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Preface

In the following a LQG control approach in the framework of disturbance
rejection is presented. Modeling of a system consisting on a rod, for two
materials Aluminium and Acrylic, acted by piezo transducers is also ad-
dressed by means of a Finite Element analysis and its further exporting to
MATLAB. Selection of a proper con�uration of piezo actuators and per-
ifericals is stated as well.
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Chapter 1

Introduction

Nowadays space imagining is facing a wide range of problems looking for-
ward to make more accurate and more powerful observations in the sake
of space exploration and research. The duo sensor-actuator is the starting
point for building space-capable probes task that, even when performed on
Earth has to be thought for an extreme environment as the one found out
of the planet.

Space environment represent a colorful source of disturbances for almost
every subsystem in a spacecraft namely satellite, shuttle or more oriented
device as could be a telescope is a�ected by them. Electronic parts are
normally a�ected by parasitic currents due that ionization in metal struc-
tures used for voltage reference, materials in general are subject of vacuum
e�ects as well as micrometeorites, mechanical structures and optical ele-
ments work under thermic and vibrational non desired conditions and so
forth with the other subsystems in the space probe.

Therein disturbances are, as always, an issue to consider and their e�ects
are meant to be avoided as much as possible being this a priority regard-
less the nature of the mission's aim simply because they introduce a non
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expected behavior in the system.

This work is mainly inspired by the adaptive optics and the control of spa-
tially distributed systems. As a future aim is to counteract and correct de-
formation caused by both environment (atmospheric interference, thermic
e�ects) and mechanical (vibrations and deformations) disturbances that
corrupts the surface of the optical �lter in an x-ray sensor that has been
probed in medicine and scienti�c imaging with more than good results,
for future earth and space-based imaging, by means of using a large piezo
patch net as sensor-actuator device coordinated by a decentralized spatially
distributed control.

In the following the design of a control system for disturbance rejection for
two models of a plant consisting of a rod and piezo patches as actuators is
developed based on LQG theory.

1.1 Objectives

To provide a stable robust control for the disturbance rejection on an alu-
minium rod as a �rst approach to the control of a spatially distributed
control problem as it could be the the surface deformation of a mirror or
the optical �lter in a sensor. This work is mainly inspired by adaptive
optics and the control of spatially distributed systems and has as primary
objectives:

1. To develop an accurate model to the plant rod-piezo actuator.

2. To design a control system for a rod actioned by piezo patches with
emphasis in disturbance rejection. This sugests that integration may
be needed.
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3. To de�ne an optimal approach for the already de�ned problem. We
will discuss about two possibilities that solve our necessities which
are a LQG control.

4. The control input shall not be in�uenced by the measurement noise.
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Chapter 2

Related Work

The aim of the following is to provide an overview of the knowledge needed
to design the control con�guration for the proposed plant. First to explain
what is the Finite Element Method, then how does it work and how it
was used to generate two models of the plant under two di�erent sets of
speci�cations and assumtions. Second to explaint the nature of the actuator
and how it will be used in a possible real implementation of the present
work. A selection of the most suitable piezo patch as well as power source
and PC interface is also provided. And third to comment about the theory
behind the LQG control.

2.1 The Finite Element Method FEM

The FEM approximates the solution of a PDE problem by discretizating it.
This method introduces shape functions1 that describe the possible forms

1This shapes are de�ned by the order and type of the analysis for example one can
say a cubic or quadratic Lagrange element or Hermite element. To see the advantages
of each one of this please refer to (4)
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of solution of the original PDE problem.

FEM start point is a mesh. A mesh is basically the partition of the geom-
etry into small units of a simple shape. In a 2D problem 2 normally this
ellements are triangles. The sides of the triangles are called mesh edges,
and their corners are mesh vertices. A mesh edge must not contain mesh
vertices in its interior. Similarly, the boundaries de�ned in the geome-
try are partitioned (approximately) into mesh edges (so-called boundary
elements) that must conform with the triangles if there is an adjacent sub-
domain. There might also be isolated points in the geometry. These also
become mesh vertices.

Once you have a mesh, you can introduce approximations to the dependent
variables. For this discussion, we will concentrate on the case of a single
variable, u. The idea is to approximate u with a function that you can de-
scribe with a �nite number of parameters, the so-called degrees of freedom
(DOF). Inserting this approximation into the weak form of the equation
generates a system of equations for the degrees of freedom.

Then a �nite element set is generated based in the DOF and the order and
type of element. This set is a set of equations that satisfy for each element
in the mesh the conditions impoused by the type of element. Next the
method discretize this set for boundaries, points and subdomines in the
geometry3.

2.1.1 Strain-Displacement Relationship

It is possible to completly describe the strain conditions in a point with
deformations components u,v,w in 3D and their derivatives. The shear

2As it is our case. This will be discussed in section 2.3.2.
3A subdomine is each part of the �nal geometry generated while modeling
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strain tensor can be expresed as εxy, εxz, εyz. Then by following the small-
displasment assumtion the normal strain components and the shear strain
components are given from the deformation as follows:

εx =
∂u

∂x
(2.1)

εy =
∂v

∂y
(2.2)

εz =
∂w

∂z
(2.3)

εxy =
1

2
(
∂u

∂y
+

∂v

∂x
) (2.4)

εxz =
1

2
(
∂u

∂z
+

∂w

∂x
) (2.5)

εyz =
1

2
(
∂v

∂z
+

∂w

∂y
) (2.6)

Then the simetric strain tensor ε is de�ned as:



εx εxy εxz

εyx εy εyz

εzx εzy εz




2.1.2 Strees-Strain Relationship

The stress in a material is described by the symmetric stress tensor:

σ =




σx τxy τxz

τyx σy τyz

τzx τzy σz


 (2.7)
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Where σi is the normal strees, τij shear strees and if symetry is used τij

equals τji. The strees-strain relation is de�ned as:

σ = Dε (2.8)

Where D is a 6x6 elasticity matrix and:

σ =




σx

σy

σz

σxy

σxz

σyz




(2.9)

And

ε =




εx

εy

εz

εxy

εxz

εyz




(2.10)

D is de�ned diferently for Isotropic, Orthotropic and Anisotropic4 materi-
als. For Isotropic material D is de�ned as follows:

4When Isotropic, materials have the same properties in all cristallographic direc-
tions, when Orthotropic, the properties are di�erent in di�erent directions and when
Anisotropic, properties can changes suddendly in the same direction as is the case of
composite materials.
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D =
E

(1 + v)(1− 2v)




1− v v v 0 0 0

v 1− v v 0 0 0

v v 1− v 0 0 0

0 0 0 1−2v
2

0 0

0 0 0 0 1−2v
2

0

0 0 0 0 0 1−2v
2




(2.11)

Where E denotes Young's module or elasticity module, and v denotes the
Poisson's ratio which de�nes contration in the perpendicular direction.
Normally, for simplicity D−1 is used for calculation because it is more
basic.

2.1.3 The equilibrium equation and it implementation
in 3D

The equilibrium equation in 3D is de�ned as:

−∂σx

∂x
− ∂τxy

∂y
− ∂τxz

∂z
= Fx (2.12)

−∂τxy

∂x
− ∂σy

∂y
− ∂τyz

∂z
= Fy (2.13)

−∂τxy

∂x
− ∂τzy

∂y
− ∂σz

∂z
= Fz (2.14)

Or using compact notation:

−∇σ = F (2.15)
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Where F denotes the volume forces (body forces) and σ is the strees tensor.
Substituting the Strees-Strain and Strain-displasment in the above equation
results in Navier's equation expresed in displasment, this is like follows:

−∇(c∇u) = F (2.16)

2.2 Piezo Patch

The development of self-correcting, adaptive systems is receiving more and
more attention in modern industrial research. Structures using "smart
materials" which integrate sensor and actuator functions are taking on
growing importance in this �eld. These systems are designed to detect and
react to changes in their operating environment, like impact, pressure or
bending forces.

With a long history as adaptive materials, piezo actuators have been es-
pecially popular for the monitoring and active damping of high-frequency
vibration due that its composite �ber technologies that transform electrical
to mechanical energy and vice versa make them ideal for prototyping and
research.

The piezoelectric e�ect was discovered in 1880 by Jacques and Pierre Curie
when observed that piezo electric materials 5 can change its form when
an electric potential is applied to them, in addition when pressure acts
over this kind of materials an electric current proportional to the motion is
generated, this phenomena is known as the inverse piezoelectric e�ect.

5Named like that once that the already mentioned e�ect were discovered i.e. Alu-
minum nitride, Apatite, Lead scandium tantalate, Potassium sodium tartrate, Quartz
and so forth.
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Piezo patches, or piezo actuators, can be used in di�erent con�gurations
when attached to a substrate as:

• Sensor: Minute deformations in the substrate, within the in�uence
area of the device, cause displacements in the patch transducer that
originates an electric current proportional to the motion, see Figure
2.2. One can take advantage of this using more than one patch.

Figure 2.1: Piezo patch used as an Actuator. When voltage is supplied the
patch reacts changing it form, when attached to a substrate it acts as a
bender. (4)

• Actuator: Using the inverse piezo e�ect the patch, once that a voltage
is supplied, it acts as a bender, see Figure 2.1, by means of generating
a lateral force that it transmitted to the substrate.

• Sensor-Actuator: When multilayered the sensor signal can be used as
power supply for the same module where it is feedback with a face
shift. This mode depends on the supplier. Used widely in adaptronics.

• Power supply: Provide power for low-consumption devices making
the develop of autonomous systems possible.

It is worth to mention that adaptive materials are used in particular for
vibration reduction in vehicles, and their use in mechanical engineering is
growing. Piezo transducers are suitable for active and adaptive systems.
Embedded in a control loop they can reduce vibrations and control strutures
in the nanometer range.

10



Figure 2.2: Piezo patch used as a sensor. A source is applied in the surface
in form of impact, pressure or bending, this generates a current proportional
to the motion that source causes to the patch. (4)

To operate a high-precision, high-dynamics positions, a low noise, broad
band ampli�er is required. Active vibration damping requires a fast con-
trol with su�cient bandwidth for close-coupling the generated force to the
structural mass to be damped. PI also manufactures the power source E-
413.D2 which is capable of provide the voltage 6 necessary for providing
precision control in open loop for piezo shear and bender actuators in both
static and dynamic operation.

As a consideration for possible practical implementation one might think
about the fact that the E-413.D2 module is capable of being controlled by
PC or µC through D/A converter. It comes with an optional National
Instruments LabVIEW driver which is compatible with the GCS making
"easy" the operation of the overall system.

6-100V to 400V @ 50W
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Table 2.1: System Con�guration for Vibration Control.

Piezo Actuator Power Source
P-876.A15 E-413.D2

Primary Device

2.3 Modeling

Two models were developed in the present work. One, the so called push-
up approach was developed as a simpli�cation of the problem but, as it is
developed in the following sections, the assumptions made within the mod-
eling process are not quite useful in reality thats the reason for developing
a second model, the so called realistic approach which corrects the wrong
ideas and give a more realistic, as its name indicates, model of the problem
including as well mechanical speci�cations of the piezo patch.

Each one of the models were generated based on a FEM analysis under
FEMLAB environment, speci�cally using the module of static structural
analysis with the mechanical properties listed in Table 2.2.

Using FEMLAB a model can be generated by specifying a FEM problem.
This is described in the following steps:

1. A geometry has to be constructed. FEMLAB provides an environ-
ment in which is possible to draw similar to those one can �nd in AU-
TOCAD or any other CAD software including of course the possible
importing of IGES, STEPS and some other standards in mechanical
drawing. Of course the most common is that the geometry will be
composed by sub-geometries which is our case.

2. Setting the analysis by means of declaring constants; that for both
analysis were the applied force, boundary conditions; that for our case
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were that the extremes of the rod could not move, declaring the forces
and where and how they act and the mechanical properties for the
elements in the analysis (Table 2.2). For a detailed description about
how and where the forces were thought to act see the description of
the approaches.

3. Mesh the geometry. For more information on this regard refer to
previous sections on FEM analysis.

4. Specifying and solving the FEM problem. In this regard the analysis
used was static because our main interest was to calculate the de�ec-
tion of the rod. For more on this refer to previous sections on FEM
analysis.

5. Exporting the solution to MATLAB. For doing this input and output
variables are declared as well as the order reduction degree that is
desired. One must remember that exporting the "complete" model
means that the exported solution will have as much as three times
the DOF.

Once the solver acquired the solution for the FEM problem and exported
to MATLAB on a space state form the analysis and design of the control
structure 7 may begin.

Next the approaches developed in this work are explained.
7One must make a distinction on the control structure and control con�guration.

Control structure (or strategy) refers to the structural decisions included in the design of
a control system and control con�guration refers only to the structuring (decomposition)
of the K controller itself (5).
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Table 2.2: Mechanical Speci�cations of piezo patch and aluminium rod
used in FEMLAB modeling

Speci�cation Pushed-up Rod Realistic Rod Piezo Patch
Young's Module (E) [Pa] 2e11 55e9 30e9
Poisson's Ratio (ν) [] 0.33 0.35 0.25
Density (ρ) [Kg/m3] 7850 1190 2450
Thickness [m] xxxx 0.035 0.035

2.3.1 The push-up approach

It consist basically on the simpli�cation of the force caused by the surface
traction that the piezo patch induces in the subtract, in this case an acrylic
rod, by means of thinking about it as a localized force. On Figure 2.3 one
can see the geometry that was made for this issues, there are 9 points indi-
cating the place in which the forces were assumed to be. In this approach
the sensors were assumed to be at the same place than the actuators. The
magnitude of the force was some how arbitrary but always the idea of real
world in the sens of that the force's magnitude should be enough to deform
the rod but not too high to break it was kept. One can see the deformation
of the geometry in Figure 2.4.

Figure 2.3: Mechanical drawing of the geometry used to model the so called
push-up approach to the piezo patch problem. It is an extruded square of
5mm x 5mm x 10cm. Units in the �gure are in meters [m] for consistence
with the analysis performed.

The magnitude of the forces acting on the acrylic rod was chosen to be
between 50N and 75N due that the fragile structure of the material. This
assumption was made based on experimental results of tension tests. Their

14



direction was inserted one positive and one negative according to the y axis.
This convention explains the deformed shaped showed in 2.4.

Figure 2.4: Deformation plot result of the action of 9 localized forces over
an acrylic rod used in the push-up approach to the piezo patch problem.
One can see a colored scale of the deformation with units in m

2.3.2 The realistic approach

In the realistic approach the simpli�cation of the traction force in the (in
this case) aluminium rod was replaced by a more accurate idea that is the
consideration of it as result of two forces acting over the longitude of the
piezo patch contact with the substrate. This generate a response observed
by (2). The system consists on 3 piezo patches (for speci�cations refer to
the section on Piezo Patches) distributed and attached along the rod in the
con�guration shown in Figure 2.5.

In this approach the sensors were assumed to be the patches them self, this
can be done due that the piezo patch model selected can be wired for serving
both porpoises without lost of accuracy, so, 6 points, 2for each patch, were
introduced in the the model for setting the output of the simulation and
of course output variables for the control model. This points were placed
inside the e�ect area of the patch (4).
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Figure 2.5: Mechanical drawing of the geometry used to model the so called
realistic approach to the piezo patch problem. It is a rod of 0.5m x 8mm.
Thickness is 3.5cm. Units in the �gure are in meters [m] for consistence
with the analysis performed.

It is important to notice that the forces for this model were not assumed
but taken from the data sheet of the piezo patch selected. This force
corresponds to 750N as a maximum and it is generated in the borders of
the patch, it is, in fact, known as lateral contraction force. Due to this
fact the forces acting on the aluminium rod were placed on the borders of
each patch and its in�uence were calculated as force over the length in z

direction (thickness) of the patch.

One can see that the deformed shape showed in Figure 2.6 exhibits a more
coupled behavior than the one for the push-up approach. This fact is due
that the �rst model was generated in a 3D environment (not in 2D as the
second) fact that do not allow the designer to have a detailed analysis of
the movement in the sense of lost of accuracy and coupling with the third
axis z.

2.4 H2 Control

The H2 control problem consists of stabilizing the control system while
minimizing the H2 norm of its transfer function (3). This is accomplish
by �nding the stabilizing controller K wich minimizes
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Figure 2.6: Deformation plot result of the lateral contracting force acting
over the geometry used in the realistic approach to the piezo patch problem.
One can see a colored scale with units in m

‖F (s)‖2 =

√
1

2π

∫ ∞

−∞
tr [F (jω)F (jω)H ] dω (2.17)

F , Fl(P, K) (2.18)

For a particular problem the generalized plant P will include the plant
model, the interconnection structure, and the designer-speci�ed weighting
functions (5). Among several interpretations that the H2 control has the
following stochastic interpretation also holds. Supouse that in the general
control con�guration (see 2.7) the exogenous input w is with noise of unity
intensity:

Ew(t)w(t)T = Iδ(t− τ) (2.19)

The expected error z is given by:

E = lim
T→∞

1

2T

∫ T

−T

z(t)T z(t)dt (2.20)
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Figure 2.7: General Control Con�guration. The signals are: u the con-
trol variables, v the measured variables, w the exogenous signals such dis-
turbances and commands and z the so-called error signals that are to be
minimized in some sense to meet the control abjective. (4)

= trEz(t)z(t)T (2.21)

=
1

2π

∫ ∞

−∞
tr

[
F (jω)F (jω)H

]
dω (2.22)

= ‖F‖2
2 = ‖Fl(P, K)‖2

2 (2.23)

The closed-loop transfer function form w to z is given by the LFT

z = Fl(P,K)w (2.24)

where

Fl(P, K) = P11 + P12K(I − P22K)−1P21 (2.25)
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Thus, by minimizing the H2 norm, the output (or error) power of the
generalized system, due to a unit intensity white noise input, is minimized
(by Parseval's theorem); this is the minimization of the root-mean-square
(rms) value of z.

2.4.1 LQG: A special H2 optimal controller

An important special case of H2 optimal control is the LQG controller. As-
suming that the dynamics of the system are linear and known, and that the
input and process noises are available and stochastic with known statistical
properties, then one can concider the plant model:

ẋ = Ax + Bu + wd (2.26)
y = Cx + Du + wn (2.27)

Where wd,wn are the disturbance (proces noise) and measurement noise re-
spectively, which are usually assumed to be uncorrelated zero-mean Gaus-
sian with constant power spectral density matrices W and V respectively.
Where

Ewd(t)wd(τ)T = Wδ(t− τ) (2.28)
Ewn(t)wn(τ)T = V δ(t− τ) (2.29)

Ewn(t)wd(τ)T = Ewd(t)wn(τ)T = 0 (2.30)

Where E denotes expectation and δ(t− τ) is the delta function. The LQG
control problem then is to �nd the optimal control u(t) that minimize the
cost function:
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J = E lim
T→∞

1

T

∫ T

0

[xT Qx + uT Ru]dt (2.31)

Where Q and R are weighting matrices such that Q = QT ≥ 0 and R =

RT ≥ 0.

The solution to the LQG problem is known as the separation principle
(certainty equivalence principle) and consists in �rst �nding the optimal
controller for a deterministic linear quadratic regulator LQR.8 It happens
that the solution to this problem is rather elegant and simple and it can be
written as a simple state feedbacl law:

u(t) = −Krx(t) (2.32)

With −Kr as a constant matrix independent of W and V . Note that under
this control law it is required that x(t) is available for feedback, which
generally it is not the case. To overcome this di�culty one can determine
an optimal state estimate x̂ of the state x. This is the second step in the
design of a LQG and it is accomplished by designing a Kalman �lter that
generates the optimal state estimate x̂ independently of Q and R. Then
the required solution to the LQG problem is then found by replacing x by
x̂ to give u(t) = −Krx̂. See 2.8

LQR problem

The LQR problem has the advantage that all the states are known, the
problem is to �nd the initial value u(0) for a system ˙̂x = Ax + Bu with a

8That in a practical approuch is the LQG problem without wd and wn
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Figure 2.8: The separation theorem.

non trivial solution which takes the system to the zero state in an optimal
manner by means of minimizing the cost function:

Jr =

∫ ∞

0

(x(t)T Qx(t) + u(t)T Ru(t)dt) (2.33)

Where the optimal solution for any initial state is u(t) = −Krx(t) with

−Kr = R−1BT X (2.34)

and X = XT ≥ 0 as the unique positive semi-de�nite solution of the ARE

AT X + XA−XBR−1BT X + Q = 0 (2.35)
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The Kalman Filter

The Kalman �lter has the structure of an observer or state stimator 2.9.
That allows us to reconstruct usable state and disturbance estimates from
the measurements, enabling us to solve the measurement feedback synthesis
problem, which is our main interest. With:

˙̂x = Ax̂ + Bu + Kf (y − Cx̂) (2.36)

Where Kf is meant to be optimally chosen by minimizing E = [x− x̂]T [x− x̂]

thrugh

Kf = Y CT V −1 (2.37)

With Y = Y T ≥ 0 as the unique positive semi-de�nite solution of the ARE:

Y AT + Y A− Y CT V −1CY + W = 0 (2.38)
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Figure 2.9: The LQG controller with noisy plant.
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Chapter 3

Results

The control con�guration followed in this work is mainly multivariable feed-
back LQG, explained earlier on the section about H2 control, which has
been probed its e�ectiveness in a lot of areas of application from chemical
industry to aerospace applications. In the following the results of the con-
trol design and test for both approaches are showed and explained. Also
a PI controller for the push-up scenario is brie�y touched as well as the
MATLAB virtual reality model used for visualizing the simulations.

It is worth to mention that all the controllers (at least those LQG) were
synthesized by giving a weight to the W and V matrices according to the
next procedure which is performed by a MATLAB script that can be seen
in the Appendix A.

JLQG = limT→∞ E
{∫ T

0
|x′u′|W |xu|′ dt

}

(3.1)

24



Where:

W =

[
Q 0

0 R

]
(3.2)

Subject to the dynamics

dxdt = Ax + Bu + Xi (3.3)

y = Cx + Du + Th (3.4)

Where Xi and Th are white uncorrelated noises that together form the
noise weighting matrix:

W =

[
Xi 0

0 Th

]
(3.5)

For more details on what is Q, R, Xi and Th refer to Section 2.4.1.

3.0.2 The push-up approach

As stated earlier in the present, the LQG strategy was chosen to be the
guide for developing a disturbance rejection control con�guration. Al-
though for the push-up approach to the piezo patch problem it was also
developed, not with the same emphasis, a PI controller just for the sake of
comparing Nominal and Robust performance for the two approaches.
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LQG control

In Table 3.1 one can see eigenvalues of the plant (with dominant pole in
−10.71) without any control action and under e�ect of white noise going
directly to the states, its deformation, due to this vibrational disturbance,
in terms of the positions of each of the 9 points that where used as origin
for the localized force and the sensor location itself can be seen in Figure
3.1.

Table 3.1: Eigenvalues for the plant on the push-up approach.

Plan Eigenvalues
-1.2223e7 -5.3120e5 -1.4337e4 -2.1940e3
-1.2200e7 -1.7705e5 -1.1702e4 -9.3418e2
-1.0788e7 -1.2020e5 -1.1233e4 -5.9748e2
-1.0763e7 -8.9791e4 -8.8361e3 -5.7873e2
-7.3659e6 -4.3354e4 -5.6825e3 -4.9055e2
-7.3471e6 -2.0049e4 -4.8907e3 -4.4887e2
-6.5883e5 -1.9720e4 -4.5761e3 -8.5828e1
-6.3197e5 -1.5491e4 -4.0908e3 -1.0708e+001

A LQG controller was synthesized with parameters listed in Table 3.2 in
consistence with the objectives listed in Section 1.11.

In the Table 3.3 the eigenvalues for the push-up feedback system perform-
ing under the same conditions, this means, with white noise acting directly
on the states with dominant pole placed in the same place than in the
plant without controller, just that in this case the multiplicity of poles in
this place is of 17. This fact robusti�es the system against some pertur-
bations, never the less is worth saying that in the present analysis robust

1One can perform the synthesis easily by just making a copy-paste of the provided
code using the already listed parameters. Control structure is not included due to space
and relevance.
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Figure 3.1: Response of the Push-up plant for a random initial state with
white noise acting on the states. Unites where scaled to millimeters.

Table 3.2: Speci�cations for push-up LQG synthesis.

Weight on Value
Q 1
R 1e-5
Xi 1e-5
Th 1
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performance can not be probed for any design due that uncertainty was not
consider explicitly. Numbers showed in a () denote multiplicity, as already
stated. In �gures 3.2 and 3.3 one can see the control e�ort in the time
domain for this approach.

Table 3.3: Eigenvalues for the controller-plant feedback on the push-up
approach.

Feedback Eigenvalues
-2.4298e8(2) -5.0184e6(2) -1.0172e4 -9.0933e3i -1.0095e3
-1.9554e8(2) -2.7115e6(2) -6.3103e3 -1.0046e3
-1.4491e8(2) -1.3207e6(4) -3.4429e3 -1.0027e3
-1.0337e8(2) -5.9333e5(4) -1.3006e3 -1.0017e3
-7.2875e7(2) -2.1711e5(4) -1.1881e3 -1.0010e3
-1.2617e7(2) -5.5859e4(2) -1.0450e3 -1.0008e3(17)
-8.5957e7(2) -1.0172e4 +9.0933e3i -1.0182e3

One can see in �gures 3.4 and 3.5 the behavior of the feedback loop in
time domain.

PI Control

As a brief remark it is included a PI controller for the push-up approach.
One can imagine clearly from the Figures 3.6 and 3.7 that the controller
satis�es nominal performance in a certain degree, this is mainly observed
form the feedback behavior in Figure 3.7.

This design was neglected for further analysis due that the gain required
for its operation as it is showed in the already mentioned �gures is very
high, in the order of the 10000. Obviously this is not something that can
be achieved by a piezo-transducer available in the market. This controller
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Figure 3.2: Control e�ort for the LQG synthesized for the push-up system.
One can notice the assumed saturation limits of 700N of the actuators in
the early stages of control action.
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Figure 3.3: Control e�ort in steady state for the LQG synthesized for the
push-up system.
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Figure 3.4: Response of the feedback loop under standard conditions. De-
formation axis is scale to millimeters.
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Figure 3.5: Steady state response of the feedback loop for push-up con�g-
uration.
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was designed according to the procedure of IMC (Inverse Model Controller)
explained in (1).
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Figure 3.6: Control e�ort of the PI controller

Coming back to the nominal performance of this controller it is easy to see
that it performs "good". Never the less in the sense of tracking the inputs
when a disturbance is present it behaves not as it would be expected, this
can be veri�ed by inspection of the simulation showed in Figure 3.7 were
it is notorious the di�culty that the controller faces to keep the output
constant.

3.0.3 The realistic approach

Table 3.4 shows the eigenvalues of the plant in the realistic set of the piezo
patch problem with dominant pole at −63.28 and acting under direct state
noise in�uence, its deformation is showed in Figure 3.8.

A LQG controller is synthesized using parameters listed in Table 3.5 and
the algorithm already described at the begging of the present chapter. This
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Figure 3.7: Response of the feedback loop of the PI controller.

Table 3.4: Eigenvalues of the plant for the realistic approach.

Plan Eigenvalues
-1.2200e7 -1.1233e4
-1.0763e7 -8.8361e3
-7.3471e6 -4.0908e3
-1.7705e5 -2.1940e3
-8.9791e4 -9.3418e2
-4.3354e4 -4.9055e2
-1.9720e4 -8.5828e1
-1.5491e4 -6.3280e1
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Figure 3.8: Plant response to state noise and random initial state.

time input criterium and state and measurement noises were more penalized
in order to ful�ll at the most the objectives listed in Section 2.4.1.l�l at
the most the objectives listed in Section 2.4.1.

Table 3.5: Speci�cations for realistic LQG synthesis.

Weight on Value
Q 1
R 1e-8
Xi 1e-8
Th 1e-8

Table 3.6 shows a list of the eigenvalues for the feedback system for stan-
dard conditions of state noise. One can see that in this design the dominant
pole is located at −10.70 making the feedback system faster but resting an
"amount" of robust performance against uncertainty, this can be also ver-
i�ed by inspection of the Figures 3.9 and 3.10.

One can see in �gures 3.11 and 3.12 the behaivor of the damped rod under
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Table 3.6: Eigenvalues for the controller-plant feedback on the realistic
approach.

Feedback Eigenvalues
-1.2223e7 -5.3120e5 -1.4337e4 -2.1940e3
-1.2200e7 -1.7705e5 -1.1702e4 -9.3418e2
-1.0788e7 -1.2020e5 -1.1233e4 -5.9748e2
-1.0763e7 -8.9791e4 -8.8361e3 -5.7873e2
-7.3659e6 -4.3354e4 -5.6825e3 -4.9055e2
-7.3471e6 -2.0049e4 -4.8907e3 -4.4887e2
-6.5883e5 -1.9720e4 -4.5761e3 -8.5828e1
-6.3197e5 -1.5491e4 -4.0908e3 -1.0708e+001
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Figure 3.9: Control e�ort of the LQG controller for the realistic approach.
One can notice that the actuators saturates at 700N even when the data
sheet set it at 775N it was chosen this manner to give the design a security
factor.
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Figure 3.10: Steady state of the control e�ort for the realistic setting.

feedback control. At the last Figure, at steady state, the deformation is not
completely avoided. In contrast with the e�cient response of the controller
in terms of a "quick" response that seems to counteract, in some way, the
vibrational force. This can be veri�ed by meaning of an inspection of the
pair of �gures 3.12 and 3.10.

3.0.4 Virtual Reality Model

For visualization of the simulations performed in MATLAB a virtual re-
allity model was build using the same name's toolbox. The model, see
Figure 3.13, consist in 6 or 9 outputs depending on the analysis. Each
output is supposed to be a section of the rod itself and its displacement
the displacement of the selected point of the rod caused by the feedback
control loop.
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Figure 3.11: Deformation under feedback action of the LQG controller for
the realistic approach. It could be interesting to set a comparison of the
present Figure and 3.8.
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Figure 3.12: Steady state of the deformation under feedback control loop.
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Figure 3.13: The 6 points VR model for the realistic setting performing a
strange during a simulation.
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Chapter 4

Summary and Conclusions

In the framework of disturbance rejection a LQG control approach has
been presented for the active damping of vibrational disturbances on a rod
of two di�erent materials also, under, two di�erent approaches of actuator
con�guration. Selection of a suitable set of piezo actuators and perifericals
for the implementation of the system is also exposed. Model generation
based in FEM is as well addressed.

From the simulations performed of the models treated in the present we
can see that:

• The plant is highly interactive.

• Robust performance (one can almost be sure) is not satis�ed for any
of the designs, due to the fact that uncertainty was not explicitly
taken in account while designing.

• Almost all, with the exception of the PI controller, the designs ac-
complish, until certain degree, nominal performance in the sense of
satisfying the primary objective of the present.
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It was seen during the whole analysis that saturation of actuators are an
issue to concider as well as the high frequencies at which these most work.
This was the primary reason to "eliminate" the push-up approach for fur-
ther analysis and developement, it is just not real, and creates a "fake"
impression of the control performance.

As one of the many ideas that are behind this work is to develop a control
device that is capable of damping the vibration on the surface of a lent
(adaptive optics) the LQG approach for the realistic setting is prefered
over the other designs due that it provides a fast and "e�ective" control of
vibration, in space normally one do not have a lot of time to take pictures
and time is an compromise of the control system.

Even when there are some inaccuracies in the present such as model uncer-
tainties that limits the analysis of the system one can think about mayor
facts of concideration:

• Feedback system in the push-up approach has robust peformance in
the sense of that it has a good disturbance rejection at the cost of
a high frequency control response that no-transducer based on piezo
electric principes can achive.

• Feedback system at steady state in the realistic approach, makes a
compromise between the magnitud of deformation that is "kept" and
the time that takes to damp the disturbance.

4.0.5 Future Work

One can think about di�erent control con�gurations for this problem. One
of them could be the design of a spatially decentralized control or, another
way to go, could be to develop an H∞ controller with the aim of include a
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more detailed model of uncertainty and eventually synthesize a µ optimal
controller.

One issue that must be take in account for future work is defenetly to
include a more accurate and detailed model of disturbance in the analysis
by means of including i.e. the closed loop disturbance gain matrix (CLDG).
This can also help to understand better the dynamics and to be able to
take decisions and attack the problem in a better way.

An analysis of robust performance with respect to input uncertainty could
have been interesting, for this we need to stablish a maximum uncertainty
possible as a function of the desired steady state accuracy.

It also would be interesting the dimensional expantion of the present work,
by means of developing a control con�guration for a 2D array of piezo
actuators and sensors.
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Appendix A

MATLAB Code for LQG

synthesis

disp(' ');
sys = input(' ***** LQG synt ***** n');
disp(' ');
sys = input(' Select a plant (form workspace) n ');
disp(' ');
ws = input(' Select a weight for the state criterum n ');
disp(' ');
wi = input(' Select a weight for the input criterum n ');
disp(' ');
wsn = input(' Select a weight for the state noise n ');
disp(' ');
wyn = input(' Select a weight for the output noise n ');
disp(' ');

rw,cl
=size(sys.b);
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pesos del criterio JLQG
Q=ws*eye(rw);
R=wi*eye(cl);
W=[Q zeros(rw,cl); zeros(cl,rw) R];
Xi=wsn*eye(rw);
Th=wyn*eye(cl);
V=[Xi zeros(rw,cl); zeros(cl,rw) Th];
mylqg = lqg(sys, W, V );
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