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Abstract

This work deals with simulation of behaviour of microscopic particles sub-
jected to dielectrophoretic forces. The goal is to create a simulation which
will help to design and test a feedback control algorithm.

In this work a hybrid approach to simulation is taken which consists of
two parts: preprocessing and simulation. Preprocessing is done in Comsol
Multiphysics. The data from preprocessing is then used for the simulation
which is done in Matlab. Preprocessing helps to speed up the simulation by
avoiding unnecessary repetition of the same calculations.

The simulation is then compared with numerical and analytical solutions
as well as laborarotary experiments.

Abstrakt

V této práci budeme simulovat chování mikroskopických částic pod vlivem
dielektroforetické síly. Našim cílem je vytvořit simulaci, kterou bude možné
použít při návrhu zpětnovazebního řízení. Při tvorbě simulace aplikujeme
hybridní přístup, který se skládá ze dvou částí: přípravný výpočet (před-
výpočet) a samotná simulace. Přípravný výpočet (předvýpočet) provedeme v
programu Comsol Mutyphisycs, který nám umožní simulaci urychlit omezením
opakování stejných výpočtů. Získaná data pak použijeme při simulaci, kterou
provedeme v Matlabu. Simulaci následně porovnáme s numerickými a ana-
lytickými řešeními a také s laboratorními experimenty.
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1 Introduction

The goal of this work is to create a simulation of the behaviour of particles
subjected to dielectrophoretic force. The simulation can then be used to help
analyse the behaviour of particles under different electrode configurations,
frequencies and voltage patterns. The simulation can also be used to create
an MPC controller, which requires a model for its operation.

In the first part the theory behind dielectrophoresis is presented. In
the second part different simulation approaches are explained. In the third
part the author’s simulations are presented. In the fourth the results of the
simulations are compared with each other and with experimental results.
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2 Dielectrophoresis

Dielectrophoresis is a phenomenon that describes a force experienced by po-
larizable particles when subjected to non-uniform electric field. The particles
are generally in the 1 to 1000 µm range. For bigger particles the effects of
gravity usually prevail and for smaller particles the behaviour of individual
particles becomes upredictable due to effects of Brownian motion. The field
can be either DC or AC. In AC fields the forces depend on the frequency and
different frequencies result in different phenomena like positive and negative
dielectrophoresis or travelling wave dielectrophoresis. In this section the the-
ory behind dielectrophoresis is briefly explained for the benefit of the reader
and for easy referencing from later sections. The theory is taken from [1] and
[2]

2.1 Dielectrophoretic force

Dielectrophoresis occurs when a polarizable particle is exposed to an elec-
tric field. The electric field causes a dipole to form within the material. If
the field is uniform, the forces on the dipole charges are equal and act in
opposite directions, so that the net force is zero. In a non-uniform field how-
ever the force on one charge will be different from the force on the other
charge resulting in a net force on the particle. The force is referred to as the
dielectroforetic force and the phenomena is known as dielectrophoresis.

If we consider a dipole with charges separated by vector d at location r,
then the net force on the particle can be described by the Equation (2.1)

F = Q+E(r + d)−Q−E(r) (2.1)

Since d is small relative to the size of the field non-uniformity, we can
make an approximation

E(r + d) = E(r) + d · ∇E(r) (2.2)
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and rewrite the force as:

F = Qd · ∇E (2.3)

The dipole moment is defined as:

m = Qd (2.4)

Therefore we can rewrite the force equation as:

F = (m · ∇)E (2.5)

For spherical dielectric particles the dipole moment is described by the
following equation:

m(ω) = 4πR3ε0K(ω)E (2.6)

where R is the radius of the sphere, ε0 is the permittivity of vacuum and
K(ω) is the Clausius-Mossotti factor, dependent on the frequency.

If we consider E as a phasor Ẽ, then m(ω) also becomes a phasor and
the time-averaged force can be given by

F =
1

2
Re[(m̃(ω) · ∇)Ẽ∗] (2.7)

By substituting the dipole moment phasor we can rewrite the expression
as

8πR3ε0K(ω)(Ẽ · ∇)Ẽ∗ = 4πR3ε0K(ω)(Ẽ · Ẽ∗)− 4πR3ε0K(ω)∇× (Ẽ× Ẽ∗)

(2.8)
. This uses two identities:

∇(A ·B) = (B · ∇)A + (A · ∇)B + B× (∇×A) + A× (∇×B) (2.9)
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and

∇× (A×B) = (B · ∇)A− (A · ∇)B + (∇ ·B)A−(∇ ·A)B (2.10)

and the fact that the electric field is irrotational, i.e. ∇× Ẽ = 0 and Gauss’s
law with zero free charge density, i.e. ∇ · Ẽ = 0. The time-averaged force
then becomes:

FDEP = πR3ε0εmRe[K(ω)]∇(|Re[Ẽ]|2 + |Im[Ẽ]|2) (2.11)

FtwDEP = −2πR3ε0εmIm[K(ω)](∇×Re[Ẽ]× Im[Ẽ]) (2.12)

Equation (2.11) gives time-averaged force for conventional dielectrophore-
sis. Equation (2.12) gives time-averaged force for travelling wave dielec-
trophoresis.

2.2 Clausius-Mossotti factor

The dielectrophoretic force is frequency-dependent. The frequency depen-
dance is given by the Clausius-Mossotti factor which is defined in the follow-
ing equation:

K(ω) =
ε∗p − ε∗m
ε∗p + 2ε∗m

(2.13)

where ε∗m and ε∗p are the complex permittivity of the medium and particle
and ε∗ = ε− j(σ/ω), where ε is the permittivity, σ is the conductivity and ω
is the angular frequency. The real part of the Clausius-Mossotti factor deter-
mines the dielecrophoretic force the imaginary part determines the travelling
wave dielctrophoretic force. Clausius-Mossotti factor is shown in Figure 2.1
for εm = 78, σm = 0.001, εp = 2.55 and σp = 0.01(water and polystyrene).
It can be seen that for frequencies below approximately 1.76 MHz the real
part is positive and for the frequencies above that the real part is negative.
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The frequency where Re[K(ω)] = 0 is called the cross-over frequency. At
that frequency dielectrophoretic force does not act on the particles and the
travelling wave dielctrophoresis becomes most prominent. For frequencies
below the cross-over frequency the force experienced by the particles is to-
wards the electrodes. It is called positive dielectrophoresis. For frequencies
above the cross-over frequency the force is in the opposite direction, away
from the electrode, which is referred to as negative dielectrophoresis.
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Figure 2.1: Clausius-Mossotti factor for polystyrene in deionised water.

2.3 Actuators

There are many possible electrode actuator combinations used for creating
electric fields. In this work we will be considering a simple parallel electrode
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array while taking into consideration potential future extension for more
complex configurations.

2.4 Other forces

Other forces which are not dielectrophoretic but are nevertheless important
in simulating the motion of a particle subjected to dielectrophoresis are:
viscous drag, buoyancy and brownian motion.

2.4.1 Viscous drag

Viscous drag is a friction force that retards the motion of a particle moving
through a fluid. The viscous drag force is very significant for colloidal par-
ticles, so that they reach their terminal velocity in a few nanoseconds. For
a spherical particle of radius r the terminal velocity can be determined by
Stoke’s law and is given by the expression:

F = −6πηrV (2.14)

where η is the viscosity of the medium.

2.4.2 Buoyancy

The particles also experience the force of gravity. The force is usually very
small, but can be observed over time. The force is given by the equation:

Fsediment = ν(ρm − ρp)g (2.15)

where ν is the volume of the particle, ρm and ρp are the densities of the
medium and the particle. If the particle is denser than the medium it will
sink(sediment) over time if it is less dense than the medium it will float.
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2.4.3 Brownian motion

All the particles are subject to Brownian motion. The effect is more pro-
nounced for smaller particles. For bigger particles random collision tend to
cancel each other out more evenly. The mean displacement due to Brownian
motion for spherical particles is given by

|4d| =

√
kBTt

3πηr
(2.16)

where kB is the Boltzmann constant, T is the temparture in Kelvin, r is
the radius of the particle and η is the viscosity of the medium.

Brownian motion is important because although the time-averaged force
is zero the mean displacement is non-zero which means it has to be overcome
by the dielectrophoretic force in order to successfully control the particle.
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3 Simulation approaches

There are different simulation approaches for dielectrophoresis. In this part
we are going to look at some of them and discuss their advantages and disad-
vantages. We will be looking at analytical, numerical and hybrid approaches.

3.1 Analytical

The analytical approach to simulation attempts to find the dielectrophoretic
forces by deriving the equations that give the dielectrophoretic force for spe-
cific electrode configurations. Analytical simulations give fast and precise
results. However, analytical solutions are hard to find even for the simple
electrode arrays. They become nearly impossible for more complex electrode
arrays which makes them impractical for real-life applications.

In this paper we implement a simulation from [3] for two-phase electrode
array with approximate boundary condition, as well as two-phase electrode
array with exact boundary condition. Approximate boundary condition as-
sumes that the the potential at y=0 between the electrodes changes linearly.
The exact boundary condition assumes that the normal derivative of the po-
tential is zero at the boundary between the electrodes. The simulations are
done by simply solving an equation at specified coordinates and electrode
ratio parameters. d1 being the width of the electrode, d2 the gap between
the electrodes, V the applied voltage and x and y the coordinates. G(ω) is
the product of Clausius-Mossotti factor and the volume of the particle.

The equation for the approximate boundary condition two-phase elec-
trode is:

FDEP =
16V 2

πd(d2)2
Re[G(ω)] ·Re

[
izh(z̄; d1

4d
)h′(z; d1

4d
)

−zh(z̄; d1
4d

)h′(z; d1
4d

)

]
(3.1)

where d = (d1 + d2)/2, z = exp(π(ixy
2d

), z̄ = exp(−π(ix+y)
2d

), h(z; q) =
1
4
ln(1+2zcos(qπ)+z2

1−2zcos(qπ)+z2 ), h′(z; q) = (1−z2)cos(qπ)
1−2z2cos(2qπ)+z4 .
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The equation for the exact boundary condition two-phase electrode is:

FDEP =
π3V 2

2K2(cos(πq/2))d3
Re[G(ω)] ·Re

[
izk(z̄; q)k′(z; q)

−zk(z̄; q)k′(z; q)

]
(3.2)

where d = (d1 + d2)/2, q = d1/(2d), z = exp(π(ix−y)
d

), z̄ = exp(−π(ix+y)
d

),
k(z; q) = ( z

1−2zcos(qπ)+z2 )1/2, k′(z; q) = 1−z2
2k(z;q)(1−2zcos(qπ)+z2)2 and K is the com-

plete elliptic function of the first kind.

3.2 Numerical

Numerical simulations are based on finite element method software. The
simulation for parallel electrode array can be done in 2d since the length
of the electrodes is significantly greater than their width. They can also
assumed to be infinitely thin, since their width is significantly greater than
their thickness. The resulting solution will be incorrect close to the electrode
edges, but that is not so important since the DEP force approximation is
invalid in that region anyway due to rapid variations of the electric field[2].

It is important to define proper boundary conditions for the FEM soft-
ware, otherwise the results will be highly distorted. There are two boundary
conditions that can be used: the Neumann boundary condition for the elec-
tric potential in the electrolyte (∂φ̃/∂n = 0, where n is the normal to the
boundary and φ̃ is the electric potential phasor). The other condition is the
Dirichlet condition (φ̃ = 0). The lower boundary must be assigned the Neu-
mann boundary condition, due to current conservation argument. The upper
boundary condition can be either Neumann or Dirichlet. It should be placed
high above the area of interest to make sure it does not influence the results.

The side conditions can be determined through a symmetry argument
for symmetrical electrode arrangements and specific potentials. Consider an
electrode array shown in Figure 3.1. The electrodes have 90 ° phase shift
between them. We have chosen to simulate the area between 0 ° and 90 °
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electrodes. The boundaries cut the electrodes in half, we can use the Dirich-
let boundary condition for the boundary above the electrodes whose ele-
cric potential is 0, because they are located midway between two electrodes
with equal electric potential of opposite signs. Boundary going through the
electrodes with non-zero electric potential should be assigned the Neumann
condition as it is the symmetry axis between two 0 electric potentials.

Numerical simulations theory is taken from [2]

3.3 Hybrid

Hybrid simulation uses the power of numerical simulation for preprocessing
data for different array configurations and then using the preprocessed data
to quickly find the force when it’s required. In this work we will use the
approach from [4].

This approach uses bidimensional electrode meshing principle for prepro-
cessing. The electrodes are all meshed along directions x and y. Figure 3.2
shows an example of mesh for a 4 electrode parallel array. A voltage is ap-
plied to one electrode while the rest are kept at zero. The surface charge on
the electrodes is then calculated and integrated on each mesh piece. Each
mesh piece is then represented by an elementary charge located at its cen-
ter. The process is done for n electrodes for an (n+1)-electrode matrix. One
electrode is always kept at zero and is used as the reference one. The electric
field is the sum of contributions of elementary charges Qr,s at point P (r, s).
The electric field is then:

E(x, y, z) =
1

2πε0εm

ex∑
r=1

ey∑
s=1

Qr,s ·
−−−−−−−−−−−→
P (r, s)M(x, y, z)

||
−−−−−−−−−−−→
P (r, s)M(x, y, z)||3

ds (3.3)

Qr,s can be calculated using the superposition principle:

Qr,s =
n∑

m=1

Cr,s,m · Um (3.4)
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Figure 3.1: 2d boundary conditions. φ̃ represents the electric potential pha-
sor. φR = Re[φ̃] and φI = Im[φ̃]. Redrawn from [3].
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U = [U1 = ϑ1 − ϑ0, ..., Un = ϑn − ϑ0] (3.5)

The preprocessed data consists of the capacitance matrix Cr,s,m of size
(number of mesh elements in x direction, number of mesh elements in y
direction, number of electrodes − 1). Once E is known, the force can be
calculated using Equations (2.11) and (2.12).

Figure 3.2: Hybrid electrode meshing. Parallel electrode array.

3.4 Dynamic trajectory modeling

In order to simulate the trajectory of a particle subjected to dielectrophoretic
force a dynamic type of simulation is required. Approach from [4] is explained
below.

Using the Newton’s second law, the motion of the particle is defined by
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the following equation:

FDEP + Fsediment + Fdrag = ma (3.6)

Where FDEP is the dielectrophoretic force described by Equations (2.11)
and (2.12). Fsediment is the buyoancy force defined in Equation (2.15), Fdrag

is the drag force defined in Equation (2.14), m is the mass of the particle and
a is the acceleration of the particle. Because the m constant is so small, the
ma term can be neglected. The equation can then be rewritten as:

V =
FDEP + Fsediment

6πηr
(3.7)

Since the terminal velocity is reached in such a short time, the particle
can be considered to be always moving at its terminal velocity, which means
that Equation (3.7) expresses the velocity of the particle given the forces on
it.

3.5 Surface charge density

For the hybrid simulation it is important to be able to calculate the surface
charge density on the electrodes. We shall examine two approaches.

3.5.1 Finite element analysis

It is possible to use FEM software like Comsol multiphysics and then extract
the surface charge density data from it.

3.5.2 The method of moments

Another way to calculate the surface charge density is by using the method
of moments. The method of moments divides the surface into a series of
singular charges whose contributions to the electric field are determined by
the Coulomb’s law. Given known electrical potential and distance between
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the charges, it is possible to determine the value of each charge and hence
approximate the surface charge density.

If we approximate the system of electrodes as n electrode subareas each
one with known potential V then we can describe the potential on each
electrode in terms of the potential on itself and on all the other charges:

V1 = p11q1 + p12q2 + ...+ p1nqn

V2 = p21q1 + p22q2 + ...+ p2nqn

V3 = p31q1 + p32q2 + ...+ p3nqn (3.8)

.

Vn = pn1q1 + pn2q2 + ...+ pnnqn

pij is the potential on subarea i from a unit charge on potential j in the
absence of any other charges. Vi is the potential on subarea i, qi is the charge
on subarea i.

pij =
1

4πε0εm

ˆ
σj|dAj|
|rij|

(3.9)

Where εm is the relative permittivity of the medium, σj is the surface
charge density on subarea j. Since j holds unit charge σj = 1

Aj
. rij is the

distance between the charges. The above integration is given by, provided
the rectangle j does not cross the x or y axes

4πε0εmAjpij = |I(x2, y2)− I(x2, y1)− I(x1, y2) + I(x1, y1)| (3.10)

where

I = x · sinh−1( y
|x|

) + y · sinh−1( x
|y|

) (3.11)

14



If the rectangle crosses the x or y axes, it should be subdivided into two(or
four) rectangles that do not cross the axes. Expression 3.8 can be written in
vector form: 

V1

V2

.

Vn

 =


p11 p12 . p1n

p21 p22 . p2n

. . . .

pn1 pn2 . pnn




q1

q2

.

qn

 (3.12)

Or:

V = PQ (3.13)

The charge Q can therefore be found as:

Q = P−1V (3.14)

The method of moments theory is taken from [1].
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4 Simulations

In this section the author’s simulations are presented. During the making
of these simulations the author encountered many problems and dead ends.
Some of these will be presented here in order to show the amount of work
done as well as warn anyone who reads this of the complications they may
encounter shall they attempt to create a similar simulation.

Simulations show ∇E2 for the dielectrophoretic force and ∇ × Re[Ẽ] ×
Im[Ẽ] for the travelling wave dielectrophoretic force, neglecting the constants
and the Clausisus-Mossotti factor. Simulations work with length ratios for
the electrodes, not their real lengths. Force can be calculated from the simula-
tion data by taking the particle size, Clausisus-Mossotti factor and electrode
lengths into account.

Simulations are done for a parallel electrode configuration, as shown in
Figure 4.1.

Figure 4.1: Parallel electrode array.
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4.1 Analytical simulations

Analytical simulations are probably the most straightforward ones in terms
of implementation. Simulations give the force at specific coordinates, given
the electrode to gap ratio and the voltage. Figure 4.2 shows an example of an
analytic solution. Analytic solution with approximate boundary condition is
calculated using Equation (3.1). The simulation is calculated by function
anF2 (located in file anF2.m). Analytic solution with exact boundary con-
dition is calculated using Equation (3.2) and is calculated by function anF

(found in file anF.m).
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−6

−4

−2

0

2

4

6

8

10

12

14

x

F
x
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Approximate boundary condition

Figure 4.2: x-component of the force for analytic solution for d1/d2 = 4
electrode ratio, V = 1[V], y = 0.1. Units of length are dimeonsionless.
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4.2 Numerical simulations

Simulations were done in 2D and in 3D using Comsol Multyphysics software.
In creating FEM simulations it is important to correctly define the domain
as well as boundary conditions.

4.2.1 2D

Simulations in 2D were based on [2]. The first simulation is of a paral-
lel electrode array with 180 degree phase shift between electrodes, meaning
that when there is V potential on an electrode, there is −V potential on its
neighbours. The simulation is done for a single electrode making use of the
symmetry between the electrodes. The boundary conditions on the sides are
Dirichlet, since the midpoint between V and −V potentials is 0. Simulation
can be found in file DEPnum(1el).mph. Figure 4.3 shows results of the simu-
lation. Arrows indicate the direction of the force and the background colour
is the logarithm of the force intensity, with maximum and minimum values
adjusted for visibility purposes.

Figure 4.3: Numerical simulation: 180 ° phase shift. Side view. Electrode is
in the middle.
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Next numerical simulation is of a parallel electrode array with 90 degree
phase shift between neighbouring electrodes. In this set-up travelling wave
dielectrophoresis starts to show. Figures 4.4 and 4.5 show the results of the
simulation. The simulation is done as described in section 3.2. Both Dirichlet
and Neumann conditions are used. Simulation is in the file DEPnum.mph.

Figure 4.4: 2D Numerical simulation: 90 ° phase shift dielectrophoresis. Side
view. Electrodes are on the sides, with a gap in the middle.

4.2.2 3D

Numerical simulations can also be used to create 3D models. Figure 4.6
shows a simulation of a 4 electrode parallel array. It shows the logarithmus
of the dielectrophoretic force intensity in the zx-plane cutting through the
middle of the electrodes. Care has to be taken with the boundary conditions.
One way to deal with them is by placing them far enough from the area of
interest so as to make their influence negligible. Simulation from Figure 4.6
is located in the file DEPnum3d.mph.

One disadvantage of 3D numerical simulations in Comsol is the speed. It
takes a few minutes to calculate a simple 4 electrode array model as shown in

19



Figure 4.5: 2D Numerical simulation: 90 ° phase shift travelling wave di-
electrophoresis. Side view. Electrodes are on the sides, with a gap in the
middle.

Figure 4.6: 3D Numerical simulation
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Figure 4.6. This makes it infeasible to use for simulations of more complicated
arrays, especially in real time.

4.3 Hybrid simulations

Hybrid simulations are the main subject of study in this report. They al-
low for much faster calculations than the numerical simulations, but take
considerably more effort to implement. A lot of the problems arise at the
Comsol-Matlab interface. In this section simulations will be presented along-
side with unsuccessful attempts.

Hybrid simulation consists of two parts: preprocessing and force calcula-
tion. In the preprocessing stage the capacitance matrix for a specific electrode
array is calculated which is then used to find the force given the potentials
on individual electrodes. The capacitance matrix only needs to be calculated
once for one electrode arrangement, it can then be stored and used when
required.

In order to find the capacitance matrix, we have to be able to find the
surface charge density. The process consists of applying 1V potential to one
electrode and 0V to all the other ones, calculating the surface charge denstiy
across all the electrodes and then approximating it as a matrix of single point
charges. Approximation is done by dividing the electrode plane into a grid
of smaller subareas. The surface charge density is then integrated over each
subarea and the result assigned to a point charge which is in the middle of
each subarea. For an n electrode array this process has to be repeated for
(n− 1) electrodes.

4.3.1 Preprocessing - Comsol export

The first attempt at preprocessing was through the use of Comsol ’export
data’ feature. The surface charge density was calculated directly in Comsol,
then exported into a file using the ’export data’ feautre. The data was then
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loaded in Matlab and interpolated using the TriScatteredInterp function.
This did not work, as the data got damaged somewhere along the way and
the output was meaningless.

4.3.2 Preprocessing - Live-Link, mphinterp

Second attempt was made by using Live-Link Matlab interface in Comsol.
The data was requested using mphinterp function from Live-Link interface.
It was then interpolated using TriScatteredInterp function. It was then
integrated over subareas and the capacitance matrix was found. The ap-
proach worked well, however there were some numerical errors which arose
during interpolation and integration.

4.3.3 Preprocessing - Live-Link, integration in Comsol

Third attempt used Live-Link, but requested Comsol for the integrated value
for each subarea directly. This approach proved to give results with least
numerical error, when compared against the data in Comsol, however it took
very long time to process.

4.3.4 Preprocessing - splitting electrodes into subareas in Comsol

Fourth attempt involved splitting electrodes into subareas directly at the
time of the model creation in Comsol. This did not work, because Comsol
returned meaningless data when queried for the charges on the electrodes.

4.3.5 Preprocessing - Method of Moments

As an alternative, a preprocessing technique was thought of which would
leave out Comsol altogether and calculate the surface charge density directly
in Matlab. This was done using the Method of Moments technique, as de-
scribed in section 3.5.2. The P matrix was calculated using two different ap-
proaches from two different sources[5, 1] which both gave near-identical ma-
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trices. The result, however, varied from the Comsol result by a magnitude of
2 or more for different electrode configurations, while agreeing on the general
shape of the charge distribution. An example of calculated charge density is
shown in Figure 4.7. It shows a 4 parallell electrode array, with 1V potential
on the first electrode and 0V potential on the other electrodes. The method
of moments calculations are done in surface_charge.m. The electrode con-
figuration can be defined in the form of an image file(e.g. el4p2.png).
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Figure 4.7: Surface Charge: MoM

4.3.6 Calculating the force

Equation (2.11) describes the dielectrophoretic force. We can see that in
order to calculate it we need to know the constants: permittivitty of the
medium, size of the particle and the Clausius-Mossotti factor for the given
frequency and we need to know the square of the electric field. Electric
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field can be calculated using Equation (3.3). Calculation of the force at an
arbitrary point given the capacitance matrix and potentials on the electrodes
is implemented in the function forceAt(in file forceAt.m). Calculation of
force distribution in space is done in file simulation.m.

The force calculated in space over the electrodes is shown in Figure 4.8.
The hybrid simulation takes considerably less time to calculate the force,
once preprocessing is finished.
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Figure 4.8: Hybrid 90 ° phase shift. View of the xz cut-plane. Arrows show
the direction of the force, colour the intensity.
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5 Results comparison

In this section the results of the simulations are compared with each other and
then discussed. First we compare numerical results with analytical. Then
hybrid vs. analytical. Then hybrid with the experimental resulsts.

Unfortunately, due to a Comsol error it was impossible to export data for
analysis from a 3D numerical simulation.

5.1 Numerical vs. analytical

In this section we compare numerical results against analytical. The nu-
merical results are exported from Comsol and then interpolated in Matlab.
The analytical results are calculated directly in Matlab. The results are
then plotted on a graph for visual comparison. Figures 5.1 and 5.2 show
the comparison of the x and y components of the dielectrophoretic force.
It can be seen that the numerical solution and the analytical solution with
exact boundary conditions are very similar while the analytical solution with
approximate boundary conditions differs for x > 0.7.

5.2 Hybrid vs. analytical

Here we compare hybrid results with analytical. The hybrid simulation is
used for an array of 10 electrodes, whose capacitance matrix was calculated
using method of moments. The results are compared for one electrode in
the middle of the array. The simulation is done from the middle of the
gap to the left of the electrode to the middle of the gap to the right of the
electrode. It is then recalculated to scale of the analytic solution and plotted
on a graph. 0 on the graph represent the middle of the electrode in the
calculation. Figures 5.4 and 5.6 show comparison of the simulations of the
forces in x and y direction(z direction for the hybrid, as it is in 3D).

It can be seen that although the simulations differ in magnitude, the
trends in general shape are similar for both simulations. In case of the force
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Figure 5.1: Comparison of numerical and analytical simulations. Force in x
direction for electrode ratio d1/d2 = 4, y = 0.1.
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Figure 5.2: Comparison of numerical and analytical simulations. Force in y
direction for electrode ratio d1/d2 = 4, y = 0.1
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Figure 5.3: Force in x direction, hybrid simulation on the left, analytic on
the right.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1
x 10

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.0776

−0.0774

−0.0772

−0.077

−0.0768

−0.0766

−0.0764

Figure 5.4: Force in x direction, hybrid simulation on the left, analytic on
the right.
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in x direction the force is always directed towards the edges of the electrodes.
For the force in y direction the force varies in a very similar way for both
simulations, increasing over the edges of the electrodes and decreasing over
the gaps.

5.3 Hybrid vs. experimental

Experimental results were obtained for a parallel array of electrodes of width
100µm and width to gap ratio 1:1. The particles were polystyrene, 50µm

in diameter. The applied voltage was 7V and the frequency was 400 kHz.
The medium was deionised water. Only one electrode was activated at a
time, while the rest remained at zero potential. A photo of the experiment
is shown in Figure 5.5.

Figure 5.5: Photo of the experiment.

For the given frequency and materials the dielectrophoresis is negative.
This is supported by the experiment in which the particle always moves
away from the active electrode. Simulation predicts the same behaviour. In
Figure 5.6 it can be seen that the force is in the direction away from the
active electrode. In negative dielectrophoresis particles go in the direction
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of decreasing gradient. Particle stops after a certain distance, because the
absolute force diminishes significantly with distance.

Only some particles moved during the experiment, while the majority
remained stationary. This can be attributed to weak Van der Waals forces
that keep the particles attached to the electrodes or to the gaps between
them.
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Figure 5.6: Simulation, negative dielectrophoresis. 6th electrode is active,
the rest are at zero potential.
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6 Conclusion

In this work we have looked at several ways of simulating dielectrophoretic
forces. Analytical, numerical and hybrid simulations were implemented and
compared against each other.

Hybrid simulation exhibited similar trends in the shape of the force di-
rection over the electrode array, however there were significant differences in
magnitude when compared with numerical and analytical simulations. This
can be attributed to an error that the author was unable to identify. The
experimental results agreed with the simulation predictions.

The simulation was implemented in a way that will allow it to work with
more complex electrode arrays. It can potentially be used for designing a
regulator.

In creating the simulation various books and scientific articles were con-
sulted. The full list is provided below.
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Appendix - list of files

anF.m calculates the dielectrophoretic force using the analytical solution
with exact boundary condition

anF2.m calculates the dielectrophoretic force using the analytical solution
with approximate boundary condition

CMf.m calculates the Clausius-Mossotti factor

cmp.m plots graphs for different solutions

findC.m a function that interpolates and integrates data from Comsol, used
in preprocess.m

forceAt.m function that returns the dielectrophoretic force at specific point
in space given C matrix and the electrode potentials

genfield.m function used in surface_charge.m

im2el.m function that converts image to electrode data

Imm.m function that is used in surface_charge.m

PM.m function used in simulation.m and forceAt.m

preprocess.m calculates the C matrix using Comsol, works with Live-Link
Comsol

Qf.m function used in simulation.m and forceAt.m

simulation.m calculates the force for a grid in space. plots the results

surface_charge.m calculates the C matrix using Method of Moments

DEPnum(1el).mph Comsol simulation

DEPnum(4ratio).mph Comsol simulation
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DEPnum(tw).mph Comsol simulation

DEPnum3d.mph Comsol simulation

DEPnum4.mph Comsol simulation

C(4el)100(c2).mat C matrix for 4 electrode parallel array, calculated in
Comsol, using 2nd method

C(el10)125(m).mat C matrix for 10 electrode parallel array, calculated in
Matlab, using MoM method

C(el15)200(m).mat C matrix for 15 electrode parallel array, calculated in
Matlab, using MoM method

*.png images of electrodes, for use with surface_charge.m
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