
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Wireless sensor network for monitoring

patients with Parkinson's disease

Diploma Thesis

Author: Martin Auersvald

Supervisor: Ing. Ji°í Trdli£ka

Thesis Due: January 2008

Declaration

I hereby declare that I have written my diploma thesis myself and used only the sources

(literature, projects, SW etc.) listed in the enclosed bibliography.

In Prague,
Martin Auersvald

Acknowledgements

I am very grateful to my thesis advisor, Ing. Ji°í Trdli£ka, for his guidance, support,

comments and willingness to discuss any problems. I also thank my second advisor, Ing.

Petr Jur£ík, for his helpful suggestions. My special appreciation goes to Ing. André Cunha

for his advice and help at working with open-ZB stack, and Bc. Ji°í Kubias for helping me

during realization of hardware parts.

I would like to special thank my family and friends for their constant support and en-

couragement during the course of my studies.

iii

Abstrakt

Cílem této práce je návrh bezdrátové sensorové sít¥ pro monitorování stavu pacient· s

Parkinsonovou chorobou.

Sí´ je vytvo°ena z p¥ti za°ízení ve hv¥zdicové topologii pomocí bezdrátové technologie ZigBee.

Jako za°ízení jsou pouºity sensorové moduly Tmote Sky (TelosB platforma) �rmy Moteiv.

Komunika£ní model topologie hv¥zda je centralizován, kaºdý ze £ty° uzl· vysílá svoje data do

hlavního uzlu, který vystupuje jako koordinátor sít¥. Data jsou z t¥la pacienta snímána po-

mocí navrºeného roz²i°ujícího modulu s analogovým nebo digitálním akcelerometrem. Pro-

gramy pro za°ízení pro sb¥r dat, jejich vysílání, p°ijímání a p°enos do osobního po£íta£e jsou

vytvo°eny pomocí prost°edí TinyOS, jazyka nesC a Open-ZB stacku, který byl vyvinut na

Polytechnickém institutu v Portugalském Portu. Open-ZB stack je open-source implemen-

tace (poskytována jako sada nástroj·) IEEE 802.15.4 a ZigBee protokolu v TinyOS/nesC.

Programy pro osobní po£íta£ pro zpracovávání a zobrazování dat jsou vytvo°eny pomocí MS

Visual Studio 2005 v programovacím jazyce C# a jazyce C pro UNIX OS.

iv

Abstract

The goal of this work is a proposition of wireless sensor network for monitoring patients

with Parkinson's disease.

The network is created from �ve devices in star topology by using ZigBee wireless technol-

ogy. As devices are used the sensor modules Moteiv Tmote Sky (TelosB platform). The

communication paradigm in the star topology is centralized, each from four nodes sends its

data to the principal node, which operates as a coordinator. Data are acquired from the

patient body by designed expansion module with analog or digital accelerometer. A Tmote

programs for data acquisition, data sending, receiving, processing and data transmission to

the personal computer are built by using the TinyOS operating environment, nesC language

and Open-ZB stack, which is developed in Polytechnic Institute of Porto, Portugal. Open-

ZB stack is the open source implementation (provided as a tool) of the IEEE 802.15.4 and

ZigBee protocol in TinyOS/nesC. A PC programs for data processing and displaying are

created by MS Visual Studio 2005 in C# language and in C language for UNIX OS.

v

Contents

1 Introduction 1

1.1 Parkinson's disease . 1

1.2 Monitoring patient activity . 1

1.3 Wireless Sensor Networks (WSNs) . 2

1.4 General requirements . 2

1.5 Analysis of the solution and secondary requirements 3

2 IEEE 802.15.4 and ZigBee 6

2.1 Introduction . 6

2.2 General Description of IEEE 802.15.4 . 7

2.2.1 IEEE 802.15.4 WPAN . 7

2.2.2 IEEE 802.15.4 Physical layer . 9

2.2.3 IEEE 802.15.4 Medium Access Control (MAC) layer 11

2.2.3.1 Operational Modes . 11

2.2.3.2 The CSMA/CA mechanisms 14

2.2.3.3 Frame Structure . 15

2.2.3.4 GTS Management . 17

2.2.3.5 Extracting pending data from a coordinator 18

2.2.3.6 Channel scan procedures . 18

2.2.3.7 Association and Disassociation 18

2.2.3.8 Orphaned device . 19

2.3 The ZigBee . 19

2.3.1 The ZigBee stack architecture . 19

3 Description of used Software and Hardware 23

3.1 TinyOS . 23

3.2 nesC . 24

3.3 Moteiv Tmote Sky . 25

3.3.1 Key Features . 25

3.3.2 Module Description . 25

vi

3.3.3 Block Diagram . 27

4 Open-ZB stack and its porting to TelosB platform 28

4.1 Introduction . 28

4.2 Software Architecture . 30

4.3 Comparison between MICAz and TelosB implementation 31

4.4 Main Modi�cations of the open-ZB stack . 32

4.4.1 Phy Con�guration File . 32

4.4.2 PhyM Module File . 33

4.4.3 TimerAsync Components . 33

4.4.4 Other Changes . 34

5 Expansion Modules with Accelerometers 35

5.1 Expansion Module with Analog Accelerometer 35

5.1.1 Design of Circuit Scheme . 36

5.2 Expansion Module with Digital Accelerometer 38

5.2.1 I2C Serial Interface . 38

5.2.1.1 I2C Operation . 39

5.2.2 Register mapping . 39

5.2.3 Design of Circuit Scheme . 39

6 Data Collection Applications using Open-ZB stack 42

6.1 Application to data acquisition by modules with analog accelerometer MMA7260Q 42

6.1.1 General Description of the Application 42

6.1.2 Application Components . 43

6.1.3 Detailed Analysis of the Application 44

6.1.3.1 End Device . 45

6.1.3.2 PAN coordinator . 46

6.1.4 Connecting External Sensors . 47

6.1.5 Sensitivity and Sleep Mode Settings 49

6.1.6 Raw data packet and TinyOS message 50

6.2 Application to data read from modules with digital accelerometer LIS3LV02DQ 51

6.2.1 General Description of the Application 51

6.2.2 Application Components . 52

6.2.3 Detailed Analysis of the Application 53

7 Results and Experience 55

7.1 Problems and Necessary Changes in the Open-ZB stack and TinyOS/nesC . . 55

7.1.1 Open-ZB stack . 55

7.1.2 TinyOS/nesC . 56

7.2 Results . 57

vii

7.2.1 Application to data acquisition by modules with analog accelerometer

MMA7260Q . 57

7.2.2 Application to data read from modules with digital accelero- meter

LIS3LV02DQ . 60

8 Applications for Data Processing and Displaying 62

8.1 Console Application in C under Cygwin . 62

8.1.1 General Describe the Application . 62

8.1.2 Application Files . 63

8.2 GUI Application in C# . 63

8.2.1 Application Files . 64

9 Conclusion 66

A IEEE 802.15.4 Frame Structures 68

B Electronical Design of Expansion Modules 71

C Cygwin and TinyOS Install Instructions 74

D All created Application Install Instructions 79

E Contents of the CD-ROM 82

viii

List of Figures

1.1 Spatial arrangement of the network nodes. 3

2.1 IEEE 802.15.4/ZigBee protocol stack architecture 7

2.2 Topology Models. 9

2.3 Operating frequency band. 10

2.4 IEEE 802.15.4 operational modes . 12

2.5 Structure of a Superframe . 13

2.6 The CSMA/CA Mechanism . 16

2.7 Outline of the ZigBee Stack Architecture . 20

3.1 Functionality of the 10-pin expansion connector (U2) 26

3.2 Functionality of the 6-pin expansion connector (U28) 27

3.3 Functional Block Diagram of the Tmote Sky module, its components, and buses 27

4.1 Open-ZB Protocol Stack Architecture. 30

4.2 Open-ZB stack implementation diagram in TinyOS/nesC for MICAz and

TelosB platforms. 32

5.1 Circuit scheme with MMA7260Q. 37

5.2 Tmote Sky with manufactured expansion module with MMA7260Q analog

and LIS3LV02DQ digital accelerometer. 37

5.3 Circuit scheme with LIS3LV02DQ. 41

6.1 DataSendAccel Application - TinyOS Implementation Diagram. 44

6.2 The msdu payload �eld structure. 46

6.3 TOS message Payload Data �eld structure. 47

6.4 The sync mpdu data payload �eld structure. 47

6.5 TOS-message structure. 50

6.6 LIS3LV02DQ Application - TinyOS Implementation Diagram. 53

6.7 TOS message Payload Data �eld structure for digital accelerometer. 54

7.1 Measuring data through MMA7260Q, sensitivity 800mV/g (±1,5g), freq. 13Hz. 58

ix

7.2 Measuring data through MMA7260Q, sensitivity 600mV/g (±2g), freq. 13Hz. 58

7.3 Measuring data through MMA7260Q, sensitivity 300mV/g (±4g), freq. 13Hz. 59

7.4 Measuring data through MMA7260Q, sensitivity 200mV/g (±6g), freq. 13Hz. 59

7.5 Measuring data through MMA7260Q, three node mode, sensitivity 200mV/g

(±6g), frequency 26Hz. 60

7.6 Measuring data through LIS3LV02DQ, sensitivity 340 LSb/g (±6g), frequency
52-56Hz. 61

7.7 Measuring data through LIS3LV02DQ, sensitivity 1024 LSb/g (±2g), fre-
quency 52-56Hz. 61

8.1 GUI application in C# - Main window. 65

8.2 GUI application in C# - Communication and Application settings options. . 65

A.1 Beacon frame . 68

A.2 Data frame . 69

A.3 Acknowledgment frame . 69

A.4 MAC command frame . 69

A.5 GTS Request Command Frame . 70

A.6 GTS Descriptor . 70

B.1 Design of expansion module with MMA7260Q/MMA7261Q. 72

B.2 Design of expansion module with LIS3LV02DQ. 73

x

List of Tables

1.1 Comparison of Wireless Technologies. 4

2.1 Frequency bands and data rates. 10

4.1 The supported features of MICAz and TelosB platform. 29

5.1 g-Select pin Descriptions for MMA7260Q/MMA7261Q 36

5.2 I2C Master's and Slave's possibilities of transfers. 40

5.3 Main registers address map. 40

6.1 TOS-message description. 51

xi

Chapter 1

Introduction

1.1 Parkinson's disease

Parkinson's disease is a degenerative disorder of the central nervous system that often impairs

the su�erer's motor skills and speech. It is characterized by muscle rigidity, tremor, a slowing

of physical movement and, in extreme cases, a loss of physical movement. The most widely

used form of treatment is Levodopa in various forms. Levodopa is used as a pharmacological

substance (drug) to increase dopamine levels. The occurrence of Parkinson's symptoms is

needed to be known for proper diagnosis and treatment evaluation. It is, therefore, necessary

to monitoring patients some ways.

1.2 Monitoring patient activity

Since 90's, a small electronic devices have been used for monitoring human activity. These

devices, called as ActiGraphs, that generally consists of an inertial sensor (accelerometer

and/or gyroscope), a �lter, a memory, an interface and digital circuitry, and that, when is

worn by an individual (typical on wrist, ankle, elbow, shoulder or chest), records and reports

levels of activity (number of treshold crossings during time periods). The typical symp-

toms of Parkinson's disease, tremor and dyskinesias (abnormal involuntary movements), are

showed as periods of high activity and is necessary use of several sensors placed over the

body because of detecting all of symptoms. The big restrictive disadvantage is cable con-

nection of a number of sensors �xed on patient's body. Such solution is not user friendly.

Wireless connection is more suitable.

1

CHAPTER 1. INTRODUCTION 2

1.3 Wireless Sensor Networks (WSNs)

A wireless sensor network (WSN) is a collection of spatially distributed autonomous wireless

devices, also called as nodes or motes, using sensors to cooperatively monitor physical or

environmental conditions at di�erent locations and that form a certain network topology. A

WSNs are used in applications to monitor/collect data that would be di�cult or expensive

to monitor using wired sensors. A typical wireless sensor contains a sensor(s), a wireless

communication interface (such as radio transceiver), an energy source (typically batteries)

and a small microcontroller. Establish such a WSN is perfect for monitoring human activity.

1.4 General requirements

The following requirements have a basis in paper [1].

General requirements for this thesis:

� create the wireless network (Body Area Network) for data collection on a patient based

on an appropriate wireless technology

� the network consists of one central unit and four (two on both wrists and two on both

ankles) to six (other on chest e.g.) measurement units, as depicted in Figure 1.1,

therefore, the network will create in star topology

� central unit synchronizing data collection and storing all the measured data values for

later processing in a personal computer or in a memory, memory capacity should be

su�cient for storage of all-day measurements from all sensors

� each of measurement unit contains an inertial sensor - three-axis (3D) accelerometer

o�ering acceleration data and forms a simple ActiGraph this way

� acceleration range of about 5g is su�cient in Parkinsonian patients, greater range leads

to lower sensitivity

� to describe human movement a su�cient acquisition frequency of about 50Hz should

be provided

� transmition range is not needed to be greater than size of human body

� low power consumption is required, batteries in all units have to su�ce at least for a

day-long measurement, batteries can be recharged at night

� low cost solution

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Spatial arrangement of the network nodes.

� additive functions as A/D converter in the central unit or free computational capacity

for simple algorithms is welcome

� weight of the units is also not trivial

1.5 Analysis of the solution and secondary requirements

The choice of wireless communication protocol depends on the context in which the network

is used. According to the requirements was chosen the most suitable wireless technology

- ZigBee technology, optimized for low-cost, low-power consumption and short-range radio

frequency transmissions. The process of selection also resulted from the comparison of pri-

mary parameters of used standards for wireless communication [2]. Comparison of wireless

technologies is presented in Table 1.1.

The ZigBee protocol is implemented on top of the IEEE 802.15.4 radio communication

standard. The ZigBee speci�cation is managed by a non-pro�t industry consortium of semi-

conductor manufacturers, technology providers and other companies, all together designated

the ZigBee Alliance. In the Chapter 2. of this thesis is provided an overview of the IEEE

802.15.4 and ZigBee standard.

As hardware platform for wireless communication has been chosen the Tmote Sky (exactly

the TelosB platform) sensor module (see Figure 1.1) from Sentilla/Moteiv Corporation with

a chip supporting IEEE 802.15.4 standard from Chipcon Corporation. The Sentilla com-

pany was previously named Moteiv and focused on mote hardware, now the relaunched

CHAPTER 1. INTRODUCTION 4

Commercial Name GPRS/GSM Wi-Fi� Bluetooth� ZigBee�

Standard 1xRTT/CDMA 802.11b 802.15.1 802.15.4

Direction of

Application

Voice and

Data

Web, Email,

Video

Substitute for

cable

Monitoring

and Control

System Resources

(Memory)

16MB and

more

1MB and

more

250KB and

more

4KB - 32KB

Battery Life

(Days)

1 - 7 0.5 - 5 1 - 7 100 - 1000

Max. Network Size

(Number of Nodes/Net)

1 32 7 65000

Data Rate

(Kb/s)

64 - 128 11000 720 20 - 250

Communication Range

(m)

1000 and more 1 - 100 1 - 10 1 - 100

Advantages Availability,

Quality

Rate,

Flexibility

Cost,

Simplicity

Reliability,

Power/Cost

Table 1.1: Comparison of Wireless Technologies.

Sentilla will create software tools to used on motes form other companies, such as Texas

Instruments' MSP430 microprocessor. TelosB platform modules are now only produced by

Crossbow Technologies. Currently, the Wireless Sensor Networks Group at Department of

Control Engineering have nine operational devices from Moteiv and ten devices from Cross-

bow that are available. In the Chapter 3. is provided an overview of the Tmote Sky module.

Open source implementation of the IEEE 802.15.4 and ZigBee protocols are not available,

therefore, the IPP-HURRAY Research Group in Porto developing own open source imple-

mentation of IEEE 802.15.4/ZigBee, which is providing as the toolset - the open-ZB stack.

The protocol stack is developed in nesC language, under the TinyOS operating system

(open-source OS designed for embedded wireless systems) for the MICAz platform from

CrossBow. It was necessary to ported the open-ZB stack to the TelosB platform at �rst

when we would like to use the Tmote Sky sensor modules.

Secondary requirement for this thesis:

� porting open-ZB stack implemented for the MICAz platform to the TelosB platform

In the Chapter 3. is described the TinyOS and nesC.

In the Chapter 4. is introduced the open-ZB stack, its structure, and its porting, modi�ca-

tions and �nal implementation for the TelosB platform.

As a simple ActiGraph devices are designed expansion modules (as peripherals) with an

accelerometers. As appropriate accelerometers for measurement units has been chosen the

analog MMA7260Q (eventually MMA7261Q) by Freescale Semiconductor and the digital

LIS3LV02DQ by STMicroelectronics. Design of expansion modules with these accelerome-

ters for Tmote Sky devices is presented in the Chapter 5.

CHAPTER 1. INTRODUCTION 5

Data collection applications for Tmote Sky devices, for central node and end nodes, written

by using open-ZB stack supporting the TelosB platform is presented in the Chapter 6.

Results, problems, necessary changes and experiences in using the Open-ZB stack and

TinyOS/nesC are presented in Chapter 7.

PC applications for data processing and displaying, written in C and C# language, are

presented in the Chapter 8.

Chapter 2

IEEE 802.15.4 and ZigBee

2.1 Introduction

The IEEE 802.15.4 [IEEE 802.15 WPAN� Task Group 4 (TG4)] protocol is often associated

with the ZigBee protocol. The relationship between IEEE 802.15.4 and ZigBee is similar to

that between IEEE 802.11 and the Wi-Fi Alliance.

The IEEE 802.15.4 protocol is as well as ZigBee technology optimized for low-cost, low-power

consumption, low-data-rate and low-complexity short-range radio frequency transmissions

in wireless communications, with typically requirements of sensor networks, automation and

remote control applications. IEEE 802.15.4 commission started working on standard a short

while later. Then the ZigBee Alliance, which is an transnational organization with over 200

member companies (ref. October 2006), and the IEEE Standards Association decided to

join forces and ZigBee is the commercial name for this technology. They have been working

in conjunction in order to specify a full protocol stack.

The IEEE 802.15.4 focuses on the speci�cation of the lower two layers standard Open Sys-

tems Interconnection (OSI) model of the protocol for Low-Rate Wireless Private Area Net-

works (LR-WPAN's). That are the Medium Access Control (MAC) layer and Physical layer.

It is operating in an unlicensed, international frequency band.

ZigBee Alliance aims to provide the upper layers of the protocol, from network to the ap-

plication layer, for interoperable data networking, security services and a range of wireless

home and building control solutions (device objects and pro�les). ZigBee Alliance provide

also interoperability compliance testing, marketing of standard and advanced engineering

for the evolution of the standard.

Standard IEEE 802.15.4-2003 de�ned the protocol and compatible interconnection for

data communication devices. The IEEE 802.15.4-2006 revision extends, makes improve-

ments and removes ambiguities in the IEEE 802.15.4-2003. Speci�cations are available at

the website of the IEEE 802.15 Working Group for WPAN [3].

6

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 7

The ZigBee 1.0 speci�cation was released in December 2004 (�rst stack called �ZigBee 2004�)

and is now obsolete. The enhanced speci�cation was released to the public in December 2006

(2nd stack called �ZigBee 2006�) and contains several changes. The newest ZigBee speci�ca-

tion announced in October 2007 looking to extend the ZigBee 2006 speci�cation capabilities

and is now publicly available at the website of the ZigBee Alliance [4]. ZigBee 2007 at the

network level is not backwards-compatible with ZigBee 2004/2006.

The organization of the IEEE 802.15.4/ZigBee protocol architecture is presented in Fig-

ure 2.1.

Figure 2.1: IEEE 802.15.4/ZigBee protocol stack architecture

2.2 General Description of IEEE 802.15.4

As has allready been noted, the main features of this standard are low cost, low power con-

sumption, low data rate and network �exibility in an adhoc self-organizing network among

inexpensive devices, which can be �xed, portable and/or moving. It is developed for appli-

cations with limited throughput requirements, which cannot handle the power consumption

of heavy protocol stack.

2.2.1 IEEE 802.15.4 WPAN

A. Network Devices

LR-WPAN support two diferent types of devices.

� Full Function Device (FFD)

A FFD is a device that can support three operation modes

� A Personal Area Network Coordinator (PAN Coordinator)

The main controller of the personal area network. This device identi�es its own

network. To this network can be associated other devices.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 8

� A Coordinator

It provides synchronization services through the transmission of beacons and

must be associated to a PAN coordinator. A coordinator does not create its own

network.

� A simple device

A device which does not implement the previous functions.

� Reduced Function Device (RFD)

A RFD is a device operating with minimal implementation of the IEEE 802.15.4

protocol. It can only associate with a single FFD at a time. A RFD is intended for

applications that are extremely simple, do not need to send large amounts of data.

A LR-WPAN must include at least one FFD acting as a PAN coordinator that provides

global synchronization services to the network and manages potential FFDs and RFDs.

B. Network Topologies

1. Star Topology

In the star topology, the communication is established between devices and a single

central controller, a unique node operates as the PAN coordinator. After an FFD is

activated for the �rst time, it may establish its own network and become the PAN

coordinator. The PAN coordinator chooses a PAN identi�er, which is not currently

used by any other network in the radio sphere of in�uence. This allows each star

network to operate independently. Each device (FFD or RFD) that is joined the

network, communicate with other devices through PAN coordinator, therefore, the

PAN coordinator have signi�cant power consumption, hence may be mains powered.

The devices will most likely be battery powered.

2. Peer-to-Peer (Mesh) Topology

The peer-to-peer (mesh) topology also includes a PAN coordinator. In contrast to

star topology, each device can directly communicate with any other device in its radio

range and communication process does not rely on a particular node. This enlarges

networking �exibility, but it causes an additional complexity.

3. Cluster-Tree Topology

The Cluster-Tree is a special case of a peer-to-peer network in which most devices

are FFDs. An RFD may connect to cluster-tree network as a leave node at the end

of a branch. Any of the FFD can act as a coordinator and provide synchronization

services to other devices and coordinators. Only one of these coordinators is the PAN

coordinator, which identi�es the entire network. The standard IEEE 802.15.4 [3] does

not de�ne how to build a cluster-tree network. It only indicates that this is possible

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 9

and may be initiated by higher layers (network layer). In [5, 10] is simply presented,

how may be it performed. The network layer introducted in the ZigBee speci�cation

[4] uses the primitives provided by the IEEE 802.15.4 MAC sublayer and propose the

cluster-tree protocol.

Figure 2.2 presents a network topologies supported by the IEEE 802.15.4 standard.

Figure 2.2: Topology Models.

2.2.2 IEEE 802.15.4 Physical layer

The physical layer is responsible for data transmission and reception using a certain radio

channel and according to a speci�c modulation and spreading technique. The IEEE 802.15.4

o�ers three operational frequency bands: 2.4 GHz, 915 MHz and 868 MHz. There is a single

channel between 868 and 868.6 MHz, 10 channels between 902 and 928 MHz, and 16 channels

between 2.4 and 2.4835 GHz (see Figure 2.3). The protocol also allows dynamic channel

selection, channel switching, a scan function that steps through a list of supported channels

in search of a beacon, receiver energy detection and link quality indication.

The data rate is 250 kbps at 2.4 GHz, 40 kbps at 915 MHZ and 20 kbps at 868 MHz.

Lower frequencies are more suitable for longer transmission ranges due to lower propagation

losses. Low rate transmissions provide better sensitivity and larger coverage area. Higher

rate means higher throughput, lower latency or lower duty cycles. All of these frequency

bands are based on the Direct Sequence Spread Spectrum (DSSS) spreading technique (see

[3, 8]). The features of each frequency band are summarized in Table 2.1.

The physical layer of the IEEE 802.15.4 is in charge of the following tasks:

� Activation and deactivation of the radio transceiver

The radio transceiver may operate in one of three states: transmitting, receiving or

sleeping.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 10

Figure 2.3: Operating frequency band.

PHY Frequency band Number of Spreading parameters Data parameters

(MHz) (MHz) channels Chip rate Modulation Bit rate Symbol rate Symbols

(kchip/s) (kbit/s) (ksymbol/s)

868 868 - 868.6 1 300 BPSK 20 20 Binary

915 902 - 928 10 600 BPSK 40 40 Binary

2450 2400 - 2483.5 16 2000 O-QPSK 250 62.5 16-ary Orthogonal

Table 2.1: Frequency bands and data rates.

� Energy Detection (ED) within the current channel

It is an estimation of the received signal power within the bandwidth of an IEEE

802.15.4 channel. This task does not make any signal identi�cation or decoding on

the channel. This measurement is typically used by the network layer as a part of

channel selection algorithm or for the purpose of Clear Channel Assessment (CCA),

to determine if the channel is busy or idle.

� Clear Channel Assessment (CCA)

This operation is responsible for reporting the medium activity state: busy or idle.

The CCA is performed in three operational modes:

� Energy Detection mode: the CCA reports a busy medium if the detected energy

is above the ED threshold.

� Carrier Sense mode: the CCA reports a busy medium only is it detects a signal

with the modulation and the spreading characteristics of IEEE 802.15.4 and which

may be higher or lower than the ED threshold.

� Carrier Sense with Energy Detection mode: this is a combination of the aforemen-

tioned techniques. The CCA reports that the medium is busy only if it detects

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 11

a signal with the modulation and the spreading characteristics of IEEE 802.15.4

and with energy above the ED threshold.

� Link Quality Indication (LQI)

The LQI measurement characterizes the Strength/Quality of a received packet. It

measures the quality of a received signal on a link. This measurement may be im-

plemented using receiver ED, a signal to noise estimation or a combination of both

techniques.

� Channel Frequency Selection

The IEEE 802.15.4 de�nes 27 di�erent wireless channels. A network can support only

part of the channel set. Hence, the physical layer should be able to tune its transceiver

into a speci�c channel request by a higher layer.

2.2.3 IEEE 802.15.4 Medium Access Control (MAC) layer

The MAC sub-layer provides an interface between the physical layer and the higher layer of

protocol.

MAC protocol supports two operational modes that may be selected by the coordinator:

� Beacon-enabled mode

Beacons are periodically generated by the coordinator to synchronize attached devices

(receiving and decoding the beacon) and to identify the PAN. A beacon frame is the

�rst part of a superframe, which contain data frames exchanged between nodes and

between nodes and the PAN coordinator.

� Non Beacon-enabled mode

In this mode, the devices can simply send their data by using unslotted CSMA/CA

(Carrier Sense Multiple Access /Collision Avoidance). There is no use of a superframe

structure in this mode. Synchronization is performed by polling the coordinator for

data.

Figure 2.4 presents a structure of the IEEE 802.15.4 operational modes.

2.2.3.1 Operational Modes

A. The Beacon-enabled mode

When the coordinator selects the beacon-enabled mode, it will use of a superframe structure

to manage communication between devices (that are associated to that PAN). The format

of the superframe is de�ned by the PAN coordinator and transmitted to other devices

inside every beacon frame, which is broadcasted periodically by the PAN coordinator. The

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 12

Figure 2.4: IEEE 802.15.4 operational modes

superframe is contained in a Beacon Interval, which is bounded by two consecutive beacon

frames, and has an active period and may has an inactive period. The coordinator interacts

with its PAN during the active period, and enters in a low power mode (sleep) during the

inactive period. The structure of a superframe (Figure 2.5) is de�ned by two parameters:

� macBeaconOrder (BO): this attribute describes the interval at which the coordinator

must transmit beacon frames. The Beacon Interval (BI) is de�ned as:

BI = aBaseSuperframeDuration ∗ 2BOsymbols, for 0 ≤ BO ≤ 14

� macSuperframeOrder (SO): this attributes describes the length of the active portion

of the superframe, which includes the beacon frame. The Superframe Duration (SD)

is de�ned as:

SD = aBaseSuperframeDuration ∗ 2SOsymbols, for 0 ≤ SO ≤ BO ≤ 14

If SO = BO ⇒ SD = BI, then the superframe is always active. A PAN that wishes to

use the superframe structure must set macBeaconOrder to a value between 0 and 14 and

macSuperframeOrder to a value between 0 and the value of macBeaconOrder.

The active portion of each superframe is divided into 16 equally spaced slots of duration 2SO∗
aBaseSlotDuration. The attribute aBaseSlotDuration represents the number of symbols

forming a superframe slot when the SO is equal to zero. One symbol is equal to four bits.

The active portion of the superframe structure is composed of three parts:

� Beacon: the beacon is transmitted without the use of CSMA at the start of slot 0.

It contains the information on the addressing �elds, the superframe speci�cation, the

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 13

GTS �elds, the pending address �elds, etc. For more details on the beacon frame,

refer to Appendix A.

� Contention-Access Period (CAP): the CAP starts immediately after the beacon

frame and ends before the beginning of the CFP (if it exists), otherwise, the CAP

ends at the end of the active part of the superframe. The minimum length of the CAP

is �xed and it ensures that MAC commands can still be transferred to devices when

Guaranteed Time Slots (GTSs, see below) are being used.

� Contention-Free Period (CFP): the CFP (if it exists) starts immediately after the

end of the CAP and must complete before the start of the next beacon frame. The

CFP consists in Guaranteed Time Slots (GTSs). It is a kind of resource reservation in

WPANs. The GTSs may be only allocated by the PAN coordinator and must occupy

contiguous slots. The CFP may therefore grow or shrink depending on the total length

of all GTSs. According to the standard, the GTS is used only for communications

between a PAN coordinator and a device.

Figure 2.5: Structure of a Superframe

There are two superframe con�gurations:

1. The superframe structure without GTSs

If communications are restricted to the CAP (de�ned in the beacon, issued by the PAN

Coordinator) a device wishing to communicate must compete with other devices using

a slotted CSMA/CA mechanism to access the channel. However, the acknowledge-

ment frames and any data that immediately follows the acknowledgement of a data

request command are transmitted without contention. A device that cannot complete

its transmission before the end of the CAP, must defer its transmission until the CAP

of the next superframe.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 14

2. The superframe structure with GTSs

If some guaranteed Quality of Service (QoS) is to be supported, then a CFP is de�ned.

The PAN coordinator may allocate up to seven GTSs and each GTS may occupy more

than one time slot. The transmissions in the CFP are contention-free and therefore

do not use a CSMA/CA mechanism to access the channel. All contention-based com-

munication must be �nished before the start of the CFP, and a node transmitting a

GTS must ensure that its transmission will be complete before the start of the next

GTS (or the end of the CFP). The GTS management are discussed in Section 2.2.3.4.

In both con�gurations (CAP only or CAP/CFP), the superframe structure can have an

inactive period during which the PAN coordinator does not interact with its PAN and may

enter in a low power mode. The inactive periods enable the devices to save energy and thus

extend network lifetime.

B. The Non Beacon-enabled Mode

When the PAN coordinator selects the non-beacon enabled mode, there are neither beacons

nor superframes. According to the standard, the PAN will operate in a non beacon-enabled

mode when the value of macBeaconOrder and macSuperframeOrder is equal to 15. Medium

access control is provided by an unslotted CSMA/CA mechanism. All messages to be trans-

mitted, with the exception of acknowledgment frames and any data frame that immediately

follows the acknowledgment of a data request command, must be dispatched according to

this mechanism.

2.2.3.2 The CSMA/CA mechanisms

The IEEE 802.15.4 de�nes two versions of the CSMA/CA mechanism:

� The slotted CSMA/CA version � used in the beacon-enabled mode.

� The unslotted CSMA/CA version � used in the non beacon-enabled mode.

In both cases, the CSMA/CA algorithm is based on backo� periods. Backo� period is the

basic time unit of the MAC protocol and the access to the channel can only occur at the

boundary of the backo� periods. In slotted CSMA/CA the backo� period boundaries must

be aligned with the superframe slot boundaries while in unslotted CSMA/CA the backo�

periods of one device are completely independent of the backo� periods of any other device

in a PAN. The transmission of the current frame is started only if the remaining number

of backo� periods in the current superframe is su�cient to handle both the frame and the

subsequent acknowledgement transmissions. Otherwise, the transmission of the frame is

deferred until the next superframe.

Figure 2.6 depicts a �owchart describing both versions of the CSMA/CA mechanism.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 15

The CSMA/CA mechanism uses three variables to schedule the access to the medium:

� NB - the number of times the CSMA/CA algorithm was required to backo� while

attempting the access to the current channel.

� CW - the contention windows length, which de�nes the number of backo� periods that

need to be clear of channel activity before starting transmission. The CW variable is

not used in the unslotted CSMA/CA.

� BE - the backo� exponent, which is related to how many backo� period a device must

wait before attempting to assess the channel activity.

MAC sub-layer attributes:

� macBattLifExt - indication of whether battery life extension, by reduction of coordi-

nator receiver operation time during the CAP, is enabled. The unslotted CSMA/CA

does not support macBattLifExt mode.

� macMinBE - speci�es the minimum value of the backo� exponent. When macMinBE

is set to zero, the waiting delay is null and collision avoidance is disabled during the

�rst iteration of the algorithm.

� aMaxBE - speci�es the maximum value of the backo� exponent, a constant de�ned in

the standard.

� macMaxCSMABacko�s - speci�es the maximum number of backo�s the CSMA/CA

algorithm will attempt before declaring a channel access failure status.

2.2.3.3 Frame Structure

The frame structures have been designed to keep the complexity to a minimum while at

the same time making them su�ciently robust for transmission on a noisy channel. Each

successive protocol layer adds to the structure with layer-speci�c headers and footers. The

LR-WPAN de�nes four frame structures:

� a beacon frame, used by a coordinator to transmit beacons

� a data frame, used for all transfers of data

� an acknowledgment frame, used for con�rming successful frame reception

� a MAC command frame, used for handling all MAC peer entity control transfers

The structure of each of the four frame types is presented in Appendix A.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 16

Figure 2.6: The CSMA/CA Mechanism

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 17

2.2.3.4 GTS Management

The GTS (Guaranteed Time Slot) is dedicated (on the PAN) exclusively to a given device to

whom allows to access the medium without contention in the CFP but it can also transmit

during the CAP. The GTS must be allocated by a device before use and can be deallocated

at any time at the discretion of the PAN coordinator or the device that originally requested

the GTS. The PAN coordinator is the responsible for performing GTS management. If a

device misses the beacon at the beginning of a superframe, it must not use its GTSs until it

receives a subsequent beacon correctly. If synchronization with the PAN coordinator is lost

due to the loss of the beacon, the device considers all of its GTSs deallocated.

A. GTS Allocation

A device that wants to allocate a GTS must send a GTS request command to its PAN coor-

dinator indicating the GTS characteristics. The GTS request command frame is presented

in Appendix A. Each device may request one transmit GTS (the direction of data �ow

is from the device to the coordinator) and/or one receive GTS (the direction is from the

coordinator to the device).

The result of the GTS request is reported by the coordinator in the beacon frames using a

GTS descriptor (presented in Appendix A) for each requesting device. The GTS descrip-

tor remains in the beacon frame for aGTSDescPersistenceTime superframes, after which it

should be removed automatically.

B. GTS deallocation

A device is instructed to request the deallocation of an existing GTS through sends a deal-

location request to the PAN coordinator, which shall attempt to deallocate the GTS (its

stored characteristics are reset). It does not add a GTS descriptor into its beacon frame to

indicate the deallocation. If the GTS characteristics contained do not match the character-

istics of a known GTS, the PAN coordinator shall ignore the request.

When a GTS is deallocated by the PAN coordinator, it adds a GTS descriptor into its

beacon frame corresponding to the deallocated GTS, but with its starting slot set to 0,

indicating that the GTS has been deallocated. The descriptor remains in the beacon frame

for aGTSDescPersistenceTime superframes. On receipt of a beacon frame containing a cor-

responding GTS descriptor, the device shall immediately stop using the GTS.

The deallocation of a GTS may result in the superframe becoming fragmented. The PAN

coordinator must ensure that any gaps occurring in the CFP, are removed to maximize the

length of the CAP.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 18

C. GTS expiration

The PAN coordinator must attempt to detect when a device has stopped using a GTS:

� for a transmit GTS, the PAN coordinator assumes that a device is no longer using its

GTS if a data frame is not received in the GTS at least every 2 ∗ n superframes

� for receive GTSs, the PAN coordinator assumes that a device is no longer using its

GTS if an acknowledgment frame is not received at least every 2 ∗ n superframes

The value of n is de�ned as follows:

n = 2(8−macBeaconOrder) for 0 ≤ macBeaconOrder ≤ 8

n = 1 for 9 ≤ macBeaconOrder ≤ 14

2.2.3.5 Extracting pending data from a coordinator

This communication mechanism is called indirect transmission, where a given device polls

pending data from its coordinator.

In a beacon-enabled mode, a device is aware whether it has any frame pending by examining

the contents of the received beacon frames. If its address is contained in the Pending Address

�eld of the beacon frame, then the device sends a data request command to the coordinator

in the CAP. The sending of the pending data is based on CSMA/CA.

2.2.3.6 Channel scan procedures

A PAN can be created by an FFD only after performing an Active channel or an Energy

Detection (ED) channel scan and choosing an appropriate PAN identi�er. Channel scan

procedures are explained in [3, 5].

2.2.3.7 Association and Disassociation

A. Association

When a device wants to join an existing network without creating a new PAN, it must be

associated with an existing PAN. The association process starts with an channel scan. The

results of the scan are then used to choose a suitable PAN characterized by its physical

channel, identi�er, extended and short addresses. If the coordinator successfully associates

the device by allocating a new short address than generates an association response command

containing the new address. The association response command is sent to the device using

indirect transmission.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 19

B. Disassociation

The disassociation process may be initiated by either the coordinator or the device itself.

� Coordinator-initiated disassociation: the coordinator sends the disassociation

noti�cation command to the device using indirect transmission. All the references to

the device are removed by the PAN coordinator.

� Device-initiated disassociation: the device sends a disassociation noti�cation com-

mand to the coordinator. All the references to the PAN must be removed by the device.

2.2.3.8 Orphaned device

A device may conclude that it becomes an orphan device (out of the range of its last PAN)

if a predetermined number of transmission attempts have failed. The device than triggers

the orphaned device realignment procedure or resets the MAC sub-layer and perform the

association procedure. The orphaned device realignment consists on doing an orphan channel

scan (see [3, 5]).

2.3 The ZigBee

The IEEE 802.15.4 standard de�nes the physical (PHY) layer and the Medium Access

Control (MAC) sub-layer. The ZigBee Alliance builds on this foundation by providing

the network (NWK) layer and the application framework for the application layer. The

application framework (AF) is comprised of the application support sub-layer (APS), the

ZigBee device objects (ZDO) containing the ZDO management plane, and the manufacturer-

de�ned application objects.

2.3.1 The ZigBee stack architecture

The ZigBee stack architecture is depicted in Figure 2.7. Each layer performs a speci�c set

of services and capabilities for the layer above: a data entity provides a data transmission

service and a management entity provides all other services. Each service entity exposes an

interface to the upper layer through a service access point (SAP), and each SAP supports a

number of service primitives to achieve the required functionality.

The responsibilities of the ZigBee NWK layer shall include mechanisms used to:

� Starting a network - the ability to successfully establish a new network

� Joining and leaving a network - the ability to gain membership (join) or relinquish

membership (leave) a network

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 20

Figure 2.7: Outline of the ZigBee Stack Architecture

� Con�guring a new device - the ability to su�ciently con�gure the stack for operation

as required

� Addressing - the ability of a ZigBee Coordinator (see bellow) to assign addresses to

devices joining the network

� Synchronization within a network - the ability for a device to achieve synchronization

with another device either through tracking beacons or by polling

� Security - applying security to outgoing frames and removing security to terminating

frames

� Routing - routing frames to their intended destinations

The ZigBee speci�cation de�ned three types of devices according to the IEEE 802.15.4

standard (see Section 2.2.1):

� ZigBee Coordinator (ZC) (FFD)

� one required for each ZB network

� initiates network formation and is responsible for the inner workings of the net-

work

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 21

� ZigBee Router (ZR) (FFD)

� is used as mediator (multihop routing of messages) for the coordinator in the

PAN - allowing the network to expand beyond the radio range of the coordinator

� acts as a local coordinator for end devices joining the PAN and must implement

most of the coordinator capabilities

� ZigBee End Device (ZED) (RFD or FFD)

� does not allow association or routing

� enables very low cost solutions

The responsibilities of the APS sub-layer include:

� Maintaining tables for binding, de�ned as the ability to match two devices together

based on their services and their needs

� Forwarding messages between bound devices

� Discovering devices on the network and determining which application services they

provide

� Group address de�nition, removal and �ltering of group addressed messages

� Address mapping from 64 bit IEEE addresses to and from 16 bit NWK addresses

� Fragmentation, reassembly and reliable data transport

The responsibilities of the ZDO include:

� De�ning the role of the device within the network (e.g. ZigBee Coordinator or end

device)

� Initiating and/or responding to binding requests

� Establishing a secure relationship between network devices selecting one of ZigBee's

security methods such as public key, symmetric key, etc.

TheApplication Framework in ZigBee is the environment in which application objects are

hosted on ZigBee devices. The application objects perform the following functions through

the ZDO public interfaces:

� Control and management of the protocol layers in the ZigBee device

� Initiation of standard network functions

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 22

Inside the application framework, the manufacturer-de�ned application objects im-

plement the actual applications according to the ZigBee-de�ned application descriptions.

The application objects send and receive data through the APSDE-SAP. Up to 240 distinct

application objects can be de�ned, each interfacing on an endpoint indexed from 1 to 240.

An endpoint number can be used to identify individual physical devices that are described

in terms of the data attributes that they contain. Two additional endpoints are de�ned

for APSDE-SAP usage: endpoint 0 is reserved for the data interface to the ZDO (device

management, in other words, used to address the descriptors in the node) and endpoint

255 is reserved for the data interface function to broadcast data to all application objects.

Endpoints 241-254 are reserved for future use.

The Application pro�les are agreements for messages, message formats and processing

actions that enable applications to create an interoperable, distributed application between

applications that reside on separate devices. These application pro�les enable applications

to send commands, request data and process commands and requests.

ZigBee vendors develop application pro�les to provide solutions to speci�c technology needs.

Application pro�les are simultaneously a means of unifying interoperable technical solutions

within the ZigBee standard, as well as focusing usability e�orts within a given marketing

area. ZigBee publishes a set of public pro�les and product vendors may add additional

features to them.

A complete description of the ZigBee speci�cation can be found in [11].

Chapter 3

Description of used Software and

Hardware

The following is a brief introduction to TinyOS [16] and nesC [18]. Furthermore, the Moteiv

Tmote Sky [21] sensor module is described.

3.1 TinyOS

TinyOS is a micro-threaded, event-driven open source operating environment implemented

using nesC and designed to support the concurrency operations required by embedded net-

worked sensors with minimal hardware requirements. The TinyOS minimizes code size, this

means that only the necessary features of the operating system and application are included.

TinyOS was initially developed by researchers at the University of California, Berkeley [15]

in cooperation with Intel Research and now is actively supported by a large community of

users. For this thesis purpose is used the TinyOS version 1.1.15, running under Cygwin

(Linux-like environment) on Windows platform, for compatibility reasons. The implemen-

tation of the IEEE 802.15.4/ZigBee protocols, so-called open-ZB stack, is developed in this

version of TinyOS. Actual version of TinyOS is 2.0.2 and the second series is not compat-

ible with the �rst series. The source for TinyOS are available on SourceForge [17]. Install

instructions for getting TinyOS running under Cygwin are enclosed in Appendix C. See the

TinyOS [16] on Linux page if you are interesting in running TinyOS on Linux.

An application implemented in TinyOS is based on a number of components, e.g. Leds,

Timers, etc. These components are reusable from one application to another. Applications

are formed by components, which are wiring together to suite the task at hand. Chang-

ing whether the device communicates using the wireless channel or the serial port can be

changed by simply changing the communication component which the application connects.

Components can be abstract concepts (consisting of many diferent components) or a low

23

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE 24

level wrapper for a hardware component (e.g. UART).

The implementation of components is based on tasks, commands and events.

Tasks should generally be to perform long processing operations, such as long running com-

putations or background data processing. Tasks are posted to a task queue, after which

control is immediately returned to the posting component. The TinyOS task scheduler is

based on simple FIFO task execution. When no tasks are pending to be executed, the

scheduler switch the processor to sleep (main TinyOS ideology - execute jobs quickly and go

back to sleep to save power), until the next interrupt is received. Tasks run to completion

and cannot preempt each other. The use of tasks causes TinyOS to have only non-blocking

operations.

Commands are called to execute a given functionality in another component.

Events also run to completion and can preempt the execution of tasks or other events.

Events signify either completion of a split-phase operation (see below) or an event from

the environment (e.g. time passing). Components wrapping hardware signal events in re-

sponse to hardware interrupts. These events are marked with the async keyword. There

exist a technique of split-phase operation (operation request and completion are separate

functions), if long-latency operations are used. Essentially, commands are used to initiate

the requested action, e.g. component.request, posting a task and returning immediately.

Events are then signaled in response to the completion of the split-phase operation, e.g.

typically using component.requestDone. These kinds of events do not preempt as those

caused by hardware interrupts.

3.2 nesC

nesC (network-embedded-systems-C) is the programming language of TinyOS. It is an ex-

tension of C language that uses a custom compiler �nesC�. For this thesis purpose is used

the nesC version 1.2.7. The source for nesC are available on SourceForge [19].

nesC uses two concepts to represent components: modules and con�gurations. Modules

contain the code for a single component whereas a con�guration is used to wire components

together. An application can use a con�guration wiring one or wiring more components

together as a component in itself. A top-level con�guration wires all components in the

application together.

A module implements one or more interfaces. Interfaces in nesC are bidirectional - they

contain and make accessible commands and events (both of which are essentially functions)

provided by a component. A component provides and uses interfaces. Con�gurations wire

modules using a given interface to a component providing an implementation of this interface.

The concurrency model of nesC allows for static compile time detection of race conditions.

These can be handled using atomic sections to turn o� hardware interrupts in a block of

code and update the shared state, or by converting the con�icting code into tasks. The

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE 25

static analysis prohibits some of features used in regular C language, especially function

pointers and dynamic memory allocation (i.e. malloc).

TinyOS consists of many modules. These are compiled with the application as needed.

3.3 Moteiv Tmote Sky

As hardware platform for wireless communication has been chosen the Tmote Sky sensor

module, because the Wireless Sensor Networks Group at Department of Control Engineering

have these nine operational devices that are available.

Tmote Sky is an ultra low power IEEE 802.15.4 compliant wireless sensor module for

use in sensor networks and monitoring applications. Tmote Sky, just alternative name for

Telos Revision B design, is the latest sensor node platform available from Moteiv Corpo-

ration. Tmote Sky is replacement for Moteiv's successful Telos design (Revision A), whose

open source hardware speci�cation is Tmote Sky based. Both revision are supported by

TinyOS/nesC.

3.3.1 Key Features

� 250kbps 2.4GHz IEEE 802.15.4 CC2420 Chipcon Wireless Transceiver

� 8MHz Texas Instruments MSP430F1611 microcontroller (10kB RAM, 48kB Flash)

� Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

� Integrated onboard antenna with 50m range indoors / 125m range outdoors

� Integrated Humidity, Temperature, and Light sensors

� Ultra low current consumption and fast wakeup from sleep (<6us)

� Programming and data collection via USB

� 16-pin expansion support and optional SMA antenna connector

3.3.2 Module Description

Tmote Sky may be powered by two AA batteries (operating range of 2.1 to 3.6V DC) or if

it is plugged into the USB port for programming or communication, it will receive power

from the host computer (operating voltage is 3V).

Tmote Sky features the Chipcon CC2420 IEEE 802.15.4 compliant radio for wireless com-

munications, providing the PHY, some MAC functions and programmable output power.

Features and usage of the CC2420 is available in Chipcon's datasheet [27]. CC2420 is con-

trolled by the 16-bit RISC TI MSP430 F1611 8Mhz microcontroller TI with 48kB ROM

and 10kB RAM, through the SPI (Serial Port Interface) port and a series of digital I/O

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE 26

lines and interrupts. There are UART (Universal Asynchronous Receiver/Transmitter), I2C

(Inter IC), an external 32768Hz watch crystal and 8 external ADC ports (12-bit) provided

which can be used to collect external signals. The features of the MSP430 F1611 are pre-

sented in detail in the Texas Instruments Datasheet and MSP430x1xx Family User's Guide

[24].

A 1MB STM25P80 Flash (1MB or 1024kB) on the Tmote Sky is another extremely useful

feature. This can be conveniently used to store data, code and other information perma-

nently on the tmote until the �ash gets formatted. The �ash shares SPI communication

lines with the CC2420 radio and the external SPI pins (on external expansion connector).

This means that there is a need for careful bus arbitration while using any of them simulta-

neously.

Tmote Sky uses a USB controller from FTDI to communicate with the host computer. In

order to communicate with the mote, the FTDI drivers must be installed on the host. They

may be downloaded from FTDI's website [25]. Tmote Sky appears as a COM port in Win-

dows device manager (or as a device in /dev in Linux). Multiple Tmote Sky motes may

be connected to a single computer's USB ports at the same time. Each mote will receive a

di�erent COM port identi�er. Tmote communicates with the host PC through USART1 on

the TI MSP430.

The Tmote Sky module provides 3 leds as user interface and slot to attach an external

antenna (range of 125m, internal antenna range of 50m). It is programmed through the

onboard USB connector. A modi�ed version of the MSP430 Bootstrap Loader, msp430-bsl

[26], programs the microcontroller's �ash.

Tmote Sky has two expansion connectors (depicted in Figures 3.1, 3.2), 10-pin and 6-pin,

that may con�gured so that additional devices (analog sensors, digital peripherals) may be

controlled by the Tmote Sky and can provide power to the expansion module. The 10-

pin connector is the primary connector. An additional 6-pin header provides access to the

exclusive features of Tmote Sky.

Figure 3.1: Functionality of the 10-pin expansion connector (U2)
Alternative pin uses are shown in gray

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE 27

Figure 3.2: Functionality of the 6-pin expansion connector (U28)
Alternative pin uses are shown in gray

3.3.3 Block Diagram

Figure 3.3: Functional Block Diagram of the Tmote Sky module, its components, and buses

Chapter 4

Open-ZB stack and its porting to

TelosB platform

4.1 Introduction

The open-ZB stack is the open-source implementation of the IEEE 802.15.4/ZigBee proto-

cols in TinyOS 1.x/nesC, which is providing as the toolset. Protocol stack is being developed

within the IPP-HURRAY Research Group (the Polytechnical Institute of Porto, Portugal),

by André Cunha, Mário Alves and Anis Koubâa. The protocol stack was primarily imple-

mented for CrossBow MICAz platform.

When we would like to use the Tmote Sky sensor modules for creating an wireless sensor

network, we started to porting and �nally collaborated with the IPP-HURRAY Research

Group (namely André Cunha) in porting this protocol stack to the TelosB platform (Cross-

Bow TelosB or Moteiv Tmote Sky modules). The entire implementation and porting was

completed and the version of open-ZB stack that includes the support for the TelosB plat-

form motes is version 1.2.

Actual version of protocol stack already includes the implementation of the ZigBee Network

Layer (ZBNL) on top of implementation IEEE 802.15.4 protocol. This implementation en-

ables the cluster-tree network topology with a mechanism for beacon scheduling in order

to enable an e�cient use of synchronized cluster-tree networks. There is no need to use

the ZBNL for the purpose of this diploma thesis, therefore, we used the open-ZB stack

version 1.2.

Version 1.2 of the implementation supports the following IEEE 802.15.4

functionalities:

� CSMA/CA algorithm - slotted version

� GTS Mechanism

28

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 29

� Indirect transmission mechanism

� Direct / Indirect / GTS Data Transmission

� Beacon Management

� Frame construction - Short Addressing Fields only and extended addressing �elds in

the association request

� Association / Disassociation Mechanism

� MAC PIB Management

� Frame Reception Conditions

� ED and PASSIVE channel scan

Functionalities that are not implemented or tested in the version 1.2 yet:

� Unslotted version CSMA/CA - Implemented but not fully tested

� Extended Address Fields of the Frames

� IntraPAN Address Fields of the Frames

� Active and Orphan channel Scan

� Orphan Devices

� Frame Reception Conditions (Verify Conditions)

� Security - Out of the scope of this implementation

The open-ZB stack v1.2 is supported by two hardware models, the MICAz and

the TelosB motes.

Comparison of general features these two hardware models is presented in Table 4.1.

The MICAz mote needs to be programmed using an interface board. The TelosB motes do

not need any programmer interface because they already have an USB port that is used to

upload programs. More information about the TelosB platform (Tmote Sky) was

presented in Chapter 3.

MICAz TelosB
ATMEL ATmega128L 8-bit µcontroller TI MSP430 16-bit µcontroller

CC2420 RF transceiver CC2420 RF transceiver

128 KB of program memory 48 KB of program memory

4 KB of EEPROM 10 KB of EEPROM

Supports several sensor boards Includes a temperature and light sensor

UART communication port UART communication port (USB converter)

Table 4.1: The supported features of MICAz and TelosB platform.

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 30

4.2 Software Architecture

Figure 4.1 presents implementation stack architecture layers.

Figure 4.1: Open-ZB Protocol Stack Architecture.

The implementation is organized so that each main module (PhyM and MacM) im-

plements a layer functions. Each of these modules makes use of auxiliary �les used for

some generic function implementations, constants declarations, enumerations and data struc-

ture de�nitions. IPP-HURRAY Research Group have developed an auxiliary module, the

TimerAsync, for the implementation of an asynchronous timer based on the hardware clock.

For the synchronous timers, used in non time critical operations, is used the TimerC already

provided by TinyOS.

The implementation uses �les/components already provided in TinyOS namely the hard-

ware components. All the stack �les are located in the contrib/hurray folder. The direc-

tory structure is similar to the TinyOS root folder. All the �les created for implementation

and their respective location are depicted in Figure 4.1. A more detailed description is

introducted in [6].

The interface �les are used to wiring the stack components and represent a service access

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 31

point (SAP). The RF-SAP comprehends the interface with the physical radio via the RF

�rmware of the CC2420 and hardware components in TinyOS. The PD-SAP (Phy Data

service) comprehends the interface to exchange data packets between MAC and PHY layers.

The PLME-SAP (Physical Layer Management Entity) comprehends the interfaces between

MAC and PHY layers used for exchanging management information. The PLME-SAP

contains an PHY PAN Information Base (PHY PIB), which is a database of physical layer

managed objects (e.g. current channels, transmit power) and the PLME-SAP interfaces are

used by MAC layer to manage this information.

The MCPS-SAP (MAC Common Part Sublayer) comprehends the MSDU (MAC Service

Data Unit) data transfer between the MAC layer and the upper layer. The MLME-SAP

(MAC Layer Management Entity) contains an MAC PAN Information Base (MAC PIB),

which is a database of MAC layer managed objects (e.g. beacon order, superframe order,

short address, PAN identi�er, GTS permit options) and the MLME-SAP (MAC Layer Man-

agement Entity) interfaces are used by the MAC upper layer to manage this information.

4.3 Comparison between MICAz and TelosB implemen-

tation

Figure 4.2 presents the most important component relations diagram of open-ZB stack

implementation in TinyOS for both platforms - MICAz and TelosB. The most relevant

TinyOS hardware components are highlighted in white. The components of open-ZB stack

are highlighted in gray.

The important aspect of IEEE 802.15.4 standard is the synchronization and with it re-

lated to the main modi�cation. To accomplish a precise synchronization a important timer

component was developed, with an asynchronous behaviour regarding the code execution,

based on the hardware clock. The reason is related to the TinyOS management of hard-

ware timer provided by both platforms, which does not allow having the exact values in

millisecond of the beacon interval, superframe and time slots as speci�ed by the protocol.

Also due to the di�erence between the hardware timers used by the two platforms is not

possible to achieve the same timer granularities. Therefore, the TimerAsync component has

two di�erent implementations. These implementation for MICAz and TelosB platform are

carefully described in [6].

The physical layer represented by PhyM module is need to be wired with the hardware

speci�c components, that are di�erentiated depending of the used hardware platform. The

interference in the MacM module (implements MAC layer) have a cosmetic character. An

graphical representation of the carried modi�cations is presented in pictures in [7]. In the

meantime, a few of comments under pictures are added, but an basic idea of concept of

the hardware components wiring should be uderstand. PHY auxiliary �les (contain the

protocol constants de�nition and enumeration values used in the PHY) and MAC auxiliary

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 32

Figure 4.2: Open-ZB stack implementation diagram in TinyOS/nesC for MICAz and TelosB
platforms.

�les (contain data structures de�nition, protocol constants de�nition and enumeration values

used in the MAC) are no need to change.

4.4 Main Modi�cations of the open-ZB stack

We started to porting from last version 1.1 of the implementation IEEE 802.15.4/ZigBee

protocol. In this section are presented some of main modi�cations.

4.4.1 Phy Con�guration File

Phy con�guration is used to wire the PhyM module to other components. PhyM module is
need to be wired with the hardware speci�c components of TelosB platform. The di�erence is
we use the MSP430InterruptC component for FIFOP interrupt (active when number of bytes
in FIFO of CC2420 radio exceeds threshold) instead of HPLCC2420Interrupt component,
that is used for MICAz platform.

c on f i gu r a t i on Phy { }

implementation { components MSP430InterruptC ;

PhyM. FIFOPInterrupt −> MSP430InterruptC . Port10 ; }

Take a look at the schematic given in the Tmote Sky datasheet [23] to �nd out which

pin of CC2420 radio is connected to a certain port of microprocessor. �Port10� means port

1.0 (PKT_INT) of MCU. This port is connected to FIFOP pin of CC2420.

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 33

4.4.2 PhyM Module File

PhyM module actually provides the implementation of PHY layer. When we use the
MSP430InterruptC then we must implement MSP430Interrupt interface, that MSP430 In-
terruptC component provides.

module PhyM {

uses {

i n t e r f a c e MSP430Interrupt as FIFOPInterrupt ;

}

}

implementation {

// phy s i c a l events CC2420

async event void FIFOPInterrupt . f i r e d () {

c a l l FIFOPInterrupt . enable () ; }

// enable an edge i n t e r r up t on the CC2420 FIFOP pin

void enableFIFOP (){

atomic { c a l l FIFOPInterrupt . d i s ab l e () ;

c a l l FIFOPInterrupt . c l e a r () ;

c a l l FIFOPInterrupt . edge (0) ;

c a l l FIFOPInterrupt . enable () ; } }

// d i s a b l e s CC2420 FIFOP in t e r r up t s

void disableFIFOP (){

atomic { c a l l FIFOPInterrupt . d i s ab l e () ;

c a l l FIFOPInterrupt . c l e a r () ; } }

}

Functions enableFIFOP() and disableFIFOP() are exactly assume from Telos HPLCC2420

InterruptM component. The FIFOPInterrupt.�red() event is the same as in MICAz PhyM

module, it is only completed by reenable FIFOP interrupt.

4.4.3 TimerAsync Components

The timer component for MICAz is based on the hardware clock timer con�guration de�ned

in two constants Scale and Interval. Scale de�nes the scale division of the AVR micropro-

cessor and Interval de�nes the number of clock ticks per clock �ring. The hardware timer

for the TelosB platform is based on a 32768 Hz clock and �res at approximately 30.5µs.

In comparison with the MICAz timer this does not allow the set of a scale or interval pa-

rameters, instead this is a continuous timer that count from 0 to 0xFFFF and when it

over�ows it triggers an interrupt and starts again from zero. The only allowed parameteri-

zation is the number of over�ow count before the issuing of the interrupt. The solution for

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 34

the implementation is described in [6].

4.4.4 Other Changes

In MSP430 microprocesor (used TelosB platform) may come an internal error of unsuported

relocation. The reason is that in this 16-bit microcontroller we have to be careful how we

declare structures. We cannot declare an 8-bit integer followed by an 16-bit integer, because

internally the MCU will alocate 32-bits of memory for that with an 8-bit space between the

�rst declaration and the second. Therefore we place an 8-bit integers always at the end of

structure de�nition.

In MacM module, that actually provides the implementation of MAC layer, we have to

use the powf() function for MSP430 MCU instead of the pow() function, that is only for the

AVR MCU. The function returns the value of x to the exponent y.

Chapter 5

Expansion Modules with

Accelerometers

As a simple ActiGraph devices are designed expansion modules (as peripherals) with an ap-

propriate accelerometers. As analog accelerometer has been chosen the MMA7260Q (eventu-

ally MMA7261Q) by Freescale Semiconductor and as digital accelerometer the LIS3LV02DQ

by ST Microelectronics. Both accelerometers have advantageous features available in this

project.

5.1 Expansion Module with Analog Accelerometer

MMA7260Q is ±1.5g - 6g and MMA7261Q is ±2.5g - 10g three axis low-g low-cost capacitive
surface-micromachined integrated-circuit accelerometer, whose main features are:

� Selectable Sensitivity (MMA7260Q: 1.5g/2g/4g/6g, MMA7261Q: 2.5g/3.3g/6.7g/10g)

� High Sensitivity (MMA7260Q: 200mV/g @6g, MMA7261Q: 120mV/g @10g)

� Low Voltage Operation Range: 2.2V - 3.6V

� Low Current Consumption: 500µA, Sleep Mode: 3µA

� Control Timing:

� Power-Up Response Time: 1ms - 2ms

� Enable Response Time: 0.5ms - 2ms

� Internal Sampling Frequency: 11kHz

� Integral Signal Conditioning with Low Pass Filter and temperature compensation

35

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 36

Special features:

� g-Select

The g-Select feature allows for the selection among 4 sensitivities present in the device.

Depending on the logic input placed on pins 1 and 2, the device internal gain will be

changed allowing it to function with a selected sensitivity that can be changed at

anytime during the operation of the product (Table 5.1).

g-Select2 [MSb] g-Select1 [LSb] g-Range [g] Sensitivity [mV/g]
0 0 1.5/2.5 800/480
0 1 2/3.3 600/360
1 0 4/6.7 300/180
1 1 6/10 200/120

Table 5.1: g-Select pin Descriptions for MMA7260Q/MMA7261Q

� Sleep Mode

The accelerometer provides a Sleep Mode that makes is ideal for handheld battery

powered electronics. A low input signal on pin 12 (Sleep Mode) will place the device

in this mode, the device outputs are turned o� and reduce the current to 3µA typ.

By placing a high input signal on pin 12, the device will resume to normal mode of

operation.

5.1.1 Design of Circuit Scheme

The entire design is created in Cadence OrCADDesign Tools 15.2 according to the MMA7260Q

datasheet. The electronical scheme is presented in Figure 5.1.

We used more capacitors on VCC to decouple the power source. In PCB (printed circuit

board) design is used the very low drop voltage (0.2V) regulator LE33CZ [30] with output

voltage 3.3V from ST Microelectronics for the purpose of using the designed expansion

board with accelerometer to other applications. The PCB design includes an RC �lter on

the outputs of the accelerometer to minimize clock noise. The circuit board is connected

to the Tmote Sky sensor module by the used 10-pin connector. A pin layout is designed

according to the functionality of the Tmote Sky 10-pin expansion connector, see Chapter 3.

That means, all of the X-axis, Y-axis and Z-axis are connected through analog input pins

(ADC0 - ADC2). Sleep mode and both of g-Select are connected through third analog input

remaining (ADC3) and UART0RX/UART0TX. These three pins will be always set only to

the high or low state according to using Sleep mode functionality and selecting required

sensitivity.

The Tmote Sky module with the manufactured designed expansion circuit board is pre-

sented in Figure 5.2.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 37

Figure 5.1: Circuit scheme with MMA7260Q.

Figure 5.2: Tmote Sky with manufactured expansion module with MMA7260Q analog and
LIS3LV02DQ digital accelerometer.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 38

5.2 Expansion Module with Digital Accelerometer

LIS3LV02DQ is ±2g/±6g three axes digital output high-performance low-power linear ac-

celerometer that includes a sensing element and an IC interface able to take the information

from the sensing element and to provide the measured acceleration signals to the external

world through an I2C/SPI serial interface.

When we want to design an expansion module (as peripheral) for the Tmote Sky sensor

module, we have to use an I2C serial interface, because the primary Tmote Sky 10-pin

connector provides only two I2C pins of I2C bus, see Chapter 3.

Main features of the accelerometer:

� selectable full scale of ±2g, ±6g

� measuring acceleration over a bandwidth of 640Hz for all axes

� 2.16V to 3.6V single supply operation

� I2C/SPI digital output interfaces

� programmable 12 or 16 bit data representation

� interrupt activated by motion and programmable interrupt threshold

� embedded Self Test that allows to test the mechanical and electric part of the sensor

5.2.1 I2C Serial Interface

The registers embedded inside the LIS3LV02DQ may be accessed through both the I2C and

SPI serial interfaces, but we have to use the I2C to communicate with the Tmote Sky sensor

module, therefore, we have to do a short I2C operation analyze. To select the I2C interface,

CS line must be tied high (i.e connected to Vdd).

The LIS3LV02DQ I2C is a bus slave, it means the device addressed by the master which

initiates/terminates a transfer and generates clock signals. The I2C is employed to write

the data into the registers whose content can also be read back.

There are two signals associated with the I2C bus:

� the Serial Clock Line (SCL)

� the Serial DAta line (SDA) - bidirectional line used for sending and receiving the data

to/from the interface

Both the lines are connected to Vdd through a pull-up resistor embedded inside the LIS3LV02DQ.

When the bus is free both the lines are tied high. The I2C interface is compliant with Fast

Mode (400 kHz) I2C standards as well as the Normal Mode.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 39

5.2.1.1 I2C Operation

The transaction on the bus is always started by Master through a START (ST) signal. The

Master continues by sending a unique 7-bit slave device address, with the most signi�cant bit

(MSb) �rst. The eighth bit is a Read/Write bit and tells whether the Master is receiving (�1�)

data from the slave or transmitting (�0�) data to the slave. When an address is sent, each

device in the system compares the �rst seven bits after a start condition with its address. If

they match, the device considers itself addressed by the Master. The Slave ADdress (SAD)

associated to the LIS3LV02DQ is 0011101b.

Data transfer with acknowledge is mandatory. A receiver which has been addressed is

obliged to generate an acknowledge after each byte of data has been received. After the

start condition a slave address is sent, once a slave acknowledge (SAK) has been returned, a

8-bit sub-address will be transmitted - the 7 LSb represent the actual register address while

the MSb enables address auto increment. If the MSb of the SUB �eld is 1, the SUB (register

address) will be automatically incremented to allow multiple data Read/Write.

Data are transmitted in byte format (DATA) - each data transfer contains 8 bits. The

number of bytes transferred per transfer is unlimited. Data is transferred with the Most

Signi�cant bit (MSb) �rst. Each data transfer must be terminated by the generation of a

STOP (SP) condition.

In order to read multiple bytes, it is necessary to assert the most signi�cant bit of the

subaddress �eld - SUB(7) must be equal to �1� while SUB(6-0) represents the address of

�rst register to read. The Table 5.2 presented communication format, MAK is Master

Acknowledge and NMAK is No Master Acknowledge.

The perfect description of I2C communication is available in The I2C-Bus Speci�cation

by Philips Semiconductor [31].

5.2.2 Register mapping

The device contains a set of registers which are used to control its behavior and to retrieve

acceleration data. The Table 5.3 given below provides a listing of the most important 8 bit

registers embedded in the device and the related address.

Register description is available in LIS3LV02DQ datasheet [32, page 25].

5.2.3 Design of Circuit Scheme

The entire design is created in Cadence OrCADDesign Tools 15.2 according to the LIS3LV02DQ

datasheet. The electronical scheme is presented in Figure 5.1.

As well as in PCB expansion module design with MMA7260Q analog accelerometer we

used more capacitors on VCC to decouple the power source and the very low drop voltage

(0.2V) regulator LE33CZ [30] with output voltage 3.3V from ST Microelectronics for the

purpose of using the designed expansion board with accelerometer to other applications.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 40

Master is writing one byte to Slave:
Master ST SAD+W SUB DATA SP

Slave SAK SAK SAK

Master is writing multiple bytes to Slave:
Master ST SAD+W SUB DATA DATA SP

Slave SAK SAK SAK SAK

Master is receiving (reading) one byte of data from Slave:
Master ST SAD+W SUB SR SAD+R NMAK SP

Slave SAK SAK SAK DATA

Master is receiving (reading) multiple bytes of data from Slave:
Master ST SAD+W SUB SR SAD+R MAK

Slave SAK SAK SAK DATA

Master MAK NMAK SP

Slave DATA DATA

Table 5.2: I2C Master's and Slave's possibilities of transfers.

Reg. Name Type Register Address Default

Binary Hex

CTRL_REG1 rw 0100000 20 00000111

CTRL_REG2 rw 0100001 21 00000000

CTRL_REG3 rw 0100010 22 00001000

STATUS_REG rw 0100111 27 00000000

OUTX_L r 0101000 28 output

OUTX_H r 0101001 29 output

OUTY_L r 0101010 2A output

OUTY_H r 0101011 2B output

OUTZ_L r 0101100 2C output

OUTZ_H r 0101101 2D output

Table 5.3: Main registers address map.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 41

The functionality of the LIS3LV02DQ and the measured acceleration data are selectable

and accessible through the I2C/SPI interface. Since, the expansion circuit board is (as

peripheral) connected to the Tmote Sky sensor module by the used 10-pin connector, it

is necessary to communicate by I2C with the Tmote Sky sensor module. A pin layout is

designed according to the functionality of the Tmote Sky 10-pin expansion connector, see

Chapter 3. We don't use RDY/INT pin, therefore, placing this pin is unimportant. CS and

SDO pins are connected to the analog inputs (ADC2 and ADC3) and specify I2C/SPI mode

selection. When we using the I2C, CS must be tied high while SDO must be left �oating.

LIS3LV02DQ SCL/SPC and SDA/SDI/SDO pins are connected to I2C Clock (I2C_SCL)

and I2C Data (I2C_SDA) pins of Tmote Sky connector.

The Tmote Sky module with the manufactured designed expansion circuit board is pre-

sented in Figure 5.2.

Figure 5.3: Circuit scheme with LIS3LV02DQ.

Chapter 6

Data Collection Applications using

Open-ZB stack

A Tmote Sky applications for data acquisition, data processing, sending, receiving and data

transmission to the personal computer are built by using the TinyOS operating environment

v1.1.15, nesC language v1.2.7a and Open-ZB stack v1.2. The compile and install instructions

for the Tmote Sky sensor modules are described in Appendix D.

6.1 Application to data acquisition by modules with ana-

log accelerometer MMA7260Q

6.1.1 General Description of the Application

This application is formed for �ve devices in the star topology of an wireless network. There

are four devices, each with expansion module with analog accelerometer, and operate as a

end devices and a unique central device operates as the PAN coordinator.

Messages sending during the CAP period using the CSMA/CA is not useful, because of

so much used end devices - there are a very large data rate and number of transmit data is

very large too.

Consequently, a keystone of this application is using the Guaranteed Time Slots (GTS),

see Chapter 2. Therefore, is possible to used up to seven end devices theoretically, when

each of these devices allocate only one GTS, because the PAN coordinator accepts GTS

requests up to seven. From this results the possibility of using only three end devices, which

allocate each two GTS and they can transmit twice as much data in their reserved time slots

within an Beacon Interval. This possibility is implemented too.

The communication is established between end devices and PAN coordinator. After the

PAN coordinator is activated for the �rst time, it establish its own network with the noted

42

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 43

PAN identi�er. At last each of end devices is joined to the network through this noted PAN

identi�er.

The devices try to allocate a GTS time slot to send their data by the request a transmit

GTS allocation. After the allocation is successfully acknowledge and the PAN coordina-

tor updates the GTS descriptors list in the beacon, the devices start to measuring and

processing their data from attached expansion boards with an accelerometer and send pe-

riodic these data in payload data �eld of data packets to the PAN coordinator. When the

PAN coordinator receives the data frame, reads and processes the payload �eld and stores

data into the receiving bu�er. When the PAN coordinator received all data frames in an

Beacon Interval, it sends all data from receiving bu�er by UART (Universal Asynchronous

Receiver/Transmitter) through COM port to personal computer.

Measuring time of accelerometer data in each of end devices is need to be synchronized.

For this purpose sends the PAN coordinator an broadcast sync packet for synchronizing the

clocks of end devices at regular intervals.

The yellow led is on during the active period. Note for end devices, every time the data

packet is sended to the PAN coordinator the end device, toggles red led. Note for PAN

coordinator, every time the data packet is received the PAN coordinator, toggles green led

and when a sync packet is sended to an end devices, toggles red led.

6.1.2 Application Components

All application �les are located in the application folder. Application is named �DataSendAc-

cel� and is composed of several components and auxiliary �les:

� DataSendAccel.nc - the con�guration �le, is used to wire the DataSendAccelM.nc mod-

ule to other components that the DataSendAccel application requires. All applications

require a top-level con�guration �le, which is typically named after the application it-

self. It is the source �le that the nesC compiler uses to generate an executable �le.

� DataSendAccelM.nc - the module �le, it actually provides the implementation of the

DataSendAccel application

� LocalTimeC.nc - the con�guration �le, is used to wire the LocalTimeM.nc module to

other components

� LocalTimeM.nc - the module �le, it contains the implementation of the time compo-

nent, that provides time services for TelosB platform (e.g. converting local clock ticks

into miliseconds)

� LocalTimeInfo.nc - the interface �le, this �le contains the provided interfaces of the

LocalTimeM module

� mma7260q.h - this �le contains the enumeration values related to specify of ADC port

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 44

Figure 6.1: DataSendAccel Application - TinyOS Implementation Diagram.

� datasendaccel.h - this �le contains the application constants de�nition related to im-

plementation of IEEE 802.15.4/ZigBee protocol (e.g. coordinator or end device, BO,

SO)

� dsa_const.h - this �le contains the application constants de�nition related to DataSendAc-

cel settings

� dsa_enumerations.h - this �le contains the enumeration values used in the application

� Make�le - make-�le for building application

This application is linked directly to the MAC layer of open-ZB stack. The Figure 6.1

illustrates the component wiring to the other component.

6.1.3 Detailed Analysis of the Application

All devices must have a manually assigned short address in the compilation, there must be

a PAN coordinator device with an unique node ID 1 and four end devices with an unique

node ID from 2.

When the DataSendAccel application starts, �Main� is a component that is executed �rst,

therefore, an TinyOS application must have �Main� component in its con�guration. More

precisely, the Main.StdControl.init() command is the �rst command executed in TinyOS

followed by Main.StdControl.start() and Main.StdControl.stop() when the component is

stopped. StdControl is an interface used to initialize and start TinyOS components. In

initialization we initiate all necessary variables, Leds, UART and ADC (see below 6.1.4)

components, deactivate SleepMode functionality of analog accelerometer and set accelerom-

eter sensitivity by g-Select1 and g-Select2 (see Section 6.1.5). In starting sequence we started

a Timer, which ensures in �ve seconds that the event Timer.�red() is called.

On execution of the Timer there are two di�erent operation modes depending if the

device is the PAN coordinator or end device.

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 45

6.1.3.1 End Device

In event Timer.�red() is assigned the short address and the PANID to the end device by

MLME_SET.request() primitive. Then the end device try to allocate a GTS time slot to

sending data by the MLME_GTS.request() primitive and a repeat Timer_send is started.

After the allocation is successfully acknowledge and the PAN coordinator updates the GTS

descriptors list in the beacon, the device may starts to send data packets with measured

data to the coordinator by issuing the MCPS_DATA.request primitive during its allocated

GTS (don't use the CSMA/CA algorithm, data is sended directly without any channel

assessment). The transmit options or TxOptions parameter, last argument of the primitive,

de�ne the transmission options for the data frame, allowing the frame to be send in the GTS

(or during the CAP period using the CSMA/CA or like an indirect transmission, and also

can be send with an acknowledgment request).

Every time the Timer_send �red, the end device measures and stores its accelerometers

data and local time, when the third axis (axis Z) was measured. A di�erence between X

axis measured time and Z axis measured time is 2-3ms. We have to consider with this delay

during proccesing of accelerometer data. The device's accelerometer data are sampled by

calling ADC.getData() for every axis to get a new sensor value. When the sensor value is

available, the ADC.dataReady() event is signaled. This event is asynchronous code, it sould

be protected by an atomic statement, because of the possibility of data races on shared data

accessed by an async event or command. However, leaving interrupts disabled for a long

period delays interrupt handling, which makes the system less responsive, therefore, shoud

be an atomic code very small and quick.

When are measured six times all the three axis, the end device posts a task, putZB(),

which sends the data frame with six sensor reading by MCPS_DATA.request primitive to

the coordinator. Posted tasks with the accelerometer reading are executed by the TinyOS

scheduler when the processor is idle. The structure of msdu payload data frame, that is

sending by end device, is depicted in Figure 6.2.

The device's local time is measured by LocalTime.read() and LocalTimeInfo.ticksToMs().

LocalTime and LocalTimeInfo components are created by the help of time library, that wraps

around platform dependant time services to provide platform independant Time/Timer in-

terfaces and its implementation is very simple. This time library is developed by Jeongyeup

Paek for purpose of the RCRT (Rate-Controlled Reliable Transport) protocol for Wireless

Sensor Networks and is not included in the standard TinyOS distribution. It is available to

download from [33].
When the end device receives the sync packet by MCPS_DATA.con�rm() primitive, it

reads the msdu payload �eld of this data frame and gets an PAN coordinator's local time
from learned data. Then the end device reads its local time immediately. An o�set is
speci�ed by:

syn_of f s e t = ((c_local_time + SYN_ADD_CONST) − ed_local_time) ;

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 46

Figure 6.2: The msdu payload �eld structure.

SYN_ADD_CONST is time compensation value, which includes an time delay between

sync packet transmitting by PAN coordinator and sync packet receiving by end device. The

sync o�set value is added to the local time of end device.

6.1.3.2 PAN coordinator

In event Timer.�red() is assigned the short address and the PANID to the coordinator by

MLME_SET.request() primitive. Then is started the Beacon sending by MLME_START.

request() primitive and a repeat Timer_sync is started too. The coordinator waits for a GTS

allocation by an end device. After the GTS allocation request is received and successfully

acknowledged the PAN coordinator updates the GTS descriptors list in the beacon. When

the PAN coordinator receives the data frame by MCPS_DATA.con�rm() primitive, it reads

the msdu payload �eld of this data frame and from learned data creates three TinyOS

messages with the structure of payload data frame, that is depicted in Figure 6.3. The

msdu payload data �eld structure is presented in Figure 6.2. The raw data packet and

TinyOS message are described in the Section 6.1.6.

These three TOS message are stored into the receiving bu�er �uartQueueBufs[]�. This

bu�er is represented an queue which is processed in FIFO order. When coordinator received

a de�ned number of the data frame, in other words, when it stored a de�ned number of TOS

messages �UART_MIN_BUFF_SEND� into the uartQueueBufs[], it starts a Timer_delay.

On execution of the Timer_delay posts the coordinator a task, sendDataUART(), which

sends all of the TOS message from bu�er through COM port to personal computer. Using

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 47

Figure 6.3: TOS message Payload Data �eld structure.

Figure 6.4: The sync mpdu data payload �eld structure.

the UART bus requires care because this line are physically shared with the data bus that

connects the radio to the microcontroller. The Timer_delay defer the sending by UART

until later, that the coordinator sends data to the computer in an Inactive Period or in an

following Contention-Access Period (CAP), when the radio is inactive. The Contention-Free

Period (CFP) is not interrupted by this functionality, thereby incorrupting an possible data

packet, that could be received in running out of GTS yet. A size of the receiving bu�er

and UART_MIN_BUFF_SEND value should be choice suitable according to the number

of possible received data packets in GTS slots from all end devices.

The Timer_sync is repeatedly used to synchronization of measuring time of accelerom-

eter data in each of end devices. Every time the Timer_sync �red, the PAN coordinator

measures its local time by LocalTime.read() and LocalTimeInfo.ticksToMs() and sends an

broadcast synchronization packet to all end devices for synchronizing the clocks by issuing

the MCPS_DATA.request primitive. Sending is realized during the CAP period using the

CSMA/CA. The structure of sync packet is depicted in Figure 6.4.

6.1.4 Connecting External Sensors

The principal question is, how we connect external sensors. We using an ADC channel on

the 10-pin Tmote Sky expansion area and we sampling ADC data from external sensor.
The essence of preparing an external ADC port for TinyOS is in the de�nition of two

numbers: TOS_ADC_xxx_PORT and its partner TOSH_ACTUAL_ADC_xxx_PORT.
"xxx" is a name you can pick when de�ning these values, perhaps picking a name that
describes the used sensor. In this case we have an 3D accelerometer, whose three axes can
we think of three sensors. Hence we have a three sensors called e.g. MMA_X, MMA_Y
and MMA_Z connected to ADC channel 0, 1 and 2 on the 10-pin Tmote Sky expansion
connector. We shoud de�ne those two values above for every sensor (axis) in a header �le

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 48

�mma7260q� like this:

enum {

TOS_ADC_MMA_X_PORT = unique ("ADCPort") ,

TOSH_ACTUAL_ADC_MMA_X_PORT = ASSOCIATE_ADC_CHANNEL(

INPUT_CHANNEL_A0,

REFERENCE_VREFplus_AVss,

REFVOLT_LEVEL_2_5) ,

} ;

For X axis/sensor, change the �MMA_X� name and the three parameters given to

ASSOCIATE_ADC_CHANNEL. Those parameters are:

1. The pin on the microcontroller your device is connected to. INPUT_CHANNEL_AO

means �ADC0� or �ADC port 0�. Find the names of the pins in the Chapter 3. or

in the Tmote Sky datasheet [23] in the section �External Sensors�. Here, pin 3 of the

10-pin expansion header is connected to ADC0.

2. Use the internal reference voltage speci�ed with REFERENCE_VREFplus_AVss.

Find the other options of the internal reference voltage in the

TOSROOT\tos\platform\msp430\MSP430ADC12.h. Here, VR+ = VREF+ and VR-=

AVss (analog ground). Note: TOSROOT = the root of your TinyOS source directory.

3. For the internal reference voltage VREF, use the 2.5V reference voltage speci�ed with

REFVOLT_LEVEL_2_5. The one other option here is the 1.5V internal reference

voltage speci�ed with REFVOLT_LEVEL_1_5.

Should study ADC12 module (12-bit analog-to-digital converter) of MSP430 microprocessor

for understanding functionality of VR, VREF etc., �nd this shortcuts of the voltage in the

MSP430x1xx Family User's Guide [24] in the Chapter 17 �ADC12�.
Then we wire up the ADC and ADCControl interfaces in our component con�guration:

Components ADC;

Main . StdControl −> ADCC;

DataSendAccelM . ADCControl −> ADCC;

DataSendAccelM . osaX −> ADCC.ADC[TOS_ADC_MMA_X_PORT] ;

DataSendAccelM . osaY −> ADCC.ADC[TOS_ADC_MMA_Y_PORT] ;

DataSendAccelM . osaZ −> ADCC.ADC[TOS_ADC_MMA_Z_PORT] ;

The last step is to bind and use the ADC port. In the module �le we must use the ADC

interface for each ADC port we are going to use, and use the ADCControl interface once

to perform the ADC port �binding�. Here are some key lines of �DataSendAccelM� module

code:

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 49

module DataSendAccelM {

uses { i n t e r f a c e ADCControl ;

i n t e r f a c e ADC as osaX ;

i n t e r f a c e ADC as osaY ;

i n t e r f a c e ADC as osaZ ; }

}

implementation {

command re su l t_t StdControl . i n i t () {

// I n i t i a l i z e the ADC subsystem

c a l l ADCControl . i n i t () ;

// I n i t i a l i z e the MMA_X, MMA_Y and MMA_Z ADC port

//by binding i t to i t s a c tua l s p e c i f i c a t i o n

c a l l ADCControl . bindPort (TOS_ADC_MMA_X_PORT,TOSH_ACTUAL_ADC_MMA_X_PORT) ;

c a l l ADCControl . bindPort (TOS_ADC_MMA_Y_PORT,TOSH_ACTUAL_ADC_MMA_Y_PORT) ;

c a l l ADCControl . bindPort (TOS_ADC_MMA_Z_PORT,TOSH_ACTUAL_ADC_MMA_Z_PORT) ;

}

}

Later, you can just call ADC.getData which will response later with an ADC.dataReady
event:

c a l l osaX . getData () ;

. . .

async event r e su l t_t osaX . dataReady (uint16_t data)

{ // do something with data }

6.1.5 Sensitivity and Sleep Mode Settings

The g-Select feature allows for the selection among 4 sensitivities present in the device, see

Chapter 5. The device internal gain will be changed to depending on the logic input placed

on pins 1 and 2 of the MMA7260Q analog accelerometer. A low input signal on pin 12 will

place the device in Sleep Mode, the device outputs are turned o�. By placing a high input

signal on pin 12, the device will resume to normal mode of operation.

The MSP430GeneralIO interface is utilized to control all pins of the 10-pin Tmote Sky

expansion connector. Take a look at the schematic given in the Tmote Sky datasheet [23] to

�nd out which pin is connected to a certain port. For this example, port 3.4 and port 3.5 are

routed to pin 4 and pin 2 of expansion connector and represent g-Select1 and g-Select2. As

well as port 6.3 is routed to pin 10 of expansion connector and represent Sleep Mode func-

tionality. To use the MSP430GeneralIO interface wire it to the MSP430GeneralIOC.Portxx

where �Portxx� represent the pin of interest. The interface is called in the StdControl.init()

function that runs on start-up of the DataSendAccel application.

Then we set the microprocessor port thus expansion connector pin to output and turn on

(means writing a �1� to the pin) or o� (means writing a �0� to the pin) the pin functionality

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 50

using the commands MSP430GeneralIO.makeOutput() and MSP430GeneralIO.setHigh() or

MSP430GeneralIO.setLow() respectively.

6.1.6 Raw data packet and TinyOS message

This section serves as a beginners guide to deciphering TinyOS serial packet.

The data are retrieved in so called raw data format. The raw data packet is wrapped

on both ends by a frame synchronization byte of 0x7E. When is sending a packet over the

serial port, the protocol uses the byte values of 0x7E and 0x7D for special purposes. 0x7E

is used to detect the start and end of a packet from the stream and 0x7D is used as the

escape byte to indicate that the next byte has been AND-ed with 0xDF. All bytes of 0x7E

and 0x7D in the raw data packet need to be replaced by a 2-byte sequence before sending.

0x7E is replaced by 0x7D5E and 0x7D is replaced by 0x7D5D. When receiving a packet, the

escape byte is discarded and the next byte is OR-ed with 0x20 in order to get the actual

byte of the packet.

The following diagram and table describes the raw data packet with a TinyOS message

type of the payload data. The TinyOS message is de�ned by the struct TOS_Msg in the

�le TOSROOT\tos\platform\telos\AM.h.

Figure 6.5: TOS-message structure.

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 51

Table 6.1: TOS-message description.

6.2 Application to data read from modules with digital

accelerometer LIS3LV02DQ

6.2.1 General Description of the Application

This application is not created for data acquisition using to wireless sensor network. There

are only devices with expansion module with digital accelerometer attached to USB port.

Is not relevant, whether a device operates as a end device or as a coordinator. The reason

is, the I2C and CC2420 radio cannot be used at the same time on the TelosB platform. The

I2C pins are shared with the radio's data input pin and the radio clock. Therefore, when

there is data transfer between the radio and microprocessor, we don't use I2C input pins

on expansion connector, those pins will be actuated with SPI protocol signals, because the

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 52

radio is controlled by the microprocessor through SPI interface, see [23].

The solution is to read input signals while the radio is not in use, it means that the

I2C bus and the radio operations must be multiplex. In using TinyOS 1.1.15, we would

have to use the BusArbitration component to acquire required pins and block the radio

from using them. Nevertheless, the BusArbitration doesn't work reliable and it is hard to

use correctly. This problem is �xed with Resource components in TinyOS 2.x or Moteiv

Boomerang environment based on TinyOS 2.x. The Resource components are used to gain

access to shared resources through some prede�ned arbitration policy.

The application is developed to according to an bachelor thesis [36], in which is described

an implementation of I2C communication for MICA platform (note: in italian language).

We created the components for communication with digital accelerometer by using I2C

bus - data writing, reading, and the components for processing of acquired data and data

transmission to the personal computer by serial port. These components demonstrate using

I2C bus. As the implementation of IEEE 802.15.4/ZigBee will be ported to TinyOS v2.0,

it is proceed at this time, this application will be simple ported to TinyOS v2.0 too and

used to creating an wireless sensor network with Tmote Sky sensor modules with expansion

boards with digital accelerometer LIS3LV02DQ.

6.2.2 Application Components

All application �les are located in the application folder. Application is named �LIS3LV02DQ�

and is composed of several components and auxiliary �les:

� I2CAccelerometer.nc - the interface �le, this �le contains the provided interfaces of the

I2CAccelerometerM module

� I2CAccelerometerC.nc - the con�guration �le, is used to wire the I2CAccelerometerM.nc

module to other components

� I2CAccelerometerM.nc - the module �le, it provides the implementation of the I2C

communication

� LIS3LV02DQC.nc - the con�guration �le, is used to wire the LIS3LV02DQM.nc mod-

ule to other components that the LIS3LV02DQ application requires. It is the source

�le that the nesC compiler uses to generate an executable �le.

� LIS3LV02DQM.nc - the module �le, it actually provides the implementation of the

LIS3LV02DQ application

� LocalTimeC.nc - the con�guration �le, is used to wire the LocalTimeM.nc module to

other components

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 53

Figure 6.6: LIS3LV02DQ Application - TinyOS Implementation Diagram.

� LocalTimeM.nc - the module �le, it contains the implementation of the time compo-

nent, that provides time services for TelosB platform (e.g. converting local clock ticks

into miliseconds)

� LocalTimeInfo.nc - the interface �le, this �le contains the provided interfaces of the

LocalTimeM module

� i2c_accelerometer_const.h - this �le contains the application constants de�nition re-

lated to the I2C communication of digital accelerometer

� i2c_accelerometer_enum.h - this �le contains the enumeration values related to the

I2C communication of digital accelerometer

� lis3lv02dq_const.h - this �le contains the application constants de�nition related to

LIS3LV02DQ application settings

� lis3lv02dq_enum.h - this �le contains the enumeration values used in the application

� Make�le - make-�le for building application

The Figure 6.6 illustrates the component wiring to the other component.

6.2.3 Detailed Analysis of the Application

When the �LIS3LV02DQ� application starts, the Main.StdControl.init() command is the

�rst command executed in TinyOS followed by Main.StdControl.start(). In initialization we

initiate all necessary variables, Leds, UART and I2CAccelerometer components and repeat

Timer is started.

When the I2CAccelerometer component starts, it activate the I2C interface by CS line

tied high using the MSP430GeneralIO interface and save the control register 1 address with

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 54

Figure 6.7: TOS message Payload Data �eld structure for digital accelerometer.

autoincrement sign, control register 1 value and control register 2 value in the data_write[]

array. The register description is available in [32]. Then the I2C address of accelerometer

with the data_write[] array are transmitted on the I2C bus by MSPPacket.writePacket()

primitive. This way is digital accelerometer initialized. Then the I2CAccelerometer compo-

nents performing the I2C operations according to I2C-bus speci�cation, see Section 5.2.1.1.

A Timer is used to periodically start the data collection. Every time the Timer �red,

the device read the accelerometer's data by I2CAccelerometer.readNReg() primitive from

STATUS_REG register to OUTZ_H register by autoincrement sign, see Table 5.3. When

the sensor's data is available, the I2CAccelerometer.readNRegDone() event is signaled. The

device measures its local time by LocalTime.read() and LocalTimeInfo.ticksToMs() and with

accelerometers data together creates a TinyOS message with the structure of payload data

frame, that is depicted in Figure 6.7. The created TinyOS message is immediately sended

by a posted task �sendDataUART()� by UART through COM port to personal computer.

Every time the data packet is received from accelerometer, toggles yellow led.

Chapter 7

Results and Experience

7.1 Problems and Necessary Changes in the Open-ZB

stack and TinyOS/nesC

7.1.1 Open-ZB stack

� We have removed all the usage of PrintfUART() function from open-ZB stack compo-

nents. PrintfUART() writes output to the UART as like printf function. It should be

use only for testing purposes. The problem is, the PrintfUART() function and used

UARTComm commponent may send messages by the UART over the serial port at

the same time and then the sent message is corrupted.

� When we are using the Guaranteed Time Slots (GTS) and sending messages in allo-
cated GTS slots by calling MCPS_DATA.request() primitive, we could remove these
lines from MacM module:

t o t a l_ t i c k s = c a l l TimerAsync . get_total_tick_counter () ;

msdu [0] =(uint8_t) (t o t a l_ t i c k s >> 0) ;

msdu [1] =(uint8_t) (t o t a l_ t i c k s >> 8) ;

msdu [2] =(uint8_t) (t o t a l_ t i c k s >> 16) ;

msdu [3] =(uint8_t) (t o t a l_ t i c k s >> 24) ;

so that we resist storing a TimerAsync tick counter value in msdu array and we could

use the msdu data payload �eld of message from index �0�.

� When we are using the Guaranteed Time Slots (GTS) and sending messages in allo-

cated GTS slots by calling MCPS_DATA.request() primitive, the msdu payload data

�eld must be de�ned as the size of msdu data plus two or larger. Then the data are

transmit correctly. This is the open-ZB stack bug.

55

CHAPTER 7. RESULTS AND EXPERIENCE 56

� When we are using the Guaranteed Time Slots (GTS) with the ADC component for

connecting external sensors together, we cannot use the equal values of Beacon Order

and Superframe Order. That means, the superframe structure must have an Inactive

Period during which the PAN coordinator does not interact with its PAN or the Beacon

synchronization does not work correctly then.

� Unfortunately, with using the di�erent values of BO and SO always does not work

the Beacon synchronization reliably. Sometimes the entire Beacon Interval is lost. It

can be observed on toggling of the yellow led which is on during the active period

of superframe. It is probably caused by asynchronous commands and events of ADC

channel, that are used to sampling ADC data from external sensors.

� In mac_const.h we enlarge the GTS_SEND_BUFFER_SIZE de�nition from �2� to

�11� value, so that we can store more messages in GTS send bu�er. Using an even

larger value, the open-ZB stack functionality is damaged.

� TinyOS message payload data �eld is de�ned to 28 Bytes value and cannot we insert

to this structure more than two data packet with accelerometer's data. When we try

to increase this value, the open-ZB stack functionality is damaged.

7.1.2 TinyOS/nesC

� It is recommended to use the name of the Timer parameterized interface as an ar-

gument to the unique() function, which generates a unique 8-bit identi�er from the

string given as an argument, e.g. �interface Timer[unique("Timer")];�.

� If any Java application does not work, make sure that the JDK that actually using

(i.e., the one that is found �rst in Windows PATH variable), is actually the TinyOS

approved one. Can check in Cygwin by typing

$ which java, it should look something like this:

cygdrive/c/jdk1.4.1_02/j2sdk1.4.1_02/bin/java

� If trying to run Cygwin and still occuring the some error like this: �An unhandled win32

exception occurred in > bash.exe[]�. Cygwin produced this exception in dependence

on the some kind of bad interaction with security software (�rewall/antivirus/antispy-

ware). For example, the Firewall Agnitum Outpost Pro 4.0 causes this �unhandled

exception" issue. Uninstalling and changing this software solve the problem.

� When attach the Tmote Sky module with batteries and a running application, the

operation system does not need to identify the hardware correctly. Just unplug the

batteries and attach the Tmote Sky again.

� Everything is in order, but �$ make <platform>� command still does not work, try

to change permissions of the �build� directory and all of �les inside by the following

CHAPTER 7. RESULTS AND EXPERIENCE 57

command:

$ chmod 777 <directory_name or �le_name> and try to compile of application again.

7.2 Results

7.2.1 Application to data acquisition by modules with analog ac-

celerometer MMA7260Q

According to detected problems above we choose as optimal settings of application and

open-ZB stack following values:

� Beacon Order = 7, Superframe Order = 6

� the Timer component, which is based on the hardware timer for the TelosB platform,

provides only correct time meassuring in using some time value, it have to be tested

for every time value but the best is used 2ntime values. In the following points is

stated an really time value, with that is really measured accelerometer's data and an

set value of Timer component in curves.

� accelerometer's data meassuring time interval = 74ms (76ms) in using four end devices

- one GTS for each of them

� this implies the achieved frequency of data aquisition is about 13Hz

� accelerometer's data meassuring time interval = 37-38ms (56ms) in using three end

devices (so called three node mode) - two GTS for each of them

� this implies the achieved frequency of data aquisition is about 26Hz

� theoretically is possible to used up to seven end devices

� the size of the UART receiving bu�er = 48 in using four end devices, 75 in using three

end devices

� sending by UART defer time value = 500ms

� synchronization time interval = 5000ms

� time compensation value for time synchronization = 2ms

� we achieve 0.04% corrupted packets during sending and receiving

� solution of problem with bad Beacon synchronization is failed. This is the open-ZB

stack unpleasant bug. Without it we would achieve double the frequency of data

acquisition. This defect is possible to see in depicted graphs, e.g. in Figure 7.1 around

time 95s or in Figure 7.2 around time 105s.

CHAPTER 7. RESULTS AND EXPERIENCE 58

Graphs of measured accelerometer's data

Figure 7.1: Measuring data through MMA7260Q, sensitivity 800mV/g (±1,5g), freq. 13Hz.

Figure 7.2: Measuring data through MMA7260Q, sensitivity 600mV/g (±2g), freq. 13Hz.

CHAPTER 7. RESULTS AND EXPERIENCE 59

Figure 7.3: Measuring data through MMA7260Q, sensitivity 300mV/g (±4g), freq. 13Hz.

Figure 7.4: Measuring data through MMA7260Q, sensitivity 200mV/g (±6g), freq. 13Hz.

CHAPTER 7. RESULTS AND EXPERIENCE 60

Figure 7.5: Measuring data through MMA7260Q, three node mode, sensitivity 200mV/g
(±6g), frequency 26Hz.

7.2.2 Application to data read from modules with digital accelero-

meter LIS3LV02DQ

Appropriate settings of this application:

� accelerometer's data meassuring time interval = 18-19ms (set value of Timer compo-

nent: 25ms)

� this implies the achieved frequency of data aquisition is about 52-56Hz

CHAPTER 7. RESULTS AND EXPERIENCE 61

Graphs of measured accelerometer's data

Figure 7.6: Measuring data through LIS3LV02DQ, sensitivity 340 LSb/g (±6g), frequency
52-56Hz.

Figure 7.7: Measuring data through LIS3LV02DQ, sensitivity 1024 LSb/g (±2g), frequency
52-56Hz.

Chapter 8

Applications for Data Processing

and Displaying

PC applications for data processing and displaying are created by Microsoft .NET Frame-

work in MS Visual Studio 2005 using C# language and in C language under Cygwin linux-like

environment for Windows. The compile and install instructions are described in Appendix D.

8.1 Console Application in C under Cygwin

8.1.1 General Describe the Application

When the application started, it attempt to open selected COM port as �rst by openDevice()

function. A port is opened by open() standard function with appropriate parameters and the

recieved bu�er is emptied. Then setOptions() function is called, that makes proper settings

of serial port for communication. Consequently the directory with storage �les for received

packets and data are created. A time stamp are written to the �les for identi�cation. In

while cycle is reading data stream from the COM port by read() in getData() function. Data

are putting in and getting from the data array by a pointers. Data are recognizing from data

stream by 0x7E value, that is used to marking the start and end of a raw data packet from

the data stream, see Section 6.1.6. Raw data packets are processing towards the TinyOS

message structure of payload data frame is recovered. The acquired accelerometer's data,

its time stamp, node ID etc. are displayed on the monitor and saved in the �le by printf()

and fprintf() function. In the second �le are saved all the received raw data packet. Data

format in �les is chosen suitable for followed processing in Matlab.

62

CHAPTER 8. APPLICATIONS FOR DATA PROCESSING AND DISPLAYING 63

8.1.2 Application Files

All application �les are located in the application folder. Application is named �spZB� and

is composed of:

� sp.c - source code of application

� sp.h - header �le, that is automatically included in source �le by the compiler, the �le

contains the application constants de�nition related to spZB application settings

8.2 GUI Application in C#

Application is controlled by the main form window, depicted in Figure 8.1. By this main

form and other forms such as form for application or serial port settings (depicted in Figure

8.2.) are available all of implemented functionality.

There are used some library, that are not a part of MS Visual Studio installation and

provide an useful function. These are the ZedGraph [41, 40] for creating 2D line graphs and

Bin library for hexadecimal conversions to signed integers and unsigned integers.

First, after the application started, the user must set the operation mode by Application

Settings form - to what end will be the application used - if we want to read data from

Tmote Sky module with analog MMA7260Q or digital accelerometer LIS3LV02DQ. In this

form is possible to permit and set the sensitivity of used accelerometer in mV/g for analog

and LSb/g for digital accelerometer. The user may permit graph depiction (Graph ON),

automatic graph depiction once per two seconds (Graph SHOW) and set parameters to

graph depiction, such as the choice of requred node ID and the number of data packets,

whose data are displayed to the graph.

Second, the user must set the properties of serial port where the required mote is plugged

by Port Settings form. For user's comfort is implemented an automatic port scan, which

�nds all of available active ports.

The keystone of this application is using DataReceived event handler, that signals an

available data. Consequently, data are read by using SerialPort.Read() from port and are

processed in the same way as like in console application. Received raw data packets and

processed accelerometer's data are displayed in text boxes, stored in the �les and depicted

in graph. Data format in �les is chosen suitable for followed processing in Matlab.

CHAPTER 8. APPLICATIONS FOR DATA PROCESSING AND DISPLAYING 64

8.2.1 Application Files

All application �les are located in the application folder. Application is named �Serial-

ComZB� and is composed of several source �les:

� Form1.cs, FormAbout.cs, FormHelp.cs, FormSet.cs, FormSetAppl.cs - source code of

Main form, About form, Help form, port settings form and application settings form

� xxx.Designer.cs �les - contain code automatically generated by the Windows Form

Designer, in other words a xxx.Designer.cs �le contains all of the code about the

form that is automatically generated when you drag components to the form from the

toolbox

� xxx.resx �les - contain information about the design of the forms

� Program.cs - in this �le is the starting point for program, it sets environment param-

eters and calls for the creation of Form1

� Help.rtf - help �le, it provides a documentation on use of the application

� Bin.dll - Bin is a set of classes to do hexadecimal, binary, and decimal conversions to

signed integers and unsigned integers. [39] Library has no explicit license.

� ZedGraph.dll - ZedGraph [41, 40] is a set of classes, for creating 2D line and bar graphs

of arbitrary datasets. ZedGraph also includes a UserControl interface, allowing drag

and drop editing within the MS Visual Studio forms editor and is licensed under the

LGPL (GNU Lesser General Public License) [42].

CHAPTER 8. APPLICATIONS FOR DATA PROCESSING AND DISPLAYING 65

Figure 8.1: GUI application in C# - Main window.

Figure 8.2: GUI application in C# - Communication and Application settings options.

Chapter 9

Conclusion

We managed to create an wireless sensor network, that is able to monitoring patient's body.

According to the requirements was chosen the most suitable ZigBee wireless technology.

For this technology is developing an open source implementation, so called open-ZB stack.

Because we choose the Tmote Sky sensor modules from Sentilla/Moteiv Corporation as

hardware platform for wireless communication, we have to porting the open-ZB stack to

this platform at �rst by collaborating with its developers. Porting is done successfully. This

implementation was tested during the working at this thesis and we found some unpleasant

bugs, the requirement using the di�erent values of Beacon Order and Superframe Order

when we want to use the Guaranteed Time Slots with the ADC component for connecting

external sensors together and problems with the Beacon synchronization, that often does not

work correctly. But this is an open source implementation and its development continues.

If these bugs was eliminated, we would be approached much more to required frequency of

data acquisition.

We designed the expansion modules with analog accelerometer MMA7260Q for applica-

tion to data acquisition from patient's body. The application was built in TinyOS/nesC and

open-ZB stack. In this way we achieved the frequency 13Hz in using one PAN coordinator

and four end devices and 26Hz in using three end devices both at the accelerometer sensi-

tivity from 800mV/g (±1.5g) to 200mV/g (±6g). We also designed the expansion modules

with digital accelerometer LIS3LV02DQ only for data reading application in TinyOS/nesC,

due to the using TinyOS v1.1.15 where the BusArbitration doesn't work correctly.

We used the GTS mechanism for a created wireless sensor network, therefore, is possible

to used up to seven end devices theoretically. A possibility of using CSMA/CA mechanism

in Contention-Access Period of Beacon Interval has been dismissed immediately. When we

are transmitting as much of accelerometer's data and as large frequency in using so much

devices, the contention mechanism is useless. We still have to think of ZigBee technology is

optimized for low data rate transmissions.

66

CHAPTER 9. CONCLUSION 67

The Department of Control Engineering have not available any network protocol analyser

or packet sni�ers for interpret the IEEE 802.15.4 and ZigBee frames. E�ective testing of

communication �ow in the created network was very di�cult.

Alternative solution is leave the open-ZB stack and just using TinyOS components for

CC2420 radio chip, that access the implementation of physical layer and reduced MAC layer

and create an centralized but peer-to-peer wireless sensor network, in which the coordinator

will ask each of end devices for its data and acknowledge its receipt.

Department of Control Engeneering is developing own ZigBee radio platform, therefore,

could be use some commercially developed ZigBee stack (full IEEE 802.15.4, reduced/full

MAC layer or complete ZigBee implementation). The ZigBee stack o�ers e.g. Microchip

Technology for its PIC processors (PIC18,24,33), this stack is free or Freescale Semiconductor

o�ers the BeeKit Wireless Connectivity Toolkit for its processors (HCS08 family), that

includes an unlimited use license for the reduced MAC layer and IEEE 802.15.4 codebases

and a 90-day evaluation of Freescale's BeeStack ZigBee codebase.

This thesis will be used to other research on sensing and processing data for Parkinso-

nian patients at Department of Control Engineering and we believe that contains valuable

information to other users and developers using, maintaining and expanding the open-ZB

protocol stack.

Future work:

� develop an expansion memory module for central node with Vinculum VNC1L (Em-

bedded USB host Controler) for storing measured accelerometer's data

� develop an application to storing received data in expansion memory module

� when the own ZigBee radio platform will be developed at Department of Control

Engeneering, porting the open-ZB stack and all of created application to this new

platform

� when the open-ZB stack porting to TinyOS 2.x will be done successfuly, porting all

of created application to TinyOS 2.x and create an wireless sensor network for digital

accelerometer's data acquisition by developed application for reading digital accelerom-

eter's data

Appendix A

IEEE 802.15.4 Frame Structures

The diagrams in this clause illustrate the �elds that are added by each layer of the protocol.

The PHY packet structure represents the bits that are actually transmitted on the physical

medium. A complete detailed description of the �elds and frame's structures can be found

in [3].

Figure A.1: Beacon frame

68

APPENDIX A. IEEE 802.15.4 FRAME STRUCTURES 69

Figure A.2: Data frame

Figure A.3: Acknowledgment frame

Figure A.4: MAC command frame

APPENDIX A. IEEE 802.15.4 FRAME STRUCTURES 70

Figure A.5: GTS Request Command Frame

Figure A.6: GTS Descriptor

Appendix B

Electronical Design of Expansion

Modules

71

APPENDIX B. ELECTRONICAL DESIGN OF EXPANSION MODULES 72

Figure B.1: Design of expansion module with MMA7260Q/MMA7261Q.

APPENDIX B. ELECTRONICAL DESIGN OF EXPANSION MODULES 73

Figure B.2: Design of expansion module with LIS3LV02DQ.

Appendix C

Cygwin and TinyOS Install

Instructions

(original article [45])

0. Uninstall existing TinyOS/Cygwin

If you have existing TinyOS or Cygwin installation, uninstall both of them.

Uninstall instructions: (or see website [44])

� Remove �TinyOS� program through control pannel. If you have used Tmote Sky tools

disk, you should uninstall "tmote-tools.x.x" in control panel.

� Cygwin Uninstallation

� Remove the following items to fully uninstall cygwin (important):

� Cygwin shortcuts and start menu entry (Programs/Cygwin)

� Cygwin registry entries under HKEY_LOCAL_MACHINE\SoftWare\Cygnus Solutions\

(run regedit or regedt32 to remove these)

� Everything under the cygwin root directory. Save useful �les of course, you could

just rename the cygwin root to say, cygwin-old, to be extra safe.

It is possible that during installation is threw the message �The library cygwin1.dll already

exist in Windows/system32/�. It is also probably after an old installation of Cygwin. You

will �nd it as a hidden �le. Deleting it manually is recommended.

74

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 75

1. Download InstallShield from TinyOS website

� go to [46] to download Windows Installshield Wizard for TinyOS CVS Snapshot 1.1.11

[47] (less tested, but fresh); or download it from here [48].

� run tinyos-1.1.11-3is.exe

� select "complete" to install all components

� change install directory from c:/program files/UCB to c:/tinyos, then start in-

stallation - important, it stops problems with the space between words in �program

�les�.

� after the installation is �nished, you should get the following directory tree:

C:/tinyos/ATT

/cygwin

/cygwin-installationfiles

/jdk1.4.1_02

2. Test Compilation Process

� go to c:/tinyos/cygwin/tinyos-1.x/apps/Blink (you can choose any other appli-

cation to do the testing), and test compiling for di�erent platforms by typing:

� $ make telosb //should work without any error

� $ make micaz //should work without any error

3. Test downloading application into TelosB

� plug Tmote Sky/TelosB mote to USB port on PC

� install driver using Tmote Sky CD or using the driver �le downloaded from here [49]

� $ motelist //to check COM number

� $ make telosb

� $ make telosb reinstall,7 bsl,9 //ID = 7, Com port = 10 - while using single mote in USB

it can be �$ make telosb reinstall�

� during the transmission, transmit LED should blink

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 76

4. Customize TinyOS for your project

An example:

� copy your project directory xxx into "c:\tinyos\cygwin\opt\tinyos-1.x\apps\" -

remember to include hidden �les too by enabling "show all hidden and system �les"

in File Explorer

� set/create HOME path:

My computer→Properties→Advanced→Environment Variables→"New" or "Edit"

HOME variable as "c:\tinyos\cygwin\opt\tinyos-1.x\apps\xxx" or

"/opt/tinyos-1.x/apps/xxx"

� close Cygwin and restart a Cygwin window

5. Check installation completeness

Run command: $ toscheck

If it reports any error, follow the instruction to correct it.

One of the errors will be probably:

"I have installed TinyOS 1.1.11 and get this error when I run toscheck "WARNING:

CLASSPATH may not include '.' (that is, the symbol for the current working directory).

Please add '.' to your CLASSPATH or you may experience con�guration problems." I have

checked and I do have '.' in my path."

After the �nal upgrade of Cygwin this error disappear.

6. Update to TinyOS 1.1.15

(see [50])

Download the 1.1.15 rpm: [51]

Install. As Administrator in a cygwin shell do:
$ rpm �force �ignoreos -Uvh tinyos-1.1.15Dec2005cvs-1.cygwin.noarch.rpm

in the directory where you saved the rpm. This will take a while (the tinyos package

installation includes compiling the java code). TinyOS is installed in /opt/tinyos-1.x.

7. Upgrade nesC compiler to newest version

Download [52] to /opt/ directory.

Install nesc compiler:
$ tar -zxvf nesc-1.2.7a.tar.gz

$ cd nesc-1.2.7a

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 77

$./con�gure

$ make install

$ ncc -v

It should shows the correct nesC version 1.2.7.

8. Upgrade Graphviz to newest version

Run the following command to creation of documentation:
$ make telosb docs

Is not working? Then run the command:

$ dot -V

If it does not show "dot version 2.8" or higher than 1.8.8, then you need upgrade.

Steps to upgrade:

� remove existing Graphviz program using control panel

� download it here: [53]

� install it to c:\tinyos\ATT

If you have the Matlab installed, you might �nd your upgrade does not work. The reason

is �le con�ict because the Matlab has a dot.exe too. Then check environmental variables

$PATH, put C:\TinyOS\ATT\Graphviz to ahead of MATLAB's path.

9. Upgrade Cygwin to support gcc 3.4.4

Type the following command:
$ gcc -v

If it show that:

/opt/oasis>gcc -v

Reading specs from ...

...

gcc version 3.3.3 (cygwin special)

→version is 3.3.3. Then it is need upgrade to newest version.

The way to do it is to upgrade Cygwin:

� close all Cygwin windows

� download [54] and run it.

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 78

� choose install from Internet

� change Devel, X11 and Graphics from default to install

� click OK on all warnings

Very long process! Very much hard disc space consumption. Entire folder of TinyOS will

have over 2,5GB after this installation process.

You should expect following now:

/opt/oasis>gcc -v

Reading specs from ...

...

gcc version 3.4.4 (cygming special) (gdc 0.12, using dmd 0.125)

10. Final check installation completeness

Run command: $ toscheck. It might say:

toscheck completed with errors:

--> WARNING: The graphviz (dot) version found by toscheck is not 1.10.

Please up date your graphviz version if you'd like to use the nescdoc

documentation genera tor.

Ignore it if only so. We actually use higher version 2.8 of graphviz.

Appendix D

All created Application Install

Instructions

In the following it is assumed that you have already installed TinyOS 1.x. We will refer to

the root of your TinyOS source directory as TOSROOT.

1. Open source implementation of IEEE 802.15.4/ZigBee

(open-ZB stack) installation:

Unzip the "hurray1.2.zip" �le and copy the "hurray" folder into: TOSROOT\contrib\ folder.

2. DataSendAccel application

� Unzip the "DataSendAccel.zip" �le and copy the "DataSendAccel" folder into:

TOSROOT\contrib\hurray\apps folder

that contains all the example applications of the open-ZB stack.

� Open "Cygwin" environment, in Cygwin go to the appropriate directory where the

"DataSendAccel" application you want to load is located (see above).

� Attach the Tmote Sky device to the USB port. When plug a mote to the USB port

for the �rst time, Windows automatically assigns it a COM port number, and it will

use this number whenever plug the same mote again.

� Can check which number the mote is assigned by typing:

$ motelist

79

APPENDIX D. ALL CREATED APPLICATION INSTALL INSTRUCTIONS 80

� To compile the application and generate all the binary code needed in order to run

the application in a Tmote Sky module simply typing the bellow command:

$ make telosb

in the application directory.

The overall compilation process is like this: All the .nc �les are translated into a C �le

(build/app.c) by the nesC compiler. This �le needs to be translated into a binary �le.

Normally for TinyOS, this is done by a gcc backend for the MCU.

Other targets are available:

1. $ make telosb install,<node_id> <programmer_platform>,<port> - to install the ap-

plication on the sensor mote, the new application replaces the last one.

<node_id> is an integer between 0 and 255 and speci�es the node ID (the address

assigned to the mote), make sure it's unique

<programmer_platform>,<port> Tmote Sky is programmed by msp430-bsl bootstrap

loader. <port> is the serial port number where the mote is plugged minus one. There-

fore, <programmer_platform> = bsl and it programs the mote on COM(<port>+1)

2. $ make telosb reinstall <programmer_platform>,<port> - to install the application on

the sensor mote without recompiling (it skips recompilation), the new application

replaces the last one.

3. $ make telosb docs - this target creates documentation for the program you have

compiled. You need the graphviz/dot package to get the component graps. The

nesdoc documentation �les are generated under the doc/nesdoc directory.

3. LIS3LV02DQ application

� Make a directory in: TOSROOT\apps\Your_Directory_Name (TOSROOT\apps\ contains

most of TinyOS 1.x example applications)

� Unzip the "LIS3LV02DQ.zip" �le and copy the "LIS3LV02DQ" folder

into: TOSROOT\apps\Your_Directory_Name folder.

� Open "Cygwin" environment, in Cygwin go to the appropriate directory where the

"LIS3LV02DQ" application you want to load is located (see above).

� Attach the Tmote Sky (TelosB platform) to the USB port.

� To compile the application typing:

$ make telosb

in the application directory.

APPENDIX D. ALL CREATED APPLICATION INSTALL INSTRUCTIONS 81

Other targets:

$ make telosb install,<node_id> bsl,<port>

$ make telosb reinstall bsl,<port>

$ make telosb docs

4. spZB application in C language

� For example make a directory in: tinyos\cygwin\Your_Directory_Name_C or

tinyos\cygwin\home\Your_Directory_Name_C

� Unzip the "spZB.zip" �le and copy the "spZB" folder into the created

"Your_Directory_Name_C" directory.

� Open "Cygwin" environment, in Cygwin go to the appropriate directory where

the "spZB" application you want to executed is located (see above).

� To compile the application typing:

$ gcc -o sp sp.c

in the application directory.

� To execute the application typing:

$./sp <port>

in the application directory.

5. SerialComZB application in C# language

� For example make a directory in: \home\Your_Directory_Name_Csharp

� Unzip the "SerialComZB.zip" �le and copy the "SerialComZB" folder into

the created "Your_Directory_Name_Csharp" directory.

� To execute the application run the �le SerialComZB.exe

in \home\Your_Directory_Name_Csharp\Release directory.

Appendix E

Contents of the CD-ROM

The included CD-ROM contains:

� /Documentation/: Diploma thesis in PDF format.

� /Documentation/Datasheet/: Datasheets in PDF format for components used in

design.

� /HW/LIS3LV02DQ/: Printed Circuit Board design of expansion module with digital

accelerometer LIS3LV02DQ, data in OrCAD format.

� /HW/MMA7260Q/: Printed Circuit Board design of expansion module with analog ac-

celerometer MMA7260Q, data in OrCAD format.

� /SW/DataSendAccel/: Application to data acquisition by modules with analog ac-

celerometer MMA7260Q, TinyOS source code for the base station and sensor node.

� /SW/I2CAccelerometer/: Application to data read from modules with digital ac-

celerometer LIS3LV02DQ, TinyOS source code.

� /SW/OPEN-ZBstack/: Implementation of IEEE 802.15.4/ZigBee in TinyOS/nesC v1.2.

� /SW/SerialComZB/: GUI application in C#/MS Visual Studio 2005, C# source code.

� /SW/spZB/: Console application in C under Cygwin, C source code.

� /USBDriver/: Driver to support FTDI USB controller on Tmote Sky sensor module.

82

Bibliography

[1] Otakar �prdlík, Sensor network for inertial data acquisition, 2006. http://rtime.

felk.cvut.cz/hw/images/e/e1/Spec_ParkinsonsDisease.pdf

[2] Antonín Vojá£ek, ZigBee - novinka na poli bezdrátové komunikace, June 2005.

ZigBee-novinkanapolibezdrátovékomunikace

[3] IEEE 802.15 WPAN� Task Group 4 (TG4). http://www.ieee802.org/15/pub/TG4.

html

[4] ZigBee Alliance. http://www.zigbee.org/en/

[5] Anis Koubâa, Mário Alves, Eduardo Tovar, IEEE 802.15.4 for Wireless Sensor Net-

works: A Technical Overview, version 1.0, July 2005. http://www.open-zb.net/

publications/hurray-tr-050702.pdf

[6] André Cunha, Mário Alves, Anis Koubâa, An IEEE 802.15.4 protocol im-

plementation (in nesC/TinyOS): Reference Guide v1.2, May 2007. http:

//www.open-zb.net/publications/HURRAY_TR_061106_An_IEEE_802.15.4_

protocol_implementation%20_in_nesCTinyOS_%20Reference_Guide_v1.2.pdf

[7] André Cunha, Martin Auersvald, Main modi�cations of Open-ZB stack, 2007. http:

//rtime.felk.cvut.cz/wsn/

[8] Direct-Sequence Spread Spectrum modulation technique (DSSS). http://en.

wikipedia.org/wiki/Direct-sequence_spread_spectrum

[9] Pete Cross, Zeroing in on ZigBee (Part 1): Introduction to the Standard, Cir-

cuitcellar, February 2005. http://www.circuitcellar.com/library/print/0205/

Cross175/Cross-175.pdf

[10] Sinem Coleri Ergen, ZigBee/IEEE 802.15.4 Summary, September 2004. http://pages.

cs.wisc.edu/~suman/courses/838/papers/zigbee.pdf

[11] ZigBee Speci�cation 2006. http://www.zigbee.org/en/spec_download/zigbee_

downloads.asp

83

BIBLIOGRAPHY 84

[12] Patrick Kinney, ZigBee Technology: Wireless Control that Simply Works, Kinney Con-

sulting LLC, 2003.

[13] Jacob Munk-Stander, Martin Skovgaard, Toke Nielsen, Implementing a ZigBee Protocol

Stack and Light Sensor in TinyOS, Bachelor's Thesis, October 2005. http://www.diku.

dk/~bonnet/ba.zigbee.pdf

[14] David Scherba, Peter Bajcsy, Communication Models for Monitoring Applications Us-

ing Wireless Sensor Networks, Technical Report, April 2004. http://algdocs.ncsa.

uiuc.edu/TR-20040401-1.pdf

[15] College of Engineering, UC Berkeley, Electrical Engineering and Computer Sciences.

http://www.eecs.berkeley.edu/

[16] TinyOS. http://www.tinyos.net/

[17] Sourceforge, TinyOS. http://sourceforge.net/projects/tinyos/

[18] nesC: A Programming Language for Deeply Networked Systems. http://nescc.

sourceforge.net/

[19] Sourceforge, nescc. http://sourceforge.net/projects/nescc/

[20] David Gay, Philip Levis, David Culler, Eric Brewer, nesC 1.1 Language Reference

Manual, May 2003. http://nescc.sourceforge.net/papers/nesc-ref.pdf

[21] Sentilla/Moteiv Corporation. http://www.sentilla.com/

[22] Crossbow Technologies. http://www.xbow.com/

[23] Sentilla/Moteiv Corporation, Tmote Sky Datasheet. http://www.sentilla.com/

moteiv-endoflife.html

[24] Texas Instruments, MSP430F1611 Datasheet and MSP430x1xx Family User's Guide.

http://ti.com/msp430

[25] FTDI Chip drivers. http://www.ftdichip.com/FTDrivers.htm

[26] Gessler Electronic, MSP430-bsl, MSP430 Flash Programming Toolkit. http://www.

gessler-electronic.com/msp430/

[27] Texas Instruments/Chipcon, CC2420 Datasheet. http://focus.ti.com/docs/prod/

folders/print/cc2420.html

[28] Freescale Semiconductor, MMA7260Q Datasheet. http://www.alldatasheet.com/

datasheet-pdf/pdf/103487/MOTOROLA/MMA7260Q.html

BIBLIOGRAPHY 85

[29] Freescale Semiconductor, MMA7261Q Datasheet. http://www.alldatasheet.com/

datasheet-pdf/pdf/133711/FREESCALE/MMA7261Q.html

[30] STMicroelectronics, LE33CZ Datasheet. http://www.alldatasheet.com/

datasheet-pdf/pdf/22791/STMICROELECTRONICS/LE33CZ.html

[31] Philips Semiconductors, The I2C-Bus Speci�cation, version 2.1, January 2000. http:

//www.nxp.com/acrobat_download/literature/9398/39340011.pdf

[32] STMicroelectronics, LIS3LV02DQ Datasheet. http://www.alldatasheet.com/

datasheet-pdf/pdf/117096/STMICROELECTRONICS/LIS3LV02DQ.html

[33] Jeongyeup Paek, The Time library for Rate-Controlled Reliable Transport proto-

col for Wireless Sensor Networks. http://enl.usc.edu/cgi-bin/viewcvs/viewcvs.

cgi/tenet/mote/lib/timer/

[34] Inderjit Singh, Temperature reading application, February 2007. http://rtime.felk.

cvut.cz/hw/index.php/Temperature_reading_application

[35] Inderjit Singh, Real-time Object Tracking with Wireless Sensor Networks,

Diploma Thesis, August 2007. http://epubl.ltu.se/1653-0187/2007/059/

LTU-PB-EX-07059-SE.pdf

[36] Prof. Andrea Nannini, Pasquale Sestito, Ing. Francesco Pieri, Sviluppo di una interfac-

cia di lettura per un accelerometro MEMS triassiale inserito in una rete di sensori, Tesi

di Laurea, Accademico 2005/2006. http://etd.adm.unipi.it/theses/available/

etd-11222006-104534/unrestricted/tesi.pdf

[37] Moteiv Community, Connecting External Sensors, 2007. http://www.moteiv.com/

community/Connecting_External_Sensors

[38] UC Berkeley, Mail-Archive TinyOS-Help. http://www.mail-archive.com/

tinyos-help@millennium.berkeley.edu/

[39] Codeproject, Hexadecimal, Binary, and Decimal conversions. http://www.

codeproject.com/KB/dotnet/BinaryAndHexConversions.aspx

[40] SourceForge, Download ZedGraph. https://sourceforge.net/projects/zedgraph/

[41] SourceForge, ZedGraph Main Page. http://zedgraph.sourceforge.net/

[42] Wikipedia, GNU Lesser General Public License. http://en.wikipedia.org/wiki/

GNU_Lesser_General_Public_License

[43] Kim Hamilton, C# Top 5 SerialPort Tips, 2006. http://blogs.msdn.com/bclteam/

archive/2006/10/10/Top-5-SerialPort-Tips-_5B00_Kim-Hamilton_5D00_.aspx

BIBLIOGRAPHY 86

[44] Uninstalling TinyOS. http://www.tinyos.net/tinyos-1.x/doc/uninstall.html

[45] Sensorweb Vancouver, TinyOS Start Guide. http://sensorweb.vancouver.wsu.edu/

wiki/index.php/Tinyos

[46] TinyOS Windows Installshield Wizard and Installation. http://www.tinyos.net/

windows-1_1_0.html

[47] TinyOS download, Wireless Embedded Systems, UC Berkeley. http://webs.cs.

berkeley.edu/users/users.php?download=1&snapshot=1

[48] Sensorweb Vancouver, TinyOS 1.1.11-3is Download. http://sensorweb.vancouver.

wsu.edu/software/tinyos-1.1.11-3is.exe

[49] FTDI Chip Drivers VCP Download. http://www.ftdichip.com/Drivers/VCP.htm

[50] Upgrading to TinyOS 1.1.15 CVS Snapshots, December 2005. http://www.tinyos.

net/dist-1.1.0/snapshot-1.1.15Dec2005cvs/doc/install-snapshots.html

[51] Tinyos 1.1.15 RPM package for Cygwin Download, UC Berkeley, December

2005. http://webs.cs.berkeley.edu/tos/dist-1.1.0/tinyos/windows/tinyos-1.

1.15Dec2005cvs-1.cygwin.noarch.rpm

[52] Sourceforge, nesc 1.2.7a package Download. http://prdownloads.sourceforge.net/

nescc/nesc-1.2.7a.tar.gz?use_mirror=umn

[53] Graph Visualization Software, Graphviz 2.8 Download. http://www.graphviz.org/

pub/graphviz/ARCHIVE/graphviz-2.8.exe

[54] Cygwin, Install Setup Download. http://cygwin.com/setup.exe

