Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

Wireless sensor network for monitoring
patients with Parkinson’s disease

Diploma Thesis

Author: Martin Auersvald
Supervisor: Ing. Jifi Trdlicka
Thesis Due: January 2008

Ceské vpsoké uéeni technické v Praze - Fakulta elektrotechnickd

Katedra fidici techniky Skolni rok: 2006/2007

ZADANI DIPLOMOVE PRACE

Student: Martin Auersvald
Obor: Technicka kybernetika

Nazev tématu: Bezdratovéa senzorova sit’ pro monitorovani pacienti
s Parkinsonovou chorobou

Zisady pro vypracoviani:

1. Seznameni se s operaénim systémem TinyOS a protokolem [EEE 802.15.4/ZigBee pro
senzorové bezdratové sité.

2. Seznameni se s aktulni implementaci protokolu 802.15.4 pro TinyOS a jejf roz§ifeni pro
platformu TelosB.

3. Névrh a implementace rozsifujicich modulti pro platformu TelosB pouZitelnych jako
koncovy senzorovy a centralni datovy prvek.

4. Navrh a implementace aplikaéniho softwaru s vyuZitim TinyOS a protokolu 802.15.4 pro
sbér dat v senzorové siti zalozené na vyse uvedenych prvcich platformy TelosB.

5. Roz3ireni navrzeného feSeni sbéru a distribuce dat pro vlastnf navr¥enou senzorovou
platformu.

Seznam odborné literatury: Dddéa vedouci prace.

Vedouci diplomové price: Ing. Jifi Trdlitka
Termin zad4ni diplomové price: zimni semestr 2006/2007

Termin odevzdini diplomové prace: leden 2008

A o B

prof. Ing. Michael Sebek, DrSc. i prof. Ing. Zbyngk Skvor, CSc.
vedouci katedry dékan

V Praze dne 21.02.2007

Declaration

I hereby declare that I have written my diploma thesis myself and used only the sources

(literature, projects, SW etc.) listed in the enclosed bibliography.

In Prague,

Martin Auersvald

Acknowledgements

I am very grateful to my thesis advisor, Ing. Jifi Trdlicka, for his guidance, support,
comments and willingness to discuss any problems. I also thank my second advisor, Ing.
Petr Jurcik, for his helpful suggestions. My special appreciation goes to Ing. André Cunha
for his advice and help at working with open-ZB stack, and Bec. Jifi Kubias for helping me
during realization of hardware parts.

I would like to special thank my family and friends for their constant support and en-

couragement during the course of my studies.

iii

Abstrakt

Cilem této prace je navrh bezdratové sensorové sité pro monitorovani stavu pacientu s
Parkinsonovou chorobou.
Sit je vytvotena z péti zafizeni ve hvézdicové topologii pomoci bezdratové technologie ZigBee.
Jako zafizeni jsou pouzity sensorové moduly Tmote Sky (TelosB platforma) firmy Moteiv.
Komunika¢ni model topologie hvézda je centralizovan, kazdy ze Ctyf uzla vysila svoje data do
hlavniho uzlu, ktery vystupuje jako koordinator sité. Data jsou z téla pacienta sniména po-
moci navrzeného rozgifujictho modulu s analogovym nebo digitalnim akcelerometrem. Pro-
gramy pro zafizeni pro sbér dat, jejich vysilani, pfijimani a pifenos do osobniho pocitace jsou
vytvoreny pomoci prostiedi TinyOS, jazyka nesC a Open-ZB stacku, ktery byl vyvinut na
Polytechnickém institutu v Portugalském Portu. Open-ZB stack je open-source implemen-
tace (poskytovana jako sada néstroju) IEEE 802.15.4 a ZigBee protokolu v TinyOS/nesC.
Programy pro osobni pocita¢ pro zpracovavani a zobrazovani dat jsou vytvoreny pomoci MS
Visual Studio 2005 v programovacim jazyce C# a jazyce C pro UNIX OS.

v

Abstract

The goal of this work is a proposition of wireless sensor network for monitoring patients
with Parkinson’s disease.
The network is created from five devices in star topology by using ZigBee wireless technol-
ogy. As devices are used the sensor modules Moteiv Tmote Sky (TelosB platform). The
communication paradigm in the star topology is centralized, each from four nodes sends its
data to the principal node, which operates as a coordinator. Data are acquired from the
patient body by designed expansion module with analog or digital accelerometer. A Tmote
programs for data acquisition, data sending, receiving, processing and data transmission to
the personal computer are built by using the TinyOS operating environment, nesC language
and Open-ZB stack, which is developed in Polytechnic Institute of Porto, Portugal. Open-
ZB stack is the open source implementation (provided as a tool) of the IEEE 802.15.4 and
ZigBee protocol in TinyOS/nesC. A PC programs for data processing and displaying are
created by MS Visual Studio 2005 in C# language and in C language for UNIX OS.

Contents

1 Introduction

1.1 Parkinson’s diseaseo
1.2 Monitoring patient activityo oo
1.3 Wireless Sensor Networks (WSNs)
1.4 General requirements oL oo e
1.5 Analysis of the solution and secondary requirements
2 IEEE 802.15.4 and ZigBee

2.1 Introduction L L e e
2.2 General Description of IEEE 802.154,
2.2.1 1IEEE 802.15.4 WPAN
2.2.2 IEEE 802.15.4 Physical layer
2.2.3 IEEE 802.15.4 Medium Access Control (MAC) layer
2.2.3.1 Operational Modes

2.2.3.2 The CSMA/CA mechanisms

2.2.3.3 Frame Structure L.

2.2.34 GTS Management

2.2.3.5 Extracting pending data from a coordinator

2.2.3.6 Channel scan procedures

2.2.3.7 Association and Disassociation

2.2.3.8 Orphaned device

2.3 The ZigBee e
2.3.1 The ZigBee stack architecture0 0L

3 Description of used Software and Hardware

3.1 TinyOS . . . e
3.2 mnesC . . . L
3.3 Moteiv Tmote Sky
3.3.1 Key Features oo
3.3.2 Module Description o

vi

11
11
14
15
17
18
18
18
19
19
19

3.3.3 Block Diagram oL o 27

4 Open-ZB stack and its porting to TelosB platform 28
4.1 Introduction o Lo e e 28
4.2 Software Architecture L 30
4.3 Comparison between MICAz and TelosB implementation 31
4.4 Main Modifications of the open-ZB stack, 32

4.4.1 Phy Configuration File 32
442 PhyM Module File oo 33
4.4.3 TimerAsync Components 33
444 Other Changes e 34

5 Expansion Modules with Accelerometers 35

5.1 Expansion Module with Analog Accelerometer 35
5.1.1 Design of Circuit Scheme 36

5.2 Expansion Module with Digital Accelerometer 38
5.2.1 I2C Serial Interface 38
5.2.1.1 I2C Operation 39

5.2.2 Register mapping L e 39
5.2.3 Design of Circuit Scheme 0 0L 39

6 Data Collection Applications using Open-ZB stack 42

6.1 Application to data acquisition by modules with analog accelerometer MMA7260Q 42
6.1.1 General Description of the Application 42
6.1.2 Application Components 43
6.1.3 Detailed Analysis of the Application 44

6.1.3.1 End Device 45
6.1.3.2 PAN coordinator 46
6.1.4 Connecting External Sensors 47
6.1.5 Sensitivity and Sleep Mode Settings 49
6.1.6 Raw data packet and TinyOS message 50

6.2 Application to data read from modules with digital accelerometer LIS3LV02DQ 51
6.2.1 General Description of the Application 51
6.2.2 Application Componentso 52
6.2.3 Detailed Analysis of the Application 53

7 Results and Experience 55

7.1 Problems and Necessary Changes in the Open-ZB stack and TinyOS/nesC. . 55
7.1.1 Open-ZBstack 55
7.1.2 TinyOS/nesC 56

7.2 Results. 57

vii

7.2.1 Application to data acquisition by modules with analog accelerometer
MMAT260Q o e e

7.2.2 Application to data read from modules with digital accelero- meter
LIS3LVO02DQ o o e

Applications for Data Processing and Displaying

8.1 Console Application in C under Cygwin
8.1.1 General Describe the Application
8.1.2 Application Files o

8.2 GUI Application in C#
8.2.1 Application Files

Conclusion

IEEE 802.15.4 Frame Structures
Electronical Design of Expansion Modules
Cygwin and TinyOS Install Instructions
All created Application Install Instructions

Contents of the CD-ROM

viii

62
62
62
63
63
64

66

68

71

74

79

82

List of Figures

1.1

21
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3

4.1
4.2

5.1
5.2

9.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Spatial arrangement of the network nodes. 3
IEEE 802.15.4/ZigBee protocol stack architecture 7
Topology Models. 9
Operating frequency band. oL Lo 10
IEEE 802.15.4 operational modes 12
Structure of a Superframe oL o Lo Lo 13
The CSMA/CA Mechanism 16
Outline of the ZigBee Stack Architecture. 20
Functionality of the 10-pin expansion connector (U2) 26
Functionality of the 6-pin expansion connector (U28) 27
Functional Block Diagram of the Tmote Sky module, its components, and buses 27

Open-ZB Protocol Stack Architecture. 30
Open-ZB stack implementation diagram in TinyOS/nesC for MICAz and

TelosB platforms. 32
Circuit scheme with MMA7260Q. 37
Tmote Sky with manufactured expansion module with MMA7260Q analog

and LIS3LV02DQ digital accelerometer., 37
Circuit scheme with LIS3LV02DQ. 41
DataSendAccel Application - TinyOS Implementation Diagram. 44
The msdu payload field structure. Lo 46
TOS message Payload Data field structure. 47
The sync mpdu data payload field structure. 47
TOS-message structure.o 50
LIS3LV02DQ Application - TinyOS Implementation Diagram. 53
TOS message Payload Data field structure for digital accelerometer. 54
Measuring data through MMA7260Q), sensitivity 800mV /g (+1,5g), freq. 13Hz. 58

ix

7.2
7.3
7.4
7.5

7.6

7.7

8.1
8.2

Al
A2
A3
A4
A5
A6

B.1
B.2

Measuring data through MMA7260Q, sensitivity 600mV /g (£2g), freq. 13Hz. 58
Measuring data through MMA7260Q), sensitivity 300mV /g (+4g), freq. 13Hz. 59
Measuring data through MMA7260Q), sensitivity 200mV /g (+6g), freq. 13Hz. 59
Measuring data through MMA7260Q), three node mode, sensitivity 200mV /g

(£6g), frequency 26Hz. L 60
Measuring data through LIS3LV02DQ), sensitivity 340 LSb/g (£6g), frequency

52-56Hz. e 61
Measuring data through LIS3LV02DQ, sensitivity 1024 LSb/g (£2g), fre-

quency 52-56Hz. L. 61
GUI application in C# - Main window. 65
GUT application in C# - Communication and Application settings options. . 65
Beacon frame 68
Data frame L 69
Acknowledgment frame. oL o 69
MAC command frame 69
GTS Request Command Frame 70
GTS Descriptor o o o e 70
Design of expansion module with MMA7260Q/MMAT7261Q. 72
Design of expansion module with LIS3LV02DQ. 73

List of Tables

1.1

21

4.1

5.1
5.2
5.3

6.1

Comparison of Wireless Technologies. 4
Frequency bands and datarates., 10
The supported features of MICAz and TelosB platform. 29
g-Select pin Descriptions for MMA7260Q/MMAT7261Q 36
12C Master’s and Slave’s possibilities of transfers. 40
Main registers address map. o oo 40
TOS-message description. Lo 51

xi

Chapter 1

Introduction

1.1 Parkinson’s disease

Parkinson’s disease is a degenerative disorder of the central nervous system that often impairs
the sufferer’s motor skills and speech. It is characterized by muscle rigidity, tremor, a slowing
of physical movement and, in extreme cases, a loss of physical movement. The most widely
used form of treatment is Levodopa in various forms. Levodopa is used as a pharmacological
substance (drug) to increase dopamine levels. The occurrence of Parkinson’s symptoms is
needed to be known for proper diagnosis and treatment evaluation. It is, therefore, necessary

to monitoring patients some ways.

1.2 Monitoring patient activity

Since 90’s, a small electronic devices have been used for monitoring human activity. These
devices, called as ActiGraphs, that generally consists of an inertial sensor (accelerometer
and/or gyroscope), a filter, a memory, an interface and digital circuitry, and that, when is
worn by an individual (typical on wrist, ankle, elbow, shoulder or chest), records and reports
levels of activity (number of treshold crossings during time periods). The typical symp-
toms of Parkinson’s disease, tremor and dyskinesias (abnormal involuntary movements), are
showed as periods of high activity and is necessary use of several sensors placed over the
body because of detecting all of symptoms. The big restrictive disadvantage is cable con-
nection of a number of sensors fixed on patient’s body. Such solution is not user friendly.

Wireless connection is more suitable.

CHAPTER 1. INTRODUCTION 2

1.3 Wireless Sensor Networks (WSNs)

A wireless sensor network (WSN) is a collection of spatially distributed autonomous wireless
devices, also called as nodes or motes, using sensors to cooperatively monitor physical or
environmental conditions at different locations and that form a certain network topology. A
WSNs are used in applications to monitor/collect data that would be difficult or expensive
to monitor using wired sensors. A typical wireless sensor contains a sensor(s), a wireless
communication interface (such as radio transceiver), an energy source (typically batteries)
and a small microcontroller. Establish such a WSN is perfect for monitoring human activity.

1.4 General requirements

The following requirements have a basis in paper [1].

General requirements for this thesis:

e create the wireless network (Body Area Network) for data collection on a patient based

on an appropriate wireless technology

e the network consists of one central unit and four (two on both wrists and two on both
ankles) to six (other on chest e.g.) measurement units, as depicted in Figure 1.1,

therefore, the network will create in star topology

e central unit synchronizing data collection and storing all the measured data values for
later processing in a personal computer or in a memory, memory capacity should be

sufficient for storage of all-day measurements from all sensors

e each of measurement unit contains an inertial sensor - three-axis (3D) accelerometer

offering acceleration data and forms a simple ActiGraph this way

e acceleration range of about 5g is sufficient in Parkinsonian patients, greater range leads

to lower sensitivity

e to describe human movement a sufficient acquisition frequency of about 50Hz should
be provided

e transmition range is not needed to be greater than size of human body

e low power consumption is required, batteries in all units have to suffice at least for a

day-long measurement, batteries can be recharged at night

e low cost solution

CHAPTER 1. INTRODUCTION 3

. BODY AREA
. NETWORK

SENSORS

CENTRAL UNIT

Tmote Sky
Module

Figure 1.1: Spatial arrangement of the network nodes.

e additive functions as A /D converter in the central unit or free computational capacity

for simple algorithms is welcome

e weight of the units is also not trivial

1.5 Analysis of the solution and secondary requirements

The choice of wireless communication protocol depends on the context in which the network
is used. According to the requirements was chosen the most suitable wireless technology
- ZigBee technology, optimized for low-cost, low-power consumption and short-range radio
frequency transmissions. The process of selection also resulted from the comparison of pri-
mary parameters of used standards for wireless communication [2]. Comparison of wireless
technologies is presented in Table 1.1.

The ZigBee protocol is implemented on top of the IEEE 802.15.4 radio communication
standard. The ZigBee specification is managed by a non-profit industry consortium of semi-
conductor manufacturers, technology providers and other companies, all together designated
the ZigBee Alliance. In the Chapter 2. of this thesis is provided an overview of the IEEE
802.15.4 and ZigBee standard.

As hardware platform for wireless communication has been chosen the Tmote Sky (exactly
the TelosB platform) sensor module (see Figure 1.1) from Sentilla/Moteiv Corporation with
a chip supporting IEEE 802.15.4 standard from Chipcon Corporation. The Sentilla com-
pany was previously named Moteiv and focused on mote hardware, now the relaunched

CHAPTER 1. INTRODUCTION 4
Commercial Name GPRS/GSM Wi-Fi™ Bluetooth™ ZigBee™
Standard 1xRTT/CDMA 802.11b 802.15.1 802.15.4
Direction of Voice and Web, Email, Substitute for Monitoring
Application Data Video cable and Control
System Resources 16MB and 1MB and 250KB and 4KB - 32KB
(Memory) more more more
Battery Life 1-7 0.5-5 1-7 100 - 1000
(Days)

Max. Network Size 1 32 7 65000

(Number of Nodes/Net)

Data Rate 64 - 128 11000 720 20 - 250

(Kb/s)

Communication Range 1000 and more 1-100 1-10 1-100

(m)

Advantages Availability, Rate, Cost, Reliability,
Quality Flexibility Simplicity Power /Cost

Table 1.1: Comparison of Wireless Technologies.

Sentilla, will create software tools to used on motes form other companies, such as Texas
Instruments’” MSP430 microprocessor. TelosB platform modules are now only produced by
Crossbow Technologies. Currently, the Wireless Sensor Networks Group at Department of
Control Engineering have nine operational devices from Moteiv and ten devices from Cross-
bow that are available. In the Chapter 3. is provided an overview of the Tmote Sky module.
Open source implementation of the IEEE 802.15.4 and ZigBee protocols are not available,
therefore, the IPP-HURRAY Research Group in Porto developing own open source imple-
mentation of IEEE 802.15.4/ZigBee, which is providing as the toolset - the open-ZB stack.
The protocol stack is developed in nesC language, under the TinyOS operating system
(open-source OS designed for embedded wireless systems) for the MICAz platform from
CrossBow. It was necessary to ported the open-ZB stack to the TelosB platform at first

when we would like to use the Tmote Sky sensor modules.

Secondary requirement for this thesis:
e porting open-ZB stack implemented for the MICAz platform to the TelosB platform

In the Chapter 3. is described the TinyOS and nesC.

In the Chapter 4. is introduced the open-ZB stack, its structure, and its porting, modifica-
tions and final implementation for the TelosB platform.

As a simple ActiGraph devices are designed expansion modules (as peripherals) with an
accelerometers. As appropriate accelerometers for measurement units has been chosen the
analog MMA7260Q (eventually MMAT7261Q) by Freescale Semiconductor and the digital
LIS3LV02DQ by STMicroelectronics. Design of expansion modules with these accelerome-
ters for Tmote Sky devices is presented in the Chapter 5.

CHAPTER 1. INTRODUCTION 5

Data collection applications for Tmote Sky devices, for central node and end nodes, written
by using open-ZB stack supporting the TelosB platform is presented in the Chapter 6.
Results, problems, necessary changes and experiences in using the Open-ZB stack and
TinyOS /nesC are presented in Chapter 7.

PC applications for data processing and displaying, written in C and C# language, are

presented in the Chapter 8.

Chapter 2

IEEE 802.15.4 and ZigBee

2.1 Introduction

The IEEE 802.15.4 [IEEE 802.15 WPAN™ Task Group 4 (TG4)] protocol is often associated
with the ZigBee protocol. The relationship between IEEE 802.15.4 and ZigBee is similar to
that between IEEE 802.11 and the Wi-Fi Alliance.

The IEEE 802.15.4 protocol is as well as ZigBee technology optimized for low-cost, low-power
consumption, low-data-rate and low-complexity short-range radio frequency transmissions
in wireless communications, with typically requirements of sensor networks, automation and
remote control applications. IEEE 802.15.4 commission started working on standard a short
while later. Then the ZigBee Alliance, which is an transnational organization with over 200
member companies (ref. October 2006), and the IEEE Standards Association decided to
join forces and ZigBee is the commercial name for this technology. They have been working
in conjunction in order to specify a full protocol stack.

The IEEE 802.15.4 focuses on the specification of the lower two layers standard Open Sys-
tems Interconnection (OSI) model of the protocol for Low-Rate Wireless Private Area Net-
works (LR-WPAN’s). That are the Medium Access Control (MAC) layer and Physical layer.
It is operating in an unlicensed, international frequency band.

ZigBee Alliance aims to provide the upper layers of the protocol, from network to the ap-
plication layer, for interoperable data networking, security services and a range of wireless
home and building control solutions (device objects and profiles). ZigBee Alliance provide
also interoperability compliance testing, marketing of standard and advanced engineering
for the evolution of the standard.

Standard TEEE 802.15.4-2003 defined the protocol and compatible interconnection for
data communication devices. The IEEE 802.15.4-2006 revision extends, makes improve-
ments and removes ambiguities in the IEEE 802.15.4-2003. Specifications are available at
the website of the IEEE 802.15 Working Group for WPAN [3].

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 7

The ZigBee 1.0 specification was released in December 2004 (first stack called “ZigBee 2004”)
and is now obsolete. The enhanced specification was released to the public in December 2006
(2nd stack called “ZigBee 2006”) and contains several changes. The newest ZigBee specifica-
tion announced in October 2007 looking to extend the ZigBee 2006 specification capabilities
and is now publicly available at the website of the ZigBee Alliance [4]. ZigBee 2007 at the
network level is not backwards-compatible with ZigBee 2004,/2006.

The organization of the IEEE 802.15.4/ZigBee protocol architecture is presented in Fig-

ure 2.1.

Application Layer

APL
() Defined in the
(ZigBee Specification
Network Layer
(NWK)

Medium Access Control
(MAC)

<L Defined in the

Physical Layer IEEE 802.15.4 Standard

(PHY)

Figure 2.1: IEEE 802.15.4/ZigBee protocol stack architecture

2.2 General Description of IEEE 802.15.4

As has allready been noted, the main features of this standard are low cost, low power con-
sumption, low data rate and network flexibility in an adhoc self-organizing network among
inexpensive devices, which can be fixed, portable and/or moving. It is developed for appli-
cations with limited throughput requirements, which cannot handle the power consumption

of heavy protocol stack.

2.2.1 IEEE 802.15.4 WPAN
A. Network Devices

LR-WPAN support two diferent types of devices.

¢ Full Function Device (FFD)
A FFD is a device that can support three operation modes

— A Personal Area Network Coordinator (PAN Coordinator)

The main controller of the personal area network. This device identifies its own

network. To this network can be associated other devices.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 8

— A Coordinator

It provides synchronization services through the transmission of beacons and
must be associated to a PAN coordinator. A coordinator does not create its own

network.

— A simple device

A device which does not implement the previous functions.

¢ Reduced Function Device (RFD)
A RFD is a device operating with minimal implementation of the IEEE 802.15.4
protocol. It can only associate with a single FFD at a time. A RFD is intended for

applications that are extremely simple, do not need to send large amounts of data.

A LR-WPAN must include at least one FFD acting as a PAN coordinator that provides

global synchronization services to the network and manages potential FFDs and RFDs.

B. Network Topologies

1. Star Topology

In the star topology, the communication is established between devices and a single
central controller, a unique node operates as the PAN coordinator. After an FFD is
activated for the first time, it may establish its own network and become the PAN
coordinator. The PAN coordinator chooses a PAN identifier, which is not currently
used by any other network in the radio sphere of influence. This allows each star
network to operate independently. Each device (FFD or RFD) that is joined the
network, communicate with other devices through PAN coordinator, therefore, the
PAN coordinator have significant power consumption, hence may be mains powered.
The devices will most likely be battery powered.

2. Peer-to-Peer (Mesh) Topology
The peer-to-peer (mesh) topology also includes a PAN coordinator. In contrast to
star topology, each device can directly communicate with any other device in its radio
range and communication process does not rely on a particular node. This enlarges

networking flexibility, but it causes an additional complexity.

3. Cluster-Tree Topology
The Cluster-Tree is a special case of a peer-to-peer network in which most devices
are FFDs. An RFD may connect to cluster-tree network as a leave node at the end
of a branch. Any of the FFD can act as a coordinator and provide synchronization
services to other devices and coordinators. Only one of these coordinators is the PAN
coordinator, which identifies the entire network. The standard IEEE 802.15.4 [3] does

not define how to build a cluster-tree network. It only indicates that this is possible

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 9

and may be initiated by higher layers (network layer). In [5, 10] is simply presented,
how may be it performed. The network layer introducted in the ZigBee specification
[4] uses the primitives provided by the IEEE 802.15.4 MAC sublayer and propose the

cluster-tree protocol.

Figure 2.2 presents a network topologies supported by the IEEE 802.15.4 standard.

Star Topology Mesh Topology Cluster-Tree Topology

@ PAN coordinator O Full Function Device Q Reduced Function Device

Figure 2.2: Topology Models.

2.2.2 TEEE 802.15.4 Physical layer

The physical layer is responsible for data transmission and reception using a certain radio
channel and according to a specific modulation and spreading technique. The IEEE 802.15.4
offers three operational frequency bands: 2.4 GHz, 915 MHz and 868 MHz. There is a single
channel between 868 and 868.6 MHz, 10 channels between 902 and 928 MHz, and 16 channels
between 2.4 and 2.4835 GHz (see Figure 2.3). The protocol also allows dynamic channel
selection, channel switching, a scan function that steps through a list of supported channels
in search of a beacon, receiver energy detection and link quality indication.

The data rate is 250 kbps at 2.4 GHz, 40 kbps at 915 MHZ and 20 kbps at 868 MHz.
Lower frequencies are more suitable for longer transmission ranges due to lower propagation
losses. Low rate transmissions provide better sensitivity and larger coverage area. Higher
rate means higher throughput, lower latency or lower duty cycles. All of these frequency
bands are based on the Direct Sequence Spread Spectrum (DSSS) spreading technique (see

[3, 8]). The features of each frequency band are summarized in Table 2.1.

The physical layer of the IEEE 802.15.4 is in charge of the following tasks:

e Activation and deactivation of the radio transceiver

The radio transceiver may operate in one of three states: transmitting, receiving or

sleeping.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 10

868 MHz/ Channels 1-10 l’l‘mj‘!z
915 MHZ Channel 0 P
PHY
8683MHz 902 MHz 928 MHz
2.4 GHZ
PHY 5 MHz

Channels 11-26

NANAARANANAANANY)

2400 MHz 2483.5 MHz

Figure 2.3: Operating frequency band.

PHY Frequency band | Number of Spreading parameters Data parameters
(MHz) (MHz) channels Chip rate | Modulation | Bit rate | Symbol rate Symbols
(kchip/s) (kbit/s) (ksymbol/s)
868 868 - 868.6 1 300 BPSK 20 20 Binary
915 902 - 928 10 600 BPSK 40 40 Binary
2450 2400 - 2483.5 16 2000 0O-QPSK 250 62.5 16-ary Orthogonal

Table 2.1: Frequency bands and data rates.

e Energy Detection (ED) within the current channel

It is an estimation of the received signal power within the bandwidth of an TEEE
802.15.4 channel. This task does not make any signal identification or decoding on
the channel. This measurement is typically used by the network layer as a part of
channel selection algorithm or for the purpose of Clear Channel Assessment (CCA),
to determine if the channel is busy or idle.

e Clear Channel Assessment (CCA)

This operation is responsible for reporting the medium activity state: busy or idle.

The CCA is performed in three operational modes:

— Energy Detection mode: the CCA reports a busy medium if the detected energy
is above the ED threshold.

— Carrier Sense mode: the CCA reports a busy medium only is it detects a signal
with the modulation and the spreading characteristics of IEEE 802.15.4 and which
may be higher or lower than the ED threshold.

— Carrier Sense with Energy Detection mode: this is a combination of the aforemen-

tioned techniques. The CCA reports that the medium is busy only if it detects

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 11

a signal with the modulation and the spreading characteristics of IEEE 802.15.4
and with energy above the ED threshold.

e Link Quality Indication (LQI)

The LQI measurement characterizes the Strength/Quality of a received packet. It
measures the quality of a received signal on a link. This measurement may be im-
plemented using receiver ED, a signal to noise estimation or a combination of both

techniques.

e Channel Frequency Selection

The IEEE 802.15.4 defines 27 different wireless channels. A network can support only
part of the channel set. Hence, the physical layer should be able to tune its transceiver

into a specific channel request by a higher layer.

2.2.3 IEEE 802.15.4 Medium Access Control (MAC) layer

The MAC sub-layer provides an interface between the physical layer and the higher layer of
protocol.
MAC protocol supports two operational modes that may be selected by the coordinator:

e Beacon-enabled mode

Beacons are periodically generated by the coordinator to synchronize attached devices
(receiving and decoding the beacon) and to identify the PAN. A beacon frame is the
first part of a superframe, which contain data frames exchanged between nodes and

between nodes and the PAN coordinator.

e Non Beacon-enabled mode

In this mode, the devices can simply send their data by using unslotted CSMA /CA
(Carrier Sense Multiple Access / Collision Avoidance). There is no use of a superframe
structure in this mode. Synchronization is performed by polling the coordinator for
data.

Figure 2.4 presents a structure of the IEEE 802.15.4 operational modes.

2.2.3.1 Operational Modes
A. The Beacon-enabled mode

When the coordinator selects the beacon-enabled mode, it will use of a superframe structure
to manage communication between devices (that are associated to that PAN). The format
of the superframe is defined by the PAN coordinator and transmitted to other devices

inside every beacon frame, which is broadcasted periodically by the PAN coordinator. The

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 12

IEEE 802.15.4 MAC

Beacon Enabled Non Beacon Enabled

Superframe Unslotted CSMA/CA

Contention Access Contention Access/
(Without GTS) (With GTS)

Slotted CSMA/CA

SIHed CEMACE | Slot Allocations

Figure 2.4: IEEE 802.15.4 operational modes

superframe is contained in a Beacon Interval, which is bounded by two consecutive beacon
frames, and has an active period and may has an inactive period. The coordinator interacts
with its PAN during the active period, and enters in a low power mode (sleep) during the
inactive period. The structure of a superframe (Figure 2.5) is defined by two parameters:

e macBeaconOrder (BO): this attribute describes the interval at which the coordinator

must transmit beacon frames. The Beacon Interval (BI) is defined as:

BI = aBaseSuper frameDuration 25° symbols, for 0 < BO < 14

e macSuperframeOrder (SO): this attributes describes the length of the active portion
of the superframe, which includes the beacon frame. The Superframe Duration (SD)

is defined as:

SD = aBaseSuper frameDuration x 2°° symbols, for 0 < SO < BO < 14

If SO = BO = SD = BI, then the superframe is always active. A PAN that wishes to
use the superframe structure must set macBeaconOrder to a value between 0 and 14 and
macSuperframeOrder to a value between 0 and the value of macBeaconOrder.

The active portion of each superframe is divided into 16 equally spaced slots of duration 29 x
aBaseSlotDuration. The attribute aBaseSlotDuration represents the number of symbols
forming a superframe slot when the SO is equal to zero. One symbol is equal to four bits.

The active portion of the superframe structure is composed of three parts:

e Beacon: the beacon is transmitted without the use of CSMA at the start of slot 0.

It contains the information on the addressing fields, the superframe specification, the

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 13

GTS fields, the pending address fields, etc. For more details on the beacon frame,
refer to Appendix A.

e Contention-Access Period (CAP): the CAP starts immediately after the beacon
frame and ends before the beginning of the CFP (if it exists), otherwise, the CAP
ends at the end of the active part of the superframe. The minimum length of the CAP
is fixed and it ensures that MAC commands can still be transferred to devices when
Guaranteed Time Slots (GTSs, see below) are being used.

e Contention-Free Period (CFP): the CFP (if it exists) starts immediately after the
end of the CAP and must complete before the start of the next beacon frame. The
CFP consists in Guaranteed Time Slots (GTSs). It is a kind of resource reservation in
WPANs. The GTSs may be only allocated by the PAN coordinator and must occupy
contiguous slots. The CFP may therefore grow or shrink depending on the total length
of all GTSs. According to the standard, the GTS is used only for communications
between a PAN coordinator and a device.

Beacon Beacon

Inactive
Period

10123456 738 910111213 1415!
|
i SD = aBaseSuperframeDuration * 2 °° Symbols

W

| (Active)
!‘ Bl = aBaseSuperframeDuration * 2 B Symbols X

Figure 2.5: Structure of a Superframe

There are two superframe configurations:

1. The superframe structure without GTSs

If communications are restricted to the CAP (defined in the beacon, issued by the PAN
Coordinator) a device wishing to communicate must compete with other devices using
a slotted CSMA /CA mechanism to access the channel. However, the acknowledge-
ment frames and any data that immediately follows the acknowledgement of a data
request command are transmitted without contention. A device that cannot complete
its transmission before the end of the CAP, must defer its transmission until the CAP

of the next superframe.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 14

2. The superframe structure with GTSs

If some guaranteed Quality of Service (QoS) is to be supported, then a CFP is defined.
The PAN coordinator may allocate up to seven GTSs and each GTS may occupy more
than one time slot. The transmissions in the CFP are contention-free and therefore
do not use a CSMA /CA mechanism to access the channel. All contention-based com-
munication must be finished before the start of the CFP, and a node transmitting a
GTS must ensure that its transmission will be complete before the start of the next
GTS (or the end of the CFP). The GTS management are discussed in Section 2.2.3.4.

In both configurations (CAP only or CAP/CFP), the superframe structure can have an
inactive period during which the PAN coordinator does not interact with its PAN and may
enter in a low power mode. The inactive periods enable the devices to save energy and thus

extend network lifetime.

B. The Non Beacon-enabled Mode

When the PAN coordinator selects the non-beacon enabled mode, there are neither beacons
nor superframes. According to the standard, the PAN will operate in a non beacon-enabled
mode when the value of macBeaconOrder and macSuperframeOrder is equal to 15. Medium
access control is provided by an unslotted CSMA /CA mechanism. All messages to be trans-
mitted, with the exception of acknowledgment frames and any data frame that immediately
follows the acknowledgment of a data request command, must be dispatched according to

this mechanism.

2.2.3.2 The CSMA /CA mechanisms

The IEEE 802.15.4 defines two versions of the CSMA /CA mechanism:

e The slotted CSMA /CA version — used in the beacon-enabled mode.

e The unslotted CSMA /CA version — used in the non beacon-enabled mode.

In both cases, the CSMA /CA algorithm is based on backoff periods. Backoff period is the
basic time unit of the MAC protocol and the access to the channel can only occur at the
boundary of the backoff periods. In slotted CSMA /CA the backoff period boundaries must
be aligned with the superframe slot boundaries while in unslotted CSMA/CA the backoff
periods of one device are completely independent of the backoff periods of any other device
in a PAN. The transmission of the current frame is started only if the remaining number
of backoff periods in the current superframe is sufficient to handle both the frame and the
subsequent acknowledgement transmissions. Otherwise, the transmission of the frame is

deferred until the next superframe.

Figure 2.6 depicts a flowchart describing both versions of the CSMA /CA mechanism.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 15

The CSMA /CA mechanism uses three variables to schedule the access to the medium:

e NB - the number of times the CSMA/CA algorithm was required to backoff while

attempting the access to the current channel.

e CW - the contention windows length, which defines the number of backoff periods that
need to be clear of channel activity before starting transmission. The CW variable is
not used in the unslotted CSMA /CA.

e BE - the backoff exponent, which is related to how many backoff period a device must

wait before attempting to assess the channel activity.
MAC sub-layer attributes:

e macBaittLifExt - indication of whether battery life extension, by reduction of coordi-
nator receiver operation time during the CAP, is enabled. The unslotted CSMA /CA
does not support macBattLifExt mode.

o macMinBE - specifies the minimum value of the backoff exponent. When macMinBE
is set to zero, the waiting delay is null and collision avoidance is disabled during the

first iteration of the algorithm.

e aMazBE - specifies the maximum value of the backoff exponent, a constant defined in
the standard.

o macMazCSMABackoffs - specifies the maximum number of backoffs the CSMA /CA

algorithm will attempt before declaring a channel access failure status.

2.2.3.3 Frame Structure

The frame structures have been designed to keep the complexity to a minimum while at
the same time making them sufficiently robust for transmission on a noisy channel. Each
successive protocol layer adds to the structure with layer-specific headers and footers. The
LR-WPAN defines four frame structures:

e a beacon frame, used by a coordinator to transmit beacons
e a data frame, used for all transfers of data
¢ an acknowledgment frame, used for confirming successful frame reception

e a MAC command frame, used for handling all MAC peer entity control transfers

The structure of each of the four frame types is presented in Appendix A.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 16

CSMAICA

Slotted?
h 4
_ NB=0, Initialization of the
NE=0, Ciy=2 BE=machinBE variables
Y
macBattlifExt? BE=min{2 macMinBE)
BE=macMinBE
P
<
4
Locate Backoff
Period Boundary
P -
h 4 A 4
Random waitin
Delay for randam(0, 2°-1) unit Delay for random(0, 2%-1) unit delay for collisi .-,gn
backoff periods backoff periods y
avoidance
o
v h 4
Perform CGA on backoff period Clear Channel
Perform CCA
boundary Assessment

Channel Idla? Channel Idle? Busy/ldle channel

CW=2, NB=MB+1 - MNE=MNBE+1
BE=min(BE+1,aMaxBE) Cw=Cw BE=min(BE+1 aMaxBE)

B=macMaxCs

Backoffs?

Backoffs?

h 4
‘ Success }

Figure 2.6: The CSMA/CA Mechanism

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 17

2.2.3.4 GTS Management

The GTS (Guaranteed Time Slot) is dedicated (on the PAN) exclusively to a given device to
whom allows to access the medium without contention in the CFP but it can also transmit
during the CAP. The GTS must be allocated by a device before use and can be deallocated
at any time at the discretion of the PAN coordinator or the device that originally requested
the GTS. The PAN coordinator is the responsible for performing GTS management. If a
device misses the beacon at the beginning of a superframe, it must not use its GTSs until it
receives a subsequent beacon correctly. If synchronization with the PAN coordinator is lost
due to the loss of the beacon, the device considers all of its GTSs deallocated.

A. GTS Allocation

A device that wants to allocate a GTS must send a GTS request command to its PAN coor-
dinator indicating the GTS characteristics. The GTS request command frame is presented
in Appendix A. Each device may request one transmit GTS (the direction of data flow
is from the device to the coordinator) and/or one receive GTS (the direction is from the
coordinator to the device).

The result of the GTS request is reported by the coordinator in the beacon frames using a
GTS descriptor (presented in Appendix A) for each requesting device. The GTS descrip-
tor remains in the beacon frame for aGTSDescPersistence Time superframes, after which it

should be removed automatically.

B. GTS deallocation

A device is instructed to request the deallocation of an existing GTS through sends a deal-
location request to the PAN coordinator, which shall attempt to deallocate the GTS (its
stored characteristics are reset). It does not add a GTS descriptor into its beacon frame to
indicate the deallocation. If the GTS characteristics contained do not match the character-
istics of a known GTS, the PAN coordinator shall ignore the request.

When a GTS is deallocated by the PAN coordinator, it adds a GTS descriptor into its
beacon frame corresponding to the deallocated GTS, but with its starting slot set to 0,
indicating that the GTS has been deallocated. The descriptor remains in the beacon frame
for aGTSDescPersistenceTime superframes. On receipt of a beacon frame containing a cor-
responding GTS descriptor, the device shall immediately stop using the GTS.

The deallocation of a GTS may result in the superframe becoming fragmented. The PAN
coordinator must ensure that any gaps occurring in the CFP, are removed to maximize the
length of the CAP.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 18

C. GTS expiration

The PAN coordinator must attempt to detect when a device has stopped using a GTS:

e for a transmit GTS, the PAN coordinator assumes that a device is no longer using its

GTS if a data frame is not received in the GTS at least every 2 % n superframes

e for receive GTSs, the PAN coordinator assumes that a device is no longer using its

GTS if an acknowledgment frame is not received at least every 2 % n superframes

The value of n is defined as follows:

n = 2(8—macBeaconOrder) for 0 < macBeaconOrder < 8

n = 1 for 9 < macBeaconOrder < 14

2.2.3.5 Extracting pending data from a coordinator

This communication mechanism is called indirect transmission, where a given device polls
pending data from its coordinator.

In a beacon-enabled mode, a device is aware whether it has any frame pending by examining
the contents of the received beacon frames. If its address is contained in the Pending Address
field of the beacon frame, then the device sends a data request command to the coordinator
in the CAP. The sending of the pending data is based on CSMA /CA.

2.2.3.6 Channel scan procedures

A PAN can be created by an FFD only after performing an Active channel or an Energy
Detection (ED) channel scan and choosing an appropriate PAN identifier. Channel scan

procedures are explained in [3, 5].

2.2.3.7 Association and Disassociation
A. Association

When a device wants to join an existing network without creating a new PAN, it must be
associated with an existing PAN. The association process starts with an channel scan. The
results of the scan are then used to choose a suitable PAN characterized by its physical
channel, identifier, extended and short addresses. If the coordinator successfully associates
the device by allocating a new short address than generates an association response command
containing the new address. The association response command is sent to the device using

indirect transmission.

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 19

B. Disassociation

The disassociation process may be initiated by either the coordinator or the device itself.

e Coordinator-initiated disassociation: the coordinator sends the disassociation
notification command to the device using indirect transmission. All the references to

the device are removed by the PAN coordinator.

e Device-initiated disassociation: the device sends a disassociation notification com-

mand to the coordinator. All the references to the PAN must be removed by the device.

2.2.3.8 Orphaned device

A device may conclude that it becomes an orphan device (out of the range of its last PAN)
if a predetermined number of transmission attempts have failed. The device than triggers
the orphaned device realignment procedure or resets the MAC sub-layer and perform the
association procedure. The orphaned device realignment consists on doing an orphan channel

scan (see [3, 5]).

2.3 The ZigBee

The IEEE 802.15.4 standard defines the physical (PHY) layer and the Medium Access
Control (MAC) sub-layer. The ZigBee Alliance builds on this foundation by providing
the network (NWK) layer and the application framework for the application layer. The
application framework (AF) is comprised of the application support sub-layer (APS), the
ZigBee device objects (ZDO) containing the ZDO management plane, and the manufacturer-

defined application objects.

2.3.1 The ZigBee stack architecture

The ZigBee stack architecture is depicted in Figure 2.7. Each layer performs a specific set
of services and capabilities for the layer above: a data entity provides a data transmission
service and a management entity provides all other services. Each service entity exposes an
interface to the upper layer through a service access point (SAP), and each SAP supports a

number of service primitives to achieve the required functionality.
The responsibilities of the ZigBee NWK layer shall include mechanisms used to:

e Starting a network - the ability to successfully establish a new network

e Joining and leaving a network - the ability to gain membership (join) or relinquish

membership (leave) a network

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE

Application (APL) Layer

Application Framework

Application
Object 240

Application
Object 1

SE0BpgE|l|

agng 032

ndpoint 240
APSDE-SAR

Endpaint 0
APSDE-SAP —1]

ZigBee Davice Object
(ZDO)

=
Application Support Sublayer (APS) = lal
=
- APS Security APS Message Reflactor m o
Management Broker Management % %
Security _1_’_]/ i
EB“';‘EE “—T NLDE-SAP | = ‘g =
rovider
Network (NWK) Layer ﬁ =
=)
MWK Secur MWK Messana Raouti Matwork m w
g . rity g ng =
l'| Managemant Brokar Managament IManagement ? @
0

MLDE-SAP }

FD-S5AP |

Medium Access Control (MAC) Layer

Physical (PHY) Layer

[EEE 802,154
[Zighee™ Alliance

D Layer Function
D Layer Interface

Figure 2.7: Outline of the ZigBee Stack Architecture

as required

devices joining the network

with another device either through tracking beacons or by polling

D End Manufacturer Defined

20

Configuring a new device - the ability to sufficiently configure the stack for operation

Addressing - the ability of a ZigBee Coordinator (see bellow) to assign addresses to

Synchronization within a network - the ability for a device to achieve synchronization

e Security - applying security to outgoing frames and removing security to terminating

frames

e Routing - routing frames to their intended destinations

e ZigBee Coordinator (ZC) (FFD)

— one required for each ZB network

The ZigBee specification defined three types of devices according to the IEEE 802.15.4
standard (see Section 2.2.1):

— initiates network formation and is responsible for the inner workings of the net-

work

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 21

e ZigBee Router (ZR) (FFD)

— is used as mediator (multihop routing of messages) for the coordinator in the

PAN - allowing the network to expand beyond the radio range of the coordinator

— acts as a local coordinator for end devices joining the PAN and must implement

most of the coordinator capabilities
e ZigBee End Device (ZED) (RFD or FFD)

— does not allow association or routing

— enables very low cost solutions
The responsibilities of the APS sub-layer include:

e Maintaining tables for binding, defined as the ability to match two devices together

based on their services and their needs
e Forwarding messages between bound devices

e Discovering devices on the network and determining which application services they

provide
e Group address definition, removal and filtering of group addressed messages
e Address mapping from 64 bit IEEE addresses to and from 16 bit NWK addresses

e Fragmentation, reassembly and reliable data transport
The responsibilities of the ZDO include:

e Defining the role of the device within the network (e.g. ZigBee Coordinator or end

device)
¢ Initiating and/or responding to binding requests

e Establishing a secure relationship between network devices selecting one of ZigBee’s

security methods such as public key, symmetric key, etc.

The Application Framework in ZigBee is the environment in which application objects are
hosted on ZigBee devices. The application objects perform the following functions through
the ZDO public interfaces:

e Control and management of the protocol layers in the ZigBee device

e Initiation of standard network functions

CHAPTER 2. IEEE 802.15.4 AND ZIGBEE 22

Inside the application framework, the manufacturer-defined application objects im-
plement the actual applications according to the ZigBee-defined application descriptions.
The application objects send and receive data through the APSDE-SAP. Up to 240 distinct
application objects can be defined, each interfacing on an endpoint indexed from 1 to 240.
An endpoint number can be used to identify individual physical devices that are described
in terms of the data attributes that they contain. Two additional endpoints are defined
for APSDE-SAP usage: endpoint 0 is reserved for the data interface to the ZDO (device
management, in other words, used to address the descriptors in the node) and endpoint
255 is reserved for the data interface function to broadcast data to all application objects.
Endpoints 241-254 are reserved for future use.

The Application profiles are agreements for messages, message formats and processing
actions that enable applications to create an interoperable, distributed application between
applications that reside on separate devices. These application profiles enable applications
to send commands, request data and process commands and requests.

ZigBee vendors develop application profiles to provide solutions to specific technology needs.
Application profiles are simultaneously a means of unifying interoperable technical solutions
within the ZigBee standard, as well as focusing usability efforts within a given marketing
area. ZigBee publishes a set of public profiles and product vendors may add additional
features to them.

A complete description of the ZigBee specification can be found in [11].

Chapter 3

Description of used Software and

Hardware

The following is a brief introduction to TinyOS [16] and nesC [18]. Furthermore, the Moteiv
Tmote Sky [21] sensor module is described.

3.1 TinyOS

TinyOS is a micro-threaded, event-driven open source operating environment implemented
using nesC and designed to support the concurrency operations required by embedded net-
worked sensors with minimal hardware requirements. The TinyOS minimizes code size, this
means that only the necessary features of the operating system and application are included.
TinyOS was initially developed by researchers at the University of California, Berkeley [15]
in cooperation with Intel Research and now is actively supported by a large community of
users. For this thesis purpose is used the TinyOS version 1.1.15, running under Cygwin
(Linux-like environment) on Windows platform, for compatibility reasons. The implemen-
tation of the IEEE 802.15.4/ZigBee protocols, so-called open-ZB stack, is developed in this
version of TinyOS. Actual version of TinyOS is 2.0.2 and the second series is not compat-
ible with the first series. The source for TinyOS are available on SourceForge [17]. Install
instructions for getting TinyOS running under Cygwin are enclosed in Appendix C. See the
TinyOS [16] on Linux page if you are interesting in running TinyOS on Linux.

An application implemented in TinyOS is based on a number of components, e.g. Leds,
Timers, etc. These components are reusable from one application to another. Applications
are formed by components, which are wiring together to suite the task at hand. Chang-
ing whether the device communicates using the wireless channel or the serial port can be
changed by simply changing the communication component which the application connects.

Components can be abstract concepts (consisting of many diferent components) or a low

23

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE 24

level wrapper for a hardware component (e.g. UART).

The implementation of components is based on tasks, commands and events.

Tasks should generally be to perform long processing operations, such as long running com-
putations or background data processing. Tasks are posted to a task queue, after which
control is immediately returned to the posting component. The TinyOS task scheduler is
based on simple FIFO task execution. When no tasks are pending to be executed, the
scheduler switch the processor to sleep (main TinyOS ideology - execute jobs quickly and go
back to sleep to save power), until the next interrupt is received. Tasks run to completion
and cannot preempt each other. The use of tasks causes TinyOS to have only non-blocking
operations.

Commands are called to execute a given functionality in another component.

Events also run to completion and can preempt the execution of tasks or other events.
Events signify either completion of a split-phase operation (see below) or an event from
the environment (e.g. time passing). Components wrapping hardware signal events in re-
sponse to hardware interrupts. These events are marked with the async keyword. There
exist a technique of split-phase operation (operation request and completion are separate
functions), if long-latency operations are used. Essentially, commands are used to initiate
the requested action, e.g. component.request, posting a task and returning immediately.
Events are then signaled in response to the completion of the split-phase operation, e.g.
typically using component.requestDone. These kinds of events do not preempt as those

caused by hardware interrupts.

3.2 nesC

nesC (network-embedded-systems-C) is the programming language of TinyOS. It is an ex-
tension of C language that uses a custom compiler ,nesC”. For this thesis purpose is used
the nesC version 1.2.7. The source for nesC are available on SourceForge [19].

nesC uses two concepts to represent, components: modules and configurations. Modules
contain the code for a single component whereas a configuration is used to wire components
together. An application can use a configuration wiring one or wiring more components
together as a component in itself. A top-level configuration wires all components in the
application together.
A module implements one or more interfaces. Interfaces in nesC are bidirectional - they
contain and make accessible commands and events (both of which are essentially functions)
provided by a component. A component provides and uses interfaces. Configurations wire
modules using a given interface to a component providing an implementation of this interface.
The concurrency model of nesC allows for static compile time detection of race conditions.
These can be handled using atomic sections to turn off hardware interrupts in a block of

code and update the shared state, or by converting the conflicting code into tasks. The

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE 25

static analysis prohibits some of features used in regular C language, especially function
pointers and dynamic memory allocation (i.e. malloc).

TinyOS consists of many modules. These are compiled with the application as needed.

3.3 Moteiv Tmote Sky

As hardware platform for wireless communication has been chosen the Tmote Sky sensor
module, because the Wireless Sensor Networks Group at Department of Control Engineering
have these nine operational devices that are available.

Tmote Sky is an ultra low power IEEE 802.15.4 compliant wireless sensor module for
use in sensor networks and monitoring applications. Tmote Sky, just alternative name for
Telos Revision B design, is the latest sensor node platform available from Moteiv Corpo-
ration. Tmote Sky is replacement for Moteiv’s successful Telos design (Revision A), whose

open source hardware specification is Tmote Sky based. Both revision are supported by
TinyOS /nesC.
3.3.1 Key Features

e 250kbps 2.4GHz IEEE 802.15.4 CC2420 Chipcon Wireless Transceiver

e 8MHz Texas Instruments MSP430F1611 microcontroller (10kB RAM, 48kB Flash)

e Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

e Integrated onboard antenna with 50m range indoors / 125m range outdoors

e Integrated Humidity, Temperature, and Light sensors

e Ultra low current consumption and fast wakeup from sleep (<6us)

e Programming and data collection via USB

e 16-pin expansion support and optional SMA antenna connector

3.3.2 Module Description

Tmote Sky may be powered by two AA batteries (operating range of 2.1 to 3.6V DC) or if
it is plugged into the USB port for programming or communication, it will receive power
from the host computer (operating voltage is 3V).

Tmote Sky features the Chipcon CC2420 IEEE 802.15.4 compliant radio for wireless com-
munications, providing the PHY, some MAC functions and programmable output power.
Features and usage of the CC2420 is available in Chipcon’s datasheet [27]. CC2420 is con-
trolled by the 16-bit RISC TT MSP430 F1611 8Mhz microcontroller TT with 48kB ROM
and 10kB RAM, through the SPI (Serial Port Interface) port and a series of digital I/O

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE 26

lines and interrupts. There are UART (Universal Asynchronous Receiver/Transmitter), 12C
(Inter IC), an external 32768Hz watch crystal and 8 external ADC ports (12-bit) provided
which can be used to collect external signals. The features of the MSP430 F1611 are pre-
sented in detail in the Texas Instruments Datasheet and MSP430x1xx Family User’s Guide
[24].

A 1IMB STM25P80 Flash (IMB or 1024kB) on the Tmote Sky is another extremely useful
feature. This can be conveniently used to store data, code and other information perma-
nently on the tmote until the flash gets formatted. The flash shares SPI communication
lines with the CC2420 radio and the external SPI pins (on external expansion connector).
This means that there is a need for careful bus arbitration while using any of them simulta-
neously.

Tmote Sky uses a USB controller from FTDI to communicate with the host computer. In
order to communicate with the mote, the FTDI drivers must be installed on the host. They
may be downloaded from FTDI’s website [25]. Tmote Sky appears as a COM port in Win-
dows device manager (or as a device in /dev in Linux). Multiple Tmote Sky motes may
be connected to a single computer’s USB ports at the same time. Each mote will receive a
different COM port identifier. Tmote communicates with the host PC through USART1 on
the TT MSP430.

The Tmote Sky module provides 3 leds as user interface and slot to attach an external
antenna (range of 125m, internal antenna range of 50m). It is programmed through the
onboard USB connector. A modified version of the MSP430 Bootstrap Loader, msp430-bsl
[26], programs the microcontroller’s flash.

Tmote Sky has two expansion connectors (depicted in Figures 3.1, 3.2), 10-pin and 6-pin,
that may configured so that additional devices (analog sensors, digital peripherals) may be
controlled by the Tmote Sky and can provide power to the expansion module. The 10-
pin connector is the primary connector. An additional 6-pin header provides access to the
exclusive features of Tmote Sky.

Analog VCC (AVcc) UART Receive (UARTORX)

Analog Input 0 (ADCO) UART Transmit (UARTOTX)

12C Clock (I2C_SCL)

analeg, Input™1 (ABC:L) Shared Digital /0 4 (GIO4)

Analog Input 2 (ADC2)
Exclusive Digital /0 1 (GIO1)

Analog Ground (Gnd)

12C Data (12C_SDA)
Shared Digital /O 5 (GIO5)

Analog Input 3 (ADC3)
Exclusive Digital /0 0 (GIOO0)

Figure 3.1: Functionality of the 10-pin expansion connector (U2)
Alternative pin uses are shown in gray

Analog Input 6 (ADCB)
DACO

Exclusive Digital /0O 2 (GIO2)
Timer A Capture (TA1)

User Interrupt (Userint)

[
9]0
OJ0,

CHAPTER 3. DESCRIPTION OF USED SOFTWARE AND HARDWARE

Analog Input 7 (ADC7)

DAC1/8VSin

Exclusive Digital /0 3 (GIO3)
External DMA Trigger (DMAEOQ)

Reset

Figure 3.2: Functionality of the 6-pin expansion connector (U28)

3.3.3 Block Diagram

Alternative pin uses are shown in gray

27

PCB
Antenna CC2420 Radio
2.4 GHz
SMA IEEE 802.15.4 compliant Silicon Serial ID
Coax SPI 1/0 T-wire
A4 A6
Humidity Power
Temperature /o SPI[0] P1[0,3,4] UARTI[0] 2,
7
Sensor P4[1,5,6] |2C[O] 2, _ =
/. g S
PAR ADC[4] ADC0-36-7) G 23
D o+
Sensor Tl MSP430 Microcontroller GPIo /4/ ég’
TSR ADC[5] Reset ==
Sensor User
JTAG 8-pin JTAG 7, | UART[1] Reset SVSin SVS 2-pin
2mm |DC header 7 |P1a/P22 TCK 12c[0] SPIO] |SY¥Sout IDC header
A2 A2 gl qa
£
RX/TX RTS/DTR ST Flash
JTAG UsB 2.0 Write Protection 1024k (2.7V)
UART/RS232

Functionality

Figure 3.3: Functional Block Diagram of the Tmote Sky module, its components, and buses

Chapter 4

Open-ZB stack and its porting to
TelosB platform

4.1 Introduction

The open-ZB stack is the open-source implementation of the IEEE 802.15.4/ZigBee proto-
cols in TinyOS 1.x/nesC, which is providing as the toolset. Protocol stack is being developed
within the IPP-HURRAY Research Group (the Polytechnical Institute of Porto, Portugal),
by André Cunha, Mario Alves and Anis Koubaa. The protocol stack was primarily imple-
mented for CrossBow MICAz platform.

When we would like to use the Tmote Sky sensor modules for creating an wireless sensor
network, we started to porting and finally collaborated with the IPP-HURRAY Research
Group (namely André Cunha) in porting this protocol stack to the TelosB platform (Cross-
Bow TelosB or Moteiv Tmote Sky modules). The entire implementation and porting was
completed and the version of open-ZB stack that includes the support for the TelosB plat-
form motes is version 1.2.

Actual version of protocol stack already includes the implementation of the ZigBee Network
Layer (ZBNL) on top of implementation IEEE 802.15.4 protocol. This implementation en-
ables the cluster-tree network topology with a mechanism for beacon scheduling in order
to enable an efficient use of synchronized cluster-tree networks. There is no need to use
the ZBNL for the purpose of this diploma thesis, therefore, we used the open-ZB stack

version 1.2.

Version 1.2 of the implementation supports the following IEEE 802.15.4

functionalities:
e CSMA/CA algorithm - slotted version

e GTS Mechanism

28

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 29

Indirect transmission mechanism

Direct / Indirect / GTS Data Transmission

Beacon Management

Frame construction - Short Addressing Fields only and extended addressing fields in

the association request

Association / Disassociation Mechanism

MAC PIB Management
Frame Reception Conditions

ED and PASSIVE channel scan

Functionalities that are not implemented or tested in the version 1.2 yet:

¢ Unslotted version CSMA/CA - Implemented but not fully tested

Extended Address Fields of the Frames

IntraPAN Address Fields of the Frames

Active and Orphan channel Scan

Orphan Devices

Frame Reception Conditions (Verify Conditions)

e Security - Out of the scope of this implementation

The open-ZB stack v1.2 is supported by two hardware models, the MICAz and
the TelosB motes.

Comparison of general features these two hardware models is presented in Table 4.1.

The MICAz mote needs to be programmed using an interface board. The TelosB motes do

not need any programmer interface because they already have an USB port that is used to

upload programs. More information about the TelosB platform (Tmote Sky) was

presented in Chapter 3.

|

MICAz

|

TelosB

ATMEL ATmegal28L 8-bit pcontroller

TI MSP430 16-bit pcontroller

CC2420 RF transceiver

CC2420 RF transceiver

128 KB of program memory

48 KB of program memory

4 KB of EEPROM

10 KB of EEPROM

Supports several sensor boards

Includes a temperature and light sensor

UART communication port

UART communication port (USB converter)

Table 4.1: The supported features of MICAz and TelosB platform.

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM

4.2 Software Architecture

30

Figure 4.1 presents implementation stack architecture layers.

e ! MAC Interfaces
! Jcontrib/hurray/tos/interfaces/ieee§02 1 54.mac]
MPCS_DATANC
MWL I —
MPCS_PURGE.nz
NWL_App R / MLME_ASSOCIATE nc
/ MLME_DISASSOCIATE. no
________________ || MPC3 MLME MLME_BEACON_NOTIFY nc
SAP sap [MLME GET.nc
MAC Layer MLME_SET.nc
Implementation MLME_START.nc
|eontrib/hurray/tos/lib/mac| MLME_SYMNC.nc
Mac.nc MAC MLME MLME_SYNC_LOSS nc
MachM._nc Layer MLME_RESET.nc
mac_const.h MLME_COMM_STATUS.nc
mac_eanumerations.h MLME_SCAM.nc
— | PLME [MLME_GTS.nc
---------------- Al e SAP MLME_ORPHAN.nc
Phy Layer Implementation L — >, MLME RX_ENABLE.nc
(MICAZ) « MLME _POLLnc
|contribyhurray/tos/lib/phy_micaz] N .
Phy.nc PLME Phy Interfaces
PhyM.nc PHY [comtrib/hurray/tos/interfaces/lece802 1 54.phy]
phy_consth Layer FD_DATA.nc
phy_enumerations. h PLME CCANc
TimerAsync.nc ¥
TimerAsyncC.no RF-SAP il
TimerAsynch.nc L s PLME SET.nc
Phy Layer Implementation : Hardware Abstraction Layer S PLME_SET_TX_STATE ne ,
(TelosB) e T T
[contrib/hurray/tosiib/phy_telosh] | Hardware (MICAz)
Phy.nc [[eontrib'hurray/tos/platfornmicaz]
PhyM.nc | HPLCC2420C.nc
phy_const.h I HPLCC2420M.nc
phy_enumerations.h | HPLCC2420FIFOM ne
TimerAsync.nc ! HPLCC2420IntermuptM.ng
TimerAsyncC.nc ! HPLTImer2C.rc
TimerAsynch.nc !
_____________ J Hardware (TelosB)
leontrib/hurray/tos'y m/ |
Other Files HPLCC2420C.nc
|contrib/hurray/tos/system| HPLCC2420M.nc
mac_func.h HPLCC2420Interupth.ne
frame_format h MSP430InteruptC.ne
MSP430Interrupthd.ne
MSP430TimarC.ne

Figure 4.1: Open-ZB Protocol Stack Architecture.

The implementation is organized so that each main module (PhyM and MacM) im-

plements a layer functions. Each of these modules makes use of auxiliary files used for
some generic function implementations, constants declarations, enumerations and data struc-
ture definitions. IPP-HURRAY Research Group have developed an auxiliary module, the
TimerAsync, for the implementation of an asynchronous timer based on the hardware clock.
For the synchronous timers, used in non time critical operations, is used the TimerC already
provided by TinyOS.

The implementation uses files/components already provided in TinyOS namely the hard-
ware components. All the stack files are located in the contrib/hurray folder. The direc-
tory structure is similar to the TinyOS root folder. All the files created for implementation
and their respective location are depicted in Figure 4.1. A more detailed description is

introducted in [6].
The interface files are used to wiring the stack components and represent a service access

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 31

point (SAP). The RF-SAP comprehends the interface with the physical radio via the RF
firmware of the CC2420 and hardware components in TinyOS. The PD-SAP (Phy Data
service) comprehends the interface to exchange data packets between MAC and PHY layers.
The PLME-SAP (Physical Layer Management Entity) comprehends the interfaces between
MAC and PHY layers used for exchanging management information. The PLME-SAP
contains an PHY PAN Information Base (PHY PIB), which is a database of physical layer
managed objects (e.g. current channels, transmit power) and the PLME-SAP interfaces are
used by MAC layer to manage this information.

The MCPS-SAP (MAC Common Part Sublayer) comprehends the MSDU (MAC Service
Data Unit) data transfer between the MAC layer and the upper layer. The MLME-SAP
(MAC Layer Management Entity) contains an MAC PAN Information Base (MAC PIB),
which is a database of MAC layer managed objects (e.g. beacon order, superframe order,
short address, PAN identifier, GTS permit options) and the MLME-SAP (MAC Layer Man-

agement Entity) interfaces are used by the MAC upper layer to manage this information.

4.3 Comparison between MICAz and TelosB implemen-

tation

Figure 4.2 presents the most important component relations diagram of open-ZB stack
implementation in TinyOS for both platforms - MICAz and TelosB. The most relevant
TinyOS hardware components are highlighted in white. The components of open-ZB stack
are highlighted in gray.

The important aspect of IEEE 802.15.4 standard is the synchronization and with it re-
lated to the main modification. To accomplish a precise synchronization a important timer
component was developed, with an asynchronous behaviour regarding the code execution,
based on the hardware clock. The reason is related to the TinyOS management of hard-
ware timer provided by both platforms, which does not allow having the exact values in
millisecond of the beacon interval, superframe and time slots as specified by the protocol.
Also due to the difference between the hardware timers used by the two platforms is not
possible to achieve the same timer granularities. Therefore, the TimerAsync component has
two different implementations. These implementation for MICAz and TelosB platform are
carefully described in [6].

The physical layer represented by PhyM module is need to be wired with the hardware
specific components, that are differentiated depending of the used hardware platform. The
interference in the MacM module (implements MAC layer) have a cosmetic character. An
graphical representation of the carried modifications is presented in pictures in [7]. In the
meantime, a few of comments under pictures are added, but an basic idea of concept of
the hardware components wiring should be uderstand. PHY auxiliary files (contain the

protocol constants definition and enumeration values used in the PHY) and MAC auxiliary

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 32

! MICAz Platform \
MAG interfacas ! 1
provided to NWL TimarAsync | Clack "
@ ° : @ I
1)
PHY interfaces === —— e ——————— -
provided o MAC TelosB Platform

HPLCC2420Chpture MESP430TimerCiming

I
I

Interfaces/modules | MEP4IDCampane
implemented :
I
I

]

|

|

|

|

Interiaces/modules MSP430lnterrupth MSPA30TimerC) |
D already existing In Tiny0S S| me |
o \N__ - T __ 1

TelosB Platform

o
MICAz Platform HPLCC2420
HPLCC2426FIFO

HPLCEZ420RAM

HPLCCZ420FIFO
HPLCCZ420RAM

HPLCCZ4Z2DInterrupt

@ HPLCCZ4Z0Captura

HFLCCZ4Z20Intermgpt
HPLCC2420Capdure

HPLCCZ2420Interrupd
HPLCCZ2420Capdure,
MEPAI0Intamup|

HPLCC2420
HPLCC2420FIFO
HPLCCZ420RAM

]
|
|
|
|
|
|
|
|
|
HRLCC24201nterrupthd :
|
|
|
|
|
|
J

HPLCC2420
HPLCCZ420RA

HPLGEZ4ZOFIFD
MSP430Interrupt |MSP430INtamupt

@ HPLCC2420FIFOM HPLCC2420Interrupthd MSP430InternptC @

.~ ___ . N

I 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
| 1l
1 1l

Figure 4.2: Open-ZB stack implementation diagram in TinyOS/nesC for MICAz and TelosB
platforms.

files (contain data structures definition, protocol constants definition and enumeration values

used in the MAC) are no need to change.

4.4 Main Modifications of the open-ZB stack

We started to porting from last version 1.1 of the implementation IEEE 802.15.4/ZigBee

protocol. In this section are presented some of main modifications.

4.4.1 Phy Configuration File

Phy configuration is used to wire the PhyM module to other components. PhyM module is
need to be wired with the hardware specific components of TelosB platform. The difference is
we use the MSP430InterruptC component for FIFOP interrupt (active when number of bytes
in FIFO of CC2420 radio exceeds threshold) instead of HPLCC2420Interrupt component,
that is used for MICAz platform.

configuration Phy { }
implementation { components MSP430InterruptC;
PhyM.FIFOPInterrupt —> MSP430InterruptC.Portl0; }

Take a look at the schematic given in the Tmote Sky datasheet [23] to find out which
pin of CC2420 radio is connected to a certain port of microprocessor. ,,Port10” means port
1.0 (PKT_INT) of MCU. This port is connected to FIFOP pin of CC2420.

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 33

4.4.2 PhyM Module File

PhyM module actually provides the implementation of PHY layer. When we use the
MSP430InterruptC then we must implement MSP430Interrupt interface, that MSP430 In-
terruptC component provides.

module PhyM {
uses {
interface MSP430Interrupt as FIFOPInterrupt;

}
}

implementation {

//physical events CC2420
async event void FIFOPInterrupt.fired () {
call FIFOPInterrupt.enable(); }

//enable an edge interrupt on the CC2420 FIFOP pin
void enableFIFOP (){
atomic { call FIFOPInterrupt.disable ();
call FIFOPInterrupt.clear ();
call FIFOPInterrupt.edge (0);
call FIFOPInterrupt.enable(); } }

//disables CC2420 FIFOP interrupts
void disableFIFOP (){
atomic { call FIFOPInterrupt.disable ();
call FIFOPInterrupt.clear (); } }

Functions enableFIFOP() and disableFIFOP() are exactly assume from Telos HPLCC2420
InterruptM component. The FIFOPInterrupt.fired() event is the same as in MICAz PhyM
module, it is only completed by reenable FIFOP interrupt.

4.4.3 TimerAsync Components

The timer component for MICAz is based on the hardware clock timer configuration defined
in two constants Scale and Interval. Scale defines the scale division of the AVR micropro-
cessor and Interval defines the number of clock ticks per clock firing. The hardware timer
for the TelosB platform is based on a 32768 Hz clock and fires at approximately 30.5us.
In comparison with the MICAz timer this does not allow the set of a scale or interval pa-
rameters, instead this is a continuous timer that count from 0 to OxFFFF and when it
overflows it triggers an interrupt and starts again from zero. The only allowed parameteri-

zation is the number of overflow count before the issuing of the interrupt. The solution for

CHAPTER 4. OPEN-ZB STACK AND ITS PORTING TO TELOSB PLATFORM 34

the implementation is described in [6].

4.4.4 Other Changes

In MSP430 microprocesor (used TelosB platform) may come an internal error of unsuported
relocation. The reason is that in this 16-bit microcontroller we have to be careful how we
declare structures. We cannot declare an 8-bit integer followed by an 16-bit integer, because
internally the MCU will alocate 32-bits of memory for that with an 8-bit space between the
first declaration and the second. Therefore we place an 8-bit integers always at the end of
structure definition.

In MacM module, that actually provides the implementation of MAC layer, we have to
use the powf() function for MSP430 MCU instead of the pow() function, that is only for the
AVR MCU. The function returns the value of x to the exponent y.

Chapter 5

Expansion Modules with

Accelerometers

As a simple ActiGraph devices are designed expansion modules (as peripherals) with an ap-
propriate accelerometers. As analog accelerometer has been chosen the MMA7260Q (eventu-
ally MMA7261Q) by Freescale Semiconductor and as digital accelerometer the LIS3LV02DQ
by ST Microelectronics. Both accelerometers have advantageous features available in this

project.

5.1 Expansion Module with Analog Accelerometer

MMAT7260Q is £1.5g - 6g and MMA7261Q is +2.5g - 10g three axis low-g low-cost capacitive

surface-micromachined integrated-circuit accelerometer, whose main features are:
e Selectable Sensitivity (MMAT7260Q: 1.5g/2g/4g/6g, MMA7261Q: 2.5g/3.3g/6.7g/10g)
e High Sensitivity (MMA7260Q: 200mV /g @Q6g, MMAT261Q: 120mV /g @10g)
e Low Voltage Operation Range: 2.2V - 3.6V
e Low Current Consumption: 500uA, Sleep Mode: 3uA
e Control Timing:

— Power-Up Response Time: 1ms - 2ms

— Enable Response Time: 0.5ms - 2ms

e Internal Sampling Frequency: 11kHz

o Integral Signal Conditioning with Low Pass Filter and temperature compensation

35

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 36

Special features:

e g-Select

The g-Select feature allows for the selection among 4 sensitivities present in the device.
Depending on the logic input placed on pins 1 and 2, the device internal gain will be
changed allowing it to function with a selected sensitivity that can be changed at

anytime during the operation of the product (Table 5.1).

| g-Select2 [MSb] [g-Select1 [LSb] | g-Range [g] [Sensitivity [mV /g| |

0 0 1.5/25 800,480
0 1 2/33 600,360
1 0 1/6.7 300,180
1 1 6/10 200,120

Table 5.1: g-Select pin Descriptions for MMA7260Q/MMAT7261Q

e Sleep Mode

The accelerometer provides a Sleep Mode that makes is ideal for handheld battery
powered electronics. A low input signal on pin 12 (Sleep Mode) will place the device
in this mode, the device outputs are turned off and reduce the current to 3uA typ.
By placing a high input signal on pin 12, the device will resume to normal mode of

operation.

5.1.1 Design of Circuit Scheme

The entire design is created in Cadence OrCAD Design Tools 15.2 according to the MMA7260Q
datasheet. The electronical scheme is presented in Figure 5.1.

We used more capacitors on VCC to decouple the power source. In PCB (printed circuit
board) design is used the very low drop voltage (0.2V) regulator LE33CZ [30] with output
voltage 3.3V from ST Microelectronics for the purpose of using the designed expansion
board with accelerometer to other applications. The PCB design includes an RC filter on
the outputs of the accelerometer to minimize clock noise. The circuit board is connected
to the Tmote Sky sensor module by the used 10-pin connector. A pin layout is designed
according to the functionality of the Tmote Sky 10-pin expansion connector, see Chapter 3.
That means, all of the X-axis, Y-axis and Z-axis are connected through analog input pins
(ADCO - ADC2). Sleep mode and both of g-Select are connected through third analog input
remaining (ADC3) and UARTORX/UARTOTX. These three pins will be always set only to
the high or low state according to using Sleep mode functionality and selecting required
sensitivity.

The Tmote Sky module with the manufactured designed expansion circuit board is pre-
sented in Figure 5.2.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS

Ri
e Hout
N 1k i
[
WDC 1 2 g-Selectd o.1uf
Hout 3 4 q-Felect T
YOLLrI‘tt g g o R2 - Vout
GHD a 15~ SLEEP MODE I
1k
C2
CONID 0.1uF
R3 =
Zout
© @9 FH oz
T E 1o
o 85 5 g -
o2 2 d .
- (R " 5LEEF MODE
g-Salect] 1 g-Select] Sleep hiode 12
g-Selects L Salect? ISLE 4k
U2 LE3ICZTO8Z K 10
o o ala] NCAD
2Ne pur H 4 fss ek
& 111 o8
oo] TTT = zz 2
5 = 6 074 e e
01uF 2.2F 10uF 01uF I WAATZEON

Figure 5.1: Circuit scheme with MMAT7260Q.

37

Figure 5.2: Tmote Sky with manufactured expansion module with MMA7260Q analog and

LIS3LV02DQ digital accelerometer.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 38

5.2 Expansion Module with Digital Accelerometer

LIS3LV02DQ is +2g/+6g three axes digital output high-performance low-power linear ac-
celerometer that includes a sensing element and an IC interface able to take the information
from the sensing element and to provide the measured acceleration signals to the external
world through an I2C/SPI serial interface.

When we want to design an expansion module (as peripheral) for the Tmote Sky sensor
module, we have to use an I12C serial interface, because the primary Tmote Sky 10-pin
connector provides only two I2C pins of I2C bus, see Chapter 3.

Main features of the accelerometer:

e selectable full scale of +2g, +6g

e measuring acceleration over a bandwidth of 640Hz for all axes

e 2.16V to 3.6V single supply operation

e I2C/SPI digital output interfaces

e programmable 12 or 16 bit data representation

e interrupt activated by motion and programmable interrupt threshold

e embedded Self Test that allows to test the mechanical and electric part of the sensor

5.2.1 I2C Serial Interface

The registers embedded inside the LIS3LV02DQ may be accessed through both the I2C and
SPI serial interfaces, but we have to use the 12C to communicate with the Tmote Sky sensor
module, therefore, we have to do a short I?C operation analyze. To select the I>C interface,
CS line must be tied high (i.e connected to Vdd).

The LIS3LV02DQ I?C is a bus slave, it means the device addressed by the master which
initiates/terminates a transfer and generates clock signals. The I?C is employed to write
the data into the registers whose content can also be read back.

There are two signals associated with the I2C bus:

e the Serial Clock Line (SCL)

e the Serial DAta line (SDA) - bidirectional line used for sending and receiving the data
to/from the interface

Both the lines are connected to Vdd through a pull-up resistor embedded inside the LIS3LV02DQ.
When the bus is free both the lines are tied high. The I?C interface is compliant with Fast
Mode (400 kHz) I?C standards as well as the Normal Mode.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 39

5.2.1.1 I2C Operation

The transaction on the bus is always started by Master through a START (ST) signal. The
Master continues by sending a unique 7-bit slave device address, with the most significant bit
(MSDb) first. The eighth bit is a Read /Write bit and tells whether the Master is receiving (,,1”)
data from the slave or transmitting (,0”) data to the slave. When an address is sent, each
device in the system compares the first seven bits after a start condition with its address. If
they match, the device considers itself addressed by the Master. The Slave ADdress (SAD)
associated to the LIS3LV02DQ is 0011101b.
Data transfer with acknowledge is mandatory. A receiver which has been addressed is
obliged to generate an acknowledge after each byte of data has been received. After the
start condition a slave address is sent, once a slave acknowledge (SAK) has been returned, a
8-bit sub-address will be transmitted - the 7 LSb represent the actual register address while
the MSb enables address auto increment. If the MSb of the SUB field is 1, the SUB (register
address) will be automatically incremented to allow multiple data Read/Write.
Data are transmitted in byte format (DATA) - each data transfer contains 8 bits. The
number of bytes transferred per transfer is unlimited. Data is transferred with the Most
Significant bit (MSb) first. Each data transfer must be terminated by the generation of a
STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the
subaddress field - SUB(7) must be equal to ,,1” while SUB(6-0) represents the address of
first register to read. The Table 5.2 presented communication format, MAK is Master
Acknowledge and NMAK is No Master Acknowledge.

The perfect description of I2C communication is available in The I?C-Bus Specification
by Philips Semiconductor [31].

5.2.2 Register mapping

The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The Table 5.3 given below provides a listing of the most important 8 bit
registers embedded in the device and the related address.

Register description is available in LIS3LV02DQ datasheet [32, page 25].

5.2.3 Design of Circuit Scheme

The entire design is created in Cadence OrCAD Design Tools 15.2 according to the LIS3LV02DQ
datasheet. The electronical scheme is presented in Figure 5.1.

As well as in PCB expansion module design with MMA7260Q analog accelerometer we
used more capacitors on VCC to decouple the power source and the very low drop voltage
(0.2V) regulator LE33CZ [30] with output voltage 3.3V from ST Microelectronics for the
purpose of using the designed expansion board with accelerometer to other applications.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 40

Master is writing one byte to Slave:
[Master | ST [SAD+W | | sUB | | DATA | [sp |

| Slave | \ | SAK | | SAK | | SAK | \

Master is writing multiple bytes to Slave:
| Master | ST | SAD+W | | SUB | | DATA | | DATA | | sP |

| Slave | \ | SAK | | SAK | | SAK | | SAK | \

Master is receiving (reading) one byte of data from Slave:
[Master | ST [SAD+W | | sUB | | SR [SAD+R | \ | NMAK | P |

| Slave | \ | SAK | | SAK | \ | SAK | DATA | \ \

Master is receiving (reading) multiple bytes of data from Slave:

| Master | ST | SAD+W | | suB | | SR | SADR | \ | MAK |
| Slave | \ | SAK | | SAK | \ | SAK [DATA | \
| Master | | MAK | | NMAK | sP |
| Slave [DATA | | DATA | \ \

Table 5.2: 12C Master’s and Slave’s possibilities of transfers.

Reg. Name Type | Register Address Default
Binary Hex
CTRL REGI1 W 0100000 20 00000111
CTRL_REG2 rw 0100001 21 00000000
CTRL REGS3 W 0100010 22 00001000
STATUS_REG rw 0100111 27 00000000
OUTX L r 0101000 28 output
OUTX_H r 0101001 29 output
OUTY L r 0101010 2A output
OUTY_H r 0101011 2B output
OUTZ L r 0101100 2C output
OUTZ_H r 0101101 2D output

Table 5.3: Main registers address map.

CHAPTER 5. EXPANSION MODULES WITH ACCELEROMETERS 41

The functionality of the LIS3LV02DQ and the measured acceleration data are selectable
and accessible through the 12¢0 /SPI interface. Since, the expansion circuit board is (as
peripheral) connected to the Tmote Sky sensor module by the used 10-pin connector, it
is necessary to communicate by 12C with the Tmote Sky sensor module. A pin layout is
designed according to the functionality of the Tmote Sky 10-pin expansion connector, see
Chapter 3. We don’t use RDY/INT pin, therefore, placing this pin is unimportant. CS and
SDO pius are connected to the analog inputs (ADC2 and ADC3) and specify IQC/SPI mode
selection. When we using the I2C, CS must be tied high while SDO must be left floating.
LIS3LV02DQ SCL/SPC and SDA/SDI/SDO pins are connected to 12C Clock (I2C_SCL)
and I2C Data (IQC_SDA) pins of Tmote Sky connector.

The Tmote Sky module with the manufactured designed expansion circuit board is pre-

sented in Figure 5.2.

m Liszlniz0n
E 58S 388
o [l ['=} w = [l [l
o o o o o4 o o
(] (] (] (] (] (] (]
= = = = = = =
ke MTETE S
WCO UZ LES3CZT082 w00 2! oun S
WEC T —
2Ne pur H 2 {vop wop 2
& 1L L L . s
J— Reservedd Reserved1d
|
GHD 51 ono ano |2
3 = (eI v T) B v fi 16
ey 100 2.2uF 10uF 10uF 1D0RF ROYAINT Gk
[m]
7 MCT o MC15 15 —
N '
o
83282« 0
A =2 8238 =z
YLD 1 7 —
ROTHT 3 Fl @ o o = o = ¥
5 i SCLASPC
500 7 [OASONE00 EJus]
GHO [i T TOASOVEDO
w00
SCLISPC
CONID s

Figure 5.3: Circuit scheme with LIS3LV02DQ.

Chapter 6

Data Collection Applications using
Open-7ZB stack

A Tmote Sky applications for data acquisition, data processing, sending, receiving and data
transmission to the personal computer are built by using the TinyOS operating environment
v1.1.15, nesC language v1.2.7a and Open-ZB stack v1.2. The compile and install instructions

for the Tmote Sky sensor modules are described in Appendix D.

6.1 Application to data acquisition by modules with ana-
log accelerometer MMAT7260Q)

6.1.1 General Description of the Application

This application is formed for five devices in the star topology of an wireless network. There
are four devices, each with expansion module with analog accelerometer, and operate as a
end devices and a unique central device operates as the PAN coordinator.

Messages sending during the CAP period using the CSMA /CA is not useful, because of
so much used end devices - there are a very large data rate and number of transmit data is
very large too.

Consequently, a keystone of this application is using the Guaranteed Time Slots (GTS),
see Chapter 2. Therefore, is possible to used up to seven end devices theoretically, when
each of these devices allocate only one GTS, because the PAN coordinator accepts GTS
requests up to seven. From this results the possibility of using only three end devices, which
allocate each two GTS and they can transmit twice as much data in their reserved time slots
within an Beacon Interval. This possibility is implemented too.

The communication is established between end devices and PAN coordinator. After the

PAN coordinator is activated for the first time, it establish its own network with the noted

42

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 43

PAN identifier. At last each of end devices is joined to the network through this noted PAN
identifier.

The devices try to allocate a GTS time slot to send their data by the request a transmit
GTS allocation. After the allocation is successfully acknowledge and the PAN coordina-
tor updates the GTS descriptors list in the beacon, the devices start to measuring and
processing their data from attached expansion boards with an accelerometer and send pe-
riodic these data in payload data field of data packets to the PAN coordinator. When the
PAN coordinator receives the data frame, reads and processes the payload field and stores
data into the receiving buffer. When the PAN coordinator received all data frames in an
Beacon Interval, it sends all data from receiving buffer by UART (Universal Asynchronous
Receiver /Transmitter) through COM port to personal computer.

Measuring time of accelerometer data in each of end devices is need to be synchronized.
For this purpose sends the PAN coordinator an broadcast sync packet for synchronizing the
clocks of end devices at regular intervals.

The yellow led is on during the active period. Note for end devices, every time the data
packet is sended to the PAN coordinator the end device, toggles red led. Note for PAN
coordinator, every time the data packet is received the PAN coordinator, toggles green led

and when a sync packet is sended to an end devices, toggles red led.

6.1.2 Application Components

All application files are located in the application folder. Application is named ,,DataSendAc-

cel” and is composed of several components and auxiliary files:

o DataSendAccel.nc - the configuration file, is used to wire the DataSendAccelM.nc mod-
ule to other components that the DataSendAccel application requires. All applications
require a top-level configuration file, which is typically named after the application it-
self. It is the source file that the nesC compiler uses to generate an executable file.

e DataSendAccelM.nc - the module file, it actually provides the implementation of the
DataSendAccel application

e LocalTimeC.nc - the configuration file, is used to wire the LocalTimeM.nc module to

other components

e LocalTimeM.nc - the module file, it contains the implementation of the time compo-
nent, that provides time services for TelosB platform (e.g. converting local clock ticks

into miliseconds)

e LocalTimelnfo.nc - the interface file, this file contains the provided interfaces of the

LocalTimeM module

e mma7260q.h - this file contains the enumeration values related to specify of ADC port

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 44

FoT T T T T T T T T ~ | MAC interfaces
Open-ZB stack | | provided to NWL

MEP430Genarall

MSP430GenerallOC

TamerAsyne

FHY interfaces
provided o MAC

LacalTime
——— e e e — — - Lol Tirmeinfo

Open-ZB stack
|:| interfaces/modules

Interfaces/modules
D implemented

Interfaces/modules
D already existing in Tiny0S

|
|
|
|
|
|
|
|
|
|
|
|
\

Figure 6.1: DataSendAccel Application - TinyOS Implementation Diagram.

e datasendaccel.h - this file contains the application constants definition related to im-
plementation of IEEE 802.15.4/ZigBee protocol (e.g. coordinator or end device, BO,
SO)

e dsa_ const.h - this file contains the application constants definition related to DataSendAc-

cel settings
e dsa_enumerations.h - this file contains the enumeration values used in the application

e Makefile - make-file for building application

This application is linked directly to the MAC layer of open-ZB stack. The Figure 6.1

illustrates the component wiring to the other component.

6.1.3 Detailed Analysis of the Application

All devices must have a manually assigned short address in the compilation, there must be
a PAN coordinator device with an unique node ID 1 and four end devices with an unique
node ID from 2.
When the DataSendAccel application starts, ,Main” is a component that is executed first,
therefore, an TinyOS application must have ,Main” component in its configuration. More
precisely, the Main.StdControl.init() command is the first command executed in TinyOS
followed by Main.StdControl.start() and Main.StdControl.stop() when the component is
stopped. StdControl is an interface used to initialize and start TinyOS components. In
initialization we initiate all necessary variables, Leds, UART and ADC (see below 6.1.4)
components, deactivate SleepMode functionality of analog accelerometer and set accelerom-
eter sensitivity by g-Selectl and g-Select2 (see Section 6.1.5). In starting sequence we started
a Timer, which ensures in five seconds that the event Timer.fired() is called.

On execution of the Timer there are two different operation modes depending if the
device is the PAN coordinator or end device.

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 45

6.1.3.1 End Device

In event Timer.fired() is assigned the short address and the PANID to the end device by
MLME SET .request() primitive. Then the end device try to allocate a GTS time slot to
sending data by the MLME GTS.request() primitive and a repeat Timer send is started.
After the allocation is successfully acknowledge and the PAN coordinator updates the GTS
descriptors list in the beacon, the device may starts to send data packets with measured
data to the coordinator by issuing the MCPS DATA request primitive during its allocated
GTS (don’t use the CSMA/CA algorithm, data is sended directly without any channel
assessment). The transmit options or TxOptions parameter, last argument of the primitive,
define the transmission options for the data frame, allowing the frame to be send in the GTS
(or during the CAP period using the CSMA /CA or like an indirect transmission, and also
can be send with an acknowledgment request).

Every time the Timer send fired, the end device measures and stores its accelerometers
data and local time, when the third axis (axis Z) was measured. A difference between X
axis measured time and Z axis measured time is 2-3ms. We have to consider with this delay
during proccesing of accelerometer data. The device’s accelerometer data are sampled by
calling ADC.getData() for every axis to get a new sensor value. When the sensor value is
available, the ADC.dataReady() event is signaled. This event is asynchronous code, it sould
be protected by an atomic statement, because of the possibility of data races on shared data
accessed by an async event or command. However, leaving interrupts disabled for a long
period delays interrupt handling, which makes the system less responsive, therefore, shoud
be an atomic code very small and quick.

When are measured six times all the three axis, the end device posts a task, putZB(),
which sends the data frame with six sensor reading by MCPS_DATA .request primitive to
the coordinator. Posted tasks with the accelerometer reading are executed by the TinyOS
scheduler when the processor is idle. The structure of msdu payload data frame, that is
sending by end device, is depicted in Figure 6.2.

The device’s local time is measured by LocalTime.read() and Local TimelInfo.ticksToMs().
LocalTime and LocalTimeInfo components are created by the help of time library, that wraps
around platform dependant time services to provide platform independant Time/Timer in-
terfaces and its implementation is very simple. This time library is developed by Jeongyeup
Paek for purpose of the RCRT (Rate-Controlled Reliable Transport) protocol for Wireless
Sensor Networks and is not included in the standard TinyOS distribution. It is available to

download from [33].

When the end device receives the sync packet by MCPS DATA .confirm() primitive, it
reads the msdu payload field of this data frame and gets an PAN coordinator’s local time
from learned data. Then the end device reads its local time immediately. An offset is
specified by:

syn_offset = ((c_local time + SYN ADD CONST) — ed local time);

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 46
Octets: 2 2 2 2 4
m“—;’r':;g—a“ hodnotaX hodnata¥ hodrotaZ ed_local_time L
msdu_paylead[l] LSB ~ MSB LSE MSE LSB MSB LSB MSE MSB LSB
Octets: 2 2 2 2 4
> m"—j“"“—a“ hodnotaX | hodnota¥ | hodnotaZ ed_local_lime -
ress - -
msdu_payload[12] LSB ~ MSB LSB MSB LSB MSB LSB MSB MSB LsB
msdu_payload
L _‘
Octets: 2 2 2 2 4
» m"—j“““—a“ hodnotaX | hodnota¥ | hadnotaZ ed_local_time
ress
msdu_payload(B0] LSB MSB LSB MSB LSE MSB LSB MSB MSB LSE msdu_payload[71]

Figure 6.2: The msdu payload field structure.

SYN ADD_ CONST is time compensation value, which includes an time delay between
sync packet transmitting by PAN coordinator and sync packet receiving by end device. The

sync offset value is added to the local time of end device.

6.1.3.2 PAN coordinator

In event Timer.fired() is assigned the short address and the PANID to the coordinator by
MLME SET .request() primitive. Then is started the Beacon sending by MLME START.
request() primitive and a repeat Timer _sync is started too. The coordinator waits for a GTS
allocation by an end device. After the GTS allocation request is received and successfully
acknowledged the PAN coordinator updates the GTS descriptors list in the beacon. When
the PAN coordinator receives the data frame by MCPS_DATA .confirm() primitive, it reads
the msdu payload field of this data frame and from learned data creates three TinyOS
messages with the structure of payload data frame, that is depicted in Figure 6.3. The
msdu payload data field structure is presented in Figure 6.2. The raw data packet and
TinyOS message are described in the Section 6.1.6.

These three TOS message are stored into the receiving buffer ,uartQueueBufs[]”. This
buffer is represented an queue which is processed in FIFO order. When coordinator received
a defined number of the data frame, in other words, when it stored a defined number of TOS
messages ,UART MIN BUFF_SEND” into the uartQueueBufs[|, it starts a Timer delay.
On execution of the Timer delay posts the coordinator a task, sendDataUART(), which
sends all of the TOS message from buffer through COM port to personal computer. Using

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 47

Octets: 2 2 z 2 4

srclocallDt | tAXISKdatal | tAXISYdatal | tAXISZdatal tLocalTimeWalue1 —‘

Payload Data
Octets: 2 2 2z 2 4
srolocallD2 | tAXISKdata2 | 1AXISYdata2 | tAXISZdata2 tLocalTime\alua2

Figure 6.3: TOS message Payload Data field structure.

o : P 4 msdu_payload
my_short_ad
drese COOr_Syn
msdu_payload[] MSB LSB MSB LSE msdu_payload[s]

Figure 6.4: The sync mpdu data payload field structure.

the UART bus requires care because this line are physically shared with the data bus that
connects the radio to the microcontroller. The Timer delay defer the sending by UART
until later, that the coordinator sends data to the computer in an Inactive Period or in an
following Contention-Access Period (CAP), when the radio is inactive. The Contention-Free
Period (CFP) is not interrupted by this functionality, thereby incorrupting an possible data
packet, that could be received in running out of GTS yet. A size of the receiving buffer
and UART MIN BUFF SEND value should be choice suitable according to the number
of possible received data packets in GTS slots from all end devices.

The Timer_sync is repeatedly used to synchronization of measuring time of accelerom-
eter data in each of end devices. Every time the Timer sync fired, the PAN coordinator
measures its local time by LocalTime.read() and LocalTimelnfo.ticksToMs() and sends an
broadcast synchronization packet to all end devices for synchronizing the clocks by issuing
the MCPS_DATA request primitive. Sending is realized during the CAP period using the
CSMA /CA. The structure of sync packet is depicted in Figure 6.4.

6.1.4 Connecting External Sensors

The principal question is, how we connect external sensors. We using an ADC channel on
the 10-pin Tmote Sky expansion area and we sampling ADC data from external sensor.
The essence of preparing an external ADC port for TinyOS is in the definition of two
numbers: TOS ADC xxx PORT and its partner TOSH ACTUAL ADC xxx PORT.
"xxx" is a name you can pick when defining these values, perhaps picking a name that
describes the used sensor. In this case we have an 3D accelerometer, whose three axes can
we think of three sensors. Hence we have a three sensors called e.g. MMA X, MMA_ Y
and MMA 7 connected to ADC channel 0, 1 and 2 on the 10-pin Tmote Sky expansion
connector. We shoud define those two values above for every sensor (axis) in a header file

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 48

,mma7260q” like this:

enum {
TOS ADC MMA X PORT = unique ("ADCPort"),
TOSH ACTUAL ADC MMA X PORT = ASSOCIATE ADC CHANNEL(
INPUT _CHANNEL_AQ,
REFERENCE_VREFplus_ AVss,
REFVOLT LEVEL 2 5),

s
For X axis/sensor, change the ,MMA X” name and the three parameters given to
ASSOCIATE ADC_CHANNEL. Those parameters are:

1. The pin on the microcontroller your device is connected to. INPUT CHANNEL AO
means ,,ADC0” or ,,ADC port 0”. Find the names of the pins in the Chapter 3. or
in the Tmote Sky datasheet [23] in the section ,External Sensors”. Here, pin 3 of the

10-pin expansion header is connected to ADCO.

2. Use the internal reference voltage specified with REFERENCE VREFplus AVss.
Find the other options of the internal reference voltage in the
TOSRO0T\tos\platform\msp430\MSP430ADC12.h. Here, VR+ = VREF+ and VR-=
AVss (analog ground). Note: TOSROOT = the root of your TinyOS source directory.

3. For the internal reference voltage VREF, use the 2.5V reference voltage specified with
REFVOLT LEVEL 2 5. The one other option here is the 1.5V internal reference
voltage specified with REFVOLT LEVEL 1 5.

Should study ADC12 module (12-bit analog-to-digital converter) of MSP430 microprocessor
for understanding functionality of VR, VREF etc., find this shortcuts of the voltage in the

MSP430x1xx Family User’s Guide [24] in the Chapter 17 ,,ADC12”.
Then we wire up the ADC and ADCControl interfaces in our component configuration:

Components ADC;

Main. StdControl — ADCC;

DataSendAccelM . ADCControl —> ADCC;

DataSendAccelM . o0saX —> ADCC.ADC[TOS ADC MMA X PORT];
DataSendAccelM.osaY —> ADCC.ADC[TOS ADC MMA Y PORT];
DataSendAccelM . osaZ —> ADCC.ADC[TOS_ADC MMA Z PORT];

The last step is to bind and use the ADC port. In the module file we must use the ADC
interface for each ADC port we are going to use, and use the ADCControl interface once
to perform the ADC port ,binding”. Here are some key lines of ,DataSend AccelM” module

code:

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 49

module DataSendAccelM {
uses { interface ADCControl;
interface ADC as osaX;
interface ADC as osaY;
interface ADC as osaZ; }

}

implementation {
command result t StdControl.imnit () {
//Initialize the ADC subsystem
call ADCControl. init ();
//Initialize the MMA X MMA Y and MMA Z ADC port
//by binding it to its actual specification
call ADCControl. bindPort (TOS ADC MMA X PORT,TOSH ACTUAL ADC MMA X PORT);
call ADCControl. bindPort (TOS ADC MMA Y PORT,TOSH ACTUAL ADC MMA Y PORT);
call ADCControl. bindPort (TOS_ ADC MMA Z PORT,TOSH ACTUAL ADC MMA Z PORT);
}

Later, you can just call ADC.getData which will response later with an ADC.dataReady
event:

call osaX.getData ();

async event result t osaX.dataReady(uintl6 t data)
{ // do something with data }

6.1.5 Sensitivity and Sleep Mode Settings

The g-Select feature allows for the selection among 4 sensitivities present in the device, see
Chapter 5. The device internal gain will be changed to depending on the logic input placed
on pins 1 and 2 of the MMA7260Q analog accelerometer. A low input signal on pin 12 will
place the device in Sleep Mode, the device outputs are turned off. By placing a high input
signal on pin 12, the device will resume to normal mode of operation.

The MSP430GenerallO interface is utilized to control all pins of the 10-pin Tmote Sky
expansion connector. Take a look at the schematic given in the Tmote Sky datasheet [23] to
find out which pin is connected to a certain port. For this example, port 3.4 and port 3.5 are
routed to pin 4 and pin 2 of expansion connector and represent g-Select]l and g-Select2. As
well as port 6.3 is routed to pin 10 of expansion connector and represent Sleep Mode func-
tionality. To use the MSP430GenerallO interface wire it to the MSP430GenerallOC.Portxx
where ,Portxx” represent the pin of interest. The interface is called in the StdControl.init()
function that runs on start-up of the DataSendAccel application.

Then we set the microprocessor port thus expansion connector pin to output and turn on
(means writing a ,,1” to the pin) or off (means writing a ,0” to the pin) the pin functionality

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 50

using the commands MSP430GenerallO.makeOutput() and MSP430GenerallO.setHigh() or
MSP430GenerallO.setLow() respectively.

6.1.6 Raw data packet and TinyOS message

This section serves as a beginners guide to deciphering TinyOS serial packet.

The data are retrieved in so called raw data format. The raw data packet is wrapped
on both ends by a frame synchronization byte of 0x7E. When is sending a packet over the
serial port, the protocol uses the byte values of 0x7E and 0x7D for special purposes. 0x7E
is used to detect the start and end of a packet from the stream and 0x7D is used as the
escape byte to indicate that the next byte has been AND-ed with 0xDF. All bytes of 0x7E
and 0x7D in the raw data packet need to be replaced by a 2-byte sequence before sending.
0x7E is replaced by 0x7D5E and 0x7D is replaced by 0x7D5D. When receiving a packet, the
escape byte is discarded and the next byte is OR-ed with 0x20 in order to get the actual
byte of the packet.

The following diagram and table describes the raw data packet with a TinyOS message
type of the payload data. The TinyOS message is defined by the struct TOS Msg in the
file TOSROOT\tos\platform\telos\AM.h.

Octets: 1 1 1 5 2 1 1 Oto27 1-2 1
SYNC | Packet Data Message | Message | Group SYNC
BYTE | Type | Lenght Reserved Address | Type D (Pl GRC | myte
: I Payload data of Raw data packet = TinyOS message =! :
| |
| Raw data packet _l

A
Y

Figure 6.5: TOS-message structure.

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 51

Field Byte Description

SYNC BYTE 1 Packet frame synch byte. Always Ox7E.

Packet Type 1 There are 5 known packet types:

* P_PACKET_NO_ACK (0x42) User packet with no acknowledge (ACK) required.
User packet. ACK required. Includes a prefix byte.
* P_PACKET_ACK (0x41) Receiver must send a P_ACK response with prefix
byte as contents.

The ACK response to a P_PACKET_ACK packet.
* P_ACK (0x40) Includes the zr?eﬂx biyle as is contents. P

+ P_UNKNOWN (0xFF) An unknown packet type.

The length in bytes of the data payload, number of data bytes that is sent in packet,
This does not include the CRC or frame synch byles.

Data Lenght 1

Reserved 5 | TMmote reservation.

= fofhi — IEEE 802.15.4 frame control field (1 byte, MSE)
= fcflo — IEEE 802.15.4 frame control field (1 byte, LSB)
= dsn — |[EEE 802.15.4 data sequence number (1 byte)

+ destpan — Destination pan address (2 bytes)

Message

bl 2 | One of 3 possible value types:

= Broadcast Address [(0xFFFF) Message to all nodes.

. Message from a node to the gateway serial port.
UART Address (0x007E) All incoming messages will have this address.

« Node Address The unigue 1D of a node to receive message.

Active Message (AM) unique identifier for the type of message it is. Typically each

Message Type 1 application will have ils own message type thal is defined by application wiring.

Unique identified for the group of motes participating in the network. The default value

Group ID T |is 125 (0x7D). Only motes with the same group ID will talk to each other.

Payload Data | 0-27 | The actual message content.

Checksum byle code that ensures the integrity of the message. The CRC includes the

CHE 1-2 Packet Type plus the entire unescaped TinyOS message.

SYNC_BYTE 1 Packet frame synch byle. Always 0xTE.

Table 6.1: TOS-message description.

6.2 Application to data read from modules with digital
accelerometer LIS3LV02DQ

6.2.1 General Description of the Application

This application is not created for data acquisition using to wireless sensor network. There
are only devices with expansion module with digital accelerometer attached to USB port.
Is not relevant, whether a device operates as a end device or as a coordinator. The reason
is, the I?C and CC2420 radio cannot be used at the same time on the TelosB platform. The
I2C pins are shared with the radio’s data input pin and the radio clock. Therefore, when
there is data transfer between the radio and microprocessor, we don’t use I2C input pins

on expansion connector, those pins will be actuated with SPI protocol signals, because the

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 52

radio is controlled by the microprocessor through SPI interface, see [23].

The solution is to read input signals while the radio is not in use, it means that the
I2C bus and the radio operations must be multiplex. In using TinyOS 1.1.15, we would
have to use the BusArbitration component to acquire required pins and block the radio
from using them. Nevertheless, the BusArbitration doesn’t work reliable and it is hard to
use correctly. This problem is fixed with Resource components in TinyOS 2.x or Moteiv
Boomerang environment based on TinyOS 2.x. The Resource components are used to gain
access to shared resources through some predefined arbitration policy.

The application is developed to according to an bachelor thesis [36], in which is described
an implementation of I?C communication for MICA platform (note: in italian language).
We created the components for communication with digital accelerometer by using I2C
bus - data writing, reading, and the components for processing of acquired data and data
transmission to the personal computer by serial port. These components demonstrate using
I2C bus. As the implementation of IEEE 802.15.4/ZigBee will be ported to TinyOS v2.0,
it is proceed at this time, this application will be simple ported to TinyOS v2.0 too and
used to creating an wireless sensor network with Tmote Sky sensor modules with expansion
boards with digital accelerometer LIS3LV02DQ.

6.2.2 Application Components

All application files are located in the application folder. Application is named ,,LIS3LV02DQ”

and is composed of several components and auxiliary files:

o [2CAccelerometer.nc - the interface file, this file contains the provided interfaces of the

I2CAccelerometerM module

o [2CAccelerometerC.nc - the configuration file, is used to wire the I2CAccelerometerM.nc

module to other components

o I12CAccelerometerM.nc - the module file, it provides the implementation of the I?C

communication

o LIS3LV02DQC.nc - the configuration file, is used to wire the LIS3LV02DQM.nc mod-
ule to other components that the LIS3LV02D(Q application requires. It is the source
file that the nesC compiler uses to generate an executable file.

o LIS3LV02DQM.nc - the module file, it actually provides the implementation of the
LIS3LV02DQ application

o LocalTimeC.nc - the configuration file, is used to wire the LocalTimeM.nc module to

other components

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK

128 Accelaromatar

12CAccelerometerC

1Z2CAccelaromatar

12CAccelerometeri

MSP4302C Packet

LaocalTime
LocalTimalnfo

LocalTimeh

MSP430Genarall0

MSP430GenemallOC

Figure 6.6: LIS3LV02DQ Application - TinyOS Implementation Diagram.

ReceiveMsg

AMStandard

D Interfaces/modules

implemented
Interfaces/madules

l:l already existing in Tiny3S

53

LocalTimeM.nc - the module file, it contains the implementation of the time compo-
nent, that provides time services for TelosB platform (e.g. converting local clock ticks

into miliseconds)

LocalTimelnfo.nc - the interface file, this file contains the provided interfaces of the
LocalTimeM module

i2c__ accelerometer _const.h - this file contains the application constants definition re-

lated to the IC communication of digital accelerometer

i2¢c_ accelerometer enum.h - this file contains the enumeration values related to the

IC communication of digital accelerometer

lis8lv02dq_const.h - this file contains the application constants definition related to
LIS3LV02DQ application settings

lis3lv02dq_enum.h - this file contains the enumeration values used in the application

Makefile - make-file for building application

The Figure 6.6 illustrates the component wiring to the other component.

6.2.3 Detailed Analysis of the Application

When the ,LIS3LV02DQ” application starts, the Main.StdControl.init() command is the
first command executed in TinyOS followed by Main.StdControl.start(). In initialization we

initiate all necessary variables, Leds, UART and I2CAccelerometer components and repeat

Timer is started.

When the I2CAccelerometer component starts, it activate the I?C interface by CS line

tied high using the MSP430GenerallO interface and save the control register 1 address with

CHAPTER 6. DATA COLLECTION APPLICATIONS USING OPEN-ZB STACK 54

Octets: 1 1 2 2 2 2 4

data_length | status_reg tmotelD axisX axisY axisZ LTimeValua

Payload Data

Figure 6.7: TOS message Payload Data field structure for digital accelerometer.

autoincrement sign, control register 1 value and control register 2 value in the data_write]]
array. The register description is available in [32]. Then the I>C address of accelerometer
with the data_write[| array are transmitted on the I?C bus by MSPPacket.writePacket ()
primitive. This way is digital accelerometer initialized. Then the 12CAccelerometer compo-
nents performing the I?C operations according to I2C-bus specification, see Section 5.2.1.1.
A Timer is used to periodically start the data collection. Every time the Timer fired,
the device read the accelerometer’s data by 12CAccelerometer.readNReg() primitive from
STATUS REG register to OUTZ _H register by autoincrement sign, see Table 5.3. When
the sensor’s data is available, the I2CAccelerometer.readNRegDone() event is signaled. The
device measures its local time by LocalTime.read() and Local TimeInfo.ticksToMs() and with
accelerometers data together creates a TinyOS message with the structure of payload data
frame, that is depicted in Figure 6.7. The created TinyOS message is immediately sended
by a posted task ,sendDataUART()” by UART through COM port to personal computer.
Every time the data packet is received from accelerometer, toggles yellow led.

Chapter 7

Results and Experience

7.1 Problems and Necessary Changes in the Open-ZB
stack and TinyOS /nesC

7.1.1 Open-ZB stack

e We have removed all the usage of PrintfUART() function from open-ZB stack compo-
nents. PrintfUART() writes output to the UART as like printf function. It should be
use only for testing purposes. The problem is, the PrintfUART() function and used
UARTComm commponent may send messages by the UART over the serial port at
the same time and then the sent message is corrupted.

e When we are using the Guaranteed Time Slots (GTS) and sending messages in allo-
cated GTS slots by calling MCPS _DATA request() primitive, we could remove these
lines from MacM module:

total ticks = call TimerAsync.get total tick counter ();
msdu[0] =(uint8 t)(total ticks >> 0);
msdu[1l] =(uint8 t)(total ticks >> 8);
msdu[2] =(uint8 t)(total ticks >> 16);
msdu[3] =(uint8 t)(total ticks >> 24);

o~ o~ o~ —~

so that we resist storing a TimerAsync tick counter value in msdu array and we could

use the msdu data payload field of message from index ,,0”.

e When we are using the Guaranteed Time Slots (GTS) and sending messages in allo-
cated GTS slots by calling MCPS _DATA .request() primitive, the msdu payload data
field must be defined as the size of msdu data plus two or larger. Then the data are

transmit correctly. This is the open-ZB stack bug.

55

CHAPTER 7. RESULTS AND EXPERIENCE 56

When we are using the Guaranteed Time Slots (GTS) with the ADC component for
connecting external sensors together, we cannot use the equal values of Beacon Order
and Superframe Order. That means, the superframe structure must have an Inactive
Period during which the PAN coordinator does not interact with its PAN or the Beacon

synchronization does not work correctly then.

Unfortunately, with using the different values of BO and SO always does not work
the Beacon synchronization reliably. Sometimes the entire Beacon Interval is lost. It
can be observed on toggling of the yellow led which is on during the active period
of superframe. It is probably caused by asynchronous commands and events of ADC

channel, that are used to sampling ADC data from external sensors.

In mac_const.h we enlarge the GTS SEND BUFFER_SIZE definition from ,2” to
,117 value, so that we can store more messages in GTS send buffer. Using an even

larger value, the open-ZB stack functionality is damaged.

TinyOS message payload data field is defined to 28 Bytes value and cannot we insert
to this structure more than two data packet with accelerometer’s data. When we try

to increase this value, the open-ZB stack functionality is damaged.

7.1.2 TinyOS/nesC

It is recommended to use the name of the Timer parameterized interface as an ar-
gument to the unique() function, which generates a unique 8-bit identifier from the

string given as an argument, e.g. ,interface Timer[unique("Timer")];”.

If any Java application does not work, make sure that the JDK that actually using
(i.e., the one that is found first in Windows PATH variable), is actually the TinyOS
approved one. Can check in Cygwin by typing

$ which java, it should look something like this:
cygdrive/c/jdk1.4.1_02/j2sdk1.4.1_02/bin/java

If trying to run Cygwin and still occuring the some error like this: ,,An unhandled win32
exception occurred in > bash.exe[]”. Cygwin produced this exception in dependence
on the some kind of bad interaction with security software (firewall /antivirus/antispy-
ware). For example, the Firewall Agnitum Outpost Pro 4.0 causes this ,unhandled

exception" issue. Uninstalling and changing this software solve the problem.

When attach the Tmote Sky module with batteries and a running application, the
operation system does not need to identify the hardware correctly. Just unplug the

batteries and attach the Tmote Sky again.

Everything is in order, but ,,$ make <platform>" command still does not work, try
to change permissions of the ,build” directory and all of files inside by the following

CHAPTER 7. RESULTS AND EXPERIENCE 57

7.2

command:

$ chmod 777 <directory name or file_name> and try to compile of application again.

Results

7.2.1 Application to data acquisition by modules with analog ac-

celerometer MMAT260Q

According to detected problems above we choose as optimal settings of application and

open-ZB stack following values:

Beacon Order = 7, Superframe Order = 6

the Timer component, which is based on the hardware timer for the TelosB platform,
provides only correct time meassuring in using some time value, it have to be tested
for every time value but the best is used 2"time values. In the following points is
stated an really time value, with that is really measured accelerometer’s data and an

set value of Timer component in curves.

accelerometer’s data meassuring time interval = 74ms (76ms) in using four end devices
- one GTS for each of them

— this implies the achieved frequency of data aquisition is about 13Hz

accelerometer’s data meassuring time interval = 37-38ms (56ms) in using three end

devices (so called three node mode) - two GTS for each of them
— this implies the achieved frequency of data aquisition is about 26Hz
theoretically is possible to used up to seven end devices

the size of the UART receiving buffer = 48 in using four end devices, 75 in using three

end devices

sending by UART defer time value = 500ms

synchronization time interval = 5000ms

time compensation value for time synchronization = 2ms

we achieve 0.04% corrupted packets during sending and receiving

solution of problem with bad Beacon synchronization is failed. This is the open-ZB
stack unpleasant bug. Without it we would achieve double the frequency of data
acquisition. This defect is possible to see in depicted graphs, e.g. in Figure 7.1 around
time 95s or in Figure 7.2 around time 105s.

CHAPTER 7. RESULTS AND EXPERIENCE 58

Graphs of measured accelerometer’s data

Analog Accelerometer MMA7260Q

157
Gain [¢]

054

1,5
Time [s]

Figure 7.1: Measuring data through MMA7260Q, sensitivity 800mV /g (£1,5g), freq. 13Hz.

Analog Accelerometer MMA7260Q

157
Gain [g]

14

— M Axs
W Axs
— L Axis

Time [s]

Figure 7.2: Measuring data through MMAT7260Q), sensitivity 600mV /g (+2g), freq. 13Hz.

CHAPTER 7. RESULTS AND EXPERIENCE

Analog Accelerometer MMA7260Q
1,51

Gain [g]

054

-1,54

Time [s]

59

Figure 7.3: Measuring data through MMAT7260Q), sensitivity 300mV /g (+4g), freq. 13Hz.

Analog Accelerometer MMA7260Q

15-
Gain [g]
14
I.'I'{ N M _,W,\ M
\ ™M LI
0,5-\[| ||]|r s '||
A VN T h e s
0 frrriAArLR I (A :"J 'l FoRoTa rll iE -
50 '||"“| Al s f ""'.||-'”“B&# | || 'p'q '.J'| I'w? | 150
05 ||II || |I -l [! | | ‘il ![|| lJ |ii | I || . \ | |l Il| ||

-1 54
Time [s]

Figure 7.4: Measuring data through MMAT7260Q), sensitivity 200mV /g (£6g), freq. 13Hz.

CHAPTER 7. RESULTS AND EXPERIENCE 60

Analog Accelerometer MMA7260Q
1,54

Gain [g]

— X Axis
Y AxS
— Z Axig

0,54

=054

-1,5-

Time [s]

Figure 7.5: Measuring data through MMA7260Q, three node mode, sensitivity 200mV /g
(+6g), frequency 26Hz.

7.2.2 Application to data read from modules with digital accelero-
meter LIS3LV02DQ

Appropriate settings of this application:

e accelerometer’s data meassuring time interval = 18-19ms (set value of Timer compo-

nent: 25ms)

— this implies the achieved frequency of data aquisition is about 52-56Hz

CHAPTER 7. RESULTS AND EXPERIENCE 61

1,99

Gain [g]

Graphs of measured accelerometer’s data

Digital Accelerometer LIS3LV02DQ

14—

0,54

Time [s]

Figure 7.6: Measuring data through LIS3LV02DQ, sensitivity 340 LSb/g (£6g), frequency

52-56Hz.

1,517

Gain [g]

-1,54

Digital Accelerometer LIS3LV02DQ

Time [s]

Figure 7.7: Measuring data through LIS3LV02DQ), sensitivity 1024 LSb/g (42g), frequency

52-56Hz.

Chapter 8

Applications for Data Processing

and Displaying

PC applications for data processing and displaying are created by Microsoft .NET Frame-
work in MS Visual Studio 2005 using C# language and in C language under Cygwin linux-like

environment for Windows. The compile and install instructions are described in Appendix D.

8.1 Console Application in C under Cygwin

8.1.1 General Describe the Application

When the application started, it attempt to open selected COM port as first by openDevice()
function. A port is opened by open() standard function with appropriate parameters and the
recieved buffer is emptied. Then setOptions() function is called, that makes proper settings
of serial port for communication. Consequently the directory with storage files for received
packets and data are created. A time stamp are written to the files for identification. In
while cycle is reading data stream from the COM port by read() in getData() function. Data
are putting in and getting from the data array by a pointers. Data are recognizing from data
stream by 0x7E value, that is used to marking the start and end of a raw data packet from
the data stream, see Section 6.1.6. Raw data packets are processing towards the TinyOS
message structure of payload data frame is recovered. The acquired accelerometer’s data,
its time stamp, node ID etc. are displayed on the monitor and saved in the file by printf()
and fprintf() function. In the second file are saved all the received raw data packet. Data

format in files is chosen suitable for followed processing in Matlab.

62

CHAPTER 8. APPLICATIONS FOR DATA PROCESSING AND DISPLAYING 63

8.1.2 Application Files

All application files are located in the application folder. Application is named ,spZB” and

is composed of:

e sp.c - source code of application

e sp.h - header file, that is automatically included in source file by the compiler, the file

contains the application constants definition related to spZB application settings

8.2 GUI Application in C#

Application is controlled by the main form window, depicted in Figure 8.1. By this main
form and other forms such as form for application or serial port settings (depicted in Figure
8.2.) are available all of implemented functionality.

There are used some library, that are not a part of MS Visual Studio installation and
provide an useful function. These are the ZedGraph [41, 40] for creating 2D line graphs and
Bin library for hexadecimal conversions to signed integers and unsigned integers.

First, after the application started, the user must set the operation mode by Application
Settings form - to what end will be the application used - if we want to read data from
Tmote Sky module with analog MMA7260Q or digital accelerometer LIS3LV02DQ. In this
form is possible to permit and set the sensitivity of used accelerometer in mV /g for analog
and LSb/g for digital accelerometer. The user may permit graph depiction (Graph ON),
automatic graph depiction once per two seconds (Graph SHOW) and set parameters to
graph depiction, such as the choice of requred node ID and the number of data packets,
whose data are displayed to the graph.

Second, the user must set the properties of serial port where the required mote is plugged
by Port Settings form. For user’s comfort is implemented an automatic port scan, which
finds all of available active ports.

The keystone of this application is using DataReceived event handler, that signals an
available data. Consequently, data are read by using SerialPort.Read() from port and are
processed in the same way as like in console application. Received raw data packets and
processed accelerometer’s data are displayed in text boxes, stored in the files and depicted

in graph. Data format in files is chosen suitable for followed processing in Matlab.

CHAPTER 8. APPLICATIONS FOR DATA PROCESSING AND DISPLAYING 64

8.2.1 Application Files

All application files are located in the application folder. Application is named ,Serial-

ComZB” and is composed of several source files:

e Forml.cs, FormAbout.cs, FormHelp.cs, FormSet.cs, FormSetAppl.cs - source code of

Main form, About form, Help form, port settings form and application settings form

e zxz.Designer.cs files - contain code automatically generated by the Windows Form
Designer, in other words a xxx.Designer.cs file contains all of the code about the
form that is automatically generated when you drag components to the form from the

toolbox
o zzz.resz files - contain information about the design of the forms

e Program.cs - in this file is the starting point for program, it sets environment param-

eters and calls for the creation of Form1l
e Help.rtf - help file, it provides a documentation on use of the application

e Bin.dll - Bin is a set of classes to do hexadecimal, binary, and decimal conversions to

signed integers and unsigned integers. [39] Library has no explicit license.

e ZedGraph.dll - ZedGraph [41, 40] is a set of classes, for creating 2D line and bar graphs
of arbitrary datasets. ZedGraph also includes a UserControl interface, allowing drag
and drop editing within the MS Visual Studio forms editor and is licensed under the
LGPL (GNU Lesser General Public License) [42].

=
. Serial communication ko collect sensor's data v.3.0

CHAPTER 8. APPLICATIONS FOR DATA PROCESSING AND DISPLAYING

65

File Application Settings Setings Help About

Serial Communication to Collect Sensor's Data

Received Packets

FE420E0000000000FEQOM 7D O7 OFQ200FFFDO0ID 015920 240200 DE C37E
7FE420E00000000007E QDO 70 07 OF 0200 FF FC 00 1C 07 55 46 24 03 0000 70 7E
FE420E00000000007E 000170 07 OF 0200FF FCOO1C 01 595E 24030035 43 7E
JE420E00000000007E 0007 70 07 OF 0200 FF FD OO 1C 01 5377 24 03 00 2F 66 7E
JE420E00000000007E 00O 70 07 OF 0200 FF FD O01C 01 59 8F 24080041 7C7E
JE420E00000000007E 0001 70 07 OF 02 00 FF FD OD1C 01 59 A7 2408 00 2C CE 7E
JE420E00000000007E 000170 07 OF 0200 FF FDOD1D 0168 C0 24 0800E2304 7E
7E420E 000000 00007E 0001 70 07 OF 02 00 FF FD 0010 01 58 D8 24 08 00 87 44 7E
7E420E 000000 00007E Q001 70 07 OF 02 00 FF FC OO 1C 01 59 F1 24 08 00AD 77 7E
7E420E00000000007E 0001 70 07 OF 02 00 FF FC OO1C 01 5909 2B 080013 BA 7E
7E420E00000000007E Q001 70 07 000200 FFFCO01C 015921 2B 0800CC 29 7E
7E 42 0E 0000 00 0000 7E 0001 7D 07 09 02 00 FF FD 00 1C 01 59 34 28 08 00 6E 89 7E

W3

Accelerometer Gain Graph

[— RE¥X —— REY —— MkZ

Node AxisX AxisY AxisZ Time [ms] Status

2 -3 29 345 535085 0F A 15 ,

2 -4 28 344 535110 0F =

2 -4 28 345 535134 0F

2 -3 28 345 535159 0F

2 -3 28 345 535183 0F

2 -3 28 345 535207 oF

2 -3 29 344 535232 0F

2 -3 29 344 535256 0F

2 -4 28 345 535261 0F

2 -4 28 345 535305 0F

2 -4 28 345 535329 oo

2 -3 28 345 535354 09

2 -3 28 344 535378 0F

2 -3 28 345 535403 0F

2 -3 29 344 535427 0F

2 -4 29 344 535451 oF v 15 :

570 580

Digzonhect Clear &ll Show

i

t
600 G10 620 630
Tirne [rns] [1073)

Com port: COM11 [bps: 57600, data bits: 8, parity: Mone, stopbit: One) iz opened

LIS3LY0200 | node: 2

Figure 8.1: GUI application in C# - Main window.

Figure 8.2: GUI application in C# - Communication and Application settings options.

- . |
Communication parameters x Application Settings | x
Communication parameters Chose your options
Communication port COM1T x Type of acclerometer
Bits per second 57600 xd ENHHATZE00
@ Us3Lv0200
Data bits 8 0
W Sensitivity
Paiity Nene i 340 A [mV/gorLShig]
Stop bit 1 e Graph
50 &
e e x s MNurn of data to graph
Port scan | coMn 2 % Node selection
i W Graph ON
SET W Graph SHOW
SET

Chapter 9

Conclusion

We managed to create an wireless sensor network, that is able to monitoring patient’s body.
According to the requirements was chosen the most suitable ZigBee wireless technology.
For this technology is developing an open source implementation, so called open-ZB stack.
Because we choose the Tmote Sky sensor modules from Sentilla/Moteiv Corporation as
hardware platform for wireless communication, we have to porting the open-ZB stack to
this platform at first by collaborating with its developers. Porting is done successfully. This
implementation was tested during the working at this thesis and we found some unpleasant
bugs, the requirement using the different values of Beacon Order and Superframe Order
when we want to use the Guaranteed Time Slots with the ADC component for connecting
external sensors together and problems with the Beacon synchronization, that often does not
work correctly. But this is an open source implementation and its development continues.
If these bugs was eliminated, we would be approached much more to required frequency of
data acquisition.

We designed the expansion modules with analog accelerometer MMA7260Q for applica-
tion to data acquisition from patient’s body. The application was built in TinyOS/nesC and
open-ZB stack. In this way we achieved the frequency 13Hz in using one PAN coordinator
and four end devices and 26Hz in using three end devices both at the accelerometer sensi-
tivity from 800mV /g (£1.5g) to 200mV /g (+6g). We also designed the expansion modules
with digital accelerometer LIS3LV02DQ only for data reading application in TinyOS /nesC,
due to the using TinyOS v1.1.15 where the BusArbitration doesn’t work correctly.

We used the GTS mechanism for a created wireless sensor network, therefore, is possible
to used up to seven end devices theoretically. A possibility of using CSMA /CA mechanism
in Contention-Access Period of Beacon Interval has been dismissed immediately. When we
are transmitting as much of accelerometer’s data and as large frequency in using so much
devices, the contention mechanism is useless. We still have to think of ZigBee technology is

optimized for low data rate transmissions.

66

CHAPTER 9. CONCLUSION 67

The Department of Control Engineering have not available any network protocol analyser
or packet sniffers for interpret the IEEE 802.15.4 and ZigBee frames. Effective testing of
communication flow in the created network was very difficult.

Alternative solution is leave the open-ZB stack and just using TinyOS components for
(C(C2420 radio chip, that access the implementation of physical layer and reduced MAC layer
and create an centralized but peer-to-peer wireless sensor network, in which the coordinator
will ask each of end devices for its data and acknowledge its receipt.

Department of Control Engeneering is developing own ZigBee radio platform, therefore,
could be use some commercially developed ZigBee stack (full IEEE 802.15.4, reduced/full
MAC layer or complete ZigBee implementation). The ZigBee stack offers e.g. Microchip
Technology for its PIC processors (P1C18,24,33), this stack is free or Freescale Semiconductor
offers the BeeKit Wireless Connectivity Toolkit for its processors (HCS08 family), that
includes an unlimited use license for the reduced MAC layer and IEEE 802.15.4 codebases
and a 90-day evaluation of Freescale’s BeeStack ZigBee codebase.

This thesis will be used to other research on sensing and processing data for Parkinso-
nian patients at Department of Control Engineering and we believe that contains valuable
information to other users and developers using, maintaining and expanding the open-ZB

protocol stack.

Future work:

e develop an expansion memory module for central node with Vinculum VNCI1L (Em-

bedded USB host Controler) for storing measured accelerometer’s data
e develop an application to storing received data in expansion memory module

e when the own ZigBee radio platform will be developed at Department of Control
Engeneering, porting the open-ZB stack and all of created application to this new

platform

e when the open-ZB stack porting to TinyOS 2.x will be done successfuly, porting all
of created application to TinyOS 2.x and create an wireless sensor network for digital
accelerometer’s data acquisition by developed application for reading digital accelerom-

eter’s data

Appendix A

IEEE 802.15.4 Frame Structures

The diagrams in this clause illustrate the fields that are added by each layer of the protocol.
The PHY packet structure represents the bits that are actually transmitted on the physical
medium. A complete detailed description of the fields and frame’s structures can be found
in [3].

Octets: 2 1 4or 10 2 k m n 2
. Pending
MAC Frame | Sequence | Addressing | Superrama GTS Address Beacon FCs
sublayer Control Murmier Fields Specification Fialds Fields Payload
[MHR MSDU MFR
—— |
ﬂHL‘_h“ |
|
Octets: 4 1 g TH@dor 104 kemtn !
PHY Preamble | Start of Frame | Frame PsOU

layer Sequence Delimiter Length

SHR PHR MFDU I

| 13+ (dor10)+k+m+n |

Figure A.1: Beacon frame

MHR - MAC header

MFR - MAC footer

MSDU - MAC service data unit

MPDU - MAC beaconfdata’acknowledgmenticommand frame
FCS - frame check sequence

SHR - synchronization header

PHR - PHY header

PSDU - PHY service data unit (the PHY beacon/data/acknowledgment/command frame payload)
PPDU - PHY beacon/dala’acknowledgmenticommand packet

68

APPENDIX A. IEEE 802.15.4 FRAME STRUCTURES 69
Oclats: 2 1 41020 il 2
MAC Frame | Sequence | Addressing
sublayer Control | Number | Fields S FGS
MHR, MSDLU MFR
I
Octets: 4 1 1 S5+ (4t020)+n I
PHY Preamble | Start of Frame | Frame MFDU
layer Sequence Delimiter Length
| SHR PHR PsSDU I
I
|
1 11+ (4t020)+n I
PPDU
Figure A.2: Data frame
Oetets: 2 1 2
MAC Frarme | Sequence FCs
sublayer Cantrol Mumber
| MHR MFR
| I
Octets: 4 1 1 | 5 l
PHY Preamble | Start of Frame | Frame MEDL
layer Sequence Delimiter Length
| SHR PHR PSDU I
| I
| 11 !
PRDU
Figure A.3: Acknowledgment frame
Oclets; 2 1 4 to 20 1 n 2
MAC Frame | Sequence | Addressing | Command Command FCs
sublayer Control Mumber Fialds Type Payload
I MHR, MSDU MFR
I I
Octets: 4 1 1 I G+ (4to20)+n !
PHY Preamble | Start of Frame | Frame MEDL
layer Sequence Delimiter Length
SHR PHR PSDU I

124 (410 20) + n

PPOU

Figure A.4: MAC command frame

APPENDIX A. IEEE 802.15.4 FRAME STRUCTURES

Bytes 2 1 410 1 1
Frame | Sequence | Addressing Command GTs
Control Frama Fields Frame Identifier | Characteristics
MAC Header GTs Réauest Command \\
- A
- ~
Bi= -3 4 5 BT
GTS GTS Characteristics R d
Length Direction Type ESemve

Figure A.5: GTS Request Command Frame

Bits: (-15 16-18 20-23
Device GTS GTS
Shoit Address Start Slot Length

Figure A.6: GTS Descriptor

Appendix B

Electronical Design of Expansion
Modules

71

72

APPENDIX B. ELECTRONICAL DESIGN OF EXPANSION MODULES

(] I ECIE| SO0% 71 JJENUET " REPIGH

FEG

L
i

L O-HEAN
JRQUINK_JURLINDOT

W
a2l

0 LOT AN DIDGZHAN JHIRLQIRIEa0 BolBUy Yiin 3inpoyy Uoisuedig

=l

DLAT MWD 0920 LN

o o m
ana
255 3 “__.__._ul_.l “__J_:I_‘l “__._NHI_.I = %_.n_l_.l
L 31_\ Blﬁ Slﬁ -]
=
o T BN 850 | o Lno - EH 3 =
23
oy o N a1 TROLZIEET I
1R -6
" LIONH TS 7 FEE R
apoyy dazjg V1aag b
3000 43315 K I T (R
—_ =
283
Lo S
Ll —TT
1_\ 0 o el
1
noz —
. o
T
anpn
o |
T
—
o 1
. LY NG
I3 B
anLn 00K 43315 HE
12 L =] r oz
1_\ T g i,
[ECEEER b NGy,
i — [ZEER] T | a0,
14
"
1 z | 3 Y T T

Figure B.1: Design of expansion module with MMA7260Q/MMA7261Q.

73

APPENDIX B. ELECTRONICAL DESIGN OF EXPANSION MODULES

i [| wa@ A00% 20 2unf }N_UM.__-.F_. 1a1E]
nw_ I0HEAL | W
N Jaquing] JURWINa00 a2
DOZOIESIT JrRwes(aay [EUBI0 YU Anpop usisued:g
L)
il
2d3135
oo
.ﬂ 0os
ol -l T T 75 @
= o o m o we =
w oy o =) o w
® 52 F 7
= SLON 373 4IN
gl E ¢
i LHIA DY = IO
77 ONe NG [!
[[[L .. L s
- PR 4uonL 4no} Angl Elrg
o v i ¥ 5 Sl_l
] 0o 0 — n_.v I
BALEEE \l_
7] %P d NG | aas. ZROLZIZETT N ke
gae iz b
zZ 2 =2 = ZZ == =
Q' 0" Q' g'g'n
T T T TR T T
L L] £ h =4 =l ol
les L L= b Lo Ld Lty
Ll «w £ th o ==l a
0azRILEN 0
TG
] a1 [Ohg
TR ET] A 0%
EEEOEERVEEY m‘
b | MNIZAOH
*z ' 224,
I
7 z I £ +

Figure B.2: Design of expansion module with LIS3LV02DQ.

Appendix C

Cygwin and TinyOS Install

Instructions

(original article [45])

0. Uninstall existing TinyOS/Cygwin

If you have existing TinyOS or Cygwin installation, uninstall both of them.

Uninstall instructions: (or see website [44])

e Remove ,,TinyOS” program through control pannel. If you have used Tmote Sky tools
disk, you should uninstall "tmote-tools.x.x" in control panel.

e Cygwin Uninstallation

¢ Remove the following items to fully uninstall cygwin (important):

— Cygwin shortcuts and start menu entry (Programs/Cygwin)

— Cygwin registry entries under HKEY_LOCAL_MACHINE\SoftWare\Cygnus Solutions\

(run regedit or regedt32 to remove these)

— Everything under the cygwin root directory. Save useful files of course, you could

just rename the cygwin root to say, cygwin-old, to be extra safe.

It is possible that during installation is threw the message ,,The library cygwinl.dll already
exist in Windows/system32/”. It is also probably after an old installation of Cygwin. You
will find it as a hidden file. Deleting it manually is recommended.

74

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 75

1. Download InstallShield from TinyOS website

e go to [46] to download Windows Installshield Wizard for TinyOS CVS Snapshot 1.1.11
[47] (less tested, but fresh); or download it from here [48].

e run tinyos-1.1.11-3is.exe
e select "complete" to install all components

e change install directory from c:/program files/UCB to c:/tinyos, then start in-

stallation - important, it stops problems with the space between words in ,program
files”.

e after the installation is finished, you should get the following directory tree:
C:/tinyos/ATT
/cygwin
/cygwin-installationfiles

/jdk1.4.1_02

2. Test Compilation Process

e go to c:/tinyos/cygwin/tinyos-1.x/apps/Blink (you can choose any other appli-
cation to do the testing), and test compiling for different platforms by typing:

e $ make telosb //should work without any error

e $ make micaz //should work without any error

3. Test downloading application into TelosB

¢ plug Tmote Sky/TelosB mote to USB port on PC

install driver using Tmote Sky CD or using the driver file downloaded from here [49]

$ motelist //to check COM number

$ make telosb

$ make telosb reinstall,7 bsl,9 //ID = 7, Com port = 10 - while using single mote in USB

it can be ,,$ make telosb reinstall”

during the transmission, transmit LED should blink

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 76

4. Customize TinyOS for your project
An example:

e copy your project directory xxx into "c:\tinyos\cygwin\opt\tinyos-1.x\apps\" -
remember to include hidden files too by enabling "show all hidden and system files"

in File Explorer

e set/create HOME path:

My computer—Properties— Advanced—Environment Variables—"New" or "Edit"
HOME variable as "c:\tinyos\cygwin\opt\tinyos-1.x\apps\xxx" or
"/opt/tinyos-1.x/apps/xxx"

e close Cygwin and restart a Cygwin window

5. Check installation completeness

Run command: $ toscheck

If it reports any error, follow the instruction to correct it.

One of the errors will be probably:

"I have installed TinyOS 1.1.11 and get this error when I run toscheck "WARNING:
CLASSPATH may not include ’." (that is, the symbol for the current working directory).
Please add ’.” to your CLASSPATH or you may experience configuration problems.” I have
checked and I do have ’.” in my path."

After the final upgrade of Cygwin this error disappear.

6. Update to TinyOS 1.1.15

(see [50])
Download the 1.1.15 rpm: [51]
Install. As Administrator in a cygwin shell do:
$ rpm —force —ignoreos -Uvh tinyos-1.1.15Dec2005¢vs-1.cygwin.noarch.rpm
in the directory where you saved the rpm. This will take a while (the tinyos package

installation includes compiling the java code). TinyOS is installed in /opt/tinyos-1.x.

7. Upgrade nesC compiler to newest version

Download [52] to /opt/ directory.
Install nesc compiler:

$ tar -zxvf nesc-1.2.7a.tar.gz
$ cd nesc-1.2.7a

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 7

$./configure
$ make install
$ ncc -v

It should shows the correct nesC version 1.2.7.

8. Upgrade Graphviz to newest version

Run the following command to creation of documentation:
$ make telosb docs

Is not working? Then run the command:

$ dot -V
If it does not show "dot version 2.8" or higher than 1.8.8, then you need upgrade.
Steps to upgrade:

e remove existing Graphviz program using control panel
e download it here: [53]

e install it to c:\tinyos\ATT

If you have the Matlab installed, you might find your upgrade does not work. The reason
is file conflict because the Matlab has a dot.exe too. Then check environmental variables
$PATH, put C:\Tiny0S\ATT\Graphviz to ahead of MATLAB’s path.

9. Upgrade Cygwin to support gcc 3.4.4

Type the following command:
$ gcc -v
If it show that:
/opt/oasis>gcc -v

Reading specs from ...
gcc version 3.3.3 (cygwin special)

—version is 3.3.3. Then it is need upgrade to newest version.
The way to do it is to upgrade Cygwin:

e close all Cygwin windows

e download [54] and run it.

APPENDIX C. CYGWIN AND TINYOS INSTALL INSTRUCTIONS 78

— choose install from Internet
— change Devel, X11 and Graphics from default to install

— click OK on all warnings

Very long process! Very much hard disc space consumption. Entire folder of TinyOS will

have over 2,5GB after this installation process.

You should expect following now:
/opt/oasis>gcc -v

Reading specs from ...

gcc version 3.4.4 (cygming special) (gdc 0.12, using dmd 0.125)

10. Final check installation completeness

Run command: $ toscheck. It might say:

toscheck completed with errors:

--> WARNING: The graphviz (dot) version found by toscheck is not 1.10.
Please up date your graphviz version if you’d like to use the nescdoc

documentation genera tor.

Ignore it if only so. We actually use higher version 2.8 of graphviz.

Appendix D

All created Application Install

Instructions

In the following it is assumed that you have already installed TinyOS 1.x. We will refer to
the root of your TinyOS source directory as TOSROOT.

1. Open source implementation of IEEE 802.15.4/ZigBee
(open-ZB stack) installation:

Unzip the "hurray1.2.zip" file and copy the "hurray" folder into: TOSROOT\contrib\ folder.

2. DataSendAccel application

e Unzip the "DataSendAccel.zip" file and copy the "DataSendAccel" folder into:
TOSROOT\contrib\hurray\apps folder
that contains all the example applications of the open-ZB stack.

e Open "Cygwin" environment, in Cygwin go to the appropriate directory where the

"DataSendAccel" application you want to load is located (see above).

e Attach the Tmote Sky device to the USB port. When plug a mote to the USB port
for the first time, Windows automatically assigns it a COM port number, and it will

use this number whenever plug the same mote again.

e Can check which number the mote is assigned by typing:

$ motelist

79

APPENDIX D. ALL CREATED APPLICATION INSTALL INSTRUCTIONS 80

e To compile the application and generate all the binary code needed in order to run
the application in a Tmote Sky module simply typing the bellow command:
$ make telosb

in the application directory.

The overall compilation process is like this: All the .nc files are translated into a C file
(build/app.c) by the nesC compiler. This file needs to be translated into a binary file.
Normally for TinyOS, this is done by a gcc backend for the MCU.

Other targets are available:

1. $ make telosb install,<node id> <programmer platform>,<port> - to install the ap-
plication on the sensor mote, the new application replaces the last one.
<node_id> is an integer between 0 and 255 and specifies the node ID (the address
assigned to the mote), make sure it’s unique
<programmer _platform>,<port> Tmote Sky is programmed by msp430-bsl bootstrap
loader. <port> is the serial port number where the mote is plugged minus one. There-

fore, <programmer platform> = bsl and it programs the mote on COM(<port>-+1)

2. $ make telosb reinstall <programmer platform>,<port> - to install the application on
the sensor mote without recompiling (it skips recompilation), the new application

replaces the last one.

3. $ make telosb docs - this target creates documentation for the program you have
compiled. You need the graphviz/dot package to get the component graps. The
nesdoc documentation files are generated under the doc/nesdoc directory.

3. LIS3LV02DQ application

e Make a directory in: TOSROOT\apps\Your_Directory_Name (TOSROOT\apps\ contains
most of TinyOS 1.x example applications)

e Unzip the "LIS3LV02DQ.zip" file and copy the "LIS3LV02DQ" folder
into: TOSROOT\apps\Your_Directory_Name folder.

e Open "Cygwin" environment, in Cygwin go to the appropriate directory where the
"LIS3LV02DQ" application you want to load is located (see above).

e Attach the Tmote Sky (TelosB platform) to the USB port.

e To compile the application typing;:
$ make telosb

in the application directory.

APPENDIX D. ALL CREATED APPLICATION INSTALL INSTRUCTIONS 81

Other targets:

$ make telosb install,<node id> bsl,<port>
$ make telosb reinstall bsl,<port>

$ make telosb docs

4. spZB application in C language

e For example make a directory in: tinyos\cygwin\Your_Directory_Name_C or

tinyos\cygwin\home\Your_Directory_Name_C

e Unzip the "spZB.zip" file and copy the "spZB" folder into the created

"Your_Directory_Name_C" directory.

e Open "Cygwin" environment, in Cygwin go to the appropriate directory where
the "spZB" application you want to executed is located (see above).

e To compile the application typing:
$ gcc -osp sp.c
in the application directory.

e To execute the application typing:
$./sp <port>
in the application directory.

5. SerialComZB application in C# language

e For example make a directory in: \home\Your_Directory_Name_Csharp

e Unzip the "SerialComZB.zip" file and copy the "SerialComZB" folder into
the created "Your_Directory_Name_Csharp" directory.

e To execute the application run the file SerialComZB.exe

in \home\Your_Directory_Name_Csharp\Release directory.

Appendix E

Contents of the CD-ROM

The included CD-ROM contains:

e /Documentation/: Diploma thesis in PDF format.

e /Documentation/Datasheet/: Datasheets in PDF format for components used in

design.

e /HW/LIS3LVO2DQ/: Printed Circuit Board design of expansion module with digital
accelerometer LIS3LV02D(Q, data in OrCAD format.

e /HW/MMA7260Q/: Printed Circuit Board design of expansion module with analog ac-
celerometer MMA7260Q, data in OrCAD format.

e /SW/DataSendAccel/: Application to data acquisition by modules with analog ac-
celerometer MMA7260Q, TinyOS source code for the base station and sensor node.

e /SW/I2CAccelerometer/: Application to data read from modules with digital ac-
celerometer LIS3LV02DQ, TinyOS source code.

e /SW/0PEN-ZBstack/: Implementation of IEEE 802.15.4/ZigBee in TinyOS /nesC v1.2.
e /SW/SerialComZB/: GUI application in C#/MS Visual Studio 2005, C# source code.
e /SW/spZB/: Console application in C under Cygwin, C source code.

e /USBDriver/: Driver to support FTDI USB controller on Tmote Sky sensor module.

82

Bibliography

1]

2]

131

[4]

[5]

6]

7]

18]

[9]

[10]

[11]

Otakar Sprdlik, Sensor network for inertial data acquisition, 2006. http://rtime.

felk.cvut.cz/hw/images/e/el/Spec_ParkinsonsDisease.pdf

Antonin Vojacek, ZigBee - novinka na poli bezdritové komunikace, June 2005.

ZigBee-novinkanapolibezdratovékomunikace

IEEE 802.15 WPAN™ Task Group 4 (TG4). http://www.ieee802.0rg/15/pub/TG4.
html

ZigBee Alliance. http://www.zigbee.org/en/

Anis Koubaa, Méario Alves, Eduardo Tovar, IEEE 802.15.4 for Wireless Sensor Net-
works: A Technical Overview, version 1.0, July 2005. http://www.open-zb.net/
publications/hurray-tr-050702.pdf

André Cunha, Maério Alves, Anis Koubda, An IEEE 802.15.4 protocol im-
plementation (in nesC/TinyOS): Reference Guide v1.2, May 2007. http:
//www.open-zb.net/publications/HURRAY_TR_061106_An_IEEE_802.15.4_
protocol_implementation%20_in_nesCTiny0S_%20Reference_Guide_v1.2.pdf

André Cunha, Martin Auersvald, Main modifications of Open-ZB stack, 2007. http:

//rtime.felk.cvut.cz/wsn/

Direct-Sequence Spread Spectrum modulation technique (DSSS). http://en.

wikipedia.org/wiki/Direct-sequence_spread_spectrum

Pete Cross, Zeroing in on ZigBee (Part 1): Introduction to the Standard, Cir-
cuitcellar, February 2005. http://www.circuitcellar.com/library/print/0205/
Cross175/Cross-175.pdf

Sinem Coleri Ergen, ZigBee/IEEFE 802.15.4 Summary, September 2004. http://pages.

cs.wisc.edu/~suman/courses/838/papers/zigbee.pdf

ZigBee Specification 2006. http://www.zigbee.org/en/spec_download/zigbee_

downloads.asp

83

BIBLIOGRAPHY 84

[12] Patrick Kinney, ZigBee Technology: Wireless Control that Simply Works, Kinney Con-
sulting LLC, 2003.

[13] Jacob Munk-Stander, Martin Skovgaard, Toke Nielsen, Implementing a ZigBee Protocol
Stack and Light Sensor in TinyOS, Bachelor’s Thesis, October 2005. http://www.diku.
dk/~bonnet/ba.zigbee.pdf

[14] David Scherba, Peter Bajcsy, Communication Models for Monitoring Applications Us-
ing Wireless Sensor Networks, Technical Report, April 2004. http://algdocs.ncsa.
uiuc.edu/TR-20040401-1.pdf

[15] College of Engineering, UC Berkeley, Electrical Engineering and Computer Sciences.
http://www.eecs.berkeley.edu/

[16] TinyOS. http://www.tinyos.net/
[17] Sourceforge, TinyOS. http://sourceforge.net/projects/tinyos/

[18] nesC: A Programming Language for Deeply Networked Systems. http://nescc.

sourceforge.net/
[19] Sourceforge, nescc. http://sourceforge.net/projects/nescc/

[20] David Gay, Philip Levis, David Culler, Eric Brewer, nesC 1.1 Language Reference
Manual, May 2003. http://nescc.sourceforge.net/papers/nesc-ref.pdf

[21] Sentilla/Moteiv Corporation. http://www.sentilla.com/
[22] Crossbow Technologies. http://wuw.xbow.com/

[23] Sentilla/Moteiv Corporation, Tmote Sky Datasheet. http://www.sentilla.com/

moteiv-endoflife.html

[24] Texas Instruments, MSP430F1611 Datasheet and MSP430x1xx Family User’s Guide.
http://ti.com/msp430

[25] FTDI Chip drivers. http://www.ftdichip.com/FTDrivers.htm

[26] Gessler Electronic, MSP430-bsl, MSP430 Flash Programming Toolkit. http://www.

gessler-electronic.com/msp430/

[27] Texas Instruments/Chipcon, CC2420 Datasheet. http://focus.ti.com/docs/prod/
folders/print/cc2420.html

[28] Freescale Semiconductor, MMA7260Q Datasheet. http://www.alldatasheet.com/
datasheet-pdf/pdf/103487/MOTOROLA/MMA7260Q.html

BIBLIOGRAPHY 85

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

42|

[43]

Freescale Semiconductor, MMA7261Q Datasheet. http://www.alldatasheet.com/
datasheet-pdf/pdf/133711/FREESCALE/MMA7261Q.html

STMicroelectronics, LE33CZ Datasheet. http://www.alldatasheet.com/
datasheet-pdf/pdf/22791/STMICROELECTRONICS/LE33CZ.html

Philips Semiconductors, The 12C-Bus Specification, version 2.1, January 2000. http:
//www.nxp.com/acrobat_download/literature/9398/39340011.pdf

STMicroelectronics, LIS3LV02DQ Datasheet. http://www.alldatasheet.com/
datasheet-pdf/pdf/117096/STMICROELECTRONICS/LIS3LV02DQ.html

Jeongyeup Paek, The Time library for Rate-Controlled Reliable Transport proto-
col for Wireless Sensor Networks. http://enl.usc.edu/cgi-bin/viewcvs/viewcvs.
cgi/tenet/mote/lib/timer/

Inderjit Singh, Temperature reading application, February 2007. http://rtime.felk.

cvut.cz/hw/index.php/Temperature_reading_application

Inderjit Singh, Real-time Object Tracking with Wireless Sensor Networks,
Diploma Thesis, August 2007. http://epubl.ltu.se/1653-0187/2007/059/
LTU-PB-EX-07059-SE.pdf

Prof. Andrea Nannini, Pasquale Sestito, Ing. Francesco Pieri, Sviluppo di una interfac-
cia di lettura per un accelerometro MEMS triassiale inserito in una rete di sensori, Tesi
di Laurea, Accademico 2005/2006. http://etd.adm.unipi.it/theses/available/
etd-11222006-104534/unrestricted/tesi.pdf

Moteiv Community, Connecting External Sensors, 2007. http://www.moteiv.com/

community/Connecting External_Sensors

UC Berkeley, Mail-Archive TinyOS-Help. http://www.mail-archive.com/
tinyos-help@millennium.berkeley.edu/

Codeproject, Hezadecimal, Binary, and Decimal conversions. http://wwu.

codeproject.com/KB/dotnet/BinaryAndHexConversions.aspx
SourceForge, Download ZedGraph. https://sourceforge.net/projects/zedgraph/
SourceForge, ZedGraph Main Page. http://zedgraph.sourceforge.net/

Wikipedia, GNU Lesser General Public License. http://en.wikipedia.org/wiki/

GNU_Lesser_General_Public_License

Kim Hamilton, C# Top 5 SerialPort Tips, 2006. http://blogs.msdn.com/bclteam/
archive/2006/10/10/Top-5-SerialPort-Tips-_5B00_Kim-Hamilton_5D00_.aspx

BIBLIOGRAPHY 86

[44] Uninstalling TinyOS. http://www.tinyos.net/tinyos-1.x/doc/uninstall.html

[45] Sensorweb Vancouver, TinyOS Start Guide. http://sensorweb.vancouver.wsu.edu/

wiki/index.php/Tinyos

[46] TinyOS Windows Installshield Wizard and Installation. http://www.tinyos.net/
windows-1_1_0.html

[47] TinyOS download, Wireless Embedded Systems, UC Berkeley. http://webs.cs.
berkeley.edu/users/users.php?download=1&snapshot=1

[48] Sensorweb Vancouver, TinyOS 1.1.11-3is Download. http://sensorweb.vancouver.

wsu.edu/software/tinyos-1.1.11-3is.exe
[49] FTDI Chip Drivers VCP Download. http://www.ftdichip.com/Drivers/VCP.htm

[50] Upgrading to TinyOS 1.1.15 CVS Snapshots, December 2005. http://www.tinyos.
net/dist-1.1.0/snapshot-1.1.15Dec2005cvs/doc/install-snapshots.html

[51] Tinyos 1.1.15 RPM package for Cygwin Download, UC Berkeley, December
2005. http://webs.cs.berkeley.edu/tos/dist-1.1.0/tinyos/windows/tinyos-1.
1.15Dec2005cvs-1.cygwin.noarch.rpm

[52] Sourceforge, nesc 1.2.7a package Download. http://prdownloads.sourceforge.net/

nescc/nesc-1.2.7a.tar.gz%use_mirror=umn

[53] Graph Visualization Software, Graphviz 2.8 Download. http://www.graphviz.org/
pub/graphviz/ARCHIVE/graphviz-2.8.exe

[54] Cygwin, Install Setup Download. http://cygwin.com/setup.exe

