs Umazs Wmaz)

3:

4: for each (v;,w;) in V;:

5. d, < distanceToObstacle(v;, w;, Umaz, Pmaz, Map)

6: dp < RobotBreakingDistance(v;)

7. if dy > dp: // Robot stops before reaching an obstacle
8: heading < headingDifference(robotPose, targetPose, v;, w;)
9: dist < (d, - dp) / (trajectoryDistance - dy) // Normalize
10: vel < vy — vy

11: cost < objectiveFunction(heading, dist, vel, o, B, 7)

12: if cost > costmaz

13: Vpest < Uj

14: Whest < Wi

15: COStimar $— cost

16:

17: setRobotVelocity (vpest, Whest)

35

36

Chapter 6

Implementation

This chapter presents a detailed account of the implementation of the navi-
gation method in the form of a ROS project, organized into packages. The
initial section outlines the utilized software. The subsequent section provides
a description of the used robotic platform and the last section delves into the
implementation of each component of the navigation scheme. Apart from
the software mentioned in section the navigation system utilizes existing
ROS packages that implement certain parts of the navigation system and are
referenced in the following sections. The relevant parts of the software are
attached to the thesis and are listed in Appendix D]

. 6.1 Used software

B 6.1.1 Robot Operating System (ROS)

ROS (Robot Operating System) [57] is a flexible framework for building and
managing robotic systems, acting more as a hardware abstraction layer than
an operating system. It provides a set of tools and libraries, referred to as
packages, for developing robot software, including sensor drivers, commu-
nication, visualization, and debugging. ROS employs a publish-subscribe
communication model, in which nodes (executable programs) can publish
messages to a specific topic or subscribe to a topic. Nodes can also send and
receive service requests and responses. This allows nodes to communicate
with one another and exchange data, enabling the creation of complex robotic
behaviors and control systems. Nodes are started by launching a ROS-specific
XML .launch file. We will refer to this type of file as launch file. In addition,
ROS utilizes a multi-variate dictionary known as the Parameter server, which
allows for the runtime storage and retrieval of node parameters.

This thesis utilizes the ROS Noetic distribution, primarily targeted at the
Ubuntu 20.04 release.

B 6.1.2 ROS Visualization (RViz)

Rviz [58] is a 3D visualization tool developed within the ROS framework. It
enables users to visualize data from various sensors, including laser scanners,

37

6. Implementation

IMUs, and cameras, as well as robot models, reference frames, built maps,
and other elements of the robotic system. Rviz also provides functionality for
interacting with and debugging the system, such as the ability to view and
edit parameter settings and display diagnostic information.

B 6.1.3 Gazebo simulator

Gazebo [59] is a widely used 3D robotics simulator for the development and
testing of robotic systems, particularly mobile robots. It allows users to design
and simulate robots in a virtual environment, including their kinematics,
dynamics, and sensor behavior. Gazebo includes a physics engine that can
accurately model the interaction of objects in the simulated environment,
including collisions, friction, and other physical phenomena. The simulator
natively incorporates the Open Dynamics Engine (ODE)!} but it also supports
DARTP, Bullet?, and Simbody [60] engines. The 3D graphics are rendered
with the Ogre? (version 2.1) graphics rendering engine.

Gazebo also includes support for a variety of noise models and sensors, such
as cameras, laser scanners, and IMUs. In most cases, Gaussian noise is used
for the noise models, but custom noise properties can also be specified. Gazebo
communicates with ROS using the gazebo_ros_pkgs® ROS built-in meta-
package, which provides plugins that offer message and service publishers for
interfacing.

For object and scene description, Gazebo uses the Simulation Description
Format (SDF)% exclusively, while the robot description also supports the
Unified Robot Description Format (URDF)".

This thesis utilizes Gazebo version 11.0.0.

B 6.2 Robotic platform

The robot Husky[61] from Clearpath Robotics Inc. serves as the testing
platform for the navigation system. It is a medium-sized, four-wheeled
development robotic platform with large lug-tread tires, making it suitable
for use in rough terrain environments. Detailed specifications can be found
in section [7.2.1l

The ROS packages forming the husky meta-package [62] provide a robot
URDF description, husky_description.urdf.xacro (husky_description
package), velocity control (husky_control package), and simulation tools
(husky_gazebo package). The robot is controlled using the
diff_drive_controller [63], which subscribes to topic /cmd_vel of the mes-
sage type geometry_msgs/Twist, which provides twist velocities (v,w). The

"https://www.ode.org/

“https://dartsim.github.io/
3https://pybullet.org/wordpress/
4https://www.ogre3d.org/
https://github.com/ros-simulation/gazebo_ros_pkgs
Shttp://sdformat.org/

"https://github.com/ros/urdf

38

https://www.ode.org/
https://dartsim.github.io/
https://pybullet.org/wordpress/
https://www.ogre3d.org/
https://github.com/ros-simulation/gazebo_ros_pkgs
http://sdformat.org/
https://github.com/ros/urdf

6.3. Sensors

velocity controller is started from control.launch file, which is included in
spawn_husky.launch file that spawn the robot in Gazebo using gazebo_ros
package [64]. The robot’s body frame is referred to as base_link. Apart
form the base_link frame, other unimportant static frames are located on
the robot, to which sensors are mounted.

. 6.3 Sensors

This section provides only the implementation of the used sensor types.
Specifications of each sensor can be found in section [7.2.2. Figure |6.1| depicts
the ROS sensor topics.

B Laser scanner

In this thesis, lidar is an essential sensor for continuous localization and
mapping part of the navigation system. The simulated lidar model is imple-
mented in the ROS meta-package velodyne_simulator [65] using the generic
gazebo_ros_laser_controller sensor plugin, which employs raytracing to
determine the range for each sampled point. The lidar URDF,
VLP-16.urdf.xacro, is included in the Husky URDF description. The li-
dar scans are published to the /husky_sensors/velodyne_points topic of
the message type sensor_msgs/PointCloud2 with respect to the velodyne
frame.

To incorporate the lidar scans into the navigation system, the scans are
transformed to the base_link frame using the pcl_transformer node located
in the rough_terrain_navigation/husky_transforms package. This node
utilizes the PCL library [66] and the pcl_ros package [67] to transform the
scans. Firstly, the pcl::fromROSMsg() function converts the ROS message to
a PCL point cloud. Then, pcl_ros::transformPointCloud() is applied to trans-
form the point cloud using tf:: TransformListener() to provide a static tranfor-
mation between velodyne and base_link frames. Finally, the transformed
point cloud is converted back to the ROS message using pcl::toROSMsg() and
published. This node is started from the pcl_transformer.launch file.

husky_sensors/imu/data

/gazebo /husky_sensors/gps/fix

/husky_sensors/velodyne_points —)@ransformer

) A
/husky sensors/velodyne points_transformed

Figure 6.1: The sensor part of the navigation system. ROS nodes (ellipses) and
topics (boxes) where inputs are marked in green and outputs in red color.

39

6. Implementation

B MU

The IMU, which is also an essential sensor for the localization part of the
navigation system, is modeled using the hector_gazebo_plugins ROS pack-
age [68], specifically the GazeboRosImu plugin. The sensor implementa-
tion is the part of the Husky URDF. The IMU data is published to the
/husky_sensors/imu/data topic of the message type sensor_msgs/Imu. Al-
though the specified IMU reference frame ,imu_1link, is located in the IMU
mounting on the robot, the Gazebo simulator implicitly samples IMU data
from the base_link with respect to this link, therefore no transformation is
needed.

B GPS

The GPS receiver plays a supportive role in the localization aspect of the
navigation system. It is modeled using the hector_gazebo_plugins, specifi-
cally the GazeboRosGps plugin. The sensor implementation is the part of the
Husky URDF. The GPS data is published to the /husky_sensors/gps/fix
topic of the message type sensor_msgs/NavSatFix and sampled from the
navsat_link frame. The data is transformed to the base_link frame later
in the 6.4.1! section.

B 6.4 Method implementation in ROS

B 6.4.1 LIO-SAM

The LIO-SAM method, described in section [5.3], is implemented in the
lio_sam package [10], [18], which consists of four nodes.

The /1lio_sam_imuPreintegration node subscribes to the
/husky_sensors/imu/data topic to receive IMU measurements, as well as
the /lio_sam/mapping/odometry and
/1lio_sam/mapping/odometry_incremental topics to receive lidar odometry
messages of the navsat_msgs/0dometry type. This node is responsible for
estimating IMU bias, performing graph optimization, and publishing odometry
of the message navsat_msgs/0Odometry type to the /odometry/imu topic.

The /1lio_sam_imageProjection node subscribes to the
/husky_sensors/imu/data,
/husky_sensors/velodyne_points_transformed, and
/odometry/imu_incremental topics to deskew incoming lidar point clouds,
and publishes the resulting data to the /lio_sam/deskew/cloud_info topic
of the 1io_sam/cloud_info message type. Additionally, this node provides
an initial guess for the feature scan-matching process in lidar odometry. The
/lio_sam_FeatureExtraction node subscribes to the deskewed clouds and
performs the extraction of edge and planar features, which are published
to the /lio_sam/feature/clouf_info topic of the lio_sam/cloud_info
message type .

40

6.4. Method implementation in ROS

_Sensor {lio_sam_imuPreintegration
Jhusky_: ;| /lio_sam_imageProjection g

/lio_sam/feature/cloud_info

fodometry/imu

Jodometry/imu_incremental |

lio_sam_FeatureExtraction

Tlio_sam_mapOptimization

fodometry/gps
fodometry/navsat

ilio_sam/deskew/cloud_info |

Nlio_sam/mapping/odometry

lio_ A y_i I.

/husky sensors/gps/fix

Figure 6.2: The odometry part of the navigation system. ROS nodes (ellipses)
and topics (boxes) where inputs are marked in green and outputs in red color.

Finally, the /lio_sam_mapOptimization node subscribes to the extracted
features and to the /odometry/gps topic of the navsat_mags/Odometry
message type, which represents GPS measurements transformed into world
Cartesian coordinates. This node performs feature matching, loop closure, and
main factor graph optimization using the GTSAM library [69] and publishes
the resulting lidar odometry messages to the /1io_sam/mapping/odometry
and /lio_sam/mapping/odometry_incremental topics.

The aforementioned /odometry/imu_incremental and
/lio_sam/mapping/odometry_incremental topics contain unoptimized
odometry estimates that are used to calculate IMU bias, as jumps in the
optimized odometry may disrupt this process.

The messages published to the /odometry/gps topic are provided by the
/navsat node of the navsat_transform_node type from the
robot_localization ROS package [70], which subscribes to GPS measure-
ments in the WGS84 LLA format and transforms them into world Cartesian
coordinates using Equirectangular projection. The ekf_gps node of the
ekf_estimation node type from the robot_localization package is also
integrated into the system and is used in cases where the first GPS measure-
ment is obtained after the robot has moved from its initial position.

All of the aforementioned nodes are launched from the launch file structure
with the root 1io_sam_nav.launch file. The implementation diagram of the
LIO-SAM method is shown in Figure 6.2

B 6.4.2 Probabilistic terrain mapping

The probabilistic terrain mapping method, described in section[5.4, is provided
by the /elevation_mapping node and implemented in the
elevation_mapping ROS package [49].

This node subscribes to the topic /odometry/imu_pose_with_cov, which
provides geometry_msgs/PoseWithCovarianceStamped messages that are
converted from the LIO-SAM odometry navsat_msgs/0Odometry messages us-
ing the /odom_msg_converter node. In addition, the /elevation_mapping
node receives lidar measurements in order to fuse them into a 2.5D elevation

41

6. Implementation

fodometry/imu Jodometry/imu_pose_with_cov |

h 4

/husky_sensors/velodyne_points_transformed _)@_mapplng

Y
Jelevation_mapping/elevation_map

Figure 6.3: The mapping part of the navigation system. ROS nodes (ellipses)
and topics (boxes) where inputs are marked in green and outputs in red color.

map.

The map generation is facilitated by the grid_map ROS package [71], which
provides an implementation of a layered map in the GridMap() class along
with supportive functions for manipulating data in this class.

The resulting elevation map provides an elevation layer, which con-
tains height values assigned to each cell, and is published to the topic
/elevation_mapping/elevation_map of the grid_map_msgs/GridMap mes-
sage type. The aforementioned nodes are launched from the
elevation_mapping.launch and odom_msg_converter.launch files, respec-
tively. The implementation diagram is shown in Figure |6.3.

B 6.4.3 Traversability estimation

The traversability estimation described in section [5.5 is implemented in
the filters_demo node, located in the grid_map/grid_map_demos package
[71] and renamed to traversability_estimation in the navigation system.
It is started from the husky_traversability.launch file. The node sub-
scribes to the /elevation_mapping/elevation_map topic of the message
type grid_map_msgs/GridMap, which provides a local map with an eleva-
tion layer. The traversability estimation is performed using chained filters,
provided mainly by the grid_map/grid_map_filters package [71]. These
filters represent classes that implement certain parts of the traversability
estimation and are fetched by the traversability_estimation node. The
filters are specified in a separate filter_chain_husky.yaml configuration
file located in rough_terrain_navigation/config/. Each filter retrieves
certain layers of the local map and modifies them or adds completely new
layers with calculated data.

|Jelevaliun_mipplng.ielevallon_map | 'gridmap2occmap_converier flucal_map!occupam:y_map|
Itraversability_estimation

Mlocal_map/grid_map_traversability |

Figure 6.4: The diagram of the traversability estimation part of the navigation
system. ROS nodes (ellipses) and topics (boxes) where inputs are marked in
green and outputs in red color.

The map patching, described in section [5.5, is implemented in Median-
filter.cpp, which adds the elevation_medianFill layer to the local map.

42

6.4. Method implementation in ROS

This layer is retrieved by MeanInRadiusFilter.cpp, implementing section 5.5,
which adds the elevation_smooth layer. Then, MathFExpressionfilter.cpp
accesses the elevation_medianFill and elevation_smooth layers to calcu-
late roughness values in the form of the roughness layer, according to the
section [5.5L

Normals to the surface, described in the section [5.5] are calculated from the
elevation layer using NormalVectorsFilter.cpp, resulting in three additional
layers with the prefix normal_vectors_ for each coordinate of a normal vec-
tor. The filter uses the EigenSolver() class from the Eigen library to compute
the eigenvectors. The normal_vectors_z layer is accessed by another Math-
EzxpressionFilter.cpp to calculate the slope using arccos() function, resulting
in the slope layer.

The roughness and the slope layer are retrieved by a third MathEzpres-
ston.cpp, which implements the weight function, according to the section 5.5,
that calculates the traversability. The added traversability layer is then
accessed by ImaginaryObstaclesInRadiusFilter.cpp, which changes map cells
with NaN values within a specified radius around the robot to 0, resulting in
the traversability_with_imag_obstacles layer. Lastly, lower and upper
thresholds, implemented in ThresholdFilter.cpp, are applied to this layer,
providing final traversability values in interval (0.0, 1.0), where 0.0 signifies a
non-traversable cell and 1.0 signifies a completely traversable cell.

The thresholded traversability_with_imag_obstacles layer is then
published to the /local_map/grid_map_traversability topic, to which
the /gridmap2occmap_converter node subscribes and converts the map to
the nav_msgs/OccupancyGrid message type using the
GridMapRosConverter::toOccupancyGrid() function. This function maps the
traversability values to the interval of integer values (0,100), where 0 is
completely traversable and 100 is an obstacle. The NaN values are mapped
to -1. The new map is published to the /local_map/occupancy_map topic.

B 6.4.4 Global traversability map

The theory behind creating the global traversability map, described in section
5.0, is implemented in the map_stitcher node, located in the
rough_terrain_navigation/map_stitcher package. The node is started
from the map_stitcher.launch file. The node subscribes to
/local_map/occupancy_map topic, which provides local traversability maps.
Two consecutive local maps are combined using the combineGrids() func-
tion from the occupancy_grid_utils package [72], resulting in a global
traversability map of the same message type, which is then published to the
topic global_map_stitched/occupancy_map.

In addition, a ROS server is implemented, providing the goallInMap service,
which is used when a new goal for the path planning is set from Mapviz [73].
The client implemented in the move_base plugin in Mapviz sends a request
if the new goal is located within the currect global map. If not, the global
map is resized accordingly and a response is sent to MapViz, which can then
send the new goal to move_base node for path planning.

43

6. Implementation

/local_map/occupancy_map I—)@p_sm@—)l /global_map_stitched/occupancy_map
F

Y
mapviz

Figure 6.5: The diagram of the global map part of the navigation system. ROS
nodes (ellipses) and topics (boxes) where inputs are marked in green and outputs
in red color.

Without this service, the new goal would be sent directly to the move_base
node without taking into account the current size of the global map, which
could result in the goal being located outside of the map, and therefore invalid
for the global planner.

A ROS diagram of the implemented global map creation is shown in Figure
6.5l

B 6.4.5 Path planning

The combination of the global and local planner based on Dijkstra’s algorithm
and DWA (see sections|5.8.1|and [5.8.2)), respectively, utilized by the navigation
system, is implemented in the move_base node from the move_base ROS
package [74]. The node is launched from the move_base.launch file.

This node integrates the nav_core::BaseGlobalPlanner and
nav__core::BaseLocalPlanner interfaces, provided by the nav_core ROS pack-
age [75] to load the navfn::NavFn() class from the navfn ROS package [76]
as the global planner, and the dwa__local_planner::DWA Planner() class from
the dwa_local_planner ROS package [77] as the local planner.

In addition, the move_base node subscribes to the
/local_map/occupancy_map and /global_map_stitched/occupancy_map
topics to obtain global and local traversability maps, which are converted to
costmaps of class costmap_2d::Costmap2DROS() from the costmap_2d ROS
package [78]. These costmaps differentiate between costs:
costmap_ 2d::LETHAL OBSTACLE, costmap_2d::NO_INFORMATION,
and costmap_ 2d::FREE_SPACE, corresponding to values of 100, -1, and
(0,99), respectively, in the occupancy maps.

The costmaps utilize two layers: the costmap 2d::StaticLayer, which rep-
resents the converted occupancy map, and the costmap_2d::InflationLayer,
which represents extracted obstacles inflated arounda certain radius to prevent
collisions. Both planners utilize the inflation layers for path planning.

In addition to the occupancy map topics, the move_base node subscribes
to the /odometry/imu topic to obtain robot pose estimates, which are used
by the local planner to estimate the robot’s velocity. The node also subscribes
to the move_base/goal topic of the move_base_msgs/MoveBaseActionGoal
message type to receive a designated goal in world Cartesian coordinates and
set from MapViz. In most cases, the goal cannot be reached exactly, therefore
the dwa_local_planner has tolerance parameters yaw_goal_tolerance and
xy_goal_tolerance. The move_base node, specifically the local planner,

44

6.5. Launch of the navigation system with simulator

publishes motion commands to the /cmd_vel topic to steer the robot.

In the event that a path to the goal cannot be found, the robot executes a
recovery behavior consisting of two consecutive full in-place turns to remap
the terrain and potentially uncover a route to the goal. A ROS diagram of
the integrated move_base node is shown in Figure |6.6}

| /local_map/occupancy_map

| /global_map_stitiched/occupancy_map

/move_base) | /move_base/goal

Y
|fcmd_\rel I

Figure 6.6: The path planning part of the navigation system. ROS nodes
(ellipses) and topics (boxes) where inputs are marked in green and outputs in
red color.

fodometry/imu

B 6.4.6 Setting goals using offline Google maps

In order to set a goal for the navigation system, specifically the global planner,
the selected approach specifies the goal in WGS84 LLA coordinates, which
can be picked from the exact location on a map of the environment and then
transformed into a global Cartesian frame using equirectangular projection.
To facilitate this process, the navigation system utilizes MapViz, a ROS tool
for data and map visualization.

While several maps are included in MapViz by default, we opted to integrate
offline Google Maps, as they provide more detailed and up-to-date information
about the environment. The Google Maps satellite view is proxied using
MapProxy to provide a Web Map Tile Service (WMTS) using the work of
Daniel Snider [79]. Once this process is completed, the map stays cached and
can be used offline in MapViz.

The goal can then be specified using a modified version of the move_base
plugin, which includes an additional implementation of a ROS client that
communicates with the map_stitcher node. The goal is set through the
move_base_msgs/MoveBaseActionGoal message published to the
move_base/goal topic. In addition to goal setting and visualization, the local
traversability map and the robot’s trajectory are also visualized to provide
a more comprehensive view of the running navigation system. The mapviz
node is launched from the mapviz.launch file.

B 6.5 Launch of the navigation system with simulator

ROS nodes are typically launched from launch files. These launch files may be
nested, which simplifies the process of starting nodes significantly. However,
launching multiple dependent nodes from a single launch file can cause their
improper initialization. This problem can be solved with changes to node
structure, but this reduces the versatility of the nodes. Furthermore, moni-
toring multiple nodes from a single terminal window can become complicated,

45

6. Implementation

especially when node info messages are displayed frequently. Therefore, we
use multiple launch files (depicted in Figure 6.7) launched in separate terminal
windows.

To avoid the tedious process of setting up these windows every time a new
simulation is executed, we use a Terminator [80] layout named
rough_terrain_nav to source the ROS project and launch all launch files
consecutively with a single command:

$ terminator -1 rough_terrain_nav.

This approach works well for small simulated scenes. Large or complex scenes
launched withing bringup.launch file can take several minutes to load, which
can cause depending nodes to be improperly initialized. Therefore launch
files containing complex scenes must be launched separately, rather than from
bringup.launch.

Additionally, we use a simple bash script called env_setup.sh, sourced
from the ROS project’s setup.bash, to set specific parameters throughout
all launch files using environment variables. This allows for quick setup of the
navigation system. The optional Python script teleop_twist_keyboard.py,
included in the layout, provides manual steering for the robot Husky via
\cmd_vel topic, and is used when a robot needs to be repositioned in the
scene between experiments.

Elevation_mapping) @ gnamapzoccmap ‘ough_terrain_nav_rviz)

Figure 6.7: The launch file structure of the ROS project (.launch extesions
are omitted). The blue-colored launch files are launched in separate terminal
windows.

bringup.launch CPU and RAM

monitoring
move

_base.launch

teleop_twist

mapviz.launch
_keyboard.py

Figure 6.8: Overview of the windows that appear after executing the
rough_ terrain_ nav layout.

46

Chapter 7

Experiments

In this chapter, the simulated robotic platform and its sensor suite are de-
scribed (see section , including the discussion of positioning of the sensors,
with a focus on the lidar. Subsequently, configuration of the navigation
system and simulator are presented in sections [7.3| and [7.4.1} respectively.
Prior to the experiments conducted, the process of creating simulation scenes
(described in section is outlined in detail. The experiments conducted,
their results, and evaluations are presented in section Finally, limitations
of the proposed navigation method are addressed at the end of this chapter.

B 7.1 Hardware setup

All experiments were conducted on a laptop PC (Thinkpad T490) equipped
with an Intel Core i5-8265U (8 x 1.60 GHz), Intel UHD Graphics 620, and
40 GB of RAM. The laptop was running the Ubuntu 20.04.5 LTS operating
system.

B 7.2 Simulated experimental platform

In this section, we describe the simulated robotic platform and the specific
sensors used in the navigation method.

B 7.2.1 Robot Husky

The robot Husky, introduced in section is described in the

husky_description.urdf.xacro URDF file with dimensions shown in
However, the base collision boxes in the provided model did not accurately
represent the robot’s shape and therefore were modified to a more accu-
rate representation shown in Figure The specifications of the robot
from [61] that are important for the experiments, excluding dimensions,
are listed in Table For the purposes of simulation, the friction be-
tween a terrain and the robot’s tires were set to 1.0, which simulates a
rubber tire on dry concrete. The value of z;opr, introduced in section [5.7

47

7. Experiments

is derived from the wheel_separation_multiplier parameter, provided in
husky/husky_control package and was determined as zjor = 0.52 m.

990 mm | £70mm
[32in] [26.41n]

| 544 mm | 420mm
I [21.4in]

[&.5in]

390mm
[14.6in]

330mm
[13in]

223 mm y
[8.77 in] & */| 130mm

Figure 7.1: Dimensions of the robot Husky in the side and front view, respectively.
Obtained from [61].

Figure 7.2: A model of Husky robot shown in the simulator with overlaid
collision boxes (orange). Modified collision boxes of the front and rear bumpers
are displayed on the right.

Selected specifications of the robot Husky
Weight (kg) 50
Maximum speed (m- s~!) 1.0
Ground clearance (m) 0.13
Maximum climb grade (°) 45
Maximum travesal grade (°) 30
Track (m) 0.555

Table 7.1: Selected specifications of the robot Husky.

B 7.2.2 Sensor suite

All simulated sensors were designed to match the physical sensor equipment,
compatible with the sensor mountings on the physical robot, and typically
delivered with the robot Husky.

B The Velodyne Puck (VLP-16)

Velodyne Lidar Inc. has become a significant contributor to the field of
LiDAR technologies, offering high-performance product line. The Velodyne
Puck lidar[81] is a suitable choice for use in the following experiments due to
its specifications. The important specifications of this sensor from [8I] are
summarized in Table [7.2l

48

7.2. Simulated experimental platform

The selected specifications of the VLP-16 lidar
Weight (kg) 0.59
Number of channels 16
Measurement range (m) (0.9, 100)
Range accuracy (m) Up to + 0.03
Horizontal field of view (°) 360
Horizontal angular resolution (°) (0.1,0.4)
Vertical field of view (°) (—15.0,15.0)
Vertical angular resolution (°) 2.0
Rotation rate (Hz) (5,20)

Table 7.2: Selected specifications of the Velodyne Puck lidar sensor obtained
from [81].

For performance reasons, the simulation parameters for the sensor were
limited to a rotation rate of 10 Hz and a horizontal angular resolution of 1.8°.
Assuming that the range measurements are Gaussian distributed and the
given range accuracy is guaranteed, the sensor accuracy actually represents a
430 interval. Therefore, the measurement noise was modeled as Gaussian
additive noise with a mean g = 0 m and a standard deviation ¢ = 0.01 m.
The additive noise is internally sampled per each ray.

B The CHR-UM7 Orientation Sensor

The IMU is modeled based on the accessible CHR-UM?7 IMU produced by
CH Robotics company. The specifications of the CHR-UMT7 from[82] are
listed in Table [7.3.

Specifications of the CHR-UM7 IMU
Sampling rate (Hz) 500
Static pitch/roll accuracy (°) +1
Dynamic pitch/roll accuracy (°) | +3
Static yaw accuracy (°) +3
Dynamic yaw accuracy (°) +5
Angle repeatability (°) 0.5
Angular resolution (°) 0.01

Table 7.3: Specifications of the CHR-UMY orientation sensor obtained from [82].

Since the available sensor specifications[82] differentiate between static
and dynamic roll/pitch/yaw accuracy and the robot remains static only
during extensive planning, specifications for dynamic behaviour are preferred.
However, the plugin only specifies noise for the yaw orientation. Following
the same procedure as in the LiDAR modeling, the yaw Gaussian noise was
set with a mean of 4 = 0 rad and a standard deviation of ¢ = 0.029 rad.
The remaining noise parameters in the plugin specify linear acceleration and
angular rate noise, and their derivation would require a detailed analysis of

49

7. Experiments

the physical sensor. Therefore, example values were used instead (see Table

7.4). The simulated sampling rate was set to 500 Hz.

Simulation parameters of the CHR-UM7
Sampling rate (Hz) 500
Linear (z,y, z) acceleration drift (m-s=2) 0.005 | 0.005 | 0.005
Linear (z,v, z) acceleration Gaussian noise o (m-s~2) | 0.005 | 0.005 | 0.005
Angular (z,y,) rate drift (rad-s~1) 0.005 | 0.005 | 0.005
Angular (z,y, z) rate Gaussian noise o (rad-s~ 1) 0.005 | 0.005 | 0.005
Heading drift (rad) 0.005
Heading Gaussian noise o (rad) 0.029
Yaw offset (rad) 0.5m

Table 7.4: The list of the parameters used for the simulation of the CHR-UM?7
IMU.

B The Duro GNSS Receiver

The integration of a GPS receiver helps to reduce larger drift errors, leading
to improved pose estimation. However, the navigation method design opted
for setting target goals in WGS84 coordinates, making the use of this type
of sensor necessary. The Duro GNSS Receiver from Swift Navigation Inc.
is a high-performance military-grade receiver that is known for its ability
to withstand strong vibrations and provide precise positioning, making it
suitable for use in rough terrain. Selected parameters of the Duro GNSS
Receiver, obtained from[83], are listed in Table 7.5

Specifications of the Duro GNSS Receiver
Weight (kg) 0.8
Horizontal position accuracy (CEP 50) (m) | 0.75
Time accuracy (RMS) (ns) 60

Table 7.5: Selected specifications of the Duro GNSS Receiver obtained from [83].

The provided horizontal accuracy is in terms of CEP 50, which is a measure
that indicates the radius of a circle centered on the mean of all measurements,
where 50 % of the measurements fall within the perimeter of the circle.
Since the package models both horizontal and vertical accuracy as additive
Gaussian noise, conversion between CEP 50 and standard deviations o, oy is
necessary. The standard deviations can be isolated from a quantile function
of the Rayleigh distribution that describes the general CEP (for derivation,
see Appendix B). Substitution of the known CEP 50 horizontal accuracy

gives:
0.75

0, =0y = ————m = 0.637 m.

Y /=2In(0.5)

The vertical accuracy can be roughly estimated from the given standard
deviation of time accuracy, oy = 60 ns. Given that GPS satellites use atomic

50

7.3. Navigation system settings

clocks to measure time, ground truth of timestamps included in transmitted
messages is assumed. The time difference between the timestamp and the
current time measured by the receiver is then used for trilateration to estimate
the pose of the receiver. Therefore, the o; multiplied by the speed of light
yields a standard deviation for the vertical accuracy of o, = 18 m. However,
this is a very rough estimate and the actual o, would be much smaller. The
simulated frequency of received GPS messages was set to 40 Hz.

B 7.2.3 Sensor placement

The placement of sensors, particularly lidar, may improve the navigation
system significantly. The position of the lidar sensor affects the density of the
point cloud in front of the robot. The goal is to maximize the data density in
order to create maps covering the entire area in the robot’s frontal proximity.

Three different lidar configurations were tested. In the first configuration
(shown in Figure 7.3a)), the sensor was mounted on 10cm stands above the
robot’s top_plate_link frame. This resulted in a dense circularly symmetric
point cloud (see Figure |[7.3d) in front of the robot, but did not allow for
mapping of terrain behind small obstacles (e.g. small rocks), leading to a
short view range and sparse maps. The second configuration, depicted in
Figure |7.3b| eliminates the drawback of the short view range by mounting the
sensor with 10cm stands on a 5lcm tall arch. However, obtained circularly
symmetric point cloud (see Figure |7.3e) did not map surroundings in the
robot’s proximity. Therefore, the sensor was tilted by —10° (depicted in
Figure [7.3c), resulting in a dense planar-symmetric point cloud shown in
Figure|7.3f. Further increases in the tilt angle resulted in a significant decrease
in performance of the lidar odometry part of the localization method.

It is essential to know the sensor coordinate frames with respect to the
robot’s base_link frame in order to transform and fuse data properly. All
sensor frames, including the robot’s frame, are located in the robot-centered
xz plane. Thus the planar description of their placement relative to the
base_link frame is sufficient to describe relations between them (see Figure
7.4).

B3 Navigation system settings

This section presents key parameter settings for the navigation system that
were applied in all conducted experiments.

The key frame addition thresholds for the LIO-SAM were set to 0.5 m
of translational motion and 0.2 rad of rotational motion of the robot. The
Euclidean distance between the current keyframe and surrounding frames
within that distance was set to 15 m in order to consider them for loop
closure.

Given the chosen placement position of the lidar, the robot-centered square
local elevation map was limited to a size of 10 by 10 m, with a resolution of
0.1 m to adequatly capture terrain details. The elevation map was initialized

o1

7. Experiments

(a) : Lidar mounted on (b) : Lidar mounted on (c) : Lidar mounted on
10cm stands right the 10cm stands on 51lcm tall the arch, and tilted about
top__plate_ link frame. arch. —10°.

(d) : Point cloud, corre- (e) : Point cloud, corre- (f) : Point cloud, corre-

sponding to the configura- sponding to the configura- sponding to the configura-
tion in (a). tion in (b). tion in (c).

Figure 7.3: The lidar placements on the robot Husky (a), (b), (¢) with the
orthographic projections of the corresponding point clouds (d), (e), (f), taken
from the 100m distance.

velodyne = Comg-----mrmmmmeegompos

0.910

..

Figure 7.4: The relations between sensor coordinate frames and robot’s body
frame in the robot-centered xz plane.

52

7.4. Simulation preparation

with a robot-centered 5 by 5 m flat surface to provide an initial costmap
for the planners. Additionally, the prior initialization of the elevation map
prevents the traversability estimation component of the navigation system
from identifying cells within a radius r, = 1.5 m around the robot as obstacles,
which would otherwise be classified as ‘unknown’.

The radius used for patching of the elevation layer in the traversability
estimation was set to r,, = 0.15 m and the radius for smoothing the patch
layer and for calculating normals was set to rs = 0.35 m.

For the DWA local planner’s robot motion model, the maximum acceleration
for translational and rotational velocities, Uy, and Wp,qe, were limited to
2.5 m-s~2 and 3.2 rad - s~2, respectively. The maximum velocity of the robot
was set to 1.0 m - s. The number of samples was constrained to 6 and 20 for
translational and rotational velocities, respectively, resulting in 120 sampled
trajectories. The weights of the objective function were set to: a = 24.0,
8 =0.01, vy = 32.0.

For the local planner, the tolerance of the robot reaching a goal was set to
0.25 m and 0.1 rad.

B 7.4 Simulation preparation

This section focuses on preparations preceding the conducted experiments,
including setting up the physics engine and modeling assets such as terrains
for the simulated scenes. The created scenes, known as 'Gazebo worlds,” are
presented at the end.

B 7.4.1 ODE settings

For the purpose of simulation, the natively supported Open Dynamics Engine
(ODE) was selected due to its compatibility with the used ROS packages. The
ODE offers a range of parameters, including the real_time_update_rate,
which specifies the frequency at which the simulation time steps are advanced.
In this study, the real_time_update_rate parameter was set to 0, indicating
that the simulation runs as fast as possible based on the computing power.
Another relevant parameter is the max_step_size, which specifies the time
step for ODE’s fixed-step solver. The default value in Gazebo is 1 ms, but
this value was found to result in a significant decrease in real-time factor due
to the limited computing power. Therefore, the max_step_size parameter
was set to 1.6 ms to improve the simulation run-time performance and enable
the simulation of the used 500Hz IMU sensor.

B 7.4.2 Assets for the simulated scenes

A simulated scene consists of SDF models that contain two separate 3D
meshes: one for surface rendering, which is typically textured, and the other
for collision detection. These meshes, in general, can be represented in various
formats, such as STL, COLLADA, PLY, and FBX. The SDFormat, however,

53

7. Experiments

only supports the COLLADA and STL formats. Therefore, the COLLADA
format with the .dae extension is used for the created assets. It is worth
noting that the higher the resolution of the collision mesh, the greater the
negative impact on the run-time performance of the simulation. Consequently,
low-resolution meshes that reasonably represent real scenes are preferred.

A special group of SDF models are terrains that represent ground surfaces
in the form of a warped plane mesh. For the simulation, terrains with a 10cm
resolution were created. However, such terrains cannot accurately represent
a real location, which is necessary for navigation using offline Google maps.
To address this, a reasonably accurate terrain that maps the real location
was created from a topographic point cloud. The process of creating such
terrain is described in subsection [7.4.3.

When a terrain is defined, it is populated with objects to give authenticity
to the simulated scene. For this purpose, both publicly availabld'’ and
custom-made meshes were used. The created ROS package, gazebo_worlds,
comprises all generated SDF models, including both publicly available and
custom-made meshes. In addition to the SDF models, the package contains
Gazebo .world files, which form entire scenes, and the corresponding ROS
.launch files, which are used for launching a given .world file through ROS
in Gazebo.

The popular open-source 3D creation suite, Blender[84], was used for
creating the assets, along with the mesh2sdf tool (see Appendix |A), which
allows for the conversion of textured .dae files to SDF models.

B 7.4.3 Process of generating a georeferenced SDF terrain
from a topographic LAZ point cloud

Complex scenes can be assembled using assets created for example in Blender.
However these scenes do not accurately imitate an actual terrain, thence the
built-in offline Google Maps in MapViz cannot be used to set a specific target
goal in the proposed navigation method.

To obtain information about an actual terrain, lidar mapping or photogram-
metry methods [85] could be used. However, creating one’s own mapping of
a terrain is outside the scope of this thesis. Instead, publicly available terrain
data in the form of ready-to-use point cloud was used. One such source of
terrain data is OpenTopography, which provides topographic point clouds of
locations around the world. For the purposes of simulating a ground mobile
robot, dense point clouds are preferred for surface reconstruction because
they result in a detailed mesh. Additionally, the mapped terrain should be
suitable for a wheeled robot to operate in, including roads and 2D manifolds.
After searching through OpenTopography’s database, the only dataset that
met these requirements was the topographic point cloud of Skyline Drive

"https://www.cgtrader.com/free-3d-models/exterior/landscape/
low-poly-forest-nature-set-free-trial
Zhttps://www.cgtrader.com/items/3903752/download-page
3http://models.gazebosim.org/
4https://www.opentopography.org/

o4

https://www.cgtrader.com/free-3d-models/exterior/landscape/low-poly-forest-nature-set-free-trial
https://www.cgtrader.com/free-3d-models/exterior/landscape/low-poly-forest-nature-set-free-trial
https://www.cgtrader.com/items/3903752/download-page
http://models.gazebosim.org/
https://www.opentopography.org/

7.4. Simulation preparation

Road Area, Canon City, Colorado[86]. This dataset maps an area of 0.42
km? with an average point density of 243.29 points/m?, and includes both
asphalt and rough terrain roads.

The point cloud is in the form of a LAZ file, which is a compressed version
of the flexible LAS format. The points, in this case, are encoded in the [p,
Dy, Dz, R, G, B] format, with spatial values given relative to the encoded
local coordinate frame. The following steps of generating georeferenced SDF
terrain from a topographic point cloud are summarized in Figure [7.5.

The dataset processing begins in CloudCompare[87], an open-source soft-
ware for 3D point cloud and mesh processing. The first step is to translate
the point cloud’s local coordinate frame to the origin of CloudCompare’s
coordinate system. This results in smaller coordinate values, which helps
to prevent rounding errors because both CloudCompare and MeshLab[8§],
which is used later in the process, employ the OpenGL library, which does not
handle large coordinate values well. The second step is to use the Segment
tool to select only the desired area of the point cloud, if necessary. This step
is optional. The third step is to pick a "distinct" point [pg,, pa,] in the point
cloud, which will be used for georeferencing the terrain later. In this case,
a point representing a sharp peak of a rock was chosen. Finally, the point
cloud is exported in the colored PLY format.

For the textured surface reconstruction, the open-source software for pro-
cessing and editing 3D triangular meshes MeshLab is used. The first step is to
calculate a normal for each point in the point cloud based on its neighboring
points, serving as a prerequisite for the next step. This is done using tool F'l-
ters — Normals, Curvature and Orientation — Compute Normals
for Point Sets. In this case, 8 nearest neighbors were used. The second step
is to reconstruct the surface using the Screened Poisson algorithm [89] with
Filters — Remeshing, Sitmplification and Reconstruction — Surface
Reconstruction: Screened Poisson. The Reconstruction depth and
Interpolation weight parameters were set to 12 and 4, respectively, to
produce a detailed mesh. The Screened Poisson implementation in MeshLab
uses Neumann boundary conditions [89], which means that the reconstructed
surface will have square boundaries, including the desired reconstructed area.
To remove the unwanted square boundary the Filters — Selection —
Select faces with edge longer than tool is used to crop the surface to the
shape of the point cloud. The reconstruction process may also create isolated
meshes that are not connected to the main mesh, which can be removed using
the Filters — Cleaning and Repairing — Remove isolated pieces
tool. To create a texture for the mesh, the tool Filters — Texture —
Parametrization per Triangle is used. In this case, the texture was
initialized to 16384x16384 pixels. The color information from the point cloud
is then transferred to the texture using the Filters — Texture — Transfer
Vertex Attributes to Texture tool. Finally, the reconstructed mesh is
exported as an OBJ file along with a PNG texture file and an MTL file that
provides the texture definition to the surface object.

The model was georeferenced using boundary GPS coordinates laty, laty,

55

7. Experiments

LAZ

WGS84 aligned and
colored .laz point
cloud

CloudCompare
ransia’s ine poirs Crop the point cloud Pick coordinates of Export the colored
clouds Jocal 1o get the desired distinct point { tcloud as a pl
coordinate frame to o get the desire: a distinct point for point cloud as a .ply
. area later geareferencing file
the origin

MeshLab

Create a mesh with Initialize a texture Transfer vertex Export the mesh as
Compute normals Clean the created
. the Screened parametrized per attributes to the an .obj file with .mtl
for the point cloud . mesh -
Poisson algorithm triangle texture and .png texture

linear_interpolation.py +
Google Earth

nterpolate Doyndaw Estimate altitude of Align the_ mesh Translate the Export as a textured
WGSE4 coordinates . . frame with the . . -

at the distinet point the distinct pointin Gazebo WGS84 distinct point to the COLLADA file

(latitude, longitude) Google Earth coordinaie frame origin (.dae + png)

GIMP mesh2sdf
Edit brightness and
contrast of the .png Create SDF model
texture

Figure 7.5: The process of generating an SDF terrain from a LAZ topographic
point cloud.

Blender

long, lony that define the mapped area and were provided with the dataset.
The latitude and longitude of the "distinct" point pju, pron Were calculated
by interpolating the boundary GPS coordinates using linear interpolation,
given by the formulas:

Plat = laty + (pdy _pyo)Mv Pion = long + (pdx _pxo)Mv

Py1 — Dyo Pz — Pxg
where py,, Py, Pzys Pz are coordinates given in the local coordinate frame
of the dataset, corresponding to the latg, laty, long, lony boundary GPS
coordinates. The altitude of the "distinct" point was then estimated in Google
Earth[90] using the calculated horizontal coordinates pjqt, Pion-

The next step is to create an asset from the OBJ model in Blender. Firstly,
the imported mesh is aligned with the Gazebo WGS84 coordinate frame.
This means that the positive direction of x-axis in Gazebo corresponds to
positive direction of latitude and the positive direction of y-axis in Gazebo
corresponds to negative direction of longitude. Secondly, the “distinct” point
on the aligned mesh is translated to the origin in Blender, so that when it
is later imported into Gazebo, the “distinct” point will be identical to the
origin. Lastly, the mesh is exported as a textured COLLADA file, which is
suitable for generating an SDF model.

The texture created using MeshLab has dimmer colors than the topographic
point cloud. Therefore, the texture is imported into the open-source image
editor GIMP [91] in order to increase its brightness and contrast. However,

56

7.5. Performed experiments

lono

=

~E--
N S
KN

<

(a) : The range of
the Skyline Drive Road
Area dataset (red) and (b) : The linear interpolation of GPS boundaries lato, lat1,
given GPS boundaries long, lony to calculate the GPS coordinates piat, pion Of
(blue). Obtained from a "distinct" point [pa,, pa,] given in the local coordinate
[86]. frame of the Skyline Drive Road Area dataset.

Figure 7.6: The provided GPS boundaries of the Skyline Drive Road Area
dataset (a) and the linear interpolation of the GPS boundaries to calculate the
GPS coordinates of the "distinct" point.

this step does not affect the results of the experiments.

The final step is to use the mesh2sdf tool (see Appendix |A]) to create an
SDF model. Once this step is completed, the asset is ready to be used when
composing a scene.

B 7.5 Performed experiments

This chapter presents the experiments that were conducted. In order to
provide a more thorough understanding of the performance of the proposed
navigation method, a video summarizing all of the experiments was created
and can be accessed through the link provided in Appendix [Cl

B 7.5.1 Traversability estimation reflecting robot specifications

The aim of this experiment was to determine appropriate values for the
Smaz and Ty parameters of the traversability estimation function so that
the resulting traversability value reflects the robot’s specifications, namely
maximum climb grade, maximum traversal grade, and the height of the front
bumper (as described in section [7.2.1). Since the maximum traversal grade
value of 30 degrees is smaller than the maximum climb grade, we limit the
maximum climb grade to this value. According to the robot dimensions, the
front bumper is located in height of 22 cm above the ground, meaning that
the robot would be able to safely traverse a height difference of up to 20 cm.
However, taking into account terrain imperfections, the maximum traversable
height difference was limited to 15 cm.

The procedure of estimating ideal values of s;,4; and 7,4, is straightforward.
Given a map resolution of 10 cm, the two-dimensional space of $,,4, and
Tmaz 18 €venly sampled, resulting in 24 combinations. Each combination

o7

7. Experiments

(Smagz;» "maz;) 1s tested in a simulation in which the traversability estimation
component of the navigation system assesses the traversability of terrain in
the form of ramps and kerbs. A combination (Smagz,, "maz;) that meets the
requirements for maximum obstacle height difference and maximum traversal
grade will be selected for the following experiments.

Bl Scene

For this experiment, we have utilized two scenes. The first scene named
platform_playground.world represents a flat surface measuring 20x20 m
with obstacles in the form of concrete barriers surrounding the area. In
addition, the scene contains platforms of heights 0.05, 0.1, 0.15, and 0.2 m,
simulating kerbs commonly found in urban environments (shown in Figure

7.7).

Figure 7.7: The platform_ playground.world scene.

The second scene, ramp_playground.world, represents a flat surface mea-
suring 100x20 m that is fenced with concrete barriers. It contains two sets of
ramps with an elevation angle ranging from 10 to 45 ° in increments of 5 °
(depicted in Figure |7.8). Additional assets in the form of poles were added to
the scene to provide more of detectable features for the lidar odometry.

Figure 7.8: The ramp_ playground.world scene.

o8

7.5. Performed experiments

B Results and evaluation

All combinations resulting from a Cartesian product of sets
S ={0.1,0.2,0.3,0.4,0.5,0.6} 3 Syaq, [rad],

R = {5,10,15,20} 3 ryeqe, [cm]

were tested in both scenes with results depicted in Figure|7.9. The traversabil-
ity weight function classified 15cm kerb and 30° ramp as non-traversable
using orange-colored combinations. However, these combinations can be used
in more restrictive traversability assessments. Using the green-colored combi-
nations, the weight function evaluated all kerbs and ramps up to 15 cm and
30 °, respectively, as traversable. When using the red-colored combinations,
the non-traversable obstacles were classified as traversable, therefore cannot
be used. From the two graphs, we obtained 3 suitable candidates by taking
the overlapping green combinations and chose to use the average of these
values, i. €. Syaz = 0.3 rad and 7,4, = 0.15 m, for further experiments.

Traversability of the 15 cm kerb depending Traversability of the 30 ° ramp depending
on Smax and Imax on sSmax and Imax

20]] L] L] 204]) L] .

£ 154 L]] L] L] € 151]] L] L]
S S
> >

g 10 4]] . ° g 10 4]] . °
o o

54] . L] 54] ° L]

0.‘1 0:2 O.‘3 0.‘4 0.‘5 0:6 0.‘1 0:2 O.‘3 0.‘4 0.‘5 0:6

Smax [rad] Smax [rad]

Figure 7.9: The traversability of a 15cm kerb and a 30° ramp that represent
maximum allowed height difference and slope, reflecting robot specifications.
Depending on a combination of values assessed to parameters s,,q, and 7paq, the
traversability weight function evaluated the kerb and ramp as non-traversable
(orange), traversable (green), traversable, but the kerbs and ramps above the
maximum allowed height difference and slope also appeared traversable (red).

Figure [7.10| depicts the grayscale traversability maps of kerbs and ramps,
respectively, where black indicates completely non-traversable cells. These
figures also show the local costmap from move_base, in which pink cells
represent obstacles, blue represents an inflation around them.

When the robot traversed 30 © and 25 ° ramps, it experienced significant
slippage despite the high simulated friction between its tires and the surface,
likely due to simulation inaccuracies. The effect of adding imaginary obstacles
in the traversability estimation component of the navigation system can be
seen in Figure [7.11, where the robot traversed a 20 ° ramp and got near the
edge of the ramp. The unmapped cells in the defined radius around the robot
were changed to non-traversable, i. e. obstacles, to prevent the robot from
potential fall during navigation.

99

7. Experiments

Figure 7.10: The traversability of a 5, 10, 15, and 20cm kerbs (top), and 20, 25,
30, and 35 ° ramps (bottom), respectively, using (Smaz, "maz) = (0.3,0.15) [rad,
m]]. The scene is overlaid with the grayscale traversability map, where black
indicates non-traversable cells, along with the local costmap from move_ base
showing obstacles (pink), corresponding to the non-traversable cells, with an
inflation around them (blue).

Figure 7.11: The robot traversing a 20° ramp. Imaginary obstacles (pink) were
added to the map (right side of the ramp), when the robot got near the edge of
the ramp, to prevent it from potential fall during navigation.

60

7.5. Performed experiments

B 7.5.2 Navigating from an enclosed area

The purpose of this experiment was to evaluate the capability of the navigation
system to determine that a designated goal location is unreachable. The
robot was required to map the environment and continuously replan its path
to the goal, while also avoiding collisions with obstacles, based on the terrain
conditions. If the global planner is unable to find a path to the goal, the robot
is expected to execute a recovery behavior in order to remap its surroundings
and identify any potential changes in the environment that might allow for a
route to the specified location.

Bl Scene

For the purpose of this experiment, the scene empty_playground.world
represents a flat surface measuring 20x20 m with obstacles in the form of
concrete barriers surrounding the area (see Figure|7.12). Additional assets
in the form of poles were added to the scene to provide more of detectable
features for the lidar odometry.

Figure 7.12: The empty_ playground.world scene.

B Results and evaluation

The robot started at global coordinates (x,y) = (10,11) m. The designated
goal was set outside the enclosed area. During the navigation process, the
robot mapped the entire enclosed area until the global planner could not
find a path to the goal, while avoiding present obstacles. Upon executing
the recovery behavior, no changes in the environment were observed, and
the navigation to the goal was aborted by move_base. The entire run took 5
minutes and 32 seconds, with an average real-time performance of 0.27x.

Figure [7.13] illustrates the global and local traversability maps, the cor-
responding move_base costmaps, the robot, and the current global plan at
various time stamps. It can be observed that the global map is slightly
rotated in relation to the scene, a result of the map optimization process of
the LIO-SAM. Figure |[7.14] offers a comparison of the ground truth and the
LIO-SAM positions for reference.

61

7. Experiments

(@) : t=45s (b): t=116s

(c): t=216s (d): t=332s

Figure 7.13: The process of navigation attempting to navigate from an enclosed
area. The pictures taken at various time stamps show the goal, indicated by the
red arrow, the current global path in purple, the trajectory from LIO-SAM in
light blue, the grayscale traversability map, where black indicates non-traversable
cells, along with the local costmap from move_ base showing obstacles (pink),
corresponding to the non-traversable cells, with an inflation around them (blue).

Position of the robot during navigation
2 from the enclosed area

~—— UO-SAM
17.5 4 — Ground truth

15
125

10

y [m]

7.5

Figure 7.14: Comparison of the ground truth positions (red) and the estimated
poses of the robot by the LIO-SAM (yellow) during navigation from the enclosed
area.

62

7.5. Performed experiments

B 7.5.3 Navigating through a complex environment

The aim of this experiment was to evaluate the capability of the navigation
system to navigate safely to a predetermined destination through a complex
and uneven terrain with potentially hazardous situations for the robot, such
as falling into a trench or sliding down a hill. Additionally, navigation with
the same starting point and destination was repeated in order to determine
the success rate of the navigation method.

Il Scene

This experiment utilizes the forest_terrain.world scene that represents
an uneven terrain of a forest environment, measuring 40x40 m, with various
types of trees, bushes, stumps, and rocks. A bridged trench is also present
along with an uphill zigzag road leading to the hilltop (visualized in Figure
7.15)).

The elevation of the ground surface is illustrated in Figure [7.16. The
traversability map of the entire terrain, also depicted in the Figure [7.16|
which was generated offline using the traversability estimation component
of the navigation system, displays the yellow flat surface and the green
traversable road, which the robot should be able to follow when navigating
to the hilltop.

Figure 7.15: The forest_ terrain.world scene.

B Results and evaluation

The robot’s starting position was at global coordinates (zs,ys) = (4.5,4.5) m
and the designated goal was set to (x4,yy) = (38,38) m. Initially, the robot
navigated directly towards the goal until it encountered a non-traversable hill.
In response, the robot turned right and began exploring the rightmost area of
the map, as it was determined to be the shortest path to the goal. Hovewer,
after mapping this area, the path was revised and the robot was directed to
take the uphill road, which it followed to reach the goal. The ground truth
and the estimated positions provided by the LIO-SAM was almost identical

63

7. Experiments

forest_terrain.world - height map forest_terrain.world - traversability
40 8.2 40 v

35 5.77
333
0.89

-1.56

z[m]

[m

~

o
traversability

5
LN

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
x [m]

x[m]

Figure 7.16: The height and the traversability maps of the ground surface of
the forest_ terrain.world, respectively. The pink areas in the traversability map
represent non-traversable cells.

(shown in Figure , indicating that there were no deformations of the
global map relative to the scene. Figure presents a topographic view of
the scene with the overlaid global traversability map and the estimated robot
poses. In addition, Figure shows the global costmap from move_base.

Position of the robot Husky during navigation
in the forest_terrain.world scene

40

~—— UO-SAM
35 1 — Ground truth

0 5 10 15 20 25 30 35 40
x [m]

Figure 7.17: The comparison of the ground truth positions (red) and the
estimated poses of the robot by the LIO-SAM (yellow) during navigation through
the forest_ terrain.world.

To evaluate the success rate of the navigation method, this experiment
was repeated nine more times. Figure illustrates the ground truth poses
of the robot in all ten runs of the navigation method, during which the 274
and the 6" runs ended midway through the route. The average simulation
runtime of the successful navigation runs was approximately 27 minutes, with
an average real-time performance 0.25x.

As can be seen in the Figure the robot struggled on the right hillside
at the beginning of the uphill road due to the increasing slope of the terrain,
which had initially appeared traversable. However, as the robot further

64

7.5. Performed experiments

Position of the robot Husky during navigation Position of the robot Husky during navigation
in the forest_terrain.world scene in the forest_terrain.world scene
40

10 10

inflation

o
@
traversability
e
I
traversability

obstacle

0.0

20
x [m] x[m]

(a) : The global traversability map. (b) : The global costmap from move__base.

Figure 7.18: The topographic view of the forest_ terrain.world scene overlaid
with the global traversability map and the estimated robot poses (left), the
added global costmap from move__base (right).

Ground truth trajectories of the robot Husky during the

repeated navigation in the forest_terrain.world scene 10

°
&
traversability

0.0

10 15 20 25
x[m]

— mnl — un3 — 5 ——run7 —— run9

— rn2 — run4 — run6 — run8 —— runlo0

Figure 7.19: The ground truth estimated poses of the robot in ten conducted
runs. The background represents the topographic view of the scene overlaid with
the offline calculated traversability map of the ground surface. The top zoom
shows the goal with the 0.25m tolerance radius (white) and positions, where the
navigation runs ended up. The bottom zoom vizualize the hillside with locations
(crosses), where the navigation method failed.

65

7. Experiments

mapped the area towards the hillside, it became surrounded non-traversable
terrain on three sides. As a result, the global path was replanned in a way
that made in difficult for the local planner to turn the robot in place on the
steep hill. This caused the local planner to fail to produce a trajectory in the
27¢ run, causing the robot to stop moving.

During the 6! run, the robot took a slightly different path, which led it
to pass the area where the 2"¢ run had failed. However, the later estimated
terrain traversability caused the global planner to plan a path towards the
hillside. The robot successfully turned in place on the steep hill, but on
the way back the robot slided towards the road, causing the LIO-SAM to
incorrectly register lidar scans and the odometry to fail.

At the end of the eight successful runs, odometry began to slowly deviate
in half of the runs as the number of detected features decreased as the robot
approached the edge of the scene. This resulted in an inconsistent global
map, in which the planners were still able to navigate to the goal, which
deviated from the designated location in the scene. This odometry deviation
was solely due to the limited size of the scene.

This experiment posed rather an extreme test of the proposed navigation
method. In a real application, where an estimate of a traversable route
is available, a series of waypoints leading to the designated goal would be
provided to the navigation system, rather than simply the goal itself. This
would prevent unnecessary exploration of the environment (as shown in Figure
7.19)).

B 7.5.4 Navigating through a reconstructed real environment

The purpose of this experiment was to evaluate the capability of the navigation
method to navigate through an environment that closely resembles real terrain.
Additionally, the designated goal was set in WGS84 LLA coordinates using
MapViz.

Bl Scene

For the purpose of this experiment, we utilized the
skyline_drive_road.world scene. The scene, measuring approximately
300x60 m, is a detailed replica of part of the Skyline Drive Area, Canon City,
Colorado, shown in Figure |7.20al The terrain was derived from a topographic
point cloud [86], publicly available from OpenTopography?l The process used
to create the scene is described in a subsection [7.4.3l The resulting terrain is
shown in Figure [7.20b.

The height map of the terrain is illustrated in Figure|7.21, The traversability
map of the entire terrain, depicted in the Figure [7.22, was generated with the
same procedure as in the previous experiment. The traversability map shows
a yellow-green traversable road that leads across the entire scene, which the
robot should follow.

Shttps://portal.opentopography.org/dataspace/dataset?opentopoID=0TDS.
062021.32613.1

66

https://portal.opentopography.org/dataspace/dataset?opentopoID=OTDS.062021.32613.1
https://portal.opentopography.org/dataspace/dataset?opentopoID=OTDS.062021.32613.1

7.5. Performed experiments

(a) : The reconstructed

area shown in Google maps
[92]. (b) : The skyline_ drive_road.world scene.

Figure 7.20: The area of interest (a) and the reconstructed terrain (b) of the
Skyline Drive Road area.

skyline_drive_road.world - heigh map 1786.35
1780.77

55.7

1775.18
464

1769.59
— 371
E

1764.00

z[m]

=279
1758.41

1752.82

1747.23

0.0 371 743 114 148.6 185.7 28 260.0 297.1 1741.64
x[m]

Figure 7.21: Height map of the skyline drive_road.world scene.

skyline_drive_road.world - traversability

EY 74.3 1ul4 148.6 185.7 22258 260 297.1
x[m]

Figure 7.22: Traversability map of the skyline_ drive_road.world scene. The
pink areas in the traversability map represent non-traversable cells.

B Results and evaluation

The robot’s starting position was at global coordinates (xs,ys) = (27,32)
m and the designated goal was set to (lat,lon) = (38.46419, —105.25164),
corresponding to the global cartesian coordinates (z4,y,) = (275, 31) m.

However, after the navigation system was launched, odometry provided
by the LIO-SAM failed immediately due to the small ammount of detected
features in the environment. Therefore, additional assets in the form of
the telegraphic poles were added to the scene along the road to provide
detectable features. Despite these efforts, the LIO-SAM’s odometry still
failed to accurately match detected features.

As a solution, the odometry provided by the LIO-SAM was replaced with
ground truth poses of the robot for the purpose of simulating an incomplete
navigation system. This ultimately resulted in a successful navigation to
the designated goal, which took approximately 42 minutes of the simulation

67

7. Experiments

time with an average real-time performance of 0.25x. Figure [7.23| show a
topographic view of the scene with the overlaid global traversability map
and the ground truth robot poses. In addition, Figure [7.24) shows the global
costmap from move_base.

Position of the robot Husky during navigation in the skyline_drive_road.world scene

10
57.2415

41.7013

38.161
E
> 28.6208

19.0805

954026

o 00

38.161 114.483 152.644 190.805 228.966 267.127
x[m]

Figure 7.23: Topographic view of the skyline_ drive_ road.world scene overlaid
with the global traversability map and the ground truth robot poses (red).

10
058
8
00

Figure 7.24: Topographic view of the skyline drive_road.world scene overlaid
with the global traversability map, the ground truth robot poses (red), and with
the global costmap from move_ base.

Position of the robot Husky during navigation in the skyline_drive_road.world scene

57.2415

47.7013

38.161

bility
inflati

£

s

28.6208

r

19.0805

o

o 38.161 114.483 152.644 190.805 228.966 267.127
x[m]

B 7.6 Limitations of the proposed method

B 7.6.1 Expected limitations

The first limitation of the navigation method arises from the selected map 2.5D
representation, which is not capable of mapping multi-level environments.
In an attempt of mapping multi-level environment, the global map gets
overwritten with the robot mapping a new level. This could lead to misleading
the global planner in cases when a newly-mapped level’s traversable area
connects the traversable areas of the global map, which is being overwritten,
resulting in invalid global paths. However, this limitation was not confirmed
by an experiment.

Another limitation related to mapping is the lack of optimization of the
global map created from stitching together local traversability maps, which
can result in inconsistency with the internal map of the LIO-SAM when a
significant graph optimization is performed. However, this limitation was
not fully confirmed in simulation due to the limited size of the scenes, which
did not allow for major factor graph adjustments. A minor impact of the
graph optimization on the global map inconsistencies was observed at the

68

7.6. Limitations of the proposed method

beginning of experiment [7.5.2] where the internal map of the LIO-SAM was
slighty rotated after first seconds of running the navigation system.

Additionaly, the navigation method is incapable of operating in dynamic
environments due to the selected odometry method. The LIO-SAM matches
extracted features from consecutive lidar scans and features extracted from
dynamic obstacles will likely break the odometry [28]. Therefore, the proposed
method is limited to static environments only.

Finally, the method was expected to run with a low real-time performance
due to extensive and frequent memory allocation in the process of traversability
estimation and the incorporation of incoming local traversability maps into
the global map. This limitation was confirmed in navigation through a
complex environment |7.5.3, where the method ran with an average real-time
performance of 0.25x.

B 7.6.2 Observed limitations

When exploring possible placements of the lidar sensor, described in section
7.2.3), tilting the sensor more than —15 ° around its y axis shown a significant
impair in the accuracy of odometry provided by the LIO-SAM. This was due
to the smaller ammount of points in lidar scans, concentrated almost only in
the near proximity in front of the robot, therefore decreasing the number of
detectable features during the process of feature extraction.

The effect of insuficient ammount of features was observed in experiment
7.5.4, where the detected features were matched incorrectly, resulting in
incorrect localization of the robot.

In experiment [7.5.3, it was observed that the DWA local planner struggled
to find a valid trajectory when the robot was suddenly surrounded on three
sides by non-traversable areas and had to move backwards. This resulted in
a ‘no-path-found’ scenario and the navigation was terminated.

69

70

Chapter 8

Future work

The next phase will focus on optimizing the proposed method in terms of
simplicity and memory efficiency.

Currently, the implementation of the traversability estimation involves a
pipeline of mathematical operations, each of which requires its own data layer.
Some of these operations can be combined, for example in the calculation
of terrain slope, which involves calculating the normal to the surface and
subsequent calculation of the slope of that vector. Additionally, certain
computations evaluating the mathematical expressions can be parallelized,
resulting in a shorter processing time for a single elevaion map.

The implemented global map update allocates a new empty map with a
new local map, and is overwritten with the current global and the local map,
resulting in an updated global map. To reduce the extensive memory alloca-
tion and data copying, a new empty map could be allocated less frequently
and expanded in the direction of the moving robot to the extent that multiple
consecutive local maps will fit within its area. This would allow for direct
overwriting of the global map with incoming local maps and a decrease in
memory allocation, leading to increase in real-time performance.

A major modification to the proposed method could involve integrating a
more advanced version of the LIO-SAM. Improving the odometry, specifically
the lidar odometry factor, could be achieved by incorporating the TA-LIO-
SAM method, which utilizes intensity and ambient values of lidar scans to
provide more stable features for scan matching. Another possibility that
extends the current method to dynamic environments is to use the LIO-CSI
method, which performs semantic-based feature extraction and loop-closure,
filtering out dynamic objects in the data, therefore providing more robust
map-based localization.

Additionally, it is necessary to verify the capabilities and limitations of the
proposed navigation method using a real robotic platform, such as the Husky
lab robot. However, it should be noted that the current laboratory equipment
runs ROS2, which would require the implementation of the proposed method
to be migrated to this version of ROS.

71

72

Chapter 9

Conclusions

In order to navigate a robot through a rough terrain environment, the robot
needs to be able to map its surroundings and localize within the mapped
environment, using its sensor suite.

For this purpose, various sensors commonly used in mobile robotics were
evaluated for their suitability in navigation, resulting in the selection of lidar
as the primary sensor. Subsequently, lidar-based Simultaneous Localization
and Mapping (SLAM) techniques, with a focus on graph-based methods, and
map representations, suitable for the specified task, were reviewed.

The proposed navigation method integrates the Lidar-Inertial Odometry
via Smoothing and Mapping (LIO-SAM) method to estimate the robot’s
pose using an Inertial Measurement Unit (IMU) and a Global Positioning
System (GPS) receiver in addition to lidar. The navigation method utilizes a
probabilistic mapping approach that incorporates pose estimates and raw lidar
measurements, resulting in a 2.5D robot-centric elevation map. A geometric-
based approach that uses a weighted sum of the slope and roughness of the
terrain, is applied to the elevation map to classify the local terrain as either
traversable or non-traversable (obstacles). The global map is created by
merging consecutive local traversability maps. The path planning component
of the navigation system combines a global and local planner. The global
planner, based on Dijkstra’s algorithm, receives a designated goal in GPS
coordinates, set through a user interface that incorporates offline maps, and
generates a suitable path in the global map, while the local planner, using the
Dynamic Window Approach (DWA), plans on the local traversability map,
smooths the global path, informs the global planner to replan the route in
the event of collision of the current global path with obstacles, and produces
velocity control commands for the robot in the form of instantaneous twist
velocities.

The proposed navigation system was implemented as a ROS project that
integrates various pre-existing packages to address specific aspects of the
navigation method. In order to test the system, assets were created and
assembled into scenes in Gazebo simulator. Furthermore, the utilized sensors
were modeled after actual products and the placement of the lidar was
considered to provide optimal coverage of the terrain in front of the robot.

In the first conducted experiment, an optimal combination of parameters in

73

9. Conclusions

the traversability estimation weight function was identified by evaluating the
traversability of a ramp and kerb that represented the maximum traversable
slope and height difference for the robot. Subsequently, navigation from an
enclosed area demonstrated the behavior of the method, where the robot
executed a recovery behavior after exploring the entire area and failing to
find a valid path. Further experiments were conducted in a forest terrain
and on a straight trail based on an actual location, and the method was
found to be quite effective in estimating traversable terrain and generating
corresponding routes. In the final experiment, the robot’s pose estimation
failed due to incorrectly matched features in lidar odometry. In order to test
the remaining parts of the navigation system, the LIO-SAM was replaced
with ground truth poses.

In conclusion, the proposed method addresses the navigation problem in
an unknown environment by planning safe paths according to the estimated
traversability of the mapped terrain and the designated goal, and generating
appropriate control commands to guide the robot along the planned route to
the destination. However, the method is limited to single-level environments
due to the chosen map representation and is coinstrained to static environ-
ments by the selected odometry approach. Furthermore, the success rate
of the method strongly depends on the environment in terms of number of
detectable features for lidar odometry and occurrence of narrow dead ends,
which lead to local planner failures.

The further steps will focus on optimizing the real-time performance,
alternative methods of feature extraction in lidar odometry, and confirmation
of the capabilities and limitations of the proposed navigation method on a
real robotic system.

74

1]

Bibliography

N. Nourani-Vatani, J. Roberts and M. V. Srinivasan, "Practical vi-
sual odometry for car-like vehicles," 2009 IEEE International Con-
ference on Robotics and Automation, 2009, pp. 3551-3557, doi:
10.1109/ROBOT.2009.5152403.

O. Maklouf, A. Adwaib, "Performance evaluation of GPS INS main integra-
tion approach," World Academy of Science, Engineering and Technology,
International Journal of Mechanical, Aerospace, Industrial, Mechatronic
and Manufacturing Engineering, 2014, vol. 8, no. 2, pp. 476484, doi:
10.5281/zenodo.1092603.

T. Yang, Y. Li, C. Zhao, D. Yao, G. Chen, L. Sun, T. Krajnik, and
Z. Yan, “3D ToF LiDAR in Mobile Robotics: A Review,” ArXiv, vol.
abs/2202.11025, 2022, doi: 10.48550/ARXIV.2202.11025.

R. Mazl, 'Lokalizace pro autonomni systémy," Ph.D. disserta-
tion, Czech Technical University in Prague, 2007. [Online]. Avail-
able: https://www.yumpu.com/xx/document/view/28149323/
lokalizace-pro—autonomni-systemy

M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review
of visual odometry: Types, approaches, challenges, and applications,”
SpringerPlus, vol. 5, no. 1, 2016.

A. El-Rabbany, Introduction to GPS: The global positioning system.
Boston, MA: Artech House, 2006.

B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin:
Springer, 2016.

F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Foun-
dations and Trends in Robotics, vol. 6, no. 1-2, pp. 1-139, 2017, doi:
10.1561/2300000043.

Yang J., Li Y., Cao L., Jiang Y., Sun L., Xie Q, "A Survey of SLAM
Research based on LiDAR Sensors," International Journal of Sensors,
2019, vo. 1, no. 1, pp. 1003.

75

https://www.yumpu.com/xx/document/view/28149323/lokalizace-pro-autonomni-systemy
https://www.yumpu.com/xx/document/view/28149323/lokalizace-pro-autonomni-systemy

9. Conclusions

[10] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti and D. Rus,
"LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smooth-
ing and Mapping," 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2020, pp. 5135-5142, doi:
10.1109/TROS45743.2020.9341176.

[11] C. Debeunne and D. Vivet, “A review of visual-lidar fusion based simul-
taneous localization and mapping,” Sensors, vol. 20, no. 7, p. 2068, 2020,
doi: 10.3390/s20072068.

[12] J. Zhang and S. Singh, “Loam: Lidar Odometry and map-
ping in real-time,” Robotics: Science and Systems X, 2014, doi:
10.15607 /rss.2014.x.007.

[13] K. Chen, K. Zhan, F. Pang, X. Yang, and D. Zhang, “R-LIO: Rotating
lidar inertial odometry and mapping,” Sustainability, vol. 14, no. 17, p.
10833, 2022, doi: 10.3390/sul41710833.

[14] Q. Tong, C. Shaozu. 2019. A-LOAM, [Source code]. Available: https:
//github.com/HKUST-Aerial-Robotics/A-LOAM

[15] K. Giseop. 2021. SC-A-LOAM, [Source code]. Available: https://
github.com/gisbi-kim/SC-A-LOAM

[16] G. Kim and A. Kim, "Scan Context: Egocentric Spatial Descriptor
for Place Recognition Within 3D Point Cloud Map," 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018,
pp. 4802-4809, doi: 10.1109/IR0OS.2018.8593953.

[17] H. Wang, C. Wang, C. -L. Chen and L. Xie, "F-LOAM : Fast Li-
DAR Odometry and Mapping," 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021, pp. 4390-4396, doi:
10.1109/TROS51168.2021.9636655.

[18] T. Shan and B. Englot, "LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain," 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 4758-4765, doi: 10.1109/TR0OS.2018.8594299.

[19] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard and F. Del-
laert, "iISAM2: Incremental smoothing and mapping with fluid relin-
earization and incremental variable reordering," 2011 IEEE Interna-
tional Conference on Robotics and Automation, 2011, pp. 3281-3288,
doi: 10.1109/ICRA.2011.5979641.

[20] D. Faconti. 2018. LeGO-LOAM-BOR, [Source code]. Available: https:
//github.com/facontidavide/LeGO-LOAM-BOR

[21] K. Giseop. 2020. SC-LeGO-LOAM, [Source code]. Available: https:
//github.com/irapkaist/SC-LeGO-LOAM

76

https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/gisbi-kim/SC-A-LOAM
https://github.com/gisbi-kim/SC-A-LOAM
https://github.com/facontidavide/LeGO-LOAM-BOR
https://github.com/facontidavide/LeGO-LOAM-BOR
https://github.com/irapkaist/SC-LeGO-LOAM
https://github.com/irapkaist/SC-LeGO-LOAM

9. Conclusions

[22] Z. Zhang, “Iterative Closest Point (ICP),” Computer Vision, pp. 433-434,
2014, doi: 10.1007/978-0-387-31439-6_179.

[23] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
lidar-based system for long-term and wide-area people behavior measure-

ment,” International Journal of Advanced Robotic Systems, vol. 16, no.
2, p. 172988141984153, 2019, doi: 10.1177/1729881419841532.

[24] M. A. Fischler and R. C. Bolles, “Random sample consensus,” Com-
munications of the ACM, vol. 24, no. 6, pp. 381-395, Jun. 1981, doi:
10.1145/358669.358692.

[25] H. Ye, Y. Chen and M. Liu, "Tightly Coupled 3D Lidar Inertial Odometry
and Mapping," 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 3144-3150, doi: 10.1109/ICRA.2019.8793511.

[26] K. Giseop. 2021. SC-LIO-SAM, [Source code]. Available: https://
github.com/gisbi-kim/SC-LI0-SAM

[27] M. Jung, S. Jung, H. Jang, and A. Kim, “Intensity and ambient en-
hanced LIDAR-inertial slam for unstructured construction environment,”
Journal of Korea Robotics Society, vol. 16, no. 3, pp. 179-188, 2021, doi:
10.7746 /jkros.2021.16.3.179.

[28] G. Wang, S. Gao, H. Ding, H. Zhang, and H. Cai, “LIO-CSI: LIDAR
inertial odometry with loop closure combined with Semantic Information,”
PLOS ONE, vol. 16, no. 12, 2021, doi: 10.1371/journal.pone.0261053.

[29] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Searching
efficient 3D architectures with sparse point-voxel convolution,” Computer
Vision — ECCV 2020, pp. 685-702, 2020, doi: 10.1007/978-3-030-58604-
1_41.

[30] J. Jiao, H. Ye, Y. Zhu and M. Liu, "Robust Odometry and Mapping
for Multi-LiDAR Systems With Online Extrinsic Calibration," in IEEE
Transactions on Robotics, vol. 38, no. 1, pp. 351-371, Feb. 2022, doi:
10.1109/TRO.2021.3078287.

[31] T.-M. Nguyen, S. Yuan, M. Cao, L. Yang, T. H. Nguyen and L. Xie,
"MILIOM: Tightly Coupled Multi-Input Lidar-Inertia Odometry and

Mapping," in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
5573-5580, July 2021, doi: 10.1109/LRA.2021.3080633.

[32] Z. Wang, L. Zhang, Y. Shen and Y. Zhou, "D-LIOM: Tightly-coupled
Direct LiDAR-Inertial Odometry and Mapping," in IEEE Transactions
on Multimedia, doi: 10.1109/TMM.2022.3168423.

[33] Y. Roth-Tabak and R. Jain, “Building an environment model using
depth information,” Computer, vol. 22, no. 6, pp. 85-90, 1989, doi:
10.1109/2.30724.

77

https://github.com/gisbi-kim/SC-LIO-SAM
https://github.com/gisbi-kim/SC-LIO-SAM

9. Conclusions

[34] D. M. Cole and P. M. Newman, "Using laser range data for 3D SLAM in
outdoor environments," Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006., 2006, pp. 1556-1563,
doi: 10.1109/ROBOT.2006.1641929.

[35] A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d SLAM-
3D mapping outdoor environments,” Journal of Field Robotics, vol. 24,
no. 8-9, pp. 699-722, 2007, doi: 10.1002/rob.20209.

[36] P. Kriisi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point
clouds: Motion planning, trajectory optimization, and terrain assessment
in generic nonplanar environments,” Journal of Field Robotics, vol. 34,
no. 5, pp. 940-984, 2016, doi: 10.1002/rob.21700.

[37] M. Herbert, C. Caillas, E. Krotkov, I. S. Kweon and T. Kanade, "Terrain
mapping for a roving planetary explorer," Proceedings, 1989 International
Conference on Robotics and Automation, 1989, pp. 997-1002 vol.2, doi:
10.1109/ROBOT.1989.100111.

[38] R. Hadsell, J. A. Bagnell, D. Huber, and M. Hebert, “Accurate rough
terrain estimation with space-carving kernels,” Robotics: Science and
Systems V, 2009, doi: 10.15607 /rss.2009.v.019.

[39] R. Triebel, P. Pfaff and W. Burgard, "Multi-Level Surface Maps for Out-
door Terrain Mapping and Loop Closing," 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 2276-2282, doi:
10.1109/TROS.2006.282632.

[40] D. Meagher, “Geometric modeling using Octree encoding,” Computer
Graphics and Image Processing, vol. 19, no. 1, p. 85, 1982, doi:
10.1016,/0146-664x(82)90128-9.

[41] J. Wilhelms and A. Van Gelder, “Octrees for faster Isosurface Genera-
tion,” ACM Transactions on Graphics, vol. 11, no. 3, pp. 201-227, 1992,
doi: 10.1145/130881.130882.

[42] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping Framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189-206, 2013, doi:
10.1007/s10514-012-9321-0.

[43] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration for
autonomous mining vehicles using 3D-NDT,” Journal of Field Robotics,
vol. 24, no. 10, pp. 803-827, 2007, doi: 10.1002/rob.20204.

[44] T. Stoyanov, M. Magnusson, H. Andreasson and A. J. Lilienthal, "Path
planning in 3D environments using the Normal Distributions Transform,"
2010 TEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2010, pp. 3263-3268, doi: 10.1109/IR0OS.2010.5650789.

78

9. Conclusions

[45] S. Garrido, M. Malfaz, and D. Blanco, “Application of the fast
marching method for outdoor motion planning in Robotics,” Robotics
and Autonomous Systems, vol. 61, no. 2, pp. 106-114, 2013, doi:
10.1016/j.robot.2012.10.012.

[46] R. Bogdan Rusu, A. Sundaresan, B. Morisset, K. Hauser, M. Agrawal,
J.-C. Latombe, and M. Beetz, “Leaving flatland: Efficient real-time three-
dimensional perception and motion planning,” Journal of Field Robotics,
vol. 26, no. 10, pp. 841-862, 2009, doi: 10.1002/rob.20313.

[47] S. Piutz, T. Wiemann, M. K. Piening and J. Hertzberg, "Continuous
Shortest Path Vector Field Navigation on 3D Triangular Meshes for Mobile
Robots," 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 2256-2263, doi: 10.1109/ICRA48506.2021.9560981.

[48] B. Garigipati, N. Strokina and R. Ghabcheloo, "Evaluation and com-
parison of eight popular Lidar and Visual SLAM algorithms," 2022 25th
International Conference on Information Fusion (FUSION), 2022, pp. 1-8,
doi: 10.23919/FUSION49751.2022.9841323.

[49] P. Fankhauser, M. Bloesch and M. Hutter, "Probabilistic Terrain Map-
ping for Mobile Robots With Uncertain Localization," in IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 3019-3026, Oct. 2018, doi:
10.1109/LRA.2018.2849506.

[50] J. P. Snyder, Flattening the earth two thousand years of map projections.
Chicago u.a.: The University of Chicago Press, 2002.

[51] C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, "On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry," in IEEE
Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017, doi:
10.1109/TR0O.2016.2597321.

[52] A. Mandow, J. L. Martinez, J. Morales, J. L. Blanco, A. Garcia-Cerezo
and J. Gonzalez, "Experimental kinematics for wheeled skid-steer mobile
robots," 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007, pp. 1222-1227, doi: 10.1109/IR0S.2007.4399139.

[53] P. Corke, Robotics, vision and Control: Fundamental Algorithms in
MATLAB. Australia: Springer, 2011.

[54] J. L. Martinez, A. Mandow, J. Morales, S. Pedraza, and A. Garcia-Cerezo,
“Approximating kinematics for tracked mobile robots,” The International
Journal of Robotics Research, vol. 24, no. 10, pp. 867-878, 2005. doi:
10.1177/0278364905058239.

[55] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, wvol. 1, no. 1, pp. 269-271, 1959, doi:
10.1007/bf01386390.

79

9. Conclusions

[56] D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to
collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

[57] Stanford Artificial Intelligence Laboratory et al. 2018. Robotic Operating
System, ver.Noetic. [Software]. Available: https://www.ros.org

[58] D. Herschberger, D. Gossow, J. Faust, W. Woodall. 2012. ROS Visual-
ization (RViz), [Software]. Available: http://wiki.ros.org/rviz

[59] Open Source Robotics Foundation. 2014. Gazebo Simulator, ver.11.0.0,
[Online]. Available: https://classic.gazebosim.org/blog/gazeboll

[60] M. A. Sherman, A. Seth, and S. L. Delp, “Simbody: Multibody Dynamics
for Biomedical Research,” Procedia IUTAM, vol. 2, pp. 241-261, 2011,
doi: 10.1016/j.piutam.2011.04.023.

[61] “Husky UGV - outdoor field research robot by clearpath,”
Clearpath Robotics, 20-Dec-2022. [Online|. Available: https://
clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/|
[Accessed: 06-Jan-2023].

[62] Clearpath Robotics. 2016. husky ROS meta-package, [Source code]. Avail-
able: https://github.com/husky/husky

[63] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Rodriguez
Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar, G. Raiola, M. Liidtke,
and E. Fernandez Perdomo, “Ros_ control: A generic and simple control
framework for Ros,” The Journal of Open Source Software, vol. 2, no. 20,
p. 456, 2017, doi: 10.21105/joss.00456.

[64] J. Hsu, J. Koenig, D. Coleman. 2013. gazebo__ros ROS package, [Source
code]. Available: https://github.com/ros-simulation/gazebo_ros_
pkgs/tree/noetic-devel/gazebo_ros

[65] K. Hallenbeck. 2018. welodyne simulator ROS package, [Source
code]. Available: https://bitbucket.org/DataspeedInc/velodyne_
simulator/src/master/

[66] R. B. Rusu and S. Cousins, "3D is here: Point Cloud Library (PCL),"
2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 1-4, doi: 10.1109/ICRA.2011.5980567.

[67] Open Perception, J. Kammerl, W. Woodall. 2018. pcl_ros ROS pack-
age, [Source code]. Available: https://github.com/ros-perception/
perception_pcl

[68] S. Kohlbrecher, J. Meyer. 2016. hector_gazebo_plugins ROS
package, [Source code]. Available: https://github.com/
tu-darmstadt-ros-pkg/hector_gazebo/tree/melodic-devel/
hector_gazebo_plugins

80

https://www.ros.org
http://wiki.ros.org/rviz
https://classic.gazebosim.org/blog/gazebo11
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://github.com/husky/husky
https://github.com/ros-simulation/gazebo_ros_pkgs/tree/noetic-devel/gazebo_ros
https://github.com/ros-simulation/gazebo_ros_pkgs/tree/noetic-devel/gazebo_ros
https://bitbucket.org/DataspeedInc/velodyne_simulator/src/master/
https://bitbucket.org/DataspeedInc/velodyne_simulator/src/master/
https://github.com/ros-perception/perception_pcl
https://github.com/ros-perception/perception_pcl
https://github.com/tu-darmstadt-ros-pkg/hector_gazebo/tree/melodic-devel/hector_gazebo_plugins
https://github.com/tu-darmstadt-ros-pkg/hector_gazebo/tree/melodic-devel/hector_gazebo_plugins
https://github.com/tu-darmstadt-ros-pkg/hector_gazebo/tree/melodic-devel/hector_gazebo_plugins

9. Conclusions

[69] F. Dellaert, GTSAM Contributors. 2022. borglab/gtsam, ver.4.2a8, [Soft-
ware]. Georgia Tech Borg Lab, doi: 10.5281/zenodo.5794541.

[70] T. Moore. 2015. robot__localization ROS package, [Source code]. Available:
https://github.com/cra-ros-pkg/robot_localization)

[71] P. Fankhauser and M. Hutter, “A Universal Grid Map Library: Im-
plementation and use case for Rough Terrain Navigation,” Studies in
Computational Intelligence, pp. 99-120, 2016. doi: 10.1007/978-3-319-
26054-9_ 5.

[72] B. Marthi. 2014. occupancy__grid_utils ROS package, [Source code].
Available: https://github.com/clearpathrobotics/occupancy_|

grid_utils

[73] M. Alban. 2015. Map Viz: Modular ROS visualization tool, [Source code].
Available: https://github.com/swri-robotics/mapviz|

[74] E. Marder-Eppstein. 2020. move_base ROS package, [Source
code]. Available: |https://github.com/ros-planning/navigation/
tree/noetic-devel/move_base|

[75] E. Marder-Eppstein. 2020. nav_core ROS package, [Source code].
Available: https://github.com/ros-planning/navigation/tree/

moetic-devel/nav_core

[76] K. Konolige, E. Marder-Eppstein. 2014. navfn ROS package, [Source
code]. Available: https://github.com/ros-planning/navigation/
tree/noetic-devel/navfn

[77] E. Marder-Eppstein. 2020. dwa__local__planner ROS package, [Source
code|. Available: https://github.com/ros-planning/navigation/
tree/noetic-devel/dwa_local_planner|

[78] E. Marder-Eppstein, D. V. Lu, D. Herschberger. 2018. costmap_2d ROS
package, [Source code]. Available: https://github.com/ros-planning/
navigation/tree/noetic-devel/costmap_2d

[79] D. Snider. 2017. ROS Offline Google Maps for MapViz,
[Source code]. Available: https://github.com/danielsnider/
MapViz-Tile-Map-Google-Maps-Satellite|

[80] J. Chris et al. 2007. Terminator Terminal Emulator, [Software]. Available:
https://gnome-terminator.org/|

[81] “Puck lidar sensor, high-value surround Lidar,” Velodyne Lidar, 02-
Dec-2022. [Online]. Available: https://velodynelidar.com/products/
puck/. [Accessed: 06-Jan-2023].

[82] “Pololu - UM7 Orientation Sensor,” Pololu Robotics & Electronics.
[Online]. Available: https://www.pololu.com/product/2741) [Accessed:
06-Jan-2023].

81

https://github.com/cra-ros-pkg/robot_localization
https://github.com/clearpathrobotics/occupancy_grid_utils
https://github.com/clearpathrobotics/occupancy_grid_utils
https://github.com/swri-robotics/mapviz
https://github.com/ros-planning/navigation/tree/noetic-devel/move_base
https://github.com/ros-planning/navigation/tree/noetic-devel/move_base
https://github.com/ros-planning/navigation/tree/noetic-devel/nav_core
https://github.com/ros-planning/navigation/tree/noetic-devel/nav_core
https://github.com/ros-planning/navigation/tree/noetic-devel/navfn
https://github.com/ros-planning/navigation/tree/noetic-devel/navfn
https://github.com/ros-planning/navigation/tree/noetic-devel/dwa_local_planner
https://github.com/ros-planning/navigation/tree/noetic-devel/dwa_local_planner
https://github.com/ros-planning/navigation/tree/noetic-devel/costmap_2d
https://github.com/ros-planning/navigation/tree/noetic-devel/costmap_2d
https://github.com/danielsnider/MapViz-Tile-Map-Google-Maps-Satellite
https://github.com/danielsnider/MapViz-Tile-Map-Google-Maps-Satellite
https://gnome-terminator.org/
https://velodynelidar.com/products/puck/
https://velodynelidar.com/products/puck/
https://www.pololu.com/product/2741

9. Conclusions

[83] “Duro product summary - swift nav.” [Online]. Available: https://www,
swiftnav.com/sites/default/files/duro_product_summary.pdf|
[Accessed: 06-Jan-2023].

[84] Blender Foundation. 2002. Blender, ver.2.82.7., [Software]. Available:
https://www.blender.org/

[85] O. Hellwich, “Photogrammetric methods,” Encyclopedia of GIS, pp.
860-864, 2008.

[86] C. Wethington, J. Knapp, J. Puckette, C. Barnes, L. Weilert, and D.
Lao6-Dévila, “The Skyline Drive Road Area,” OpenTopography Dataspace
- survey of Skyline Drive area, Canon City, Colorado, April 2021, 24-
Jun-2021. [Online]. Available: https://portal.opentopography.org/

dataspace/dataset?opentopoID=0TDS.062021.32613. 1| [Accessed: 07-
Jan-2023].

[87] CloudCompare. 2003. CloudCompare: 3D point cloud and mesh pro-

cessing software, ver.2.11.1, [Software]. Availablethttps://www.danielgm|
net/cc/

[88] P. Cignoni, A. Muntoni. 2022. MeshLab: software for processing and

editing 3D triangular meshes, ver.2022.02, [Software]. Available:https
//www.meshlab.net/

[89] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transactions on Graphics, vol. 32, no. 3, pp. 1-13, 2013, doi:
10.1145/2487228.2487237.

[90] "Google Earth: Skyline Drive Road Area," Google Earth. [Online].

Available: https://www.google.com/intl/cs/earth/. [Accessed: 07-
Jan-2023].

[91] The GIMP Team. 2022. GIMP: Open source image editor, ver.2.10,
[Software]. Available: https://www.gimp.org/

[92] “Google Maps: Skyline Drive Road Area,” Google maps. [Online]. Avail-
able: https://www.google.com/maps/. [Accessed: 07-Jan-2023].

82

https://www.swiftnav.com/sites/default/files/duro_product_summary.pdf
https://www.swiftnav.com/sites/default/files/duro_product_summary.pdf
https://www.blender.org/
https://portal.opentopography.org/dataspace/dataset?opentopoID=OTDS.062021.32613.1
https://portal.opentopography.org/dataspace/dataset?opentopoID=OTDS.062021.32613.1
https://www.danielgm.net/cc/
https://www.danielgm.net/cc/
https://www.meshlab.net/
https://www.meshlab.net/
https://www.google.com/intl/cs/earth/
https://www.gimp.org/

Appendix A
SDF model generation with mesh2sdf tool

The purpose of this C++ project is to automatically generate SDF mod-
els from textured .stl/.dae meshes using the TinyXMLﬂ library. The
generated model.sdf and model.config files are placed in a created folder
structure as illustrated in Figure

The code assumes that all input files have the same name and that at least
the source mesh file without a texture is provided using the --src parameter.
A list of valid parameters can be found in Table

model
—— materials

L textures

L model_name.png
—— meshes

L model name.dae
—— model.config
—— model.sdf
“— model name.blend

Figure A.1: Folder structure of a generated SDF model.

Parameter Description Example

--help display help message —

--src name of the source model foo

--out name of the output model fooo

--a author’s name Vratislav Besta

--e author’s email bestavra@gmail.com
--mv set model version 1.0

--sv set SDF version 1.5

--d model description Generated with mesh2sdf

Table A.1: The list of valid parameters for the mesh2sdf.

1|ht‘51:)s: //github.com/leethomason/ tinyxm12|

83

https://github.com/leethomason/tinyxml2

84

Appendix B

Derivation of the quantile function for CEP
(Circular Error Probable)

The CEP measure assumes two orthogonal and independent Gaussian random
variables

U ~ N(0,0?), V ~ N(0,0%)

which put together a two-dimensional vector
Y =(U,V).

With U and V having density functions

2 2
fulu,o) = 12exp<—2“02>, fo(v,0) = 12exp<—”2>,

2o 2o 20

and R as the length of YV, i.e. R = U2+ V2, the R has cumulative
distribution function

Fa(r,o) = / / for(u, o) fyr (v, 0)dA, (B.1)
D,

where D, is the disk
Dr:{u,v|\/m§r}.
Rewriting the in polar coordinates
u=pcosf, v=psinf
with the Jacobian

cos @ sin 0

1= —psinf pcosd

= pcos® O + psin? 6 = p

du Qv

90 99| —
ou v

Op

yields the following:

2w r
1 —p?
Fgr(r,o) = 503 //pexp (202> dpd#. (B.2)
0 0

85

B. Derivation of the quantile function for CEP (Circular Error Probable)

Integrating (B.2]) with respect to 6, it becomes

p

F _ L =74 B.3

R(T,O’)—O_2 pexp | 5 5 | dp. (B.3)
0

Further integration with respect to p

o , subst.
1 —p? 5= —d du = —Ldr
F r,a:—/ ex dp = 2g° o
w(ro) o2)7 p<202> ‘l.b.u:—zozz() u.b.u:—;—g2
0 o o
_?
:/ 20 exp® ds
0
yields cumulative distribution function of the Rayleigh distribution:
2
Fgr(r,o) =1—exp ~557 |- (B.4)

From substitution of (B.4)) into quantile function

Qr(p) = Fg'(r),

Qr(p,0) =04/ —2In(1 - p), (B.5)

where p is the probability. Since CEP specifies a radius of the mean-centered
circle that includes 50 % of all measurements, the standard deviation o can
be estimated using the following equation:

Qr(p,0) =04/—21In(0.5). (B.6)

the Qr(p) becomes

86

Appendix C

Navigation experiments - video

The following video (https://www.youtube.com/watch?v=gA9GhKZY Bec))
presents highlights from a series of navigation experiments. Each section of
the video corresponds to one of the experiments and shows visualizations of
the navigation data in RViz and the running simulation in Gazebo. In some
cases, MapViz is also used to set goals.

In RViz, matched scans from the LIO-SAM are shown in a height-colored
format. Traversable cells are represented in grayscale, while obstacles are
marked in pink and surrounded by light and dark blue cells indicating the
inflation around them. The planned path is shown in violet, and the robot’s
trajectory is shown in light blue.

87

https://www.youtube.com/watch?v=gA9GhKZYBec

88

Appendix D
Attachments

The attachments include the following files:
1. gazebo_world.zip
2. mapviz.zip
3. occupancy_grid_utils.zip
4. rough_terrain_navigation.zip
5. utils.zip

The first four attachments contain the contents of ROS packages. The files
within these packages that have the added modified_ prefix are components of
the existing software that is cited in the thesis. These files have been expanded
with additional content or used with different values for the corresponding
parameters. The fifth attachment comprises created Terminator layout,
mesh2sdf tool, and a Python script used for interpolating GPS coordinates.

In addition, well-documented private Git repositories have been created
to provide a more complete record of the work done and to allow for later
reference or reuse. These repositories include additional material such as
terrains used in the experiments.

Both the GitHub and GitLab repositories contain the same content and
are available upon request from the official GitHub websitd'| or the faculty’s
GitLab?l

Thttps: //github.com/
Zhttps: //gitlab.fel.cvut.cz/users/sign_ in

89

https://github.com/
https://gitlab.fel.cvut.cz/users/sign_in

	Introduction
	Context
	Specification

	Sensors of mobile robotics
	Review of three-dimensional SLAM methods
	Approaches
	Lidar SLAM methods
	Loosely coupled methods
	Tightly coupled methods

	Three-dimensional terrain representations for navigation
	Navigation method
	Selected approach
	Transformations of sensor measurements
	Lidar-inertial odometry via Smoothing and Mapping (LIO-SAM)
	Probabilistic terrain mapping
	Traversability estimation
	Global traversability map
	Kinematics of the robotic platform
	Planners
	Global planner
	Local planner

	Implementation
	Used software
	Robot Operating System (ROS)
	ROS Visualization (RViz)
	Gazebo simulator

	Robotic platform
	Sensors
	Method implementation in ROS
	LIO-SAM
	Probabilistic terrain mapping
	Traversability estimation
	Global traversability map
	Path planning
	Setting goals using offline Google maps

	Launch of the navigation system with simulator

	Experiments
	Hardware setup
	Simulated experimental platform
	Robot Husky
	Sensor suite
	Sensor placement

	Navigation system settings
	Simulation preparation
	ODE settings
	Assets for the simulated scenes
	Process of generating a georeferenced SDF terrain from a topographic LAZ point cloud

	Performed experiments
	Traversability estimation reflecting robot specifications
	Navigating from an enclosed area
	Navigating through a complex environment
	Navigating through a reconstructed real environment

	Limitations of the proposed method
	Expected limitations
	Observed limitations

	Future work
	Conclusions
	Bibliography
	SDF model generation with mesh2sdf tool
	Derivation of the quantile function for CEP (Circular Error Probable)
	Navigation experiments - video
	Attachments

