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Abstract

Diamond is a very promising material for
a vast variety of electronic applications.
It is then worthy to study its electronic
properties in order to harness them in
an optimal way. In this bachelor’s thesis,
influences of different dopants and their
concentrations on the electronic proper-
ties and geometry of diamond-doped sys-
tems have been investigated using quan-
tum mechanical descriptions based on the
Density Functional Theory. Particular im-
portance has been given to the band gap
features; to study the relevant ones, five
dopants at three different concentrations
were considered.

The study showed that three of the
dopants (Al, B, Si) are behaving as accep-
tors in the diamond structure and are low-
ering the size of the band gap by adding
acceptor states. The other two dopants
(N, P) are showing metallic behaviour
by eliminating band gap entirely and are
adding donor energy levels to the band
structure. With lowering concentration
of dopant, the band gap is widening and
the system is more similar to the pristine
diamond.

We find a relation between the band
gap and the distance between the dopant
and the carbon atoms in its first coordina-
tion shell. The results will be extended by
performing further analyses, which will
lead to the production of scientific publi-
cations in impacted journals, as already
planned.

Keywords: diamond, doping, tuning
band gap
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Abstrakt

Diamant je velmi slubnym materidlom
pre mnoho aplikacii v elektronike. Vdaka
tomu sa oplati skimat jeho elektronické
vlastnosti za icelom ich optimalneho vy-
uzitia. V tejto bakalarskej praci bol sku-
many vplyv réznych dopantov a ich kon-
centracii na elektronické vlastnosti a geo-
metriu diamantovych dopovanych systé-
mov za pouzitia kvantovo mechanického
popisu zalozeného na teérii hustotového
funkcionalu. Specidlne sa kladol doraz
na vlastnosti zakdzaného pasu. Aby bolo
mozné studovat, ktoré vlastnosti ovplyv-
nuju zakazany pas bolo pouzitych péat do-
pantov v troch koncentraciach.

Vyskum preukézal, ze tri z dopantov
(Al, B, Si) sa spravaju v diamantovej
struktare ako akceptory a zakazany pés
zmensuju pridanim akceptorovych stavov.
Ostatné dva dopanty (N, P) ukazuju ko-
vové spravanie Uplnym eliminovanim zaka-
zaného pasu a do pédsovej struktiry prida-
vaju energetické tirovne donora. S klasaj-
ucou koncentraciou dopantu sa zakazany
pas rozsiruje a viac pripomina ¢isty dia-
mant.

Nasli sme spojitost medzi velkostou za-
kazaného pasu a vzdialenostou medzi do-
pantom a najbliz§imi uhlikmi. Vysledky
budt rozsirené o dalsi vyskum, ktory po-
vedie k vytvoreniu vedeckej publikacie v
zndmych zurnéloch.

Klic¢ova slova: diamant, doping, ladenie
zakazaného pasu

Pteklad nazvu: Studie materiala
zalozenych na diamantové bazi pro
elektronické aplikace z hlediska kvantové
mechaniky
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Chapter 1

Introduction

Semiconductors are crucial for today’s society and economy. The fast techno-
logical advance requires easy adjustment to more and more harsh working
conditions; in this respect, diamond is a promising material able to fulfil these
requirements, thanks to its extreme properties like large thermal conductivity,
electron and hole mobility, and high breakdown field strength [IHTWO04].
These properties make it one of the most interesting material to be used in
demanding applications such as high frequency FETs and power electronics
including high power Schottky diodes [ETPG16] and switches [WBOS].

Pure diamond a is wide-bandgap semiconductor with band gap of 5.47
eV [WB0§|. Tuning this band gap is of primary importance for electronic
applications. For this purpose, the primary objective of the thesis is to study
how the presence of impurities (i.e., dopants) in the diamond structure affects
the band gap size and which feature is the most significant to adjust it. In
order to identify the microscopic mechanisms governing the bandgap, a great
level of detail is needed. To this aim, the diamond and diamond-derived
models will be based on a quantum mechanical description of the atomic
interactions.

In the beginning of the thesis, I will describe the basics of the theory and
the methodology used to properly quantify the electronic properties of the
systems. This will be followed by suggestions on how to tune the band gap
according to the results. In the study, five doping agents will be used at three
different concentrations in order to study both the p-type and the n-type
diamond structures.






Chapter 2

Theory and Methodology

B 21 The Schrodinger Equation

To study the electronic properties of the system that we consider, it is
necessary to solve the Schrodinger equation [Sch26] which has the following
formulation:
ov(r,t
ot

where r is the Cartesian position in the space, t is the time, the wavefunction
¥ is the solution to be found and the Hamiltonian H represents the total
energy of the system, containing the description of the atomic interactions
and possible external stimuli. When the total energy, hence the Hamiltonian,
does not depend on the time, reduces to the following eigenvalue-
eigenvector equation:

= H(r,t)¥(r,t) (2.1)

H(r)ip(r) = E(r)p(r) (2.2)

where E is the energy eigenvalue corresponding to the eigenfunction v (r) of
the system. Since our models represent bound systems, the energy eigenvalues
are quantized, that is they can assume only a discrete set of values.

Unfortunately, the analytical solution of can be found only
in the case of the hydrogen atom; in all the other cases, the solution % and
the eigenvalues must be approximated. To this aim, several methods have
been developed. In what follows, I shortly mention some of them, and finally
discuss which is the most suitable choice for our purposes.
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2. Theory and Methodology

. 2.2 The Hartree-Fock Method

The starting point to solve the time-independent Schrédinger equation is
the Born-Oppenheimer approximation [BO27]. The Born-Oppenheimer ap-
proximation relies on the fact that nuclei are much heavier than electrons.
According to this fact, we can fix the position of the nuclei and solve the
Schrédinger equation separately for nuclei and electrons.

Then, the Hartree-Fock (HF) method is applied. It is based on averages
of the inter-electron repulsion. This means that every electron is considered
to be moving in the electrostatic field of the nuclei and the average field
of other electrons. The Hartree-Fock method also relies on the fact that
the wavefunction of the system can be separated into a set of one electron
wavefunctions which are solved separately. We can finally get the whole
wavefuction of the system as a product of these single electron wavefunctions
(i.e., orbitals) [AF05].

B 2.2.1 The Self-Consistent Field

The first step of an HF calculation is the choice of the basis set. The basis
set is a set of functions which we use to approximate the wavefuction. The
precision of the results depends on the suitability of the kind and number of
the chosen basis functions, the more expanded set we use the more precision
we get. The most used basis functions are Slater-type orbitals, Gaussian-type
orbitals and plane waves. The choice is dependent on the kind of the studied
systems; the total wavefunction 1 is then represented as a linear combination
of such basis functions

M
7,/) = Z Cj@j (2.3)
j=1

where M is the size of the basis set, 0, is the j-th basis function and c;
is a set of coefficients calculated as a result of the iterative scheme called
Self-Consistent Field (SCF).

At the beginning of the SCF procedure, the Fock operator is built from
the Coulomb and exchange operator. The Coulomb operator includes the
Coulumbic repulsion among electrons, while the exchange operator is a
correction to this interaction. However, these are obtained by iterative
approaches at the time of the calculation. In each iteration, a new set of
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2.3. Density Functional Theory

orbitals is built which is used to create a new Fock operator, the latter used
as an input for the next cycle; the cycles are interrupted when the required
convergence is reached.

The Fock operator is used to create the Fock matrix during; together with
the overlap matrix, (i.e., the matrix formed by all the overlap integrals among
the basis functions), the following eigenvector-eigenvalue equation is built:

FC = SCe (2.4)

where F' is the Fock matrix, S the overlap matrix, C' is the matrix of the
coefficients in [Equation 2.3|and € is the diagonal matrix containing the energy
eigenvalues. [Equation 2.4] has a non-trivial solution if

det |F —¢e,8| =0 (2.5)

where g, is the energy of the a orbital. In this way, we obtain the set of
coefficients ¢j. These coefficients are used for the creation of the tentative
solution at the next iteration. They will be used to create new orbitals as in
Equation 2.3 and therefore new matrices to feed [Equation 2.5l The iterations
continue until the required convergence criterion is satisfied like, for example,
the total energy difference between two subsequent SCF cycles is less than a
tolerance value specified in the input. The second outcome of the equation is
the set €, of orbital energies. The sum

> ea (2.6)

corresponds to the total energy of the electronic system and does not include
the contribution coming from the repulsion among the nuclei.

B 23 Density Functional Theory

The Hartree-Fock method does not take into account the electron correlation
which, indeed, it is relevant for our interests. In fact, in diamond-based
systems, it has been found that the electron correlation plays a fundamental
role in determining the band gap [SMH™14]. The electron correlation describes
the interactions between electrons and effects their spatial distribution and the
properties deriving from it. Several methods have been developed to account
for this effect; some of them are known as post-HF methods and are based on
Taylor expansions of the HF approach; however, they are computationally
demanding. Among them, the most common are:



2. Theory and Methodology

1. Configuration Interaction (CI) [DS99]

2. Mpgller—Plesset Perturbation Theory (MP)[MP34]
3. The Coupled-Cluster Method [Kum03]

4. Multiconfiguration Methods (MCSCF, CASSCF etc.) [SMG™12]

A convenient, less computationally demanding, alternative is represented
by the Density Functional Theory (DFT)[KS65]. The Density Functional
Theory is based on this observation, that the energy of the system can be
expressed by a spatially dependent probability of the electron density p(7).
Following the Hohenberg-Kohn theorem formulated in 1964, the electronic
energy can be written as a functional of the electron density, since there
is a one-to-one correspondence between the ground state density and the
electronic wavefunction of the system. Unfortunately, the theorem does not
provide any information on how the energy depends on the electronic density.
One year later, Kohn and Sham provided a way to express the ground state
electronic density as a sum over a certain set of ¢ orbitals (i.e., the Kohn-Sham
orbitals)

p(r) = Ji(r)%; (2.7)
=1

as a consequence, the ground state energy F becomes a functional E[p] of
the density in [Equation 2.7,

The E[p] energy functional is then written as

h2 - * 2 . a ZI
Blo) = = 5o 3 [ W) Vi (rdr — o 3 Zhptradns
1.
+ 570 / dedm + Exc|[p] (2.8)

where the first term is the kinetic energy of the electrons, the second term is
the attraction between nuclei and electrons while the third term represents
the Coulombic interaction among the total charge distribution. The fourth
term cannot be computed exactly and corresponds to the exchange-correlation
energy E'xc. By applying the results of the two theorems, the Schrédinger
equation is solved by an SCF iterative scheme which is similar to that used
in the case of the Hartree-Fock approach described above.

In the beginning of the calculation, an expected electron density is chosen
as a tentative solution; this is usually obtained as a superposition of atomic

6



2.3. Density Functional Theory

densities. The electron density and the chosen Ex¢ are used to to obtain
the Kohn-Sham orbitals. Such orbitals are usually expressed in the form of a
basis set as for the case of the HF method. With the computed orbitals, we
are able to obtain a new electron density from Equation 2.7 and the ground
state energy from [Equation 2.8. This cycle is repeated until the required
convergence is reached.

B 2.3.1 Exchange—Correlation Functionals

As we mentioned above, the EFx¢ functional cannot be computed exactly and
several formulations of it exist. The choice of the proper formulation is done by
making preliminary tests. The tests are based on trying different formulations:
the results are compared with known experimental data whenever available,
and the formulation giving the best agreement is selected. Usually, the studied
structures are known experimentally; in this case, the main benchmark is the
comparison between the calculated and the experimental atomic geometry.
Once the specific form of Ex¢ is chosen, it is specified as an input of the
simulation and remains unchanged throughout the calculation.

The Local Density Approximation is the most simple approach to obtain
the functional form of Ex¢. It relies on the electron density and the exchange-
correlation energy €x¢ per electron of the homogeneous electron gas as an
approximation.[AF05] The homogeneous electron gas is a model in which
electrons travel through a space of infinite volume with a uniform distribution
of the positive charge. While this approximation works well for most of
the systems [AF05], its accuracy is getting worse with systems containing
larger number of molecules.[AF05] In such cases, an improvement of the LDA
description is used, namely the Generalized Gradient Approximation (GGA).
The GGA is based on the LDA approach and adds a gradient correction
to the electronic density. In the practise, the exchange-correlation energy
is usually split into exchange and correlation parts and various approaches
to get the former can be mixed with other approaches to get the latter.
Other sophisticated methods to obtain a more precise description of the Ex¢
functional exist, these including the meta-generalized gradient approximation
(MGGA)[JALG], which also involves the second derivative of the electron
density, and hybrid functionals which combine the Hartree-Fock and/or other
Exc LDA or GGA descriptions (e.g., BSLYP [Bec93]).
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2. Theory and Methodology

B 24 Crystal Structure

The geometric description of our model systems relies on the concept of
crystal structure. A crystal structure is made by periodic repeating atomic
arrangements. The main properties defining a crystal structure are:

1. The basis, the geometric arrangement of the atoms forming the repeti-
tion unit;

2. The Space/crystal lattice, the set of mathematical discrete points
(the “net”), defined by linear combinations of the kind r = uja+usb+usc
where a, b and ¢ are the lattice vectors defining the unit volume;

3. Space Group, the set of geometric symmetries owned by the basis.

The periodic repetition of the basis through the definition of the crystal lattice
determine the space group, and are specified as an input of the simulations.

B 2.4.1 Bravais Lattice and Primitive Cell

With the term Bravais lattice we refer to possible distinct repetitions in the
space of points corresponding to an atom or group of atoms in a crystal. In
the three-dimensional case, there are 14 Bravais lattices divided into 7 lattice
systems. The Bravais lattice relevant for our study is the face-centered cubic
(FCC). It consists of lattice points located at the corners of a cube and in the
middle of each face. The FCC lattice is the kind of lattice which describes

a

a

Figure 2.1: Face centered cubic (FCC) Bravais lattice. [Wik07]

the diamond structure, which is the target of our studies.

8



2.4. Crystal Structure

To each point of the Bravais lattice it is possible to associate a certain set
of atoms arranged in the space in such a way that they reproduce the whole
crystal structure; in this way we build the unit cell. The unit cell is then
defined as that volume the infinite replicas of which are able to completely
tile the whole space. If the volume of the unit cell is one of the smallest that
can be obtained, the unit cell is said to be primitive. Many different primitive
cells can be built, according to the set of construction rules that are chosen;
the most common kind of primitive cell is the Wigner-Seitz cell [Kit71].

The unit cell may contain symmetry elements such as rotations, rototrans-
lations (screw axes), inversion, reflection etc. If the translation operations
are combined with such symmetry operations, we obtain what is called the
space group |Gia92]. The number of all the possible three-dimensional space
groups amount to 230, each uniquely identifying the set of symmetries owned
by the system.

B 2.4.2 Reciprocal Lattice and Brillouin Zone

When we want to study periodic systems, it is convenient to consider the
Fourier transform of the physical properties (e.g., the electronic density). To
this aim, from the unit cell describing the system in the Cartesian space,
we can define the reciprocal lattice in the reciprocal space as the Fourier
transform of the Bravais lattice in Cartesian space. Accordingly, we will
refer to the starting unit cell as real or direct lattice. If the unit cell of the
real space is primitive, the unit cell of the reciprocal space is also primitive
and it is called first Brillowin zone. The reciprocal lattice contains the same
set of symmetry operations of the real lattice. Each Brillouin zone then
contains high-symmetry points, that are special positions in the reciprocal
space space to which there are associated several symmetry operations. Since
the Hamiltonian is invariant under the same set of symmetry operations, the
solution of the Schrodinger equation will also have the same symmetries. This
constitutes an advantage because it is enough to evaluate the wavefunction
only at a limited set of points in the reciprocal space; the full solution will then
be built by applying the symmetry operations to the obtained wavefunction.
In this way, the computational load is drastically reduced compared to the
case of the evaluation of the solution in the full Brillouin zone. Moreover,
by exploiting the symmetries, each Brillouin zone can be described by a
minimal volume called irreducible Brillouin zone (IBZ). To further reduce
the computational load, it is then enough to consider only the IBZ and build
the full solution according to the symmetries of the system.

The Brillouin zone of our interest is represented in [Figure 2.2 and it is

9



2. Theory and Methodology

Figure 2.2: Schematic representation of the Brillouin zone of the FCC lattice.
Reproduced from Ref. [SC10].

the reciprocal lattice of the FCC structure adopted by the diamond-based
systems which we will discuss later on.

. 2.5 The Bloch’s Theorem and the Electronic
Structure

The periodicity of the crystal structure implies the periodicity of the inter-
atomic potential. For periodic potentials, Felix Bloch proved that the solution
of the Schrodinger equation has the form

V(1) = ug(r)e®” (2.9)

where ¢ (7) is the one-electron Bloch function or Bloch wave, which is
an eigenfunction of the Hamiltonian, k is a vector of the reciprocal lattice
and ug(r) is a periodic function with the same period of the crystal lattice.

Wavefunctions of the kind in [Equation 2.9 can be seen as a wavefunction e**”
describing a free electron multiplied by a periodic modulation.

The Bloch’s functions in are identified (i.e., labelled) by the

vectors k and similarly the correspondingly eigenvalues. Since we are treating
confined systems, at each k vector, there corresponds a discrete set of possible
eigenvalues, that is, of possible energy values or levels. The set of different
energy values realized at varying k vectors constitute what is called the
electronic band structure, which is a characteristic of the system. From the
band structure, we can determine the electronic properties of the system.

An important quantity related to the band structure is the Fermi level,
which is defined as the energy level, if it exists, with probability of 50 % to

10



2.6. Used Software

be occupied by one electron at a certain finite temperature. According to the
position of the Fermi level with respect to the energy levels, the material is
found to be conductive or insulating. In the former case, the Fermi level lies
within an almost continuous set of bands. Since the set of allowed energy
values is discrete, it is possible that there are energy ranges within which no
energy levels can be realized; each of such range is called band gap. If the
Fermi level lies within a bandgap or at its lower limit, the material shows
semiconductor or insulating properties. The wvalence band is the uppermost
set of energy levels which is fully occupied by all the electrons of the systems
at absolute zero temperature. The conduction band instead corresponds to
the set of energy levels associated to wavefunctions describing electrons that
can move across the material. The energy gap between the highest energy
value of the valence band and the lowest energy value of the conduction
band is the most common band gap studied in solid state systems. For our
purposes, we focus on the energy range including the valence and conduction
bands, then the Fermi level.

A useful quantity derived from the set of allowed energy values is the
density of states, defined as the number of states (i.e., eigenfunction) allowed
within an energy range [E, E 4+ dE], where dFE tends to zero. The density of
states then provides a quick way to quantify the band gap around the Fermi
level, if any, and the possible overlap among the bands.

. 2.6 Used Software

To solve the time independent Schrédinger equation and calculate the physical
properties of our interest, we make use of the ABINIT package |[GAAT20]. In
order to achieve our goal, that is to study how to control the band gap in
diamond-based systems, we first need to obtain the ground state geometry
of our models. After we obtain it, we then proceed in the analysis of the
corresponding electronic structure and finally discuss what are the relevant
parameters to control the band gap.

The ABINIT software exploits the density functional theory to calculate
the properties of the studied materials. The basis set used to expand the
electron wavefunction is made by plane waves of the kind e**", which is
a computationally efficient choice to represent the Bloch functions. On
the other hand, the plane waves loose their efficiency when describing the
wavefunctions near the nucleus. To overcome this issue, ad hoc descriptions,
namely pseudopotentials, are used [SBv'™11|. By using the pseudopotentials,
the number of basis functions can be reduced and limited to the description

11



2. Theory and Methodology

of the electrons in the valence band, whenever the core electrons do not play
a decisive role in determining the physics of the system under study.

B 2.6.1 Calculation of Ground State Geometry

The steps to obtain the ground state geometry of a model system can be sum-
marized as follows. As an input, a tentative geometry is provided, together
with a suitable choice of the Hamiltonian and other technical parameters.
The total electronic energy is calculated via the SCF procedure as in [subsecy
tion 2.2.1L Once the ground state electronic density has been obtained, the
forces acting on the atoms are calculate by applying the Hellmann-Feynman
theorem [Fey39]. If the maximum value among all the components of all the
forces is smaller than a chosen threshold parameter, the geometry is consid-
ered stable and the geometric optimization terminates. On the contrary, if the
forces are larger than the threshold, the positions of the nuclei are modified
in such a way to minimize the total energy (e.g., displacing the atoms along
the direction of the energy gradient), and the SCF procedure is repeated.

12



Chapter 3

Doped-diamond Systems

The starting point of our simulations is the pristine structure of the pure
diamond obtained from diffraction data[BSW'14]. In order to find the
optimal set of simulation parameters, we optimize the experimental structure
at different energy functionals, k-mesh sampling, and plane-wave cutoff
among others; we also tested the parallelization options available in the
ABINIT package so as to obtain the largest parallel scaling possible and reduce
the simulation time. In we report the specifics of the relaxed
pure diamond geometry, while the optimal simulation parameters are the
following: 7) WC energy functional[WC06], ii) 11 x 11 x 11 Monkhorst-Pack
k-mesh [MP76] (21 x 21 x 21 for the undoped structure, 5 x 5 x 5 for the
models with the largest size), #i) 1633 eV plane-wave energy cutoff, iv) 3265
eV energy cutoff for the PAW double grid, v) 107!? eV tolerance on the
energy difference to stop the SCF cycles, vi) 5 x 1076 eV /A tolerance on
the maximum component of the forces on the atoms to stop the geometry
optimization.

Space group Fd3m (227)

lattice parameters a=b=c = 3.56123 A

lattice angles a=p=~=90.0°

asymmetric unit X y v/
C 0.0 0.0 0.0

Table 3.1: Optimized structural parameters of the pure diamond model geome-
try.

13



3. Doped-diamond Systems

To study how the presence of dopant atoms change the electronic properties
of the pure diamond, we consider five different kind of dopants, namely B,
Al, Si, N and P. The boron and aluminium atoms are electron acceptors:
since they have less valence electrons than the carbon atom, they make the
diamond structure of p-type. The nitrogen and phosphorus atoms are instead
electron donors: they have more valence electrons than the carbon atom, thus
creating what is known as n-type diamond. Silicon atom has the same number
of valence electrons as the carbon atom; however, as we will see, it shows
the same properties of the acceptor atoms. The doped structures are built
by replicating the unit cell of the pure diamond, thus obtaining supercells of
different size; we then substitute one of the carbon atoms with one dopant
atom. We consider 2 x 2 x 2, 3 x 3 x 3 and 4 x 4 x 4 supercells containing
16, 54 and 128 atoms, respectively, containing only one dopant atom. In this
way, we simulate a dopant concentration of 6.25 %, 1.85 % and 0.78 %. As

Figure 3.1: Example of primitive unit cell simulating a dopant concentration of
0.78 %. The blue sphere represents the dopant atom while the brown spheres
indicate the position of the carbon atoms. The figure has been created with the
aid of the VESTA[MITI] software.

an example, in we report the geometry of the primitive unit cell
used to simulate a dopant concentration of 0.78 %.

B 31 Geometry analysis

The most apparent effect of the presence of a dopant in the diamond structure
is the change of the atomic geometry with respect to the pristine structure.
Irrespective of the atomic type of the dopant and irrespective of the doping
concentration, each atom in the structure is surrounded by four atoms (first
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3.1. Geometry analysis

neighbours) arranged in such a way to form a tetrahedron (see |[Figure 3.1)).
Since such tetrahedra are regular, the distances between an atom and each
of its first neighbours are the same no matter if the coordinating atom is a
carbon atom or a dopant one. For this reason, in order to quantify the change
induced in the undoped structure, we consider only the X—C and the C-C
bond lengths, where X is the dopant atom; the data is reported in|Table 3.2l

X | concentration [%] | X-C [A] | C-C [A] | unit cell volume [A?]
6.25 1.773 1.588 101.07
Al 1.85 1.786 1.552 313.06
0.78 1.788 1.545 727.62
6.25 1.583 1.548 91.65
B 1.85 1.582 1.542 304.45
0.78 1.581 1.541 719.15
6.25 1.599 1.544 90.81
N 1.85 1.592 1.540 303.75
0.78 1.588 1.538 718.44
6.25 1.693 1.575 98.54
P 1.85 1.700 1.552 311.23
0.78 1.701 1.543 725.96
6.25 1.716 1.583 99.41
Si 1.85 1.723 1.552 311.81
0.78 1.726 1.543 726.39
6.25 90.33
C 1.85 - 1.542 304.86
0.78 722.64

Table 3.2: Interatomic distances and cell volume of the model systems. In
the last line, the data relative to the undoped structure are reported; the
concentration values for the undoped structure refer to the unit cell size used for
the doped model, and the corresponding volume values are reported to facilitate
the comparison.

As expected, we find that dopant atoms with larger atomic radius induce
larger distortions into the ion coordination environment, the largest ones
found in the structures doped with aluminum. An exception is represented by
the nitrogen atom: with respect to the boron doping case, nitrogen induces
larger distortions despite it has a smallest radius. At lowering concentrations,
the X—C distances are changing only by a small amount, whereas at 1.85 %
and the 0.78 % doping the distances are mostly the same; at the same time,
the C-C distances approach those found in the pure diamond when they are
measured far from the dopant atom. Interestingly, in the cases X = B, N the
C—C distances farther from the dopant are almost the same as in the pure
diamond structure even at higher concentrations. We can then conclude that
the dopant has no influence on the geometric structure if the concentration
is low enough that between two dopant atomic sites there are at least three
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3. Doped-diamond Systems

C-coordination shells. The volumes of the cells are directly influenced by
the interatomic distances. Finally, we observe that the cell volume of the
doped structures is more and more similar to the undoped case at decreasing
concentrations; this is indeed an expected behaviour, since the dopant induces
isotropic distortions into the coordination tetrahedron environment, thus
leaving unaltered the lattice angles.

B 3.2 Electronic Structure analysis

We now analyse the effect of the p- and n-doping. First, we discuss the
influence of the dopant type on the band gap, the band structure and the
density of states, and compare it with the corresponding quantities of the pure
diamond. We then analyse how the concentration affects the abovementioned
properties.

B 3.2.1 p-type Doping

In the present section, we include silicon together with the boron and alu-
minum atoms among the p-type dopants, as it shares similar features with
the latter two ones.

We start by comparing the band structures obtained in the systems with
concentration equal to 6.25 % (Figure 3.2)); similar behaviour is found for
the p-doped systems at the remaining concentrations. We observe that all
the p-doped models display band gaps narrower than that found in the pure
diamond. In the majority of the cases, the band gap size is increasing with
lowering concentration, approaching the value found in the undoped diamond;
we report these values in [Table 3.3l The largest change is observed in the
aluminium doped system. The calculated band-gap widths suggest that the
p-doped structures should show semiconducting properties.

In order to understand the origin of the different band gap values between
the undoped and the p-doped systems, we calculate the atom-projected density
of states and show them in [Figure 3.3, We here recall that the dopant atoms
are electron acceptors. The electron occupying the top of the valence band of
the pristine structure is transferred to the dopant once it substitutes for one
carbon atom. Consistently, we find that the dopant contributes mostly to
the top of the valence band with its own states, irrespective of the kind of
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3.2. Electronic Structure analysis
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Figure 3.2: Electronic band structure of (a) pure diamond, (b) Al-doped,
(¢) B-doped and (d) Si-doped structures at 6.25 % concentration. The band
structure is calculated along a standard piece-wise linear path joining the high
symmetry points in the irreducible Brillouin zone (see [Figure 2.2). The optical
gap is calculated as the vertical electronic transition with the corresponding
lowest energy, and it is found to occur at the I' point, irrespective of the
chemical composition; the red arrow indicates the transition corresponding to
the fundamental band gap.

dopant. This induces a readjustment of the whole energy level spectrum, the
Fermi level is shifted and the band gap is narrowed.

We continue our analysis by comparing the density of states at different
concentrations; we report such comparison in |[Figure 3.4, The largest effect is
found in the case of the aluminum doping, while larger concentrations narrow
the band gap significantly. Interestingly, while the Si-doped and Al-doped
structures show similar behaviour, the B-doped system is less affected by the
change in the concentration.

B 3.2.2 n-type doping

We continue our analysis by considering the n-type systems. We calculate
the band structures along the same k-path of the irreducible Brillouin zone
that we used in the case of the p-type compounds; the results are reported
in [Figure 3.5l We find that the n-type dopants shift the Fermi level above
the bottom of the conduction band as correspondingly calculated for the
undoped diamond. This is an expected behaviour. As a first approximation,
we can imagine that the pristine band structure has to accommodate the
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3. Doped-diamond Systems

X | concentration [%] | optical band gap [eV] | fundamental band gap [eV]
6.25 2.47 2.28
Al 1.85 3.21 3.21
0.78 3.86 3.64
6.25 4.04 3.73
B 1.85 3.93 3.93
0.78 4.26 4.04
6.25 3.32 3.08
Si 1.85 3.81 3.81
0.78 4.25 3.99
- - 5.67 4.14

Table 3.3: Band gap values of p-type doped structures. In the last line, the
values relative to the pure diamond are reported.

extra electron coming from the donor atom; the available levels with the
lowest energy are those located at the bottom of the conduction band. The
extra electron is then accommodated in these levels and the Fermi level is
shifted up in energy in correspondence with the new last occupied level. Since
the Fermi level now lies within a band, the compound is metallic. In this case,
we do not therefore find an electronic band gap relevant for the electronic
conduction, as the Fermi level is crossing the conduction band; this makes
the n-doped materials conductive. Finally, we notice that a band gap still
exists below the Fermi level within the valence band, such gap resembling
that of the insulating p-doped structures.

We now consider the density of states, in order to understand what is the
contribution of the energy levels of the donor atom and how they make the
band gap disappear; we report them in [Figure 3.6, We observe that the
profile of the total DOS of the doped structures is close to that of the pure
diamond; at the same time, the top of the valence band is mainly formed
by the states associated to the donor atom. This is consistent to what we
discussed above: the effect of substituting one carbon atom with a donor one
is to add one electron to the bottom of the conduction band of the pristine
structure, making the latter metallic while almost preserving the original
energy level spectrum.

. 3.3 Discussion

The results presented above suggest that the presence of a dopant atom in
the diamond structure does not alter the features of the electronic band
dispersions or the profile of the density of states; in fact, the pristine structure
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3.3. Discussion

is able to accommodate the change of the number of electron without altering
the relative energy distribution of the band levels. The main effect is instead to
change the position of the Fermi level: acceptor dopants modulate the width
of the band gap while donor atoms close the band gap making the system
metallic. We notice this behaviour irrespect of the dopant concentration;
indeed, the latter has the role to modulate the effect of the atomic type on
the position of the Fermi level.

To parameterize how the atomic type determines the width of the band
gap, we need to choose a physical feature which quantifies both the kind of
atom and the environment in which it is embedded. To this aim, we consider
the X—C distance at different concentrations and relate it to the band gap of
the system (Figure 3.8). We notice that, in general, at constant concentration,
the larger the distance between the dopant and the first neighbour carbon
atom, the smaller the fundamental band gap. The optical gap instead appears
to be less sensitive to the X—C distance, still showing a similar trend. On
the contrary, at constant dopant atomic type, we observe that an increase
of the X—C distance produces an increase of the band gap. Larger distances
arise in correspondence with dopant atoms with larger atomic radii. However,
the atomic radius is not a convenient parameter if we want to compare the
results at different concentrations when the atomic type is unchanged. For
this reason, we believe that the X—C distance is a more effective descriptor.
These observations suggest that acceptor atoms inducing larger distances
than those here reported might generate corresponding narrower band gaps
at constant concentrations; correspondingly, they might induce larger band
gaps when realized at a constant atomic type. Further investigations on the
effect of variable X—C distance at constant dopant atomic type and unit cell
volume will provide a better parametrization of the electronic band gap in
terms of the geometric properties of the system.

Finally, we here want to notice that the present results constitute the
starting point for further studies, in which analyses on the subtle features
of the electronic structure at different dopant atomic type will provide more
complete information on how to tune the electronic band gap. Indeed, such
analyses are already ongoing and will be part of a planned publication in an
impacted scientific journal.
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Figure 3.3: Electronic density of states calculated for p-doped systems at
concentration equal to 6.25 %. The “C” and “total doped” labels indicate the
total density of states of the pure diamond and the doped system, respectively,
while the “X” label indicates the density of states projected on the atomic site
of the dopant corresponding to the atomic symbol in the plot. For clarity of
presentation, in each plot, the total DOSs’ are normalized by the number of
atoms in the unit cell while the projected DOS are reported as calculated. The
Fermi level is set at 0.0 eV and is indicated by the vertical dashed lines.
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Figure 3.4: Total electronic density of states of (a) Al-doped, (b) B-doped and
(¢) Si-doped systems calculated at the considered dopant concentration values.
The data have been normalized by the number of atoms. The Fermi level is set
at 0.0 eV and is indicated by the vertical dashed lines.
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Figure 3.5: Electronic band structure of (a)

P-doped structures at 6.25 %

along a standard piece-wise linear path joining the high symmetry points in the
irreducible Brillouin zone (see [Figure 2.2). The Fermi level has been set to 0.0

eV and is indicated by the dashed lines.
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Figure 3.6: Electronic density of states calculated for n-doped systems at
concentration equal to 6.25 %. The “C” and “total doped” labels indicate the
total density of states of the pure diamond and the doped system, respectively,
while the “X” label indicates the density of states projected on the atomic site
of the dopant corresponding to the atomic symbol in the plot. For clarity of
presentation, in each plot, the total DOSs’ are normalized by the number of
atoms in the unit cell while the projected DOS are reported as calculated. The
Fermi level is set at 0.0 €V and is indicated by the vertical dashed lines.
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Figure 3.7: Total electronic density of states of (a) N-doped and (b) P-doped
systems calculated at the considered dopant concentration values. The data have
been normalized by the number of atoms. The Fermi level is set at 0.0 eV and is
indicated by the vertical dashed lines.
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Figure 3.8: (a) Optical and (b) fundamental band gap calculated for the p-doped
systems as a function of the X—C distance at the considered concentrations. The
value of 5.67 eV in (a) and 4.14 €V in (b) at the X-C distance equal to 1.542 A
are relative to the undoped diamond. Lines are a guide for the eye.
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Chapter 4

Conclusions

In the presented study, the influence of different dopants and their concentra-
tions on the electronic properties and geometry in doped-diamond systems
have been investigated within the framework of the Density Functional Theory.
Five dopant atoms, namely aluminium, boron, nitrogen, phosphorus and
silicon, were considered at three doping concentrations, these being 6.25 %,
1.85 % and 0.78 %. We observed that the interatomic distances between
the dopant and the surrounding carbon atoms in the first coordination shell
are the same in all the considered cases: the dopant produces an isotropic
distortion in the coordination environment, leaving unaltered the symmetries
of the pristine system.

According to the band structure calculations, Al, B and Si behave as
electron acceptors and induce a narrowing of the band gap. The analysis
of the density of states made visible that the band gap is dependent on
the concentration of the dopant. A decrease in the concentration causes
a widening of the band gap, approaching the value found in the pristine
diamond. On the other hand, the band structure of the N- and P-doped
systems showed the donor properties of the atomic type of the dopant. We
found that, irrespective of the concentration, the diamond structure displays a
metallic behaviour when electron donors are used as substituent for the carbon
atoms. We also noticed that the larger the distance between the dopant and
its first neighbours, the narrower the band gap at constant concentration. On
the contrary, an increased dopant-carbon distance produces a widening of
the band gap at constant atomic type. Such distance is indeed a convenient
descriptor to parameterize the band gap especially when comparing among
structures at different doping concentrations and containing the same kind of
dopant.
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4. Conclusions

The present thesis provides the starting point for further studies on doped
diamond structures, which will lead to the production of manuscripts to
be published in impacted scientific journals; indeed, this is what I already
planned as a continuation of the present work. Finally, the whole effort has
also didactic and motivational implications, since it provided me the basic
knowledge on quantum mechanics and the related computational methods
and software packages, together with the skills to efficiently exploit high-
performance computing facilities.
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