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0Abstract
This bachelor’s thesis deals with planning trajectories for the distributed magnetic ma-

nipulation platform MagMan with the possibility of generalization to other distributed

manipulation platforms. Initially, moving MagMan to a new position measuring system

is described, and the new system is benchmarked. Later, two algorithms for planning

trajectories that are collision-free and obstacle-free are proposed. The algorithms are

based on nonlinear mathematical programs initialized by a path generated by RRT* algo-

rithm. Furthermore, an LQR trajectory tracking controller and a state estimation system

are designed. In the end, the algorithms are experimentally evaluated on the actual platform.

Keywords: distributed manipulation, MagMan, mathematical programming, RRT*, trajec-

tory planning
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0Abstrakt
Tato bakalářská práce se zabývá plánováním trajektorií pro platformu distribuované magne-

tické manipulaceMagMan s případnoumožností rozšíření i na další platformy distribuované

manipulace. Nejprve je popsán přesun platformy MagMan na nový systém měření pozic

objektů. Přínos tohoto nového systému je také experimentálně vyhodnocen. Následně

jsou navrženy dva algoritmy pro plánování trajektorií bez kolizí s překážkami i bez kolizí

mezi jednotlivými objekty. Tyto algoritmy jsou založeny na nelineárních matematických

programech inicializovaných cestou z RRT* algoritmu. Pro sledování trajektorií je navržen

LQR regulátor spolu se systémem pro odhadování stavu. Na závěr jsou navržené plánovací

algoritmy experimentálně vyhodnoceny pomocí experimentů na skutečné platformě.

Klíčová slova: distribuovaná manipulace, MagMan, matematické programování, RRT*,

plánování trajektorií
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1 Introduction

Planning trajectories for distributed manipulation is a challenging task. Distributed ma-

nipulation uses many actuators, shaping a force field to manipulate an object. Therefore

when planning, both the motion of the individual objects and the underlying force field

must be considered. I attempt to tackle this task for one specific instance of distributed

manipulation. That is MagMan (see Section 1.2), the platform for distributed manipulation

using a magnetic field.

Motivation & Goals

The distributed magnetic manipulation platform currently uses simple predefined trajec-

tories without considering actuator constraints and trajectory feasibility. Moreover, no

collision and obstacle avoidance is considered. The trajectories are tracked purely using

a feedback controller. A system for planning trajectories based on desired positions and

velocities would allow the distributed magnetic manipulation to achieve more complex

tasks. For example, distributed manipulation can serve as an intelligent conveyor belt,

where getting the manipulated objects to some desired positions without colliding is es-

sential. Moreover, for entertainment purposes, the distributed manipulation could play

the xylophone. In that case, the velocity of the manipulated objects is also important, as it

determines the strength of the tone.

The thesis aims to develop such a planning system. The system could also be generalized

to other distributed manipulation platforms and thus lay the groundwork for further related

research.

Structure

In Chapter 2, I briefly go over moving the MagMan platform to a new position measuring

system I developed for my semestral project. In chapter Chapter 3, I present the general

trajectory planning problem as well as specifics of planning for the distributed magnetic

manipulation. I then develop the planning problem into a mathematical program and

solve it in Chapter 4. I present the design of a feedback controller for tracking purposes in

Chapter 5. Lastly, I describe and evaluate experiments on the real platform in Chapter 6.

1.1 Distributed manipulation

In distributed manipulation, the actuators are not part of the manipulated object but are

actually distributed in space. The actuators are typically arranged in a grid formation. Each

1



Chapter 1 Introduction

actuator only exerts a force on manipulated objects in its vicinity and can be controlled

independently. Together the actuators create a force field. The goal of the control system is

to shape the field in a way which actuates the manipulated object.

The distributed manipulation and the design of the underlying control systems have been

a research interest of the Advanced Algorithms for Control and Communications group

(AA4CC) at the Department of Control Engineering, Faculty of Electrical Engineering,

Czech Technical University in Prague for over ten years. The members of AA4CC have

developed multiple platforms for distributed manipulation. These include the following

platforms: DEPMan, a platform for micromanipulation using a non-uniform electric field or

so-called dielectrophoresis, described in [ZMH18]; AcouMan, a platform for manipulation

using acoustophoresis, that is, the shaping of the surrounding acoustic pressure field (see

[Mat+19]) and MagMan, a platform for manipulation using a magnetic field, described in

Section 1.2.

1.2 The MagMan platform

MagMan is an experimental platform for distributed magnetic manipulation developed by

AA4CC. Its main use is for experimental evaluation of distributed control algorithms.

(a) Single module (b) Complete platform

Figure 1.1: The MagMan platform (taken from [Zem18], pp. 82, 83)

1.2.1 Decription

The platform is composed of modules, each module containing four coils in a square array

and electronics that allow for command-based control of a current flowing through the coils.

One such module is shown in Figure 1.1 (a). The modules communicate with each other

and the outside world using IAE 485 bus. The current platform comprises 16 such modules,

which translates to 8 × 8 coils as is shown in Figure 1.1 (b). However, theoretically, an

2



The MagMan platform Section 1.2

arbitrary grid-based configuration could be accomplished. The platform also has a built-in

IAE 485 to USB converter. Thus the platform can be controlled conveniently over USB.

MagMan currently manipulates steel balls trough feedback control. Positions of the

individual balls are obtained from camera captured image using an image processing

algorithm. Given the desired and current position of the balls, currents through individual

coils are calculated by the control algorithm. These desired currents are then passed to

the platform over USB. The platform then sets desired currents through the individual

coils, which generate a magnetic field that exerts an attractive force on the balls, effectively

manipulating them.

Both image processing and control calculations were originally done on Raspberry Pi.

During my semestral project, I developed a new ball position measuring system on NVIDIA

Jetson AGX Xavier with Basler acA1300-200uc high frame rate camera. Benchmarks of the

new system as the description of migrating the control algorithms to the NVIDIA platform

are given later in Chapter 2. Diagram of the current platform setup is given in the Figure 1.2.

USB

NVIDIA® Jetson
AGX Xavier™ 

USB

Currents

Image

Basler acA1300-200uc

Figure 1.2: Current MagMan setup

1.2.2 Mathematical model

For clarity, I will now give a short derivation of the underlying mathematical model in use

of the MagMan platform. Similar derivation can be found in the introduction of another

bachelor’s thesis [Hod20], pp. 4-5. For complete and rigorous derivation, please refer to

[Zem18], pp. 91-111.

3



Chapter 1 Introduction

Magnetic field of a single coil

The magnetic field generated by a single coil is modelled as a magnetic monopole. The

field can be separated as

Bcoil(𝑖, r) = 𝑓 (𝑖)BMP(r), (1.1)

where 𝑓 (𝑖) describes how the field scales with current 𝑖 flowing through the coil and BMP(r)
how the field changes with position r. The current dependent part of Equation (1.1) was

found by fitting measured data to be

𝑓 (𝑖) = 0.998 arctan (2.51|𝑖 | + 5.38𝑖2) sgn (𝑖), |𝑖 | ≤ 440mA. (1.2)

The magnetic field of the monopole is then given as

BMP(r) = −𝑞𝑚
4𝜋

∇1

r
= −𝑞𝑚

4𝜋±
𝑎

r
|r|3 , (1.3)

where 𝑞𝑚 is the strenght of the monopole at the origin and it was estimated that 𝑎 =

3.565 × 10
−5
.

Force generated by a single coil

The force exerted on a steel ball by a magnetic field generated from a single coil can be

described as

F(𝑖, 𝑥,𝑦, 𝑧) = 𝑘∇B2

coil
= 𝑘𝑎2 𝑓 2(𝑖)∇ 1

(𝑥2 + 𝑦2 + 𝑧2)2 , (1.4)

where 𝑘 is a constant dependent on the radius of the ball, its permeability and permeability

of the surrounding. Assuming planar motion with fixed 𝑧 = 𝑑 , the x-component of the

force then takes the form of

𝐹𝑥 (𝑖, 𝑥,𝑦) = −4𝑘𝑎2²
𝑐

𝑓 (𝑖)2 𝑥

(𝑥2 + 𝑦2 + 𝑑2)3 , (1.5)

identically can be derived the y-component. For ball of radius 10mm it was found that

𝑐 = −2.041 × 10
−10

and 𝑑 = 13.3mm.

Force generated by multiple coils

More generally, following from expression in Equation (1.5), a new function can be intro-

duced

𝐺𝑛,𝑥 (𝑥,𝑦) =
𝑐𝑥

[(𝑥 − 𝑥𝑛)2 + (𝑦 − 𝑦𝑛)2 + 𝑑2]3
, (1.6)

4



The MagMan platform Section 1.2

where (𝑥𝑛, 𝑦𝑛) are coordinates of the 𝑛-th coil. The x-component of the force exerted on

the ball by the superposed magnetic field of multiple coils is then modelled as

𝐹𝑥 (𝑥,𝑦, 𝑖1, . . . , 𝑖𝑁 ) =
𝑁∑︁
𝑛=1

𝑓 2(𝑖𝑛)𝐺𝑛,𝑥 (𝑥,𝑦), (1.7)

where 𝑖𝑛 is the current flowing through the 𝑛-th coil. Now expressing both components in

vector form yields following

F(r, 𝑖1, . . . , 𝑖𝑁 ) =
[
𝐺1,𝑥 (r) 𝐺2,𝑥 (r) · · · 𝐺𝑁,𝑥 (r)
𝐺1,𝑦 (r) 𝐺2,𝑦 (r) · · · 𝐺𝑁,𝑦 (r)

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

G(r)


𝑓 2(𝑖1)
𝑓 2(𝑖2)

...

𝑓 2(𝑖𝑁 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
v

. (1.8)

It must be stated that this formulation assumes that the interaction between the coils is

minimal. That is, their magnetic fields do not significantly overlap. If the interaction were

not negligible, then the sum in Equation (1.7) would also need to contain off-diagonal

members, meaning Equation (1.8) would a quadratic form in 𝑓 (𝑖𝑛).

Ball dynamics

The following set of ODEs describes the planar dynamics of the steel ball

¥𝑥 =
𝐹𝑥

𝑚eff

, ¥𝑦 =
𝐹𝑦

𝑚eff

, (1.9)

where

𝑚eff =
7

5

𝑚, (1.10)

is the effective mass putting together the actual mass of the ball𝑚 and its moment of inertia.

1.2.3 Control

I will now describe how the control is handled on the MagMan platform, emphasizing

feedback linearization, which allows for control based on the desired force.

Feedback linearization

As the ball dynamics is linear, the only modelled nonlinearity remains in the force-current

model. Letting

v =
[
𝑓 2(𝑖1) 𝑓 2(𝑖2) · · · 𝑓 2(𝑖𝑁 )

]
T

, (1.11)

5



Chapter 1 Introduction

can the current flowing through the 𝑘-th coil be obtained as

𝑖𝑘 = 𝑓 −1
(√
𝑣𝑘
)
, (1.12)

where 𝑓 −1 is to be interpreted as the inverse of the function 𝑓 . Given a desired force Fdes

acting on the ball, finding a suitable v reduces to the problem solving following system of

equations

Fdes = G(r)v, (1.13)

which also must satisfy

0 ≤ v ≤ 1. (1.14)

Constraint on values of v arises from the current limits introduced in Equation (1.2). The

presented problem can be solved in terms of constrained least-squares, which in turn leads

to the ensuing quadratic program (QP)

min

v

1

2

∥Fdes − G(r)v∥

s.t. 0 ≤ v ≤ 1.
(1.15)

In the case of wanting to exert different forces on different balls, one natural extension of the

problem from Equation (1.15) is to try to minimize the sum of squared errors of desired and

real forces. Formally, given𝑀 balls balls with their respective position vectors r1, r2, . . . , r𝑀
and desired forces Fdes

1
, Fdes

2
, . . . , Fdes

𝑀
one possible quadratic program formulation is

min

v

1

2

𝑀∑︁
𝑘=1

∥Fdes
𝑘

− G(r𝑘 )v∥2

s.t. 0 ≤ v ≤ 1.

(1.16)

Notice that for𝑀 = 1 this problem reduces to the formulation from Equation (1.15). There

is one problem with such a formulation. The optimal v minimizes a purely algebraic

criterion. This may, in turn, lead to the excitation of a coil that negligibly contributes to the

resulting force. Such behaviour is undesirable as it leads to unnecessary heating up of the

platform. One way to fight this behaviour is to penalize the values of v. Such penalization

is accomplished with the following and final quadratic program formulation

min

v

1

2

𝑀∑︁
𝑘=1

∥Fdes
𝑘

− G(r𝑘 )v∥2 + _vTv

s.t. 0 ≤ v ≤ 1,

(1.17)

where _ > 0 is a tunable parameter.

The presented QPs are solved only for neighbouring coils of the manipulated balls. If

6



The MagMan platform Section 1.2

the balls share no coils in their neighbourhood, the large QP is completely decomposed

into smaller QPs for each ball. If some balls share neighbouring coils, the QPs need to be

solved collaboratively. Details of how these QPs are solved are presented in [GZH22].

As the current scaling factors v for some desired force ball force Fdes are obtained by

solving a QP and converted to desired currents as per Equation (1.12), a so-called feedback
linearization scheme arises. Refer to Figure 1.3, as the whole force to currents allocation

process can be viewed as an approximate inversion of the mathematical model, represented

by the gain g−1. This allows for the desired-force-based control, without worrying about

the current allocation process.

QP Plant§

Feedback linearization

Figure 1.3: Feedback linearization of the MagMan platform. The symbol i represents the currents
outputted by the control loop.

Higher level control

The higher-level control of the platform currently consists of a PD regulator, which turns

the deviation from reference trajectory into correcting force. The feedback loop is depicted

in Figure 1.4.

−
PD Plant

Figure 1.4: Feedback linearization of the MagMan platform. The symbol i represents the currents
outputted by the control loop.
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2 Position measuring system

An essential part of the MagMan platform is feedback, which is provided using a camera

and image processing algorithm. As my semestral project, I developed a new position

measuring system for the platform. There were two primary motivations for doing so.

The first one is an increase of the resolution of the captured image and thus increasing

the accuracy of the position measurement itself. The second one is an increase of the rate

at which the frames are processed as the image processing speed is the bottleneck of the

whole control loop.

Not too long ago, the platform relied on a Raspberry Pi 4B with a V1 camera. I upgraded

the camera to a Basler acA1300-200uc high-speed camera. As the image processing algo-

rithm, I implemented a RANSAC type detector which I massively parallelized on CUDA

cores of NVIDIA Jetson AGX Xavier. The whole algorithm is written in C++. I will not go

into more implementation details as that is not the subject of this thesis. There remain two

things left to do. Move the control algorithms from the Raspberry Pi to the new NVIDIA

platform and compare the two systems. Both of which I seek to do in this chapter.

2.1 Moving to NVIDIA Jetson AGX Xavier

2.1.1 The Real Time Linux Kernel

Real-time control algorithms have a strict deadline to meet. This deadline is given by the

sample rate at which the control loop runs. Linux kernel was not developed with control

applications in mind. It maximizes throughput at the expense of latency and determinism

[Mad19]. Fortunately, there exists the so-called PREEMPT_RT patch
1
, which changes the

Linux kernel, making it more suitable for control applications. This project aims to decrease

latencies and increase the predictability of the kernel just by modifying the existing code

[RMF19]. NVIDIA already provides the patched Linux kernel
2
for the Jetson platform. So I

only really needed to install an appropriate package from the repository.

2.1.2 Simulink automated code generation

The control algorithms of the MagMan platform are implemented in Matlab Simulink.

NVIDIA provides a target
3
for the Simulink Coder, allowing for automatic code generation

and deploying the algorithms on the Jetson platform. The problem with this approach is

1 https://wiki.linuxfoundation.org/realtime/start

2 https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SD/Kernel/KernelCustomization.html

3 https://www.mathworks.com/hardware-support/nvidia-jetson.html

9
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Chapter 2 Position measuring system

that it does not generate real-time code. Thankfully, we have our own in house developed

Simulink Coder Target for Linux
4
, which can generate real-time compliant code. As I was

already using this target on the Raspberry Pi platform, the moving of the control algorithms

was just a matter of providing the correct compiler suite, which I obtained from NVIDIA’s

website.

2.2 Benchmarks

2.2.1 Processing time

I compared the two different systems on their image processing time, more precisely, the

time it takes from the moment the camera provides the frame to the moment when the

image coordinates of the balls are available. The benchmarks consisted of 30 seconds of

closed-loop control of the platform, which is a real use-case test. Moreover, I tested how

the processing time scales with the number of same and different colored balls. The results

are provided in Figure 2.1 (b) and Figure 2.1 (a).
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Figure 2.1: Comparison of the image processing time scalability. Vertical bars represent standard

deviation. Dashed lines represent targeted sample time of each platform.

Following the results, I can state that the Jetson based solution satisfied the demand of

being faster than the Raspberry Pi one. Even more important is that the Jetson solution

does not overrun the targeted control loop sample time. Violating the sample time can

have detrimental effects on the control, as no feedback is provided for one or more samples.

On the other hand, the Raspberry Pi based system does overrun when six or more balls are

present. One interesting observation is the Jetson based system does not appear to scale

4 https://github.com/aa4cc/ert_linux/
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with the number of balls, or at least not as much as the Raspberry Pi one. The scaling is

more observable with different colored balls on the Jetson Based system.

Figure 2.2: Coil packet timing without the RT_PREEMPT patch and NVIDIA provided Simulink

target. Cursors show the 10ms control loop sample time.

Figure 2.3: Coil packet timing with the RT_PREEMPT patch and our Simulink target. Cursors show

the 10ms control loop sample time.

11



Chapter 2 Position measuring system

2.2.2 Coil packet jitter

Additionally, I tried to find the effect of using the RT_PREEMPT kernel patch and our

Simulink Target. With the control algorithm running, I connected an oscilloscope to the

IAE 485 bus and recorded the coil commands being sent by Jetson to MagMan. I did this

for two cases. In the first case, I used Jetson with stock kernel version 4.9.253 and Simulink

target provided by NVIDIA. I utilized the RT_PREEMPT patched kernel and our Simulink

target in the second case. Captured timing of the packets is depicted in Figure 2.2 and

Figure 2.3. Ideally, the packets should be timed at the control loop sample time, which

is 10ms, which appears to be the case for the real-time setup. The non-real-time setup

displays an average packet timing jitter of approximately 200 µs.

2.3 Conclusion

My goal was to move the MagMan from an old Raspberry Pi based platform to the new

NVIDIA Jetson based platform, for which I developed a new position measuring system

during the winter term. I moved the control algorithms using an automatic code generation

from Simulink, based on our in-house real-time target. I also supplied the NVIDIA Jetson

platform with a real-time patched kernel. This setup appears to be better than using the

target provided by NVIDIA and the standard kernel, as it reduces the jitter of the coil

current packets sent by the platform.

In addition, I benchmarked the new position measuring system against the old one. I

did so in a real test case. The new system runs faster. Moreover, it does not overrun the

targeted control loop sample time of 10ms, unlike the old system, which does so for a

control loop sample time of 20ms.
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3 Trajectory planning

Trajectory planning, loosely speaking, solves the task of getting some system, typically

a mechanical one, from one state to some goal state. No more information is needed for

the system to reach the goal state. That is where it differs from the task of so-called path

planning. Path planning produces an obstacle-free geometric path, whereas a trajectory is a

path in the state space, parametrized in time and satisfying dynamical constraints together

with control inputs, which drive the system through the planned states.

In this chapter, I go over state of the art of trajectory planning. I then formulate the

general trajectory planning task mostly from the system and control theory perspective. I

apply this formulation to distributed magnetic manipulation, and, I discuss the way I solve

the proposed planning problem.

3.1 State of the art

Trajectory planning problems often arise in many fields of science and technology. One

such field is robotics, where trajectory planning is used to plan the motion of robots, from

manipulators to fully autonomous robotic platforms. An increasingly popular way to solve

these problems is using so-called sampling-based planners like Rapidly-exploring random
trees (RRTs), first introduced in [LaV98]. These planners are asymptotically complete,

which means they are able to find a collision-free path with the probability of one, as the

number of steps goes to infinity. There even exists asymptotically optimal versions such as

RRT*, presented in [KF11]. Paths planned by such a planner can be then smoothed out to

fit dynamical constraints, parametrized in time to create a trajectory, and tracked using a

feedback controller, as is proposed in [La 11]. For example, in [Ma+15], this is achieved

using model prediction.

Formulating these problems as mathematical programs is often called trajectory optimiza-
tion. An excellent introductory resource for trajectory optimization is chapter 10 in [Ted22].

Methods of trajectory optimization differ in how the planning problem is transcribed into

the mathematical program. The paper [Kel17] offers great and practical overview of a few

of these methods. Trouble arises when the formulated programs are non-convex, as they

are prone to converging to local minima or, worse yet, local infeasibility, thus providing no

solution at all.

This behaviour motivated the attempts to embed optimal control into sampling-based

planners. For example, [WB13] presented an algorithm in which state space is sampled

using RRT* and in which pairs of states are exactly and optimally connected. That is but for

systems with linear controllable dynamics and unconstrained inputs. Moreover, [SL14] and

13
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[Xie+15] implanted general nonlinear solvers into sampling-based algorithms for systems

with nonlinear dynamics and constraints.

3.2 General formulation

I will consider the trajectory planning problem for a dynamical system represented by the

state equation
¤x(𝑡) = f (x(𝑡), u(𝑡)), (3.1)

where x(𝑡) ∈ X is the state and X = ℝ𝑛
the state space. Analogously u(𝑡) ∈ U is the

control input andU = ℝ𝑚
the control input space. If Equation (3.1) represents a mechanical

system, such as a robot, then the state space is usually composed of positions and velocities,

while the control inputs consist of individual forces, torques, voltages, and currents applied

by and to actuators. Such a state space is often called the phase space by the robotics

community.

One important property of this representation is that, to obtain the system’s response to

control input on some time interval [𝑡I, 𝑡F], only the state xI at the initial time is needed.

The response is obtained via integrating

x(𝑡) = x(𝑡I) +
∫ 𝑡

𝑡I

f (x(𝜏), u(𝜏)) d𝜏, (3.2)

for every 𝑡 ∈ [𝑡I, 𝑡F].
I will now introduce the notion of trajectory. A trajectory is a tuple (x(·), u(·),𝑇 ) with

a given initial state x(0), such that x : [0,𝑇 ] → X, u : [0,𝑇 ] → U and satisfying

Equation (3.1) for every 𝑡 ∈ [0,𝑇 ]. Furthermore, I will call x(·) state trajectory, u(·) control
input trajectory and 𝑇 control horizon.
In a sense, a trajectory is just one of the solutions to the Equation (3.1) on a given time

interval. The definition does not consider if a real system can execute the trajectory or not.

There may be obstacles in the state space and actuator constraints, which make realizations

of some trajectories impossible. To remedy that, I introduce Xfree ⊆ X, that is the part of

the state space free of obstacles and satisfying imposed constraints, thus I call it free state
space. Similarly,Ufree ⊆ U is the free input space, that contains control inputs within some

defined bounds. Now I have everything I need to formulate the task of trajectory planning.

▶ Formulation 3.1 (Task of trajectory planning). Given an initial state x0 and the

goal region Xgoal ⊆ Xfree the task of trajectory planning is to find a suitable trajectory

(x(·), u(·),𝑇 ), satisfying following:

1. x(0) = x0,

2. x(𝑇 ) ∈ Xgoal,

3. x(𝑡) ∈ Xfree for every 𝑡 ∈ [0,𝑇 ],

14
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4. u(𝑡) ∈ Ufree for every 𝑡 ∈ [0,𝑇 ].

If the control horizon 𝑇 is provided beforehand, the problem is called fixed final-time.
Otherwise, it is called free final-time. ◀

The literature, for example [LaV06], usually calls this class of problems motion planning
under differential constraints. Problems from this class are considered to be extremely

difficult. Nevertheless, it may sometimes be possible to find the best trajectory in some

sense. I will use optimal control theory to give concrete meaning to "best". Thus I formulate

the task of optimal trajectory planning.

▶ Formulation 3.2 (Task of optimal trajectory planning). Extending the previously
formulated task so that the resulting trajectory also minimizes some cost functional 𝐽 is
called the task of optimal trajectory planning. I will borrow the typical form of the cost

functional from optimal control ([LVS12], p. 131), that is

𝐽x( ·),u( ·),𝑇 = 𝜙 (x(𝑇 )) +
∫ 𝑇

0

𝐿(x(𝑡), u(𝑡)) d𝑡 . (3.3)

Function 𝜙 weighs the state at the control horizon’s end, while 𝐿 is the additive cost which

weighs both states and control inputs along the entire trajectory. I will call the planned

trajectory optimal and denote it as (x∗(·), u∗(·),𝑇 ). ◀

Two different cost functionals often produce entirely different trajectories. The choice of

the cost functional should be motivated by the demands on the real system’s performance.

Some popular cost choices can be found in [Kir04], pp. 29-34.

3.3 Trajectory planning for MagMan

The MagMan platform manipulates steel balls. Therefore, trajectory planning problems

arise naturally. For example, given a steel ball at an initial position and some desired position,

what route should the ball take and what forces need to be exerted by the magnetic field to

move it along the way? What if obstacles are present? There may be even situations when

it is desirable to reach not only some position but also velocity. For instance, zero velocity

at the desired position to stop the ball. Things complicate further when multiple balls are

taken into account, as they must not collide during the motion.

In this section, I seek to formalize these problems in the language of the previous section.

Thus also preparing the ground for their solving. Typically I will search for trajectories in

the state space comprised of the ball’s position and velocities. As for control input, I will

use the force acting on the balls. That is because the force-to-currents allocation for the

platform is already solved. Still, while planning the force, I need to consider the constraints

imposed by the force’s origin.
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3.3.1 Single ball

I start with formulating state space, control input space and constraints on them for a single

ball case to later generalize it to cases with multiple balls.

State equation

The ball dynamics is modelled as linear. Thus the state equation can be written out using

standard matrix form

¤x(𝑡) = Ax(𝑡) + Bu(𝑡) . (3.4)

I introduce state and control input as

x(𝑡) =


𝑥 (𝑡)
¤𝑥 (𝑡)
𝑦 (𝑡)
¤𝑦 (𝑡)

 and u(𝑡) =
[
𝐹𝑥 (𝑡)
𝐹𝑦 (𝑡)

]
. (3.5)

Following from the mathematical model introduced in Section 1.2.2 the matrices take form

of

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 and B =


0 0

1/𝑚eff 0

0 0

0 1/𝑚eff

 . (3.6)

It is evident that X = ℝ4
andU = ℝ2

.

Platform bounds

As for the free state space, I need to take physical bounds of the platform into account, that

is,

𝑥lb ≤ 𝑥 ≤ 𝑥ub and 𝑦lb ≤ 𝑦 ≤ 𝑦ub, (3.7)

where 𝑥lb = 𝑦lb = −25mm and 𝑥ub = 𝑦ub = 200mm.

Obstacle avoidance

Next, I want to discuss the question of obstacle avoidance. On the platform, there may be

present some obstacle regions. The balls must not collide with these regions. Such a feat

can be achieved by imposing another constraint on the state space in the form of

distO (𝑥,𝑦) ≥ 𝑟ball + 𝑟Y, ∀O ∈ O . (3.8)

Function distO provides the distance from the centre of the ball to the boundary of the

obstacle region O and O is the set of all obstacle regions. The situation is depicted in
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Figure 3.1. To avoid the obstacle the distance must be greater than the ball’s radius. I add

safety margin 𝑟Y to increase robustness.

O

𝑟ball

𝑟Y

(𝑥,𝑦)

Figure 3.1: Obstacle avoidance

Control inputs

The formulation gets more complicated when I try to express the free control input space.

From the nature of the magnetic field, the maximal and minimal forces that can act on

the steel ball are highly position-dependent. Moreover, the force bounds are coupled. For

example, exerting maximal force in the x-direction may severely limit the range of force

in the y-direction. Therefore, the most straightforward way to impose constraints on the

control inputs is to have them satisfy the force-current model from Equation (1.13). That is

u = G(x)v, (3.9)

for some v, such that

0 ≤ v ≤ 1. (3.10)

3.3.2 Multiple balls

The previous single ball formulation easily extends to multiple balls for the most part.

State equation

First, I introduce the extended state equation where state and control input are created by

conjugating𝑀 single-ball systems from the previous section (see Equation (3.4))

¤x(𝑡) = Ax(𝑡) + Bu(𝑡), (3.11)
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where

x(𝑡) =


x1(𝑡)
x2(𝑡)
...

x𝑀 (𝑡)


and u(𝑡) =


u1(𝑡)
u2(𝑡)
...

u𝑀 (𝑡)


. (3.12)

The matrices then take the form of

A =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...

0 0 · · · A


and B =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...

0 0 · · · B


. (3.13)

Then X = ℝ4𝑀
and U = ℝ2𝑀

. I impose the platform bounds and obstacle avoidance

constraints on each ball separately.

Collision avoidance

Unlike with a single ball, the state space is constrained not only by the physical bounds of

the platform and obstacle avoidance but also by collision avoidance between individual

balls. I try to prevent collisions by imposing√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

𝑑 (𝑥𝑖 ,𝑦𝑖 ,𝑥 𝑗 ,𝑦 𝑗 )

≥ 2𝑟ball + 𝑟Y ∀𝑖, 𝑗 ∈ Q𝑀 , (3.14)

where

Q𝑀 =
{
(𝑖, 𝑗) ∈ I2

𝑀 | 𝑖 > 𝑗
}
. (3.15)

Figure 3.2 sheds some light on this situation. The distance of the centers of the balls has

to be greater then the sum of their radii to prevent a collision. In addition to that, I also

include a safety margin 𝑟Y > 0, as the balls influence the magnetic field in their vicinity and

other uncertainties are present.

Control inputs

To be complete, I deal with the control inputs constraints in the same fashion as before. I

introduce the force model for the conjugate states

G(x) =


G(x1)
G(x2)

...

G(x𝑁 )


. (3.16)
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Then the control inputs must satisfy

u = G(x)v (3.17)

for some v, such that

0 ≤ v ≤ 1. (3.18)

𝑟ball

𝑟ball
𝑟Y

(𝑥𝑖, 𝑦𝑖)

(𝑥 𝑗 , 𝑦 𝑗 )

Figure 3.2: Collision avoidance illustration.

3.3.3 Proposed solution

I am planning a trajectory. Therefore I need to satisfy dynamical constraints and also

find appropriate control inputs. Formally speaking, I am looking to solve a type of task

called the Two-Point Boundary Value Problem (TP-BVP). Generally, TP-BVPs are hard to

solve. Mathematical optimization methods are employed for their solving. Hence, I propose

solving the task at hand using optimization, often called trajectory optimization. Such an

approach formulates the trajectory planning task as a mathematical program, which is then

solved using a solver.

Mathematical programs include a criterion, which is supposed to be minimized. By

suitable choice of such criterion, I am effectively solving the task of optimal trajectory

planning as introduced in Formulation 3.2. Furthermore, mathematical programs often

benefit from an initial guess of the solution. In the case of trajectory, a path can serve as an

initial guess. Thus, I can incorporate a path planning algorithm into the trajectory planning

process. Presumably, a path that a sampling-based planner generates.
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In this section, I discuss the formulation of trajectory planning for distributed magnetic

manipulation as a mathematical program. Then I present a way of solving it.

4.1 Designing the cost

Choosing the correct cost is essential to formulating a mathematical program. As I already

stated, the different costs can produce very different solutions. I will now present a few

cost options which are suitable for planning trajectories for the MagMan platform. Also, I

will follow the cost functional notation from Equation (3.3).

4.1.1 Minimum-time

If no control horizon is provided beforehand, it may be desirable to get the ball or balls

to their desired state as fast as possible. I can achieve this by letting the cost equal to the

control horizon, that is

𝐽 = 𝑇 . (4.1)

I want to point out that the control horizon is now the optimization variable.

4.1.2 Minimal-control-effort

In optimal control theory, typical cost formulation-usually called minimal control effort
([Kir04], p. 33)-has the additive cost

𝐿 = uT(𝑡)u(𝑡), (4.2)

while the final weight is

𝜙 = 0. (4.3)

Therefore the cost functional is

𝐽 =

∫ 𝑇

0

uT(𝑡)u(𝑡) d𝑡 . (4.4)

As I previously formulated, the sought control inputs have the purpose of the desired force

to be exerted by the magnetic field on the steel balls. Therefore, I call this functional Force
cost.
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Another candidate cost is

𝐿 = vT(𝑡)v(𝑡), (4.5)

and the resulting cost functional is

𝐽 =

∫ 𝑇

0

vT(𝑡)v(𝑡) d𝑡 . (4.6)

As a reminder to the reader, v(𝑡) corresponds to a scaling factor proportional to the coil
current as introduced in Equation (1.11). Even though I am searching for the desired force, I

will still need to optimize over the "currents" to satisfy the force-current model. Therefore, it

is reasonable to search for control inputs which could minimize the currents, thus reducing

current consumption. Furthermore, I call the resulting cost functional Current cost.

4.1.3 Penalizing the force-position dependence

The force the magnetic field exerts on the steel ball is highly spatially dependent. Fig-

ure 4.1 (a) illustrates this fact. Exerting force in regions where the force bounds change a lot

with position is unwanted. That is mostly related to the problem of feedback tracking the

planned trajectories. Suppose the real and planned trajectories diverge so that the maximal

force achievable in the real case is much lower than in the planned matter. In that case,

it may lead to the trajectories diverging even more as the feedback controller may not be

able to exert the necessary correcting force. I can penalize this behaviour by the following

additive cost

𝐿 du
dx

=

du(𝑡)
dx

2
F

=

 d

dx
[G(x(𝑡))v(𝑡)]

2
F

(4.7)

themagnitude of the force spatial derivative squared. As amagnitude, I denote the Frobenius

norm of the resulting Jacobian matrix. The maximal values of the force space derivative

attainable are plotted in figure Figure 4.1 (b). In a real scenario, to reduce the force-position

of the planned trajectory, I add the newly introduced term to some previously introduced

cost functional as

𝐽 =

∫ 𝑇

0

𝐿 + [𝐿 du
dx

d𝑡, (4.8)

where [ > 0.
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(a) Force (b) Spatial derivative

Figure 4.1: The simulated maximal force possible exerted and its spatial derivative. Simulated for

steell ball with a radius of 10mm. I performed the simulation by discretizing the platform into

segments of 0.175×0.175mm and solving mathematical program for each segment.

4.2 Direct transcription

Theway I formulate themathematical program is a so-called direct transcription as presented,
for example, in [Bet09] p. 132. In this approach, I first discretize the continuous-time

dynamics of the system and then develop a mathematical program in a finite amount of

variables.

4.2.1 Discretization in time

I will denote discrete-time trajectory as (x[·], u[·], 𝑁 ) and the discretized system as

x[𝑛 + 1] = fd(x[𝑛], u[𝑛]), (4.9)

where x[𝑛], u[𝑛] are the values of state and control input at the time ℎ𝑛 given some timestep
ℎ and 𝑁 is the discrete control horizon. There are various ways to discretize dynamical

systems in time, and I choose the very popular Runge-Kutta scheme of the 4th order. Which

has the following form

fd(x[𝑛], u[𝑛]) = x[𝑛] + k1/6 + k2/3 + k3/4 + k4/6, (4.10)
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where

k1 = ℎf (x[𝑛], u[𝑛]),
k2 = ℎf (x[𝑛] + k1/2, , u[𝑛]),
k3 = ℎf (x[𝑛] + k2/2, u[𝑛]),
k4 = ℎf (x[𝑛] + k3, u[𝑛]) .

(4.11)

4.2.2 Mathematical program

The trajectory planning problem for the distributed magnetic manipulation formulated

using the direct transcription is

min

x[ · ],u[ · ],v[ · ]

𝑁−1∑︁
𝑘=1

𝐿(x[𝑛], u[𝑛], v[𝑛]) or min

𝑇,
𝑥 [ · ],u[ · ],v[ · ]

𝑇 (4.12a)

s.t. x[𝑛 + 1] = fd(x[𝑛], u[𝑛]), ∀𝑛 ∈ I𝑁−1, (4.12b)

u[𝑛] = G(x[𝑛])v[𝑛], ∀𝑛 ∈ I𝑁−1, (4.12c)

0 ≤ v[𝑛] ≤ 1, ∀𝑛 ∈ I𝑁−1, (4.12d)

𝑥lb ≤ 𝑥𝑙 [𝑛] ≤ 𝑥ub, ∀𝑙 ∈ I𝑀 , ∀𝑛 ∈ I𝑁−1, (4.12e)

𝑦lb ≤ 𝑦𝑙 [𝑛] ≤ 𝑦ub, ∀𝑙 ∈ I𝑀 , ∀𝑛 ∈ I𝑁−1, (4.12f)

𝑑 (𝑥𝑖 [𝑛], 𝑦𝑖 [𝑛], 𝑥 𝑗 [𝑛], 𝑦 𝑗 [𝑛]) ≥ (2𝑟ball + 𝑟Y), ∀𝑖, 𝑗 ∈ Q𝑀 , ∀𝑛 ∈ I𝑁−1 (4.12g)

x[1] = xI, (4.12h)

x[𝑁 ] = xF, (4.12i)

+ obstacle avoidance constraints, (4.12j)

where the obstacle avoidance constraints are

distO (𝑥𝑙 [𝑛], 𝑦𝑙 [𝑛]) ≥ (𝑟ball + 𝑟Y), ∀O ∈ O, ∀𝑙 ∈ I𝑀 , ∀𝑛 ∈ I𝑁−1. (4.13)

The cost functions in Equation (4.12a) can either be the cost functional, where the integral

is approximated by the sum of the additive cost values at discrete points in time or the

control horizon as in Equation (4.1). I need to point out one crucial fact. When using the

minimal-time cost, the discretization time step ℎ stretches or shrinks based on the value of

the control horizon, as is given as

ℎ =
𝑇

𝑁 − 1

. (4.14)

The constraints are to be interpreted as follows. The Equation (4.12b) represents satisfying

the discretized dynamical constraints of the multi-ball system introduced in Equation (3.11).

Equation (4.12c) and Equation (4.12d) then represent satisfying the current-force model from

Equation (3.17) and Equation (3.18). Constrains in Equation (4.12e) and Equation (4.12f)

enforce the platforms bounds from Equation (3.7). Equation (4.12g) is the non-collision
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constraint introduced in Equation (3.14). Equation (4.12h) and Equation (4.12i) represent

the initial and final state conditions, that is the positions and velocities of the balls. Last

but not least, Equation (4.13) describes the obstacle avoidance constraint introduced in

Equation (3.8).

4.3 Solving the mathematical programs

To solve the given mathematical programs, I formulated them in MATLAB using CasADi

[And+18]. CasADi is an open-source framework for nonlinear optimization and algorithmic

differentiation. Also, this formulation is the so-called nonlinear program (NLP), which

requires a general solver to find the solution. Fortunately, CasADi comes with IPOPT, a

solver for large-scale nonlinear optimization problems based on the interior point method.

According to [Par+16], IPOPT appears to be the better choice for motion planning problems

than, for example, SNOPT, which is commercial and based on a sequential quadratic

programming method.

4.3.1 Differentiable obstacles

The IPOPT solvers require the constraints to be twice differentiable. For example, distance

to a rectangular region is not twice differentiable. I decided to approximate obstacle regions

using circles, as the signed distance from circles is given as

𝑑 (𝑥,𝑦) =
√︃
(𝑥 − 𝑐𝑥 )2 + (𝑦 − 𝑐𝑦)2 − 𝑟, (4.15)

and therefore is twice differentiable (except (𝑐𝑥 , 𝑐𝑦)). One such obstacle approximation is

shown in Figure 4.2.

(𝑥,𝑦)

𝑑1 𝑑2 𝑑3

𝑐1 𝑐2 𝑐3

O

𝑟 𝑟
𝑟

Figure 4.2: Aproximation of the obstacle region using circles.
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Chapter 4 Trajectory optimization

4.3.2 Initialization using RRT*

The formulated programs are non-convex, meaning the solutions may not be global minima

but just local ones. To which minimum the optimization converges depends highly on the

initial guess I provide to the solver. This behaviour is easily graspable by looking at the

map of maximal possible forces 4.1 (a). Given some initial path, there is a local minimum

created by the coils in the immediate vicinity of such path.

(a) Enviroment 1 (b) Enviroment 2

(c) Enviroment 3

Figure 4.3: Comparison of paths generated by RRT*, paths obtained from optimization initialized

by the RRT* and paths obtained from optimization without initialization.

It then makes sense to provide the solver with the most promising initial guess I can.
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To that end, I employ the RRT* algorithm [KF11]. Using the sampling-based algorithm,

I can plan close to the shortest obstacle-free path and, in the case of multiple balls, even

a collision-free path. Practically, I obtain a set of waypoints from the algorithm, which I

then fit with splines creating a path. Initial positions of the state variables then correspond

to the sampled version of these splines. I tested the effects of RRT* initialization of the

mathematical programs on three different obstacles environments. In Figure 4.3, I present

the comparison of RRT* planned paths and the paths obtained by solving the mathematical

programs, both with and without RRT*. In Table 4.1, I then present the effects of the RRT*

initialization on the solving time of the mathematical programs. Notably, for environment

2 without the RRT* initialization, the solver detected the problem as infeasible and failed to

provide a solution.

Table 4.1: Conparison of solving time of NLPs presented in Figure 4.3. The control horizon for all

problems was 1.5 s and the force cost forumulation was chosen.

Environment

Solution time when

initialized with RRT* (s)

Solution time without

initialization (s)

1 8.30 51.02

2 24.60 -

3 17.08 73.46

4.4 Two-phase optimization

The control loop of the MagMan platform runs at a fixed rate of 100Hz. Therefore, for

the purpose of feedback trajectory tracking, the planned trajectory need to be sampled at

the same rate. This is not the problem for the fixed control horizon task, as the number of

samples can be adapted to fit this requirement. In that case, the number of samples is given

as

𝑁 =

⌊
𝑇

𝑇𝑠

⌋
+ 1, (4.16)

where 𝑇𝑠 = 0.01 s is control loop sample rate.

When solving the minimum time problem, things are not as straightforward. The time

step depends on the control horizon, which is a variable I optimize over. Hence I propose

a way of solving that, a two-phase optimization. In the first phase, I solved the minimal

time problem with a fixed amount of samples. In the second phase, I then solve the fixed

final time problem with the number of samples given by 4.16 and initialized by the solution

of the first phase. The result of the second phase is then a solution to the minimum time

problem with the desired time step.
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Chapter 4 Trajectory optimization

4.5 Algorithms

To be complete, I provide the trajectory planning algorithms that arise from the previous

discussion.

4.5.1 Fixed control horizon

In the case of the fixed control horizon 𝑇 , initial and final ball states xI, xF, I plan the

trajectory using Algorithm 1. The employed mathematical program formulation is the

additive cost variant of Equation (4.12a).

Algorithm 1: Trajectory planning algorithm

Input: xI, xF,𝑇
Output: x[·], u[·]

1 Set q
I
and q

F
to initial and final ball positions from xI and xF;

2 Find collision and obstacle free path q(·) between q
I
and q

F
using RRT*;

3 Set 𝑁 = ⌊𝑇 /𝑇𝑠⌋ + 1;

4 Initialize x[·] of length 𝑁 using q(·);
5 Solve mathematical program to obtain x[·] and u[·];

4.5.2 Minimum-time

In the case of the minimum-time problem, I plan the trajectory using Algorithm 2. The

mathematical program employed in the first phase is the minium-time variant of Equa-

tion (4.12a). I need to provide the algorithm with initial discrete-time control horizon 𝑁 ′
,

on which the first phase mathematical program is solved. This is tricky as having too short

of a horizon can lead to the infeasibility of the NLP. The mathematical program formulation

used in the second phase is the additive cost variant of Equation (4.12a).

Algorithm 2: Minimum-time, two-phase optimization trajectory planning algo-

rithm

Input: xI, xF, 𝑁 ′

Output: x[·], u[·]
1 Set q

I
and q

F
to initial and final ball positions from xI and xF;

2 Find collision and obstacle free path q(·) between q
I
and q

F
using RRT*;

3 Initialize x′ [·] of length 𝑁 ′
using q(·);

4 Solve mathematical program to obtain x′ [·], u′ [·] and 𝑇 ′
;

5 Set 𝑁 = ⌊𝑇 ′/𝑇𝑠⌋ + 1;

6 Initialize x[·], u[·] of length 𝑁 using x′ [·], u′ [·];
7 Solve mathematical program to obtain x[·], u[·];
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TheMATLAB + CasADi implementation of these algorithms can be found in the attachment.

The structure of the implementation is presented in Appendix B.

4.6 Generalization

MagMan is not the only platform for distributed manipulation developed at AA4CC, as

there are also DEPMan and AcouMan (see Section 1.1). Even though these platforms use

different physical force fields to achieve the actuation of the manipulated objects, they have

a lot in common. The dynamics of the manipulated objects are described by some state

equation

¤x = f (x, u), (4.17)

where the actuating force u is obtained from the force model

u = g(x, v) (4.18)

for some control input v ∈ V , where V is the set of admissible control inputs. The

platforms also encompass the same feedback linearization layer as MagMan (refer to

Figure 1.3). Therefore allow for control based on desired forces.

Theoretically, the trajectories for these platforms could be planned in the same manner

as I do for MagMan. The dynamics of the manipulated objects can be discretized in time,

and the following mathematical program can be developed

min

x[ · ],u[ · ],v[ · ]

𝑁−1∑︁
𝑛=1

𝐿(x[𝑛], u[𝑛], v[𝑛])

s.t. x[𝑛 + 1] = fd(x[𝑛], u[𝑛]), ∀𝑛 ∈ I𝑁−1,

u[𝑛] = g(x[𝑛], v[𝑛]), ∀𝑛 ∈ I𝑁−1,

v[𝑛] ∈ V, ∀𝑛 ∈ I𝑁−1,

x[1] = xI,
x[𝑁 ] = xF,
+ platform bounds,

+ collision and obstacle constraints.

(4.19)

Such a program can be solved in the same way I do for MagMan. That is, initialized by the

path obtained from RRT* algorithm.
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5 Trajectory tracking

As I solved the problem of finding a feasible trajectory in the previous section, now comes

the time to track it. More precisely, to design a controller which will ensure that the

balls will perform the planned motion even when disturbances and model inaccuracies are

present. I present the design for a single ball only as tracking multiple balls is analogous.

5.1 Controller design

Given the planned optimal discrete-time trajectory (x∗ [·], u∗ [·], 𝑁 ) my goal is to control

the variation

𝛿x[𝑛] = x[𝑛] − x∗ [𝑛], 𝛿u[𝑛] = u[𝑛] − u∗ [𝑛] (5.1)

for the real system trajectory x[𝑛], u[𝑛]. It is also resonable to require

𝛿x[𝑛] ≈ 0, 𝑛 > 𝑁, (5.2)

in other words, to keep the balls in their final states after the trajectory ends. Therefore, I

first extend the trajectory to the infinite horizon as

x∗ [𝑛] = x∗ [𝑁 ] and u∗ [𝑛] = 0, 𝑘 > 𝑁 . (5.3)

I can then achieve trajectory stabilization using the so-called Linear-Quadratic-Regulator
(LQR), which minimizes the cost

𝐽 =
1

2

∞∑︁
𝑘=1

𝛿xT [𝑛]Q𝛿x[𝑛] + 𝛿uT [𝑛]R𝛿u[𝑛] (5.4)

where Q ⪰ 0 and R ≻ 0. This is done by utilizing a the full-state feedback gain K, which
gives the following control law

u[𝑛] = u∗ [𝑛]
²

Feedforward

−K(x[𝑛] − x∗ [𝑛]) .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Feedback

(5.5)

Notice that two components form the actual control input. One is the feedforward part

constituting the optimal control input trajectory; the second one is the feedback part

compensating for the deviations from the planned state trajectory. I designed the LQR in

MATLAB for the time discretized ball system using the lqr function using experimentaly
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Chapter 5 Trajectory tracking

chosen weight matrices

Q =


2 0 0 0

0 3 0 0

0 0 2 0

0 0 0 3

 and R =

[
2 0

0 2

]
. (5.6)

5.2 State estimation

As I previously stated, the states I am considering are composed of positions and velocities

of the individual balls. One challenge arises here. I cannot directly measure the velocity

component of the state, as the feedback is provided only for the position. Therefore I need

to approximate the velocities of the individual balls. I do so using the filtered derivative
system, given by the transfer function

𝐷 (𝑧) = 𝑧 − 1

𝑇𝑧 +𝑇𝑠 −𝑇
, (5.7)

where 𝑇 is time filter time constant and 𝑇𝑠 = 0.01 s is the control loop sample time. From

the ball position measurements 𝑥 (𝑧), 𝑦 (𝑧), I then obtain the single ball state estimate as

x̂(𝑧) =


1 0

𝐷 (𝑧) 0

0 1

0 𝐷 (𝑧)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E(𝑧 )

[
𝑥 (𝑧)
𝑦 (𝑧)

]
=


𝑥 (𝑧)

𝐷 (𝑧)𝑥 (𝑧)
𝑦 (𝑧)

𝐷 (𝑧)𝑦 (𝑧)

 . (5.8)

The resulting control loop is shown in 5.2.

The derivative is filtered to reduce noise. Filtering reduces the noise but, unfortunately,

introduces a phase delay, there is a tradeoff. I received the best tracking results for filtering

time constant value𝑇 = 0.02 s. Higher values led to greater smoothing, but the phase delay

resulted in overshoot and steady-state oscillations. Two actual responses are shown in

Figure 5.1. I compare the live estimate using the filtered derivative system and differentiating

position response fitted using cubic splines.

Kalman filter

As the velocity estimation is far from optimal, I also attempted to design a Kalman filter,

which, in theory, should provide a smoother response with lesser phase delay than a model-

free method. I estimated the observation noise covariance matrix from measured data and

tried to find the process noise covariance matrix experimentally. I received worse results

than with mere filtred derivative. I blame that on the disparity between the model and

reality. It is known that there is a significant difference between the force, which should be
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State estimation Section 5.2

based on the mathematical model exerted on the ball and the actual force being exerted.

Therefore it makes sense to receive better results from purely model-free estimation.
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Figure 5.1: Tracking the velocity trajectory. Comparison of state velocity using filtered derivative

system with 𝑇 = 0.02 s and velocity obtained from fitting the position response with cubic splines

and differentiating.

−
Plant

Figure 5.2: Trajectory tracking control loop. The g−1 gain represents feedback linearization from

Figure 1.3,K is the full-state feedback gain and E(𝑧) is the state estimation system fromEquation (5.8).
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6 Experiments & results

In this chapter, I describe and evaluate planned trajectories and experiments I conducted

on the real platform. I examine the distinctions originating from using different cost

formulations and penalizing the position dependence of the force. For each experiment, I

typically present the planned trajectory first and then describe and evaluate the tracking of

the trajectory on the actual MagMan.

6.1 Simple trajectory

I explored the differences in the planned trajectories arising from using the current or the

force cost formulations as introduced in Equation (4.4) and Equation (4.6), respectively.

At first, I chose a simple goal for ease of demonstration: moving a ball 87.5mm in the

x-direction while also stopping it at the end.
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Figure 6.1: Purely horizontal 87.5mm trajectory. Results of both cost formulations from Equa-

tion (4.4) and Equation (4.6) are shown. The control horizon was chosen to be 1 s.

6.1.1 Planned trajectory

The ball takes a straight path to the goal for both cost formulations, as is shown in Fig-

ure 6.1 (a). This also means the force is on the ball exerted only in the x-direction, as I

present in Figure 6.1 (b). I chose 1 s as the control horizon, which resulted in solving the
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mathematical program taking 7.16 s for the force cost formulation and 5.25 s for the current

cost formulation. In the case of the current cost formulation, the planned force looks

something akin to bang-bang control. That is, switching between two extremal values.

However, instead of two extremal values, the ball is set into motion and later stopped by

a set of short impulses of force, seen as peaks in Figure 6.1 (b). I plotted the positions of

the ball, where those peaks of force are planned to be exerted into maps of maximal and

minimal forces obtainable in the x-direction. The positions of the peaks which move the

ball are included in the maximal forces map Figure 6.2 (a). Likewise, the peaks which stop

the ball are included in the minimal forces map Figure 6.2 (b). Notice the placement of the

peaks. They are in close proximity to the maximal, respectively, minimal values of force

attainable. This behaviour makes sense, as in those positions, the most force for the least

amount of current can be achieved.

(a) Maximal (b) Minimal

Figure 6.2: Maps of maximal and minimal forces obtainable in the x-direction. Including the

positions of the force peaks from Figure 6.1 (b). The map was calculated by discretizing the platform

and solving a mathematical program for each segment.

6.1.2 Tracking experiment

I conducted experiments to evaluate the trackability of the planned trajectory on the actual

platform. The results of these experiments are shown in Figure 6.3. I include the responses

of the ball’s x-position for both cost formulations, just as before. As for the actual results,

the trajectory is tracked satisfyingly in both cases. The force cost formulation seems to

result in a more significant overshoot. I observed this consistently over more experiments.
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(a) Force cost formulation
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Figure 6.3: Tracking of the planned trajectory presented in Figure 6.1. Results of both cost formula-

tions from Equation (4.4) and Equation (4.6) are shown.

6.2 Complex trajectory

Similarly to the previous section, I evaluated the planned trajectories for both cost formula-

tions. However, the planning goal was not as simple as before. Though I wanted to find a

trajectory between some initial and final position while stopping the ball at the end, I did

not want it to be a straight path. Thus, I planned in the obstacle environment introduced

in Figure 4.3 (b) as it led to a more complex curve, ideal for benchmarking, for example,

tracking capabilities. Same as in the RRT* initialization experiment, I chose the starting

position to be one of the corner coils, while the coil in the opposing corner is the final

position. The time horizon I picked was 1 s. The solving of the mathematical program took

116.82 s for the force cost formulation and 52.36 s for the current cost formulation.

6.2.1 Planned trajectory

The planned path is presented in the Figure 6.4 (a). Notice that the planned paths for the

different cost formulations differ this time. Also, this time, I present the magnitude of the

planned force in Figure 6.4 (b) as the force generally does not act on the ball only in one

direction. Again, in the case of the force cost formulation, the ball is driven mainly by short

force impulses. As opposed to the force cost formulation, where the force trajectory is

much smoother.
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Figure 6.4: Complex trajectory generated from obstacle environment in Figure 4.3 (b). Results of

both cost formulations from Equation (4.4) and Equation (4.6) are shown. The control horizon was

chosen to be 2 s.

6.2.2 Tracking experiment

I again tested the tracking of the planned trajectory on the actual platform. For simplicity,

I provide here just the x-position responses in Figure 6.5. The trajectory is satisfyingly

tracked by the actual system for the current cost formulation. Similarly, as in the simple

trajectory case, the force cost formulation leads to significant overshooting of the trajectory.
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(a) Force cost formulation
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Figure 6.5: Tracking of the planned trajectory presented in Figure 6.4. Results of both cost formula-

tions from Equation (4.4) and Equation (4.6) are shown.
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6.3 Minimum-time problem

Next, I experimented with the minimum-time problem. My objective was the same as in

Section 6.1. However, this time I desired to bring the ball to its final position in minimal

time possible. For this, I utilized the two-phase optimization as presented in Section 4.4.

The resulting trajectory horizon was found to be 440ms, while the first phase with 40

samples took 25.24 s to compute. I computed the second phase for both force and current

cost formulations, which took 1.78 s and 1.19 s, respectively.

6.3.1 Planned trajectory

The planned paths are not straight lines (see Figure 6.6 (a)), as opposed to Section 6.1.

Also, notice that magnitudes of planned force trajectories presented in Figure 6.6 (b) are

similar for both second phase cost formulations. That is a somewhat expected result, as the

solution to the linearly constrained problem of the getting system to some final state in

minimal time yields bang-bang control.
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Figure 6.6: Minimum-time trajectory for moving the ball horizontally 87.5mm. Result of the two-

phase optimization scheme from Section 4.4. Both cost forumulation Equation (4.4) and Equation (4.6)

are shown for the second phase.

6.3.2 Tracking experiment

I tested the trackability of the minimum-time trajectory on the real platform, for both second

phase cost formulations. For the results, see Figure 6.7. It is clear that the trajectories are

not tracked in any of the two cases.

There are a few possible explanations for this behaviour. First is the model-reality

discrepancy. There are unmodelled phenomena, such as rolling resistance and eddy currents
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resistance, which act on the ball during its motion. Therefore, the planned trajectory can be

faster than what is the platform capable of. Another factor is the force-current allocation.

The actual force exerted on the ball is not the same as the desired force. Refer to the

force-current allocation Equation (1.17). Other than minimizing the difference between

desired and actual force, there is also a term penalizing the currents. Moreover, the problem

is solved only for coils in some vicinity of the manipulated ball.

Unfortunately, I could not develop a reliable solution, albeit even a heuristical one. I

have tried scaling the time horizon for the second phase and tightening the current limits.

These methods seem to help in certain situations but are generally unreliable. Therefore, I

leave this as an open problem.
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Figure 6.7: Tracking of the planned minimum-time trajectory presented in Figure 6.6. Results of

both cost formulations from Equation (4.4) and Equation (4.6) are shown.

6.4 Force-position dependency penalization

Another topic that I explored were the effects of penalizing the position dependency

of the force. Here I present two paths, one S-shaped (see Figure 6.8 (a)) planned in an

obstacle environment, the other one close to straight (see Figure 6.8 (b)) planned without

obstacles. I obtained these paths from trajectories planned for a different value of the force

dependence penalization factor [ (refer to Equation (4.8)). In both cases I used the current

cost formulation.

The forms that the resulting paths take based on the penalization factor are not surprising.

The larger the value of the factor, the more the ball avoids places with high spatial derivative

(see Figure 4.1 (b)).
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(a) S-shaped path
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(b) Straight path

Figure 6.8: The planned paths for different values of the force-position dependency penalization

factor. The trajectories were calculated for the current cost formulation and control horizon of 1.8 s.

6.4.1 Tracking experiment

0 0.5 1 1.5 2 2.5

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
o
s
it
io

n
, 
x
 (

m
)

Reference

Response

(a) [ = 0.1

0 0.5 1 1.5 2 2.5

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
o
s
it
io

n
, 
x
 (

m
)

Reference

Response

(b) [ = 0.005

Figure 6.9: Tracking the force-position dependency penalized trajectory for different values of the

penalization factor.

In theory, the introduced penalization should help with the feedback tracking of the

planned trajectories. In reality, that does not appear to be the case. Look at Figure 6.9 (a),

which shows the tracking of the S-shaped trajectory for a relatively large value [. The

response shows a significant deviation from the reference. Compare it with the response in

Figure 6.9 (b) of trajectory planned for a relatively small value of [. This trajectory does not

differ much from a trajectory, which is not penalized at all, but it is tracked far better than

the heavily penalized one. Such demeanour raises the question of the penalization even
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Chapter 6 Experiments & results

making sense. This is further substantiated by the fact that the penalization appears to be

computationally taxing. The straight trajectory took 3 s to compute without penalization,

while the penalized variant took on average 18 s.

6.5 Collision avoidance

To test the collision avoidance possibilities of my proposed trajectory planning algorithm, I

conducted the following experiment. I desired eight balls located on the boundary of the

platform to simultaneously switch places with the balls located on the opposite side of the

platform. The situation is illustrated in the Figure 6.10.

Figure 6.10: Premise of the collision avoidance experiment.

In this experiment, I choose the control horizon to be 2 seconds. Moreover, I used

the minimal force cost formulation. I found that the working safety margin 𝑟𝜖 for this

experiment is 3𝑟ball = 30mm.

I repeated the experiment multiple times, and in some runs, one or more of the corner

balls did not move or moved late, resulting in a collision. I blame this on the unfortunate

placement of the balls directly above the coils. As I showed in Figure 4.1 (b), the spot

directly above the coil has the highest spatial derivative of the force. A slight uncertainty

in the position measurement can lead to a different force being exerted on the ball than

planned. The fact that the distortion given by the camera optics in the corners is the

largest does not help either. Nevertheless, in the runs where the balls initially moved, they

did not collide. I provide the planned and taken paths from one such run in Figure 6.11.

Furthermore, I provide the timelapse photo of the experiment in Figure 6.12 and the video

of the experiment in the attachment.

42



Closing remarks Section 6.6

0 0.05 0.1 0.15

Position, x (m)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
o
s
it
io

n
, 
y
 (

m
)

(a) Planned paths

0 0.05 0.1 0.15

Position, x (m)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
o
s
it
io

n
, 
y
 (

m
)

(b) Real paths

Figure 6.11: The planned and real paths taken in the eight ball experiment. Each color represents

the path taken by a distinct ball.

Figure 6.12: Collision avoidance experiment.

6.6 Closing remarks

In this chapter, I showed that if provided with a feasible control horizon, I can plan tra-

jectories for the magnetic manipulation platform MagMan, which are collision-free and

obstacle-free. Therefore, there remains the question of finding such a feasible control

horizon. One answer could be solving the minimum-time problem since the minimum-time

could serve as a lower bound on the feasible control horizon.
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Chapter 6 Experiments & results

I also compared the force and current cost formulations and experimentally evaluated

them. Trajectories planned using the force cost formulation, when tracked, show significant

overshoot over those planned using the current cost formulation. Hence, I recommend

using the current cost formulation when possible. Although, I did not manage to find a

case where I could plan the trajectory using one formulation while using the other not.

There is correspondingly the matter of force position-dependency penalization. The

experiments showed that high levels of penalization lead to degradation in the trackability

of the planned trajectories. I was not able to come upwith a reasonwhy that is. Furthermore,

even at low levels, the penalization induces significant computational overhead. Thus, I

cannot recommend using the penalization.

I am fully aware that the presented algorithms deserve a more thorough computational

time and scalability benchmarking. However, as the output of this work should be primarily

practical, I prioritized the real platform experiments. If more time were available, I would

conduct the aforementioned benchmarks.
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7 Conclusions & outlook

In this thesis, I aimed to develop a trajectory planning system for the distributed magnetic

manipulation platformMagMan, that could be generalized to other manipulations platforms

developed by AA4CC.

In Chapter 2, I described the process of moving MagMan to a new position measuring

system I developed during the winter term. I benchmarked the system with the results

showing a significant improvement in processing time. The new system runs at the sample

rate of 100Hz, while the old one runs at 50Hz. Moreover, the old system overruns the

target sample time when simultaneously detecting six or more balls. The new one keeps

the targeted sample time even when detecting eight balls.

In Chapter 3, I formulated the general trajectory planning problem from the perspective

of control theory and also discussed the specifics of planning for MagMan. In Chapter 4, I

developed two algorithms to achieve the set thesis goal. The former plans the trajectories

for a given control horizon (the arrival time for the manipulated objects). The latter

attempts to solve the planning problem in minimum-time. An integral part of these

algorithms is a nonlinear mathematical program initialized by an obstacle-free and collision-

free path planned by an RRT* algorithm. The minimum-time algorithm employs a two-

phase optimization scheme. In the first phase, the minimum-time is found. The correct

parametrized trajectory for the minimum-time is then planned in the second phase. I

further presented a possible generalization for other distributed manipulation platforms

developed by AA4CC.

In chapter Chapter 5, I presented the design of an LQR controller and state estimations

for the feedback tracking of the planned trajectories. A simple filtered derivative system

provides the state estimation, which is not optimal, as the velocity estimate includes noise

and a phase delay.

Both planning algorithms produce the desired trajectories. However, only the first

one, when provided with a feasible control horizon, actually produces feedback trackable

trajectories. The second one generates trajectories, which are too fast to be tracked by the

real platform. This fact arose from experiments conducted on the real platform in Chapter 6.

A possible explanation for this behaviour is a model-reality discrepancy, as there are known

unmodelled phenomena.

7.1 Future work

I want to prepare a more complex demonstration of the planning capabilities of my devel-

oped system. Presumably, the balls could play a song on a xylophone. This demonstration
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could serve for propagation purposes of the faculty, for example, at the Maker Faire Prague
5

in the summer.

Moreover, I want to solve the minimum-time problem. I would start by developing a more

accurate mathematical model of MagMan by identifying and introducing the unmodelled

phenomena. A better model goes hand in hand with developing a better state estimation

system for the platform. I believe the tracking of the planned trajectories would benefit

from better state estimation.

Lastly, further research could be conducted on other distributed manipulation platforms

developed by AA4CC. The algorithms I proposed could serve as a basis for exploring

trajectory planning possibilities for AcouMan and DEPMan.

5 https://makerfaire.cz/prague/
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A Contents of the attachment

code.zip Implementation of the algorithms in MATLAB + CasADi.

collision_avoidance.mp4 Video of the collision avoidance experiment.
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B Implementation structure

code

algorithms

planTrajectory.m Fixed control horizon planning algorithm.

planTrajectoryMinimumTime.m Minimum-time planning algorithm.

RRTstar

RRTstar.m RRT* implementation.

genpath.m Spline fitting function.

genwaypoints.m Function returning the waypoints of the path.

nodecost.m Tree node cost function.

steer.m Steering function.

isfree.m Free configuration space indicator function.

classes

CoilArray.m MagMan class.

ConfigNode.m RRT* tree node class.

Obstacle.m Rectangular obstacle class.

misc

clrs.mat Plot colors for different balls.

obstaclesExample.m Example obstacle environments.
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