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I thank O. Šantin for his inspiring supervision, mentoring and helpful comments. I also
thank you very much for your reading.





Abstrakt

Při prediktivńım ř́ızeńı je v každém časovém kroku řešen ř́ıdićı optimalizačńı problem (OCP), který je
parametrizován měřeńım/odhadem současného stavu, vysledek je poté aplikován do ř́ızeného objektu.

OCP může být výhodně reprezentová skrze kvadratické programováńı (QP). Obecně lze ř́ıci, že QP
může být formulováno dvěma zp̊usoby. Prvńımu zp̊usobu se ř́ıká plné uspořádáńı, kde QP obsahuje
menš́ı počet optimalizovaných proměnných a žádné nulové prvky. Druhému zp̊usobu se ř́ıká ř́ıdké
uspořádáńı, zde je QP formulováno s v́ıce optimalizačńımi proměnými, ale zato s mnoha nulovými
prvky s určitým rozmı́stěńım.

V souvislosti s ř́ızeńım proces̊u v reálném čase je potřeba řešit QP v každé časové periodě velmi
rychle (řekněme v ms nebo dokonce µs). Proto za účelem sńıžeńı výpočetńı náročnosti řešeńı QP,
odpov́ıdaj́ıćıho lineárńımu prediktivńımu ř́ızeńı (MPC) s horńımi a dolńımi omezeńımi, jsou v této
práci představeny dva nové MPC aproximuj́ıćı př́ıstupy:

Prvńı př́ıstup (ř́ıdký) dovoluje využit́ı specifické struktury MPC. Tato aproximace je založena
na myšlence neuvažovat model dynamiky jako pevné omezeńı, ale raději modifikovat optimalizačńı
kritérium v MPC tak, že každé nenaplněńı dynamiky bude penalizováno. Nav́ıc speciálńı ř́ıdká
strukura daného problému aproximuj́ıćıho zdola a shora omezeného MPC je využita při výpočtu
gradientu a Newtonova kroku v metodě kombinuj́ıćı Newtonu/gradientńı projekci. Je ukázáno na
př́ıkladech, že uvažovaná metoda je rychleǰśı nebo srovnatelně rychlá s ostatńımi řešiči známými z
literatury, zat́ımco kvalita ř́ızeńı je zachována.

Druhý př́ıstup (plný) se zaměřuje na sńıžeńı počtu volnosti daného QP, protože hlavńı slabinou plné
formulace je ta, že čas potřebný k jej́ımu řešeńı roste kubicky s počtem vstup̊u a délkou predikčńıho
horizontu. Proto je představen př́ıstup aproximuj́ıćı část predikčńıho horizontu, a t́ım redukuj́ıćı
velikost odpov́ıdaj́ıćı QP formulace. Nav́ıc je ukázáno, že přestože je pouze začátek horizontu uvažován
přesně, kvalita ř́ızeńı neńı ovlivněna př́ılǐs.

Abstract

In model predictive control optimal control problem (OCP) based on measurement/estimation of
current state is solved each sampling time then the the result, inputs control is applied to the plant.

The OCP can be efficiently represented via quadratic programming (QP). In general, there are two
types of QP formulation of MPC. The first is called dense where QP has smaller number of optimized
variables and no zero entries. The second is called sparse, here QP is formulated with larger number
of optimized variables but with many zero entries and sparsity structure occurs.

In order to control of real-time process applications solution for the QP solved each time should be
found very quickly (let say in ms or even µs). Thus in order to reduce the computational complexity
of the QP related to box constrained linear model predictive control (MPC) two novel approximations
of MPC are introduced in this work:

The first one (sparse) which enables utilization of the MPC specific structure. This approximation
is based on idea not to consider the model dynamics as hard constraint but rather modify the objective
function of MPC to capture the violation of not fulfilling the model dynamics. Furthermore, the specific
sparsity structure of the approximated box constrained MPC problem is exploited in the computation
of gradient and Newton’s step in the combined Newton/gradient projection algorithm. It is shown by
an examples that the proposed method is faster or competitive to other state of the art solvers while
retaining a performance level.

The second one (dense) aims on reducing degree of freedom in the QP since the bottleneck of
a dense formulation is that its solving time growths cubically with number of inputs and length of
prediction horizon. Thus approach which approximate part of the horizon and hence reduces size of
the QP formulation is introduced. Moreover it is shown that although only beginning of horizon is
assumed exactly overall controller performance will not be influenced much.
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Chapter 1

Introduction

Model Predictive Control (MPC) is a multivariable control strategy which can naturally take
into account physical limitation of controlled plant. It is a mathematical method which uses
system model to predict its evolution and thus can be able to compute optimal control action.

In MPC at each sampling time optimal control problem often for finite horizon (usu-
ally formulated via Quadratic Programming (QP)) parametrized by current state measure-
ment/estimation is solved. The solution, current control actions for inputs is then applied to
the plant.

MPC overcomes traditional control methods with systematical approach to controller de-
sign for multiple-input multiple-output (MIMO) system and its ability to inter-corporate
constraints handling. But the optimization problem arising from MPC has significant com-
putational complexity, the main drawback of MPC and the reason why MPC use was limited
to processes with slow dynamics.

First reported application of MPC on industrial process was in 70’s [1] on slow sampled
plant as a heuristic control technique without a mathematical background. Since the time
computation power even of embedded systems rapidly increased and rigorous theory was
built, the MPC is more and more popular even for such kind of low cost devices as e.g. power
converters [2] in nowadays. Moreover in the last decades research on field of very fast sampled
and large-scale systems was announced by [3, 4, 2, 5, 6].

In [7] it was shown that control law in traditional MPC can be expressed as a multi-
parametric QP (mp-QP) and precomputed off-line. Authors also have presented algorithm
for solving mp-QP which is used to obtain the explicit solution. The rest of (on-line) compu-
tational effort is just a searching in look-up table for adequate solution. Small-scale systems
are then enabled to use fast sampling with period in order of ms or even µs. On the other
hand, memory complexity grows exponentially with number of constraints for this method
[7], the alternative algorithm was presented in [8] which for a class of MPC problems reduces
both memory demand and computational time.

But there is a different keynote. Since model of the controlled plant is uncertain and also
measurement/estimation of system states is inaccurate it does not make any sense to solve
associated problem precisely. This idea has motivated research in direction of approximated
MPC. Thus, only sub-optimal solution is found for which overall controller performance will be
still good enough while computational time or memory demand of optimization task decrease
dramatically.

This idea was used for deriving approximated explicit controllers e.g. in [9]. But this idea
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Chapter 1. Introduction

found its way also to on-line solvers. It was introduced by [10] where the active set strategy
(AS) which additionally uses the homotopy of the explicit solution was terminated after cer-
tain number of iterations without necessary obtaining of exact solution. In [2] the Nesterov’s
type of fast gradient projection algorithm (GP) was established with certified minimal num-
ber of needed iterations to a given accuracy of objective function. Similar approach was also
presented in [4] where a primal interior point method (IP) with fixed barrier parameter was
terminated before the optimum was found.

Furthermore the approach of approximating the original objective function of MPC to
reduce computation complexity or memory can be found in recent literature. For example see
[11, 9, 6] where polytopic approximation of objective function is used to reduce complexity
of explicit solution. The modification of objective function is used in [12] to decrease number
of needed iterations in the combined Newton-like/gradient projection algorithm.

The authors of [13] reformulated original MPC problem to different variables using a
singular value decomposition (SVD) of the problem Hessian. In [14] it was proposed to refor-
mulate the MPC problem to one with reduced number of variables using SVD of simulation
data.

It is known that AS methods are very effective in practice but involve many computa-
tionally demanding iterations when the active set of constraints needs to be changed a lot for
example during the transient when the references are changing. On the other hand, for GP
methods it was shown e.g. in [2] that they can rapidly identify a new active set of constraints
but they involve many iterations when the problem is ill-conditioned which is the case for
many practical implementation of MPC. The solution was introduced in [15, 16] where the
GP method was combined with Newton’s method.

This work consists two novel approaches. The first proposed method is based on the idea
to modify the original MPC problem in a sense that the system dynamics is not as usual
considered as hard equality constraint but rather as the soft constraint modeled via quadratic
penalty with fixed weight in criterion. This is based on the observation of [4], where it was
shown that the performance of sub-optimal controller was still comparable with the ”exact”
one even when the constraints on the system dynamics were not fulfilled. But here it will
be shown that the controller performance would not degrade much if such an assumption is
made at the beginning.

Furthermore, it is also shown next, that the resulting optimization problem has special
sparsity structure. This structure can be exploited in the combined Newton/gradient projec-
tion algorithm [16] to reduce growth of computational complexity of gradient and Newton’s
step computation from cubic to linear with increasing prediction horizon. But contrary to
the original work in [16], in this work the MPC problem is not formulated by dual variables
but rather by primal, hence the result of each iteration is feasible with respect to constraints.

The second approach has been motivated by the idea that it makes sense to compute
only the current control input because the rest of horizon will be discarded. Thus the idea
is to split control horizon and reformulate optimization problem so only the beginning of
prediction horizon will be taken exactly while the rest will be approximated by control policy
with no constraints. This arise in optimization problem with chosen (smaller) size which
corresponds to size of exactly taken part. Moreover it will be shown that although only
beginning of horizon is constrained overall controller performance will not be influenced much.
This method produces a dense optimization problem (with no zero entries) thus the structure
of the problem is lost and hence any general QP solver can be used.

This work is organized as follows: In Chapter 2 an introduction to MPC is presented. In
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1.1. Notation

Chapter 3 modern methods used for solving QP arising in MPC are introduced. Chapter 4
concerning our work. Particularly two novel approaches are proposed: 1) Sparse formulation
for large-scale systems which assume system dynamics penalty and exploiting the problem
structure; 2) Approximated dense MPC formulation framework which in limit case produce
QP where only current control is computed. Thus this formulation should be especially
suitable for embedded devices since a small amount of memory (and solving time of course)
is required. Each approach is followed by numerical experiments proving their effectiveness.
At the end of the work in Chapter 5 this work is summarized.

Appendix A includes recently introduced approach [17] very inspiring for our work since
it also takes advantage of the Moore-Penrose pseudoinverse is employed therein. In Appendix
B contain of appended CD is shown.

1.1 Notation

In this work, if not defined otherwise italic letters denote vectors or matrices (e.g. v,M),
bolt italic denote vectors or matrices are defined by another vectors or matrices (e.g. v,M).
Identity matrix is expressed by I. Positive definiteness is denoted by Q > 0 (resp. Q ≥ 0
positive semi-definiteness) and for two vector relation operator (e.g. x < x) has elementwise
meaning. Constants are denoted by Greek letters (e.g. α, κ) and sets by calligraphic one
(e.g. A,X ). Especially two different discrete times are used in here: k denotes absolute
time, while n denotes optimization time. Subscripts denote time instance (e.g. xk, xn) or jth
component (e.g. uj) and superscripts (·)(i) denote iteration in algorithm loop. Moore-Penrose
pseudoinverse is denoted by (·)+, optimal value by (·)∗. And finally ⊗ denotes Kronecker
product.
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Chapter 2

Model Predictive Control

The idea of model predictive control (MPC) is to employ model of controlled plant. Current
state is measured or more often estimated, then optimization problem parameterized by
received data is computed. There are many variants how objective function for MPC can be
defined. One way is to use of l1, l2 or l∞ criterion which leads on linear programming.

Linear programming in MPC was investigate in past (e.g. [18, 19]) since it is much less
computationally demanding. But it also suffers many practical drawbacks as it may yields
either dead-beat or idle control performance and that may be unsuitable for process control
applications [20]. Thus most often in control process applications quadratic objective function
is assumed. Then the optimal problem can be efficiently formulated as a quadratic program
(QP).

Once QP is solved the optimal control over prediction horizon is obtained but only the
first control move is applied to the plant and other results are discarded. In the next period
new current state is obtained and optimization for receded prediction horizon is executed.
The principle that optimal control problem is computed each time-step is known as receding
horizon control (RHC) and entails that resulting control becomes closed-loop.

Thus QP optimization task in MPC is needed to solve each time-step. It may be very
time-consuming thus several solutions of MPC were developed, namely online where each
time QP is solved online and offline (or explicit) where control law is derived and solution
stored. Hence online computation is only simple evaluation of piecewise linear function defined
explicitly [7, 9, 21]. Hybrid approach which provides trade-off between computational-time
and memory demand has been introduced e.g. in [5] where they use piecewise affine (PWA)
approximation of control law to warm-start the online optimization.

MPC is optimal control method and many different optimization criterion, control strat-
egy has been studied and used in practice. For example the most common optimization
criterion for regulator control problem used very often in literature is square of states and
inputs with fixed weight. For tracking problem rather formulation with tracking error and
control increments in optimization criterion is used. Weighting of control increments ∆u
cause that control strategy will be integrative-like [22]. Another approach where control
policy minimizing settling time is proposed in [23].

Number of optimized variables of resulting QP grows linearly with horizon length. More-
over computational effort of solving such QP grows at least quadratically [16, 4]. Conditioning
of the problem also determines its computational burden (issue of ill-conditioning is considered
e.g. in [2]). Thus methods to decrease degree of freedom of resulting optimization problem
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2.1. State-Space Model

are wanted. One of the methods so called input-blocking method [24] makes problem smaller
by fixing inputs over several time-steps.

The stability of MPC can be guaranteed trough choosing of three essential ingredients.
The ingredients are the terminal cost function, the local control law, the terminal constraints
for which stability conditions must held [25]. Next, only an assumption that MPC is close-loop
stabilizing is admitted.

In this chapter basics of constrained finite-horizon linear quadratic regulator (CFH-LQR)
will be described in sense of one step of MPC on regulator problem. Then a few fundamental
formulations of optimal control problem will be presented. Description of RHC follows as
a concept which transform CFH-LQR open-loop policy into closed-loop one. At the end
formulation of tracking problem is provided.

2.1 State-Space Model

This work is focused on discrete time linear time-invariant (LTI) systems only described by

xk+1 = Axk +Buk

yk = Cxk, (2.1)

with states xk ∈ Rnx , inputs uk ∈ Rnu , outputs yk ∈ Rny and known data as dynamics
A ∈ Rnx×nx as well as input B ∈ Rnx×nu , output C ∈ Rny×nx matrices. The k ∈ N0 denotes
absolute discrete time.

2.2 Prediction

Predictive control uses prediction of system evolution over some finite horizon for decision of
optimal control strategy. The prediction is parametrized by currently measured/estimated
state xk. State prediction for LTI (2.1) for prediction horizon with length N can be written
by iterating (2.1) as (2.2) [22].

x = vx0 + V u, x0 = xk (2.2)

v =


A
A2

A3

...
AN

 , V =


B
AB B
A2B AB B

...
...

...
. . .

AN−1B AN−2B AN−3B . . . B

 , (2.3)

where x =
[
xT1 , x

T
2 , . . . , x

T
N

]T ∈ RN ·nx , u =
[
uT0 , u

T
1 , . . . , u

T
N−1

]T ∈ RN ·nu and with prediction
matrices v ∈ RN ·nx×nx , V ∈ RN ·nx×N ·nu .

2.3 Constrained Finite-Horizon Linear Quadratic Regulator

Usually when MPC is introduced in literature only constrained finite-horizon linear quadratic
(CFH-LQR) is described with assumption that RHC concept is applied. Thus by solving
CFH-LQR which is open-loop problem based on new measurement in every time-step the
overall strategy becomes closed-loop called MPC.
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Chapter 2. Model Predictive Control

2.3.1 Problem Statement

It is defined general quadratic initial cost function l0, stage cost function ln and terminal cost
function lN to precise description of whole optimization horizon as

l0(u0) = uT0R0u0 + (2xT0 S0 + rT0 )u0 (2.4a)

ln(xn, un) =

[
xn
un

]T [
Qn STn
Sn Rn

] [
xn
un

]
+ qTnxn + rTnun (2.4b)

lN (xN ) = xTNQNxN + qTNxN , (2.4c)

where Qn = QTn ≥ 0 is state, Rn = RTn > 0 is input and Sn ≥ 0 is cross weighting matrix.
Optimization problem which need to be solved minimizes square power of states and inputs
over optimization horizon subject to linear state and input constraints with respect to system
dynamics. Such problem is stated as

min l0(u0) +

N−1∑
n=1

ln(xn, un) + lN (xN )

s.t. xn+1 = Axn +Bun, x0 = xk is current state

Enxn + Fnun ≤ fn
ENxN ≤ fN (or even ENxN = eN )

n = 0, 1, . . . , N − 1. (2.5)

The problem (2.5) is very general but complex and hence is usually simplified. In many appli-
cations states and inputs cross weighting is not required or it is possible to find transformation
such that Sn = 0, n = 0 . . . N −1 [26]. In many application and also in this work linear terms
are considered equal to 0.

Over the horizon it makes sense to have constant weights Qn6=0 = Q, Rn = R,n =
0, . . . , N − 1. Remind that current (or initial) state xk is not minimized since it cannot be
influenced by new control action.

Due to stability issue terminal cos is usually added [25]. Then for choosing QN sev-
eral strategies are relevant: QN is the stabilizing solution of Riccati equation ATQNA −
QN −ATQNB(BTQNB+R)−1BTQNA+Q = 0 or QN is obtained from Lyapunov equation
ATQNA−QN = Q.

In (2.5) general state-input dependent polyhedron-shape constraints are assumed. But it
shows in control practice that box-like limitation are usually sufficient [15]. Moreover hard
state constraints can make problem infeasible thus they are usually assumed as soft to prevent
controller are halted [27].

Furthermore if one accept assumption Sn = 0, n = 0, 1, . . . , N − 1 constraints split into
state and input independent constraints and computational complexity is decreased signifi-
cantly since it can be exploited by optimization algorithm [4].
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2.4. Basic Formulations

Therefore simplified MPC minimization problem considered in this work is defined as

min xTNQNxN +
N−1∑
n=1

+xTnQxn +
N−1∑
n=0

+uTnRun

s.t. xn+1 = Axn +Bun

x ≤ xn ≤ x
u ≤ un ≤ u
n = 0, 1, . . . , N − 1. (2.6)

The constant vectors x, u denotes lower bounds and x, u upper bounds for states and inputs.

2.4 Basic Formulations

In this section two basic (exact) formulations of optimization problem (2.6) are shown. First,
primal1 dense formulation is shown and then formulation usually denoted as sparse. For
comparison of these two formulation see e.g. [28].

Advanced concepts have been discovered recently. For example in [29] the sparse but
compact approach was presented. The idea introduced therein is to specifically express the
inputs as an affine function of the states such that resulting closed-loop dynamics matrix
becomes nilpotent. Then Hessian of the proposed optimization problem will be compact and
sparse.

2.4.1 Primal Dense Formulation

So called primal dense, condensed or simultaneous formualtion of QP is described here. By
injecting (2.2) into (2.6) exact condensed QP problem is obtained as follows

min
1

2
uTHu+ fTu

s.t. x− vxk ≤ V u ≤ x− vxk
u ≤ u ≤ u (2.7)

with lower bounds u =
[
uT0 , u

T
1 , . . . , u

T
N−1

]T ∈ RN ·nu , upper bounds u =
[
uT0 , u

T
1 , . . . , u

T
N−1

]T ∈
RN ·nu and where Hessian matrix H ∈ RN ·nu×N ·nu and linear part f ∈ RN ·nu are

H = V TQV +R (2.8a)

fT = V TQvxk (2.8b)

with weighting matrices Q = blkdiag(Q,Q, . . . , QN ) for states and R = blkdiag(R,R, . . . , R)
for inputs.

In this case the Hessian contains in general no zero entries (see (2.9)) hence the formulation
is called dense or condensed. Due to high power order of A in the Hessian the condition

1Note that variable elimination applied on sparse formulation leads to dense one. We distinguish primal
and dual dense (or condensed) formulation in dependency which variables are eliminated. If state variables
are eliminated as it is usual we call the formulation primal otherwise if inputs are eliminated we call the
formulation dual.
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Chapter 2. Model Predictive Control

number2 is relatively high in contrast with other formulations described later. The specific
structure can be seen in Hessian

H =


∑N−1

n=0 B
TAnTQAnTBT +R

∑N−2
n=0 B

TAn+1TQAnB . . . BTAN−1
T
QB∑N−2

n=0 B
TAnTQAn+1B

∑N−2
n=0 B

TAnTQAnTBT +R . . . BTAN−2
T
QB

...
...

. . .
...

BTQAN−1B BTQAN−2B . . . BTQB +R

 .
(2.9)

For this formulation input constraints are handled implicitly but simple form of state con-
straints is not preserved.

2.4.2 Sparse Formulations

Approaches discussed here are just straightforward transcription of considered minimization
problem (2.6). It can be done in two ways, using two different ordering of optimization
variables. For sake of completeness they are shown both in this section: 1) Ordering where
input and state variables are grouped separately; 2) Ordering where states and inputs are
alternating, integrated together.

In sparse formulations of MPC the optimization variables are states and inputs. Opti-
mization variable vector of sparse optimization problem is denoted by z and is defined in
following sections. Regardless the variables ordering degree of freedom is nz = N(nx +nu) in
both cases (in contrast to primal condensed formulation where it was only N · nu). On the
other hand sparse pattern in the Hessian matrix occurs and can be exploited.

2.4.2.1 Formulation with Separated States and Inputs

Next it is shown how problem (2.6) can be reformulated. The prediction (2.2) can be rewritten
in different manner as

Ax+Bu = d (2.10)

with appropriate matrices, summarized below

A =


−I
A −I

A −I
. . .

 , B =


B

B
B

. . .

 , d =


−Axk

0
0
...

 . (2.11)

For the definition of box constraints in a way as were defined in previous section and for

x =
[
xT , xT , . . . , xT

]T ∈ RN ·nx and x =
[
xT , xT , . . . , xT

]T ∈ RN ·nx optimization problem
(2.6) can be rewritten into

min
1

2
xTQx+

1

2
uTRu

s.t Ax+Bu = d

x ≤ x ≤ x
u ≤ u ≤ u, (2.12)

2For symmetric positive definite (SPD) matrix A condition number κ can be defined as κ = L
µ

, where L
denotes the biggest while µ the smallest eigenvalue of A.
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2.4. Basic Formulations

where equality constraint denotes system dynamics and it is equivalent to (2.2).

In formalism of QP task the previous problem can be viewed as problem where minimiza-
tion variable is z =

[
uT ,xT

]
, hence one can rewrite (2.12) as

min
z

1

2
zTHz

s.t Cz = d

z ≤ z ≤ z, (2.13)

where by comparing (2.12) with (2.13) appropriate matrices are obtained in form

H =

[
R

Q

]
, C =

[
B A

]
, z =

[
u
x

]
, z =

[
u
x

]
. (2.14)

This kind of ordering is very illustrative and was used e.g. in [26] where it was also shown
that the problem structure can be exploited even when the problem is formulated as a dense.

2.4.2.2 Formulation with Integrated States and Inputs

Here the idea used e.g. in [4] is followed. In this paper they used substitution where states
and inputs are optimization variables, integrated together in sequence

z =
[
uTk , x

T
k+1, u

T
k+1 . . . , u

T
k+N−1, x

T
k+N

]T ∈ Rnz . (2.15)

With such ordering the optimization problem (2.6) can be stated in QP form as

min
1

2
zTHz

s.t. Cz = d

z ≤ z ≤ z,

where appropriate matrices are defined as

H =


R

Q
R

. . .

QN

 , C =


B −I

A B −I
. . .

A B −I

 ,
z =

[
uT xT uT . . . xT

]T
, z =

[
uT xT uT . . . xT

]T
. (2.16)

Remind (2.11), where d =
[
−AT , 0T , 0T , . . .

]T
.

This formulation is reasonable where advanced concepts as penalty method or barrier
method are used since problem sparsity is preserved and can be exploited further [4].

9



Chapter 2. Model Predictive Control

2.5 Receding Horizon Control

Until now just open-loop optimal control problem was considered. To obtain feedback loop
receding horizon control (RHC) concept is used. The idea of RHC is to solve open-loop optimal
control problem every time period since new state measurement/estimation is available. Every
time period optimization problem is solved and solution for whole prediction horizon is found
but only first control action is applied to the plant. Next time new measurement is obtained
and another open-loop optimization problem solved. Therefore it becomes a closed-loop
control.

In Figure 2.5.1 principle of RHC is illustrated when also input-blocking [24] is considered.
Then NC denoted correction horizon after which control is assumed to be constant. Remind
that this technique is often used to reduction of computational demand.

discrete time
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Figure 2.5.1: Receding horizon control - two time-steps.

2.6 Tracking Problem

This whole chapter has been describing regulator problem. Its definition, reformulation into
various QP tasks and RHC concept on which MPC is based were shown. Here also CFH-LQR
will be considered. But tracking problem with constant reference will be described here for
further use in Chapter 4 where for purpose of demonstration rather tracking then regulator
problem solution is shown.
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2.6. Tracking Problem

2.6.1 Augmented State-Space Model

State-space reformulation for tracking problem with constant reference is described in this
section. Hence augmented state-space model formulation consists of additionally reference and
previous input (for the purpose of so called incremental control formulation [22] where control
increments instead of control itself is optimized). Note that such prediction is parametrized
by initial augmented state vector in other words by initial state, reference and input control
from previous time-step thus augmented state vector length is nx̃ = nx + nu + ny.

xk+1

uk
rk+1

 =

A B 0
0 I 0
0 0 I


︸ ︷︷ ︸

Ã

 xk
uk−1
rk


︸ ︷︷ ︸

x̃k

+

BI
0


︸ ︷︷ ︸
B̃

∆u, x̃k =

 xk
uk−1
rk

 (2.17)

ỹk =
[
C 0 0

]︸ ︷︷ ︸
C̃

x̃k (2.18)

ẽk =
[
C 0 −I

]︸ ︷︷ ︸
C̃e

x̃k, (2.19)

where x̃k ∈ RN ·nx̃ , ∆uk = uk − uk−1 and ỹk, ẽk ∈ Rny thus known data are Ã ∈ Rnx̃×nx̃ ,
B̃ ∈ Rnx̃×nu and C̃, C̃e ∈ Rny×nx̃ . Remind that ẽk = ỹk − rk.

2.6.2 Prediction Based on the Augmented State-Space Model

Let describe prediction with augmented state-space model for output error obtained by iter-
ating (2.19) and assumption of (2.17) as

ẽ = wx̃0 +W∆u, x̃0 = x̃k (2.20)

w =



C̃eÃ

C̃eÃ
2

C̃eÃ
3

...

C̃eÃ
N

 , W =


C̃eB̃

C̃eÃB̃ C̃eB̃

C̃eÃ
2
B̃ C̃eÃB̃ C̃eB̃

...
...

...
. . .

C̃eÃ
N−1

B̃ C̃eÃ
N−2

B̃ C̃eÃ
N−3

B̃ . . . C̃eB̃

 , (2.21)

where ẽ =
[
ẽT0 , ẽ

T
1 , . . . , ẽ

T
N−1

]T ∈ RN ·ny and where also augmented prediction matrices are
w ∈ RN ·ny×nx̃ , W ∈ RN ·ny×N ·nu .

2.6.3 Problem Statement

Since the objective of tracking problem is to track the reference criterion for the problem can
be stated as

min ẽTN Q̃N ẽN +

N−1∑
n=1

ẽTn Q̃ẽn +

N−1∑
n=0

∆uTnR∆un,

11



Chapter 2. Model Predictive Control

where Q̃, Q̃N ∈ Rny×ny are tracking weighting matrices. Another requirement is usually to
track asymptotically hence ∆u is weighting and control strategy become integrative-like. For
more details see [22]. Therefore reference tracking problem can be stated as

min ẽTN Q̃N ẽN +
N−1∑
n=1

ẽTn Q̃ẽn +
N−1∑
n=0

∆uTnR∆un

s.t. xn+1 = Axn +Bun

ẽ ≤ en ≤ ẽ
u ≤ un ≤ u
n = 0, 1, . . . , N − 1. (2.22)
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Chapter 3

Methods for Solving MPC Problem

Model predictive control can be formulated as a convex optimization problem for which many
algorithms already exist. The most often problem is formulated as quadratic programming
(QP) for which very efficient methods are known. By quadratic program is in this work
mentioned optimization problem with quadratic objective function minimized subject to linear
equality and inequality constraints.

Namely the two main approaches used to solve QP arising in MPC are active-set method
(ASM) and interior-point (IP) method but also many variations of these algorithms were
developed.

In short, active-set methods are those which solves a QP such that they are finding active
set of the optimizer. Once the active set is found it is easy to compute the minimizer. Interior-
point method are those which use some kind of barrier method to approximate the original
problem by unconstrained one in every iteration. These related nonlinear problems are then
solved in sequence.

In each implementation of such algorithm is opportune to use linear algebra library with
already optimized performance to increase performance of the QP solver. The two very
popular and widely used linear algebra libraries are Basic Linear Algebra Subroutines (BLAS)
[30] and Linear Algebra PACKage (LAPACK) [31].

The former provides routines in three levels: Level 1) routines with algorithmic complexity
O(n) such as computation of euclidean norm, copying vector, vector swap or scalar-vector
multiplication; Level 2) routines with complexity O(n2) such as matrix-vector multiplication,
hermitian rank or symmetric rank computation; Level 3) routines with complexity O(n3)
such as matrix-matrix multiplication or solving triangular matrix with multiple right hand
sides. All these routines are present in version for single, double, complex and double complex
variables and utilized for different matrix types as banded, packaged, symmetric or general.

Similarly the latter, library providing routines for solving systems of simultaneous linear
equations, least-squares problem of linear systems of equations, eigenvalue problems or sin-
gular value problems. Common matrix factorization as LU, Cholesky, QR, SVD or Schur are
provided therein. Our implementations aspire to efficient use of these libraries.

Many different solvers which are focused on optimization in MPC were developed recently.
Namely, solver qpOASES is an open-source C++ implementation of active-set method which
is able to exploit sparsity structure which arises in some MPC formulations and it was used
e.g. for control of a diesel engine [10]. Another open-source project, ACADO Toolkit, package
of algorithms for automatic control (including MPC), state and parameter estimation etc. was

13



Chapter 3. Methods for Solving MPC Problem

developed in [32]. A Matlab toolbox called FiOrdOs, C-code generator of first-order methods
was developed at ETH Zurich [33]. Code generator CVXGEN [34] for convex optimization
problems was developed at Stanford University.

In this chapter several different method will be shown. First, in Section 3.1 primal barrier
interior-point method is described. The rest of the algorithms in Sections 3.2, 3.3, 3.4 can be
seen as a variation on active-set method.

Different notation to the rest of the work will be used here. Thus x does not denote state
or u does not denote input anymore in this chapter.

3.1 Barrier Interior-Point Method

Interior-point methods are algorithms which are able to solve convex minimization problem
subject to linear equality and even inequality constraints. Let us assume such convex opti-
mization problem in a form

min
x

f(x) s.t. Ax ≤ b, Cx = d, (3.1)

where A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, d ∈ Rp with number of inequality constraints m and
equality constraints p are known data and where f(x) = (1/2)xTGx+ cx is convex quadratic
function with 0 < G = GT ∈ Rn×n, c ∈ Rn.

The idea is to solve sequence of equality constrained QP (EQP). Each of these EQP
approximates original problem in the beginning of each iteration by barrier function. Such
problem can be defined as

x∗(t) = arg min
x

tf(x) + φ(x) s.t. Cx = d, (3.2)

where x(i)
∗
(t) is optimizer for the approximate problem (3.1) at ith iteration and φ(x) denotes

barrier function. Solutions of approximated problem (3.2) x∗(t(i)) is denoted as central points
and whole sequence (x∗(t(i)), i = 0, . . . , imax) as central path. Computation of x∗(t(i)) every
iteration starts from the previous central point. In the end the solution of entire QP is
reached.

For this purpose starting point x for initialization optimization in next iteration must be
updated. In [35] it was shown that solution will be ε−optimal simply if t satisfies (m/t) < ε.
At the end of the iteration barrier parameter t is increased.

Parameter t denotes approximation accuracy. It is obvious that parameter t provides ratio
of how much original objective and how much barrier function is weighted. For t→∞ more
accurate central point is founded (centering). But exact computing of x∗ is not necessary
since even for inexact centering x(i)

∗
(t) the centering path converges to optimal point.

The exact barrier function φ(x) can be expressed by indicator function. But such function
is not differentiable in general and thus Newton’s method cannot be applied [35]. Thus rather
worse approximating logarithmic barrier is defined as

φ(x(i)) =

m∑
j=1

− log(bj − aTj x),

where bj are components of b and aTj are rows of A.
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System of optimality conditions, so called KKT system of (3.2) has to be solved in the
algorithm 1 each iteration. For this purpose several approaches how to solve KKT system
can be found e.g. in [36].

The algorithm of primal interior-point method or also barrier method is summarized
below.

Algorithm 1: Primal Barrier method [35]

1: Set feasible x, t(0) > 0, µ > 1, tolerance ε > 0.
2: for i = 0 to imax do
3: Compute x∗(t(i)) by solving KKT system of (3.2) which is initialized by previous

central point x.
4: Update x = x∗(t(i)).
5: if (m/t) < ε then
6: Stop with x∗ = x.
7: end if
8: Increase t; t(i+1) = µt(i).
9: end for

Note that choice of parameter µ involves a trade-off between number of inner and outer
iteration. Large µ means fewer outer iteration but more inner iteration etc.. In practise,
parameter µ value is typically chosen in order a decades [35]. But also it has been observed
that for purpose of MPC fixed barrier parameter with combination of fixed maximum number
of iterations is sufficient then suboptimal solution may be obtained for medium sized QP in
order to ms without significant loss of performance [37].

Also note that maximum number of iterations is guaranteed for this algorithm and it is a
polynomial in the dimension and accuracy of the solution.

3.2 Active-Set Method

Algorithm of primal active-set method (ASM) shown in this section is more precisely described
e.g. in [36].

In ASM also rather sequence of EQP is solved as in IP. But no approximation of inequality
constraints is provided in ASM rather active set of the optimal point is identifying step by
step. Once active-set is known it is easy to find problem solution by solving EQP subject to
active (equality) constraints.

In order to simplification some of technique for equality constrained QP such e.g. Schur-
complement or Null-space method can be used and general QP reduced into the form of (3.3)
[36]. Thus main focus is to solve inequality QP (IQP) as follows

min
x

1

2
xTGx+ cx s.t. aTj x ≤ bj , j ∈ I. (3.3)

In ASM problem (3.3) is usualy transform such that newton’s step is computed so the problem
can be reformualted as

p(i) = arg min
p

1

2
pTGp+ g(i)p s.t. aTj p = 0, j ∈ W(i), (3.4)

where W(i) is working set at ith iteration defined such that consists all active constraints
or aTj x

(i) = bj , j ∈ W(i) and aTj x
(i) < bj , j /∈ W(i) and where the gradient is defined as

g(i) = Gx(i) + c.
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The subproblem (3.4) is need to be solved at each iteration it is expressed in terms of the
Newton’s step p = x− x(i). Then potential optimizer is then found by x(i+1) = x(i) +α(i)p(i).
Step-size at ith iteration for each component is found by

α(i) = min

(
1, min
j 6∈W(i),aTj p

(i)>0

bj − aTj x(i)

aTj p
(i)

)
. (3.5)

In nontrivial case where some constraints are active in optimum algorithm works as follows:

Let have optimization variable x consist of components xj . Then for problem minimizer
aTj x

∗ = bj , j ∈ A and aTj x
∗ < bj , j /∈ A where A is set of active constraints. For known

active set the minimizer can be computed simply such that the problem subject to inactive
constraints only is solved. Unfortunately such prior knowledge is always unknown and thus
must be found step by step. For this purpose working set is defined and updated every
iteration until the active set is reached.

At the beginning, algorithm start at position x(0) for which aTj x
(0) = bj , j ∈ W(0) and

aTj x
(0) < bj , j /∈ W(0). Then Newton’s step is computed and two option may occur according

to solution of (3.5):

α(i) 6= 1 Constraint j for which minimum in (3.5) is found is called blocking constraint [36]. The
constraint must be added to the working set and new iteration is needed.

α(i) = 1 No constraint is violated. Then current position is tested for optimal (Karush-Kuhn-
Tucker (KKT)) conditions. If the current point is KKT optimal denoted by x∗ it is
accepted and the Newton step is applied. Otherwise constraint which disallow us to
find better solution must be removed from the working set.

The algorithm is summarized below followed by algorithm properties.

Algorithm 2: Active-Set Method for Convex QP [36]

1: Set W(0) such that it is subset of active constrain at x(0).
2: for i = 0 to imax do
3: Solve (3.4) to find p(i)

4: if p(i) = 0 then
5: if x(i) satisfies KKT conditions then
6: Stop with x∗ = x(i)

7: else
8: Remove constraint which prevent to find better solution
9: end if

10: else {p(i) 6= 0}
11: Compute α(i) from (3.5)
12: x(i+1) = x(i) + α(i)p(i)

13: if if jth constraint minimize (3.5) then
14: W(i+1) is obtained by adding jth constraint to W(i)

15: else
16: W(i+1) =W(i)

17: end if
18: end if
19: end for
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Algorithm is simple, effective and suitable even for complex-shaped constraints. Its com-
putational burden is typically O(n2) (when updates are used in the factorization process
during Newton step computation) where n is number of problem variables. Important draw-
back of this method is that only one constraint can be added/removed in working set each
iteration. Thus when the initial working set is far away from the optimal one, algorithm
converges in large number of iteration for large-scale problems.

Moreover variations as primal, primal-dual and dual ASM are known. For example dual
ASM method tailored for MPC is presented in [10]. Algorithm proposed therein is able to
exploit solution of previous optimization to improve its performance but in contrast to primal
barrier method it is not provide feasible point at each iteration.

3.3 Fast Gradient Projection

The Gradient projection method (GP) was introduced in [38] as a generalization of the steep-
est descent method of optimization problems with convex constraints. In general, the GP
solves problem

min
x

f(x) s.t. x ∈ X , (3.6)

where f(x) is a continuously at least once differentiable function f : Rn → R and X ⊆ Rn is
a non empty closed convex set.

The projection of y onto X is the mapping P : Rn → X defined by

P(y) = arg min
x
||x− y|| s.t. x ∈ X . (3.7)

The gradient projection algorithm is then defined by

x(i+1)(α(i)) = P(x(i) − α(i)∇f(x(i))), (3.8)

where α(i) > 0 is the step-size, and ∇f(x(i)) is the gradient of f at x(i).
Several line search algorithms for GP were introduced, namely generalized Armijo proce-

dure [39] or the exact line search which search for the first local minimizer, called the Cauchy
point xC (see [36] for detailed explanation).

The main drawback of GP is that the computation of the projection is expensive for
general type of constraints since it may lead to the QP in general [12]. On the other hand the
projection on the set defined by box with lower and upper limits can be done very efficiently
by component-wise median operation [12].

Since GP is based only on the gradient it inherits the convergence from the steepest
descend method hence for the problems which are ill-conditioned it needs many iterations
to converge. Thus there is shown modification of original method, fast gradient method [2]
based on Nesterov’s gradient projection method [40]. Similar gradient method for MPC was
improved in [41] where problem structure was exploited in gradient computation.

Let us assumed minimization problem (3.6) in simplified form with quadratic criterion as
follows

min
x

1

2
xTHx + fTx, x ∈ X , (3.9)

where 0 < H = HT ∈ Rn×n, f ∈ Rn and where X is box constrained feasible set defined such
that x ≤ x ≤ x, ∀x ∈ X .
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In contrast with traditional gradient method this method is not descent anymore. Thus
f(x(i+1)) < f(x(i)),∀i ∈ N0 but rather condition for descent sequence is considered λj → 0
and φj(x) ≥ (1 − λj)f(x) + λjφ0(x),∀j ≥ 0, ∀x ∈ X where {φj(x)}∞0 and {λj}∞0 are called
estimate sequences.

In the algorithm fixed step-size −(1/L) is used with no addition computational effort
although it has been proved that it has same rate of convergence as other step-size rules [42].
Lipschitz parameter L = λmax(H) and convexity parameter µ = λmin(H) have to be known.

Briefly summarize, at the beginning initial values are set. Additionally, α(i), β(i), i =
1, . . . , imax can be precomputed (computed offline) for time saving as was shown in [43].

First of all, gradient ∆f (i) = Hx(i) + f (i) is computed and x
(i)
f found. In the next step

simple projection by median function applied element-wisely is used and feasible adept to be
optimum found. Then algorithm check this point x(i+1) on KKT condition and stops if positive
otherwise initial position for next iteration y(i+1) is calculated. Parameter α(i+1) ∈ (0, 1) is
computed from (α(i+1))2 = (1− α(i))(α(i))2 + µαi+1/L in original [43].

Algorithm is stopped when optimum is found (KKT conditions are satisfied). But usually
many iteration to converge is needed and KKT checking computational complexity may not
be neglected. Thus fixed iterations are preferred for real-time application. Minimal count of
iteration necessary for given ε-optimal solution can be computed for this method [43].

The algorithm of fast gradient method is summarized lower.

Algorithm 3: Fast gradient projection for box constrained convex minimization [43]

1: Set feasible y0 = x0 ∈ X , 0 <
√

µ
L ≤ α0 < 1

2: for i = 1 to imax do
3: x

(i)
f = y(i) − (1/L)∆f(y(i))

4: x(i+1) =median(x, xf
(i), x)

5: if x(i+1) satisfies KKT conditions then
6: Stop with x∗ = x(i+1)

7: end if
8: α(i+1) = (−(α(i))2L+ µ+

√
4(α(i))2L2 + ((α(i))2L− µ)2)/2L

9: β(i) = α(i)(1− α(i))/((α(i))2 + α(i+1))
10: y(i+1) = x(i+1) + β(i)(x(i+1) − x(i))
11: end for

Note that since GP is gradient based, the speed of convergence depends heavily to the
problem conditioning. To overcome this technique of preconditioning which provides coor-
dinate transformation z = T−1x, where T ∈ RN ·nu×N ·nu is diagonal SPD matrix (precondi-
tioner) are used. Hessian in new coordinates z will be Hnew = T THT . Moreover, optimal

transformation T ∗ can be found by solving minT
λmax(Hnew)
λmin(Hnew)

[44].

3.4 Combined Newton/Gradient Projection

The bottleneck of gradient projection method is that it finds optimum in large number of
iterations. Whereas in [45] gradient projection technique which find solution for bounded
quadratic problem with a thousands of variables in a few iterations (less than 15) system
was introduced. Also the algorithm which combines gradient projection with Newton-like
methods were introduced in [15] and [16].
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These methods use an Newton’s step of result of iteration (3.8) by solving the following
problem for better convergence rate [16] whereas gradient projection accelerate identification
of optimal active set.

In the algorithm at the beginning gradient initialized by x(i) is computed and direction of
negative gradient is projected further. The solution of projection is denoted as Cauchy point

x
(i)
C . Next improvement step x

(i)
+ , Newton’s step is obtained by solving

x
(i)
+ = arg min

x(i)
f(x(i)) (3.10a)

s.t. x
(i)
j = x

(i)
Cj , j ∈ W(i), (3.10b)

where W(i) denotes the working set of active constraints in the Cauchy point x
(i)
C at ith

iteration of the algorithm. The Cauchy point x
(i)
C denotes the first local minimizer found in

this case by exact line search along the procedure path.

Since the result of (3.10) can be infeasible with respect to constraint x
(i)
+ ∈ X , the direction

form Cauchy point towards x
(i)
+ is projected onto feasible set by the same technique as the

negative gradient is in the gradient projection step by

x
(i)
N (β(i)) = P(x(i) + β(i)p(i)), (3.11)

where p(i) = x
(i)
+ −x

(i)
C is the Newton’s step for problem (3.10) and β(i) is found nor by median

function as in previous section but rather exact line search procedure (see [36] for details) is
used since it cause better convergence and solution is denoted the first local minimizer along
the projected path. Furthermore modification of exact line search method such that residuum
of the Newton’s projection is exploited may yields in even better convergence rate. Method
is summarized in Algorithm 4.

Algorithm 4: Combined Newton/Gradient Projection Algorithm [16]

1: Set feasible x(0) ans imax ∈ N.
2: for i = 0 to imax do
3: if x(i) satisfies the KKT conditions then
4: Stop with x∗ = x(i)

5: end if
6: Gradient Step: Starting from x(i) find gradient step.

7: Gradient Projection: Project gradient to find the Cauchy point x
(i)
C by (3.8).

8: Newton’s Step: Find an improvement point x
(i)
+ by solving (3.10).

9: Newton’s Projection: Starting from x
(i)
C project p(i) = x

(i)
+ − x

(i)
C to find first local

minimizer x
(k)
N by (3.11).

10: x(i) = x
(i)
N

11: end for

In [16] this algorithm but in combination with dual variables was shown. This algorithm
with tailored Newton’s step and gradient step exploiting problem structure was also used in
our work and the modifications of Newton’s/gradient steps will be described latter as well as
algorithm properties which will be also demonstrated by examples.
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Chapter 4

Approximated MPC

In nowadays computational power of embedded systems is good enough that various opti-
mization problems can be solved online. But also there is need of controllers for extremely
fast systems for which even powerful micro-controllers is not sufficient solution and faster and
faster algorithms have to be developed. One way how to obtain them is to approximate the
original problem.

These techniques are based on the idea that since model of the controlled plant is uncertain,
system states are measured/estimated inaccurately and various disturbances effect on our
real system it does not make sense to make exact control law and rather perform some faster
approximated one instead.

Since computational effort needed to solve control optimization problem very depends on
its formulation it makes sense to study how problem can be formulated properly. It already
has been shown two basic formulation - primal dense and sparse in Section 2.4.

Dual dense formulation where states instead of inputs are optimized was introduced in
[17] recently (briefly described in Appendix A). It seems to be complementary formulation
to the other two basic formulation. But thanks to the approximation it can be solved faster
then other two exact formulation.

Another approximate schema has been introduced in [4] in context of primal barrier
interior-point method. It has been shown that even such approximate schema may has good
performance for fast sampled systems (in order of ms).

In this section two novel approaches of fast MPC are introduced. The first method is
inspirited by [4] where it was shown that even if each QP is solved suboptimally the controller
performance is still good enough even without fulfilled dynamics constraints of the model.
But in contrary to [4] in this work constraints of system dynamics are assumed as soft from
the beginning and rather combined Newton/gradient method is used instead of IP.

The second method on the other side is approach following the condensed MPC method-
ology (e.g. [15]) inspired by [17] mentioned before. The improved method proposed here
is aimed to decrease number of variables of resulting optimization problem and thus can be
viewed as an alternative to input blocking (see [24]).

For both novel methods it is shown that with assumed approximations computational
time demand is reduced and resulting control policies are thus suitable for real-time control.
For the latter approach also less amount of memory is required.
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4.1. Dynamic Penalty Method

4.1 Dynamic Penalty Method

The proposed method is based on the idea to modify the original MPC problem in a sense
that the system dynamics is not as usual considered as hard equality constraint but rather
as the soft constraint modeled as quadratic penalty with fixed weight. This is based on the
observation of [4], where it was shown that the performance of suboptimal controller was still
comparable with the ”exact” one even when the constraints on the system dynamics were not
fulfilled. But here it will be shown that the controller performance would not degrade much
if such an assumption is made at the beginning. Also it will be shown that the structure
of such approach can be exploited in Algorithm 4. Preliminary results of this section were
presented in [46].

4.1.1 Exact Problem

Let us to remind the sparse formulation (Section 2.4.2). For optimization variable z =[
uT0 , x

T
1 , u

T
1 , . . . , x

T
N

]T ∈ Rnz problem of MPC (2.6) can be rewritten into the common form
of quadratic program as

min
z

J(z) =
1

2
zTHz + zTf

s.t. Cz = d

z ≤ z ≤ z (4.1)

with known data

H =


R

Q
R

. . .

QN

 , f = 0

C =


B −I
A B −I

. . .

A B −I
E

 , d =


−Axk

0
...
0
e


z =

[
uT xT uT . . . xT

]T
, z =

[
uT xT uT . . . xT

]T
. (4.2)

Remember that constraint ExN = e with E ∈ Rnx×nx is provided due to stability enforcement
[41].

4.1.2 Approximated Problem

Let define residuum of not fulfilled the equality constraint in (4.1) as

r(z) = d−Cz.

Hereafter the equality constraint will be omitted, instead every deviation will be penalized
by added quadratic term in new criterion

J(z; Ψ) =
1

2
zTHz + zTf + r(z)TΨr(z), (4.3)
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where Ψ = blkdiag(P, . . . , P ) ∈ R(N+1)nx×(N+1)nx is penalty parameter with P ∈ Rnx×nx , P =
P T � 0.

See that with Ψ→∞ system dynamic behavior (2.1) will be assumed more strictly since
only additional term will be minimized. On the other hand with Ψ → 0 system dynamics
become more soft hence can be violated. Note that penalty Ψ also affects the problem
conditioning. Thus dynamics softness must be choose properly.

Next, (4.1) can be rewritten into

min
z

J(z; Ψ) =
1

2
zTGz + zTh

s.t. z ≤ z ≤ z (4.4)

with structured Hessian

G = H +CTΨC =

=



φa φe

· φb φc φd

· φa φe

· · φb · · ·
...

. . .
...

· · · φb φc φd

· φa φe

· · φf


(4.5)

φa = R+BTPB

φb = Q+ P +ATPA

φc = ATPB

φd = −ATP
φe = −BTP

φf = QN + P + F TPF

and appropriate linear part h = f −CTΨd.
Note that number of square blocks in the Hessian is equal to length of optimization

horizon N . Note also that Hessian has specific sparse structure suitable to be exploited in
computations of gradient or/and Newton’s step. This will be presented in following Section
4.1.3.1.

4.1.3 Algorithm Tailoring for Approximated MPC

In this section description how problem sparsity with specific structure can be exploited in
context of combined Newton/gradient projection algorithm (described in Section 3.4). Note
that the most computational demanding part of Algorithm 4 is step where computation of
the Newton’s step is provide. Which in case of general QP leads to solution of set of linear
equations. The solution is usually obtained by the factorization approach using Cholesky or
LDL factorization followed by forward and back substitution. Hence the complexity of the
solution of (3.10) growths cubically in the number of optimization variables, thus also in the
prediction horizon.

In [16] the method based on Riccati recursion was used for reducing the complexity of
Newton’s step computation to growth only linearly in the prediction horizon if dual QP
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problem is solved. Similar was achieved in [4] where the IP method which exploited the
sparsity structure of sparse MPC was introduced.

On the other hand in [15] there was introduced an approach based on null space method
(see e.g. [36]) for box constrained primal dense formulation of MPC which reduces the number
of variables in (3.10) to those which are inactive, but the cubic dependence to prediction
horizon was preserved.

In the following, the algorithm which can take the best from both last mentioned ap-
proaches is presented. It uses null space method to eliminate the variables which are currently
on their boundaries and benefits from the sparse structure of the problem to obtain linear
growth of complexity in prediction horizon.

4.1.3.1 Treating Hessian Structure

The computation of the gradient for the cost function in (4.4) requires approximately order n2z
flops. In contrast computation of Newton’s step has order n3z flops. Thus the most challenging
is to minimize computational burden for Newton’s step nevertheless time-saving variants of
other methods are mentioned below.

Gradient Computation In gradient computation the matrix-vector multiplication Gz is
crucial. Thus generic solver carry out this operation in 2N2(nu + nx)2 flops. On the other
hand by utilizing the block-tridiagonal structure of (4.5), this can be reduced to N(2n2u +
6n2x + 8nunx) flops, here only the linear growth of complexity in horizon is obtained.

Newton’s Step Computation Two things are provided to computational saving: 1) Hes-
sian size reduction by null-space method; 2) Computation of size-reduced Newton’s step with
exploiting the Hessian structure.

Former one is based on idea that the Newton’s step should be zero in directions where the

constraints are active. Therefore the reduced Hessian Ḡ = Z(i)TGZ(i) and reduced gradient

ḡ = Z(i)T∇J(z(i); Ψ) can be defined, where Z ∈ Rnz−na×nz−na is null-space of inequalities
constraints matrix (for details of null-space method see [36]) and na is the number of active
constraints.

Then reduced Newton’s step p̄ including elements p̄j ∈ W(i) where W(i) is the working
set in ith iteration of Algorithm 4 and it can be computed by solving of

Ḡp̄(i) = −ḡ. (4.6)

When p̄ is obtained one can compute original full-sized Newton’s step p(i) = Z(i)T p̄(i).

Furthermore it has been shown in [15] that for box constrained problem it is not needed to
explicitly form the null space matrix Z(i), but reduced Hessian and gradient can be obtained
directly by only removing the rows and columns corresponding to currently active constraints
from the Hessian of the original problem (4.4). Then the new Hessian Ḡ order is reduced to
nr = nz − na.

Direct methods for efficient solving (4.6) - Cholesky factorization L̄L̄
T

= Ḡ, forward-

substitution L̄ȳ = −ḡ and back-substitution L̄
T
p̄(i) = ȳ must be computed. Note that
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Cholesky factor L̄ of reduced Hessian Ḡ has also sparsity structure as follows

L̄ =



L̄11

L̄21 L̄22

L̄32 L̄33

. . .

L̄N−1,N−1
L̄N,N−1 L̄N,N


. (4.7)

This structure can be exploited by the following algorithm (see e.g. [28, 4]):

L̄11L̄
T
11 = Ḡ11

L̄21L̄
T
11 = Ḡ21

L̄22L̄
T
22 = Ḡ22 − L̄21L̄

T
21, and so on. . .

Such factorization can be handled with N(1/3n3u + 10/3n3x + 3n2unx + 6n2xnu) flops in worst
case when no constraint is active, instead of 1/3N3(nx + nu)3 flops when whole matrix is
decomposed, see that cubic dependency to prediction horizon is reduced to linear only.

Also substitutions is possible to optimize. For lower factor (4.7) The forward substitution
can be written straightforwardly as

L̄11y1 = −ḡ1
L̄22y2 = −(ḡ2 + L̄21ȳ1)

L̄33y3 = −(ḡ3 + L̄32ȳ2), and so on. . .

For the sake of completeness even tailored method of back substitution is mentioned below.

L̄TN,N p̄
(i)
N = ȳN

L̄TN−1,N−1p̄
(i)
N−1 = ȳN−1 + L̄TN,N−1p̄

(i)
N

L̄TN−2,N−2p̄
(i)
N−2 = ȳN−2 + L̄TN−1,N−2p̄

(i)
N−1, and so on. . .

Then each substitution required N(3n2x +n2u + 4nunx) flops in contrast to N2(nu +nx)2 flops
if the matrices are dense.

Exact Line Search See [36] for details of exact line-search method for box constrained
problems. This method is provided in Algorithm 4 twice each iteration. In the line-search
method computation of product d̄T Ḡd̄ where d̄ is a direction of search (in Algorithm 4 it can
be either the negative gradient or Newton’s step) the most computationally demanding part.
Here also the same procedure as for gradient computation can be used hence the computation
can be done with O(N(n2x + n2u)).

4.1.4 Numerical Experiments

In this section the performance of proposed method is shown on two examples: oscillating
masses and random systems (for its origin see [4]). All numerical tests were executed on
computer with Intel R©CoreTM2 Duo CPU P8400@2.26GHz, running Linux. Implementation
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was written as a C-MEX function for Matlab environment. Subroutines from BLAS and
LAPACK libraries were employed to carry out linear algebra operations. Time was measured
by clock gettime() function with up to nanosecond resolution.

For all tests the default parameters of MPC are used: R = I, Q = I, QN = I, E = 0.

4.1.4.1 Oscillating Masses Simulation

Oscillating masses model is represented by six masses connected by string between walls.
It is described via states x ∈ R12 as masses horizontal position, velocity and controlled by
inputs u ∈ R3 as forces work between some of this masses (see Figure 4.1.1). Each mass
position saturates in ±4 from its natural steady state position. Control limitation is stated
on ±0.5. Each of the masses is perturbed by unknown disturbance in range ±0.5. The
regulator problem is solved, i.e. stabilization of each mass in its origin.

The following test run simulations over 1000 steps on a random setting of oscillating
masses model. The horizon length was fixed N = 10 for all simulations.

Figure 4.1.1: Oscillating masses model [4]. Six masses between the wall. Force acting between
some of masses is denoted by arrows.

In Figure 4.1.2 and Figure 4.1.3 histogram of the stage costs

lk = xkQxk + ukRuk (4.8)

of the simulations (k = 1, . . . , 1000) are shown. Mean value of stage cost l is computed as
mean value of stage costs lk over the whole horizon. Exact solution is found by solving (2.16)
by quadprog routine from Optimization Toolbox in Matlab.
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Figure 4.1.2: Stage cost histograms for
simulation of oscillating masses - influence
of the penalty parameter Ψ and unbound
maximum number of iteration (imax =
∞). The solid red line donates mean of the
distribution. The number in upper right
hand side corner denotes mean value of
stage costs.
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Figure 4.1.3: Stage cost histograms for
simulation of oscillating masses - influence
of the maximum number of iteration imax
of Algorithm 4 with fixed penalty param-
eter Ψ = 103I. The solid red line donates
mean of the distribution. The number in
upper right hand side corner denotes mean
value of stage costs.

Exact problem was approximated by penalty with fixed Ψ. Our method in the first case
solves each QP to the optimal regardless to how many iterations it cost. It is evident that
with increasing the penalty parameter Ψ the mean value of the solution is closer to the exact
one (Figure 4.1.2).

In Figure 4.1.3 maximum number of iterations instead of penalty parameter was tuned
and penalty parameter was fixed Ψ = 103I. It can be seen that for the testing system
maximum number of iterations imax = 5 could be set for the algorithm (4) in controller to
get approximately constant time demand with minimum impact to controller quality.
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From the results in Figure 4.1.2 we established for the system that the penalty parameter
Ψ = 103I is sufficient. Signal of one state and one control input for this penalty parameter
are just for the sake of completeness shown in Figure 4.1.4 where each problem were solved
to optimality. It can be seen that resulting control has almost the same quality.
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−0.5
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0.5

steps
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Figure 4.1.4: Oscillating masses simulation of first state and input. In this case parameters
were set as Ψ = 103I, imax =∞. Blue solid line as reference for exact MPC, dashed red line
for approximate MPC.

4.1.4.2 Random Systems

In the following two tests set of 1000 random stable systems (except that poles on unit circle
are included) with the fixed parameters nx = 4, nu = 2, N = 10 were taken. In this case
limits were chosen ±10 for state and ±0.2 for inputs. The initial states were picked randomly
around the origin in range (−1, 1).

Single QP Solution First, random systems were taken and its appropriate QP of approx-
imated problem solved to optimality. Results are shown in Figure 4.1.5 where it may look
like that choice of Ψ > 5e3I leads in general to good approximation since median of relative
error of the cost function is around 1.72%. The relative error of cost function is defined as

errorJ = 100(J − Jref )/Jref , (4.9)

where J = uTHu+ fTu is cost function computed with optimal solution u of the proposed
approximate method while in Jref exact solution of (2.7) is used.
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Figure 4.1.5: Relation of penalty parameter Ψ to cost function error (4.9) of QPs related to
the random systems. For each box, red line in the center is the median, the bottom of the box
is the 25th percentile, the top is the 75th percentile. Red crosses represent the outliers.

Control Simulation Solution In this test each random system was controlled over 100
time-steps. In contrary, Figure 4.1.6 illustrates how relative error of mean value of stage costs
depends on penalty parameter. The error of mean relative stage cost is defined as

errorl = 100(l − lref )/lref , (4.10)

where l denotes mean stage cost of our method while lref denotes mean stage cost of reference
(exact solution of (2.7)). Figure 4.1.6 proofs that even if individual QP is solved suboptimally
(even with large cost function error, see Figure 4.1.5) resulting control performance may be
even still good enough hence to get well performed controller even Ψ = 103I can be used. In
this simulation (Figure 4.1.6) a set only of 100 random systems was controlled over 100 steps
due to the test complexity hence the results may not be exceedingly accurate nevertheless the
trend is obvious.
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Figure 4.1.6: Relation of penalty parameter Ψ to mean stage cost error (4.10) of control
simulations of random systems. For each box, red line in the center is the median, the bottom
of the box is the 25th percentile, the top is the 75th percentile. Red crosses represent the
outliers.

Comparison of Proposed Methods Finally time comparison with several of state-of-
the-art approximate approaches introduced in [4, 2, 47] is presented. In this experiment four
different methods are compared on small or medium-scale problems only.

Let us briefly summarize properties of these methods:

Presented The presented method solves sparse MPC problem (4.4) where system dynamics is
assumed to be soft, penalized by Ψ = 103I. Combined Newton/gradient method (Algo-
rithm 4) modified as described in Chapter 4 is used with earlier termination such that
algorithm is stopped when maximum number of iterations imax = 5 is reached.

IP Primal Interior-Point (IP) method solves sparse formulation of MPC as defined in [4].
For this purpose modified package published on Stanford University web pages related
to [4] was used. In this case dynamics is considered as hard and constraints are handled
by barrier method. Interior-point solver with infeasible start was executed with imax =
3 (fixed number of Newton’s step) and barrier parameter was fixed t = 102 for all
problems.

Next QP algorithms based on condensed formulation (2.7) of MPC were treated.
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FGP Fast gradient projection (FGP) represents basic implementation (without problem pre-
conditioning) of algorithm presented in [2]. This approach is one of the ”exact” ones
and thus was taken as reference. FGP solver was set to stop when ε-optimal solution is
found for ε = 10−9.

ASM Finally, solver qpOASES [47] was employed. Package qpOASES implements sophisti-
cated active-set method (ASM) with warm-start.

In the test there were generated 3 random linear systems of (2.1) with additional state
disturbance in range ±0.5 with different nu, nx. The simulation with 1000 time steps for 3
different lengths of prediction horizon were executed. Experiment was executed 3 times and
minimal time for each step was accepted. The resulting times written in Table 4.1 are mean
value of accepted times in ms. The relative stage cost error (4.10) was below 2 % in all cases
when as a reference FGP was taken. The formulated problems (2.7) had condition numbers
κ ∼ 103.

nx nu N Presented IP FGP ASM

4 2 10 0.026 0.036 0.052 0.128
4 2 20 0.053 0.066 0.099 0.222
4 2 30 0.092 0.097 0.183 0.372

7 3 10 0.034 0.053 0.064 0.124
7 3 20 0.076 0.103 0.165 0.265
7 3 30 0.164 0.152 0.785 0.506

10 4 10 0.058 0.078 0.069 0.172
10 4 20 0.175 0.154 0.645 0.734
10 4 30 0.329 0.238 0.785 1.091

Table 4.1: Comparison of computation times on random systems simulation. Presented de-
notes our method; IP denotes solver developed in [4]; FGP [2]; ASM denotes solver qpOASES
performed especially for MPC [47]. All times proposed in the table are in ms.

In Table 4.1 several trends can be observed. See the last column of the table, the ASM has
the worst times which is caused by the fact that problems were solved exactly by active-set
method where Newton’s step computation is executed each iteration and the algorithm needs
many iterations to find exact solution since there were many active constraints in optimum.
See also that times growth rapidly since number of problem variables increases cubically in
N · nu for the problem formulation. Almost same tendency can be viewed in results for FGP
where a lot of gradients were computed.

An approximated methods based on sparse formulation follow. See the times growth
linearly in case of IP and superlinearly in case of presented method. What causes the super-
linear trend in computational demand of the presented method? Null-space method entails
that Newton’s steps computed in Algorithm 4 will be cheaper since reduced Hessian is used,
on the other hand exact line search method computed twice per iteration is additional effort.

Hence the presented method is suitable especially for small-scale problems where the best
results of all compared methods were achieved.
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4.2 Approximated Dense MPC Formulation Framework

The main disadvantages of QP arising in condensed MPC (Section 2.4.1) are ill-conditioning
and that problem structure is lost which causes that computational complexity of the problem
grows cubically with number of optimized variables.

To deal with the computational demand some techniques were developed. The most es-
sential is input blocking [24] which reduces problem dimension by reducing degrees of freedom
- problem is reformulated in a way that only control over several time-steps at the beginning
of the horizon is computed. For the rest of the horizon constant control is assumed. This
method decrease computational burden significantly and hence is very popular in practice,
but resulting control policy may be very conservative. From this point of view it would be
much better if not constant control would be considered for the rest of the horizon and hence
control policy would not be so conservative.

In this section a novel formulation of MPC which reduces computational effort similarly
as input blocking will be introduced. But in the proposed strategy for the rest of the horizon
not constant control is assumed .

The main idea is to split optimization horizon into two parts for inputs and then inject
appropriate prediction such that only start of prediction horizon will be optimized and the
rest will be approximated. This give us new generalized view on condensed formulation of
MPC. In this view classical condensed formulation presented in Section 2.4.1 is just limit
(exact) case where Nu = N (Nu is control optimization horizon defined lower) furthermore
it will be shown that solution for Nu = 1 may be still competitive in performance but with
extreme computational saving.

For approach introduced in Section 4.1.4 only quantitative change in performance has
been seen, but for this approach qualitative change in control policy is expected thus rather
tracking problem will be provided in Section 4.2.3.

In following section modified prediction will be derived. Then, in next section novel
formulation of the old problem will be stated. At the end properties of the presented method
will be discussed.

4.2.1 Modified Prediction Based on Augmented State-Space Model

Recall for augmented state-space model based prediction for output error (2.20).

ẽ = wx̃k +W∆u. (4.11)

In this section it will be shown how this prediction (4.11) can be rewritten into a general
form which allow us reformulate the problem as it is described in following section.

Our approach requires to split prediction matrix W as follows

w =


C̃eÃ

C̃eÃ
2

...

C̃eÃ
N

 , W =
[
W 0 WNu

]
=


C̃eB̃

C̃eÃB̃
. . .

...
. . .

. . .

C̃eÃ
N−1

B̃ . . . . . . C̃eB̃

 . (4.12)

It allows us to write (4.11) in different manner

ẽ = wx̃k +
[
W 0 WNu

] [ ∆u0

∆uNu

]
, (4.13)
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where the horizon for control is spitted into two parts: Start of the horizon is denoted as
∆u0 = ∆u0, . . . ,∆uNu−1; End of the horizon is denoted as ∆uNu = ∆uNu , . . . ,∆uN−1,
for sake of space saving subscripts consist the initial subscript in appropriate part of the
horizon only. Thus additional parameter for the presented framework must be defined as
Nu ∈ N, 0 < Nu ≤ N .

Finally, the generalized prediction (4.13) can be expressed in a way that only start of the
control horizon with the current state is isolated on the ride hand side as below[

∆uNu
ẽ

]
= Pwx̃k + PW 0∆u0, (4.14)

where P =
[
−WNu I

]+
. Remind that (.)+ donates Moore-Penrose pseudo-inversion.

4.2.2 Problem Reformulation

Objective function of reference tracking problem (2.22) can be then rewritten as

J =
1

2
ẽTNQN ẽN +

1

2

N−1∑
n=1

ẽTnQẽn +
1

2

Nu−1∑
n=0

∆uTnR∆un +
1

2

N−1∑
n=Nu

∆uTnR∆un =

=
1

2

[
∆uNu
ẽ

]T RNu [
Q

QN

]
︸ ︷︷ ︸

Γ

[
∆uNu
ẽ

]
+

1

2
∆uT0R0∆u0 (4.15)

with known data R0 ∈ RNunu×Nunu , RNu ∈ R(N−Nu)nu×(N−Nu)nu , Q ∈ R(N−1)ny×(N−1)ny

and QN ∈ Rny×ny .

Remind that QP arising in MPC can be stated symbolically as

min control criterion

s.t. prediction

physical limitation of plant inputs (4.16)

It is usual in condensed formulations to eliminate prediction (equality constraint) by its
introduction into criterion.

Then such modified criterion where new prediction (4.13) was eliminated is

J =
1

2
∆uT0W

T
0Q0W 0∆u0 + ∆uT0W

T
0Q0w∆x̃k +

1

2
∆uT0R0∆u0 (4.17)

with properly defined weighting matrix Q0 = P TΓP , Q0 ∈ RN ·ny×N ·ny .

4.2.2.1 Coordinate Transformation

The tracking criterion (4.15) is defined with control increments hence variables optimized by
appropriate QP would be also increments of inputs. It is disadvantageous that the result has
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4.2. Approximated Dense MPC Formulation Framework

to be recalculated to another coordinated each time to be applied to the plant. Also it is
important to provide hard constraints which arise from limitation of the plant. But if box
constrained problem is assumed control increment formulation (briefly described in Section
2.6) causes this simple boundaries would be lost and cannot be exploited in the optimization
algorithm. Thus well known trick, coordinate transformation

∆u0 = Ku0 +Mu−1 (4.18)

K =


I
−I I

−I I
. . .

. . .

 , M =


−I
0
0
...

 (4.19)

is provided to preservation of simple constraints. This transformation is based on simple
observation that ∆un = un + un−1.

Reformulated objective function which is optimized eventually is

J =
1

2
uT0K

TW T
0Q0W 0Ku0 + uT0K

TW T
0Q0W 0Mu−1+

+
1

2
uT0K

TW T
0Q0wx̃k +

1

2
uT0K

TR0Ku0 + uT0K
TR0Mu−1, (4.20)

where all constant terms were already omitted, since they do not influence the minimizer.

Thus resulting control problem which need to be solved is stated in term of quadratic
programming as

min
u0

1

2
uT0Hu0 + uT0 f

s.t u0 ≤ u0 ≤ u0 (4.21)

with

H = KT (W T
0Q0W 0 +R0)K (4.22)

f = KTW T
0Q0wx̃0 +KTW T

0Q0W 0Mu−1. (4.23)

Note that the Hessian size is only Nunu ×Nunu where Nu is chosen such that 0 < Nu ≤ N .
Thus in limit case problem size can be even nu × nu. On the other hand only first input
control is optimized hence only first control input can be constrained. It will be shown in
next section how much is the loss of performance caused by this approximation unimpressive.

4.2.3 Properties of the Proposed Method

In the new formulation framework proposed in this work theoretical extension of fundamental
MPC formulation is provided. One can choose length of horizon Nu then for first part 0→ Nu

exact control strategy will be computed and for the rest of the horizon approximated control
strategy will be used instead. Note that for the second part of the horizon Nu → N the
constraints are not considered.

This difference in control strategy may be unsuitable for some kind of process control
application i.e. where the actuators are saturated all the time.
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Chapter 4. Approximated MPC

On the other hand increasing the parameter Nu cause large improvement in a way that the
result of the approximate strategy will be much closer to the exact one and also computational
demand will be much smaller then for exact dense formulation.

On the example of a system which step responses can be seen in Figure 4.2.1 a properties
of the approximated approach will be shown. The system has nx = 6, nu = 3, ny = 2 and
length of prediction horizon for controller was set as N = 10.
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Figure 4.2.1: Step responses of an example system.

First, it can be seen in Figure 4.2.2 that for an unconstrained case of the multiple-input
multiple-output (MIMO) system same solution as in exact case is obtained. It means that
for systems for which no constraints is considered only small optimization problem (with nu
optimized variables) have to be solved.

Next, it is shown on constrained case for which several degree of approximation were chosen
how much different the control policy is. Example is served in Figure 4.2.3 for different values
of Nu = 1, 2, 5, 10 (exact solution). It can be seen that only a half-length approximation has
very similar results with much less computational effort in contrast with exact solution.

On the next Figure 4.2.4 appropriate problem conditioning is shown. It can be seen that
even for small level of approximation Nu = N − 1 the optimization problem is much less
conditioned. This is caused by splitting the prediction matrix W which consist high power
orders of Ã.

Because a problem arising from the formulation framework has lost sparsity structure any
generic solver can be used with no privilege. For the computational times see e.g. [15] where
times for different-sized QP for another combined Newton/gradient method are presented.
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Figure 4.2.2: Unbounded approximate control. CV denotes controlled variable, MV denotes
manipulated variable. Red color sign reference value in CVs while bounding in MVs. Blue
solid line denotes exact solution (Nu = N) and green dashed one denotes approximate solution
for Nu = 1, 2, 5.
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Figure 4.2.3: Bounded approximate control. CV denotes controlled variable, MV denotes
manipulated variable. Red color sign reference value in CVs while bounding in MVs. Blue
solid line denotes exact solution Nu = N (30 optimized variables) moreover approximate
solutions are black dashed line for Nu = 5 (15 o.v.), cyan dashed line for Nu = 2 (6 o.v.) and
green dashed line for Nu = 1 (3 o.v.).
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Figure 4.2.4: Conditioning of the problem Hessian for different Nu for the example (Fig-
ure 4.2.1).
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Chapter 5

Conclusion

Model-based predictive control is a multivariable control technique which is able to provide
optimal control policy with consideration of physical limitation of controlled process. Optimal
control problem (OCP) for finite horizon is solved each time-period and resulting control
action for current inputs only is applied to the plant.

Since OCP must be solved each time for purpose of fast sampled system effective OCP
(very often and also in our case quadratic programming) formulations and appropriate algo-
rithms have to be developed. Efficient One way how to overcome computational limits are
various approximation-based techniques.

In this work fundamentals of linear MPC were shown. Some basic exact as well as advanced
approximated approaches were described with manifold references on the literature. Also
several state of the art algorithms for solving QP problem arising in MPC were proposed and
their advantages and disadvantages discussed. All of this aim to the main load of this work -
to develop fast approximate algorithm for model predictive control.

In this work two novel approaches for fast MPC has been introduced. The first one,
sparse MPC where soft dynamics of the system is a priory assumed solved by combined
Newton/gradient method. By numerical examples it is shown that this approach is for small
and medium-scale instances of random dynamical systems faster then other state of the art
methods while the control performance is preserved.

The second approach is condensed approximated MPC framework which main object is
to reduce number of optimized variable in a way that no constraints will be assumed for
certain part of prediction horizon. Thus require memory demand which is very important in
embedded systems will be saved. Furthermore if degree of freedom of OCP will be decreased
also computational effort will be decreased. This properties have been also shown here. Also
it is shown that conditioning of the resulting optimization problem arising in the framework
is significantly improved.

Moreover even if some part of the prediction horizon is approximated such that no con-
straints for this part are provided it seems that overall controller performance is not harmed
dramatically. Thus the method introduced in this work may be an alternative approach to
the input blocking technique which is widely use nowadays to decrease degree of freedom of
OCP.

In short, in this work new theoretical results were derived and novel formulations of MPC
stated. Also with this work two novel implementations of online MPC were developed and
tested.
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Future work

In the future work the latter introduced approach will be investigate properly. Appropriate
attention will be focused on pseudoinversion technique and its consequences on overall control
process. Another goal will be to extend the proposed approximation idea for dual dense MPC
where states are the optimized variables (inspiration in [17]). Also problem structure could
be possibly exploited if appropriate reformulation will be developed (inspiration in [26]).
Although the problem conditioning is better in contrary to standard dense formulation some
kind of preconditioning could be used to achieve even faster control. The theoretical results
obtained in control could be possibly extend for moving horizon estimation (MHE). Finally,
application on real-world problem is expected.
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Appendix A

Dual Condensed Formulation

In this section it is briefly described formulation [17] which is complementary to the rest of
basic formulation (2.4), although the formulation was developed recently.

The idea is to use opposite approach then was shown in primal dense formulation (2.4.1)
that is to express inputs in prediction equation as shown below

u = v́xk + V́ x (A.1)

v́ = −V +v =


−B+A

0
0
...

 , V́ = V + =


B+

−B+A B+

−B+A B+

. . .

 . (A.2)

See sparse character of prediction matrices.
By injecting (A.1) to the (2.6) QP problem with interesting features is obtained and it

can be stated as

min
1

2
xTHx+ fTx

s.t. x ≤ x ≤ x
u− v́xk ≤ V +x ≤ u− ẃxk (A.3)

with Hessian matrix H and linear part f as follows

H = Q+ V́
T
RV́ (A.4)

fT = V́
T
Rv́xk, (A.5)

where Hessian has sparse structure

H =


Q+BT+

(R+ATRA)B+ −BT+
ATRB+

−BT+
RAB+ Q+BT+

(R+ATRA)B+ . . .
. . .

. . . −BT+
ATRB+

−BT+
RAB+ Q+BT+

RB+

 .
(A.6)

This formulation is quite interesting since many positive features are reached: Hessian is
sparse with block-tridiagonal structure, condition number is low in contrast to primal dense
formulation. On the other hand significant drawback occur - input constraints are not handled
implicitly. Anyway problem dimension is stated as N · nx.
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Appendix B

CD-ROM

Files on appended CD are categorize into two folders as follows

Latex contains working files of master thesis report.

Matlab contains both developed methods.

Root folder contains also the Master Thesis document which includes Diploma Thesis
Assignment and Prohlášeńı as well.
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