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Abstrakt
Tato práce se zabývá návrhem a implementaćı algoritmu pro detekci
pr̊uletu závodńıho dronu skrz bránu. Oproti standardńım algoritmům
pro detekci dronu založených na principu měřeńı intenzity video signálu
z dronu pomoćı video přij́ımače je tento algoritmus rozš́ı̌ren o použit́ı
mikrofon̊u. Dvojice mikrofon̊u je instalována u každého kraje brány.
Mezi signály z dvojice mikrofon̊u je zjǐstěn časový posun. Z časových
posun̊u mezi signály z obou dvojic mikrofon̊u lze určit, zda-li dron
proletěl skrze bránu nebo ji minul. Je navržen Kalman̊uv filtr pro filtraci
dat z video-přij́ımače a mikrofon̊u. Využit́ım mikrofon̊u lze přesněji
určit okamžik, kdy dron proletěl skrz bránu. Výsledky navrženého
algoritmu jsou srovnány s komerčně dostupnými zař́ızeńımi. Navržený
algoritmus měř́ı časy kol přesněji a spolehlivěji než dostupná zař́ızeńı
založené pouze na principu měřeńı intenzity video signálu z dronu jak
bylo prokázáno v experimentech. Tento algoritmus může být využit v
časomı́rách využ́ıvaných při stále populárněǰśıch závodech dron̊u.

Kĺıčová slova: Mikrofon, FPV, Závody dron̊u





Abstract
This thesis deals with design and implementation of an algorithm for
detecting the racing drone crossing the gate. Compared to standard
algorithms for drone detection based on the principle of measuring the
strength of video signal from a drone by video receiver, this algorithm is
enhanced by the use of microphones. A pair of microphones is installed
at each corner of the gate. Timeshift between signals from a pair of
microphones is calculated. It can be determined whether the drone
has passed through the gate or missed if from the time shifts between
both pairs of microphones. Kalman’s filter for data filtration from video
receivers and microphones has been designed. It is possible to specify
the moment when the drone passed through the gate more precisely
by using microphones. The proposed algorithm is compared with other
solutions available on the market. Proposed algorithm measures lap
times more precisely and reliably than other solutions based purely
on the principle or measuring the strength of video signal from a
drone as was proven in several experiments. This algorithm can be
implemented in timing systems used in increasingly popular drone racing.

Keywords: Microphone, FPV, Drone racing
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1. INTRODUCTION

1 Introduction

Unmanned aircrafts capable of vertical takeoff are very popular nowadays. Drones be-
came a low-cost easily accessible platform for various tasks in past few years. They can
be seen in various shapes and sizes. They cost from dozens to thousands of euro. Smaller
and cheaper drones are widely used among the hobbyist. Someone use them just as a toy
for fun, others do first-person view (FPV) racing competitions with small, agile and fast
quadcopters. Racing drone is shown in figure 1. Bigger drones with stabilized gimbal are
used for aerial photography and cinematography. Industrial applications are usually made
by professionals with expensive, large and reliable hexacopters or octocopters. Drones are
used for aerial observation and exploration, especially in scenarios which could be dan-
gerous for a human and which are too small or too expensive for an aircraft with human
crew.

Figure 1: An example of racing drone [22]

FPV drone racing is rapidly growing sport, for everyone regardless of the age or gender.
It is performed by tens of thousands of hobbyist and professional pilots. The common racing
drone size is 210mm in diameter. It weights 500g, flies about 3 minutes and reaches speeds
more than 160km

h
. The main parts of a racing drone are brushless motors, propellers,
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1. INTRODUCTION

electronic speed controllers, flight controller, battery, RC receiver and FPV system which
consists of a camera, 5.8GHz video transmitter and antenna. Each pilot has RC transmitter
and special video goggles with build in video receiver. Video goggles are shown in figure 1.
Pilots control drones sitting on a chair while seeing what the drone sees. They have truly
immersive experience using these goggles. The FPV system brings pilots the adrenaline
experience of flying fast near the obstacles and the safety since pilots are still with their
feet on the ground.

Figure 2: Video goggles [22]

Racing is the main purpose of the FPV racing drones. Up to 8 pilots are racing against
each other on a racetrack. The racetrack consists of different types of obstacles like pylons
and gates. Example of a racetrack is shown in figure 7. The goal is to fly several laps on
the racetrack faster than the others. Drone race is usually great show for spectators. Drone
races are organized in interesting places with lots of special effects like lights or fire. Drone
racing is divided into several categories depending on the weight and size of the drone.
The smallest racing drones weight about 24g and their size is 64mm in diameter. The most
popular drones for racing are 210mm in diameter and the largest drones are up to 1200mm
in diameter.

The drone racing is considered as a sport of the future. The first race was organized
in Australia in late 2014. Since then the drone racing has made a huge step forward and
races are all around the world. In 2016, there was a big race in Dubai with 250 000$ prize
money and it was the first race that could have been seen on television. Drones are in media
quite often nowadays. American drone racing league (DRL) is broadcast on television in
USA and Germany [7]. Pilots racing for DRL are full-time professionals. Drone champions
league (DCL) is the biggest race serial in Europe in which 9 teams with the best pilots
from the world are competing against each other [5]. DCL races take places like Avenue

2



1. INTRODUCTION

Figure 3: An example of racetrack [22]

des Champs-Élysées, Brussels and Vaduz. Czech team Rotorama takes 3rd place in season
2017. MultiGP is the worlds largest drone racing league with more than 22 000 registered
pilots [17]. Over 10 races were organized in the Czech Republic in 2017.

Drone races are made for spectators. Hundreds or even thousands of people are watching
the race live. Drones with weight around 500g and speeds over a 100km

h
are flying on the

racetrack and crashes are common.The whole racetrack with obstacles is covered by net in
order to provide safety to spectators, pilots, and staff. It is important that spectators have
a good overview of the race. For this purpose, each pilot in a group has his own color which
helps to identify him and his drone during the race. Large television or LED screen is used
to show the spectators the FPV feed from the drone, info-graphics about the pilots and
ongoing results of the race. The progress of the race is described by a commentator. The
electronic timing system is used for measuring pilots performance. Each pilot is checked
by the referee which tracks the drone and measures the pilot time for backup. FPV feed of
each pilot is recorded for further analysis if any uncertainties occur. The results provided
by timing system are presented to commentator and spectators online in order to provide
instant results of the race.

1.1 Problem statement

The timing system is one of the biggest issues in drone racing. Drones fly several laps
on the racetrack during one heat. The beginning and end of the lap is usually defined by
a finish gate in which is timing system usually placed. Drones can fly through the finish
gate with speeds over a 100km

h
. The measured times are presented to a race director, pilots,

and spectators and are used in qualification and finals. Drone racing events are organized
all around the world on a different scale. There are large FPV race events, but most of
the events are organized by smaller companies and drone enthusiasts who have limited
resources.

Timing system must be able to detect drone passing through the gate, distinguish the

3



1. INTRODUCTION

drone from the others and calculate the time of the lap. The time difference between pilots
laps might be lower then one second therefore at least precision in hundredths of a second
is required. Timing system must detect the drone only when it flies exactly through the
gate, near miss of the gate should not be counted. Robustness and reliability of the timing
system are important since using backup timing methods causes a delay in the race and do
not provide the results immediately. Timing system should be easy to use, easy to transport
and cheap.

1.2 Related work

No research on drone racing timing system has been found. However number of open
source project exists. Detection methods used by timing systems are more described in
section 2.

Open source timing system based on infrared LEDs is OpenLap [19]. OpenLap is open
source hardware and software project. The timing system consists of an infrared emitter
controlled by attiny and receiver based on Arduino and ESP12E on later versions. This
project might be a good inspiration for other timing systems using infrared diodes. Unfor-
tunately, infrared timing systems are not used nowadays and OpenLap project is without
any change for over two years. Easy Race Lap Timer is another example of infrared-based
open source timing system [24]. Easy Race Lap Timer is a bit more complicated and wide
than OpenLap. This timing system also uses infrared emitter controlled by attiny, but the
communication protocol is a bit different. Easy Race Lap Timer uses Raspberry Pi as the
brain of the project and supports web access and several racing modes. Easy Race Lap
Timer as other infrared based timing systems is no longer under development.

Chorus RF Laptimer is one of open source timing systems based on received signal
strength indicator (RSSI) [14]. RSSI based timing systems are alternative to infrared-based
timing systems having the advantage that it does not require any additional equipment on
the drone except video transmitter. Chorus RF Laptimer uses RX5808 analog video receiver
and Arduino. These two parts together create a Chorus node, which is capable of tracking
one drone. Each Chorus node measures an RSSI value and compares it with a threshold
set up. If the RSSI value is above the threshold, the corresponding drone is considered
passing a finish gate. Multiple Chorus nodes can be connected together and create one
system capable of measuring more drones. Chorus timing system is controlled by a mobile
application using Bluetooth or WiFi. Delta 5 Race Timer is the biggest open source RSSI
based timing system. It works on a similar principle as the Chorus RF Laptimer. Each
node consists of Arduino Nano and RX5808 video receiver module. Nodes communicate
with Raspberry Pi via I2C. Delta 5 Race Timer provides web access and is supported by
advanced race management software. Delta 5 Race Times is supported by MultiGP which
is the biggest racing league in the world [17].

4



1. INTRODUCTION

1.3 Contribution

We present a timing system that utilizes received signal strength indicator (RSSI) from
analog video receiver module and two pairs of microphones. It consists of Nucleo-F303RE,
analog video receiver module RX5808, and two microphone modules equipped with two
microphones and amplifiers. Using the microphones, the timing system is able to determine
if the drone passed through the gate or missed it and prevent the false-positive detections.
Fusing RSSI data and data from microphones highly improves the accuracy of the timing
system since the exact moment when the drone passes through the gate is estimated by
Kalman filter more precisely. Our contribution beyond the state-of-the-art approach is
summarized in following points:

• We implemented a custom algorithm for estimating time delay between two signals
from microphones.

• We present a self-calibrating, precise and robust algorithm for drone detection uti-
lizing RSSI signal and microphones.

• We designed a hardware platform specifically intended for racing drone detection.

5



2. DRONE DETECTION METHODS

2 Drone detection methods

Several approaches can be used in order to detect the drone passing through the finish
gate. Each approach has its advantages and disadvantages. The most known commercially
available timing systems are mentioned for each approach.

2.1 IR LED

Lap counting using infrared light emitting diodes (IR LEDs) is commonly used method
in RC cars community. Many IR based timing systems for drone racing exist, having little
modification from the existing RC car timing products [24, 21, 9]. Each drone carries an
infrared emitter which constantly flashes a unique sequence. The timing system uses a series
of infrared detectors mounted along one side of the finish gate connected to a computer.
The detectors translate the flash sequence into an ID code which is paired with a pilot.
It is expected that the emitter is crossing perpendicular to the detectors in order to work
perfectly. This condition is nearly always true with RC cars bounded to the track surface
by gravity, but drones can move freely in all dimensions. Crossing at an angle can advance
or reduce the detection point and increase the time error [20].

IR detection sensors, decoder unit, computer and IR emitter are needed to set up an IR
based timing system. Usually, special finish gate or stand must be built in order to protect
and hold the sensors in place. IR emitters are typically small and light but have specific
installation requirements. They must be attached to a power source on the drone, face the
direction of the detectors as you cross the line, and nothing can be visually blocking the
emitter. Since drones are getting lighter and smaller, it might be a problem to mount the
emitter into the frame. The system itself usually cost a few hundred dollars, and individual
IR emitters purchased from the system manufacturer often cost around 40$ each. Pilots
must have the emitter on each drone or spend time removing and installing to another
frame when crash.

2.2 RFID

Radio-frequency identification (RFID) tags are commonly used in timing systems for
all kind of sports from running to motorcycle racing and RC racing is no exception. One
of the RFID timing systems for drones is Mylaps [18]. Every drone has an RC transponder
installed, that sends out a unique signal to the detection loop in the track in order to
identify the pilot and record its results. RC Transponders are small and lightweight and
have been used in the world of RC racing for many years. The decoder determines the exact
time at which each transponder passes the detection loops. The decoder sends this data to
the computer. Detection loops are embedded in the finish gate and at intermediate timing

6



2. DRONE DETECTION METHODS

points along the track. A detection loop works as the system’s antenna. It picks up signals
from the transponders and passes them through to the decoder. Since drones are getting
lighter and smaller, it might be a problem to mount the transponder into the frame. The
decoder itself cost over 2800$, and individual transponder cost around 100$ each. Pilots
must have the transponder on each drone or spend time removing and installing to another
frame when crash.

2.3 Sound

Drones produce a characteristic sound which can be used for drone detection. Drone
sound analysis is used mainly in drone defense systems [16, 8]. Rotorama Laptimer appli-
cation for Android and iOS is available sound based timing system for drone racing [22].
Sound based timing system use amplitude of the sound as a main source of the date. When
the drone flies close to the microphone, the amplitude of the sound raise over a certain
threshold and lap is counted. Doppler effect or frequency analysis is not used in currently
available sound based timing systems. Simplicity is the main advantage of the sound based
timing system. None external components need to be mounted on the drone. The biggest
disadvantage is that drones passing through the finish gate are not distinguishable, there-
fore only one drone can fly on the racetrack. The sound timing system is mainly used for
training purposes only.

2.4 Video

Video cameras are used for drone detection even thought drones come in different size
and shapes. Drone defense systems are the main industry which uses image recognition
for drone detection [3, 6]. The video record of the finish gate might be used as a backup
timing method in drone racing. The video record of the finish gate with a high number of
frames per second analyzed by a referee is the most reliable and precise source of data. This
method is used as a ground truth in experiments. Whoop Laps is available video-based
timing system [13]. This timing system is an application for Android and iOS which utilizes
phone camera and motion detection in order to detect drone flying through the finish gate.
The video-based timing system is not capable of distinguishing drones from each other.
Each pilot needs to have its own finish gate when racing together.

FPV video from the drone can be used as a source of information for measuring laps.
Video from the drone is one of the key parts of autonomous racing drones [15, 2, 11]. There
is no automatic FPV video based timing system available on the market, but measuring
the lap times from FPV video by the referee on the stopwatch is commonly used method
on smaller and bigger events. Measuring lap times by referee with the stopwatch is a robust
and sufficiently reliable method. The main drawback is that it is difficult to process the
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results immediately by race management software and present them live and online. Also,
this method is demanding on human resources.

2.5 RSSI

Timing systems based on the drone video signal strength are mostly used nowadays. The
main part of each FPV racing drone regardless of its size is a video transmitter, therefore,
none external component needs to be mounted on the drone. Analog video transmitters
transmitting on 5.8GHz are used. Each transmitter is transmitting on fixed frequency
chosen from 40 commonly used channels. Table of channels is shown in figure 4.

Figure 4: Table of channels used for FPV

Analog video receiver module is used for receiving the video signal. One of the most
popular video receiver module widely used in FPV video goggles is RX5808. The receiver
module RX5808 is shown in figure 5. The module is powered by 5V and can be controlled
by SPI. Video signal, an audio signal, and RSSI signal are the outputs of the module.

Figure 5: Receiver module RX5808

Receiver signal strength indicator (RSSI) signal is used for drone detection in RSSI
based timing systems. RSSI correlates with the distance of the drone from the receiver
when omnidirectional antennas are used. The timing system is usually a small box with
video receivers and microprocessor. The timing system is placed in the middle of the finish
gate. Video receiver is tuned to the frequency of the drone. RSSI signal raises when drone
passes near the video receiver. The example of a measured RSSI signal is shown in figure

8
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6. The RSSI signal is noisy and flat-top which makes it difficult to find a local extreme and
estimate the moment when drone passes through the gate.
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Figure 6: RSSI signal

This approach has its drawbacks which have to be considered during designing the race
track. The drone can’t fly close to the timing system anywhere on the race track except
the finish line. None of the obstacles can be near the finish gate because passing the drone
near the finish gate can cause false-positive reading of the timing system. This can be a
big limitation on tight spaces like indoor tracks or tracks in the city center. Examples of
badly designed track and correctly designed track are shown in figure 7.

Figure 7: Race Track

There are several commercially available RSSI-based timing system solutions for train-
ing and professional use. One of the timing systems for personal use is LapRF from Im-
mersionRC [10]. It is a small standalone device with an integrated battery which connects
with phone or tablet using Bluetooth. The results are shown in Android or iOS applica-
tion. ImmersionRC LapRF has one custom video receiver module and supports up to 8
pilots at once. The retail price is 99$. The ImmersionRC LapRF is shown in figure 8a.

9
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TBS EventTracker is race timing system made by company Team Black Sheep [23]. TBS
EventTracker is used by professionals in bigger events mainly because of its complexity
and price of 999$. The device needs an external power source and has to be connected
to the computer or WiFi router via Ethernet cable. TBS EventTracker uses 8 separate
video receiver modules and supports up to 8 pilots at once. The indicated accuracy is
+/-10ms. TBS EventTracker is race management system that combines state-of-the-art
transponderless lap timing hardware with a full suite of event management software. TBS
EventTracker is shown in figure 8b.

(a) ImmersionRC LapRF

(b) TBS Event Tracker

Figure 8: Timing Systems
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3 Enhanced drone detection

The goal is to developed timing system which will be accurate, reliable, small, cheap and
wouldn’t require any additional device to be mounted on the drone. From the mentioned
drone detection methods, we choose to use RSSI and sound combined together. RSSI-
based timing systems are commonly used in drone racing these days. Enhancing RSSI
based timing system by microphones overcome the main drawbacks of pure RSSI based
timing systems. Timing system based on RSSI signal and microphones is still small and
easy to use.

The RSSI signal is measured by RX5808 analog video receiver module. One RX5808 is
needed for each drone to be measured. The sound is measured by two pairs of microphones.
Microphone module hardware with analog microphones and amplifiers are developed for
microphone pair. Each pair of microphones is placed in the corner of the finish gate.
Signals from the microphones are filtered and stored in a buffer. Sample shift between the
two signals from a microphone pair is estimated. We can estimate direction to the source
of the sound using estimated sample shift. Using two pairs of microphones placed in the
corners of the gate, we can determine if the drone flies between the two microphone pairs
or next to them therefore if the pilot flies through the gate or missed it. The maximum
sound amplitude of the pair of microphones is estimated. Estimated sample shifts, sound
amplitude, and RSSI signal are fused together using Kalman filter in order to estimate
the moment when the drone passes through the gate more precisely. Estimated state by
Kalman filter, estimated sample shifts, and RSSI signal are used by the drone detection
algorithm, which decides whether the drone flies through the gate or not.

All calculations are made on Nucleo F303RE development kit. The Nucleo communi-
cates with a computer using USB COM port. All algorithms were developed and tested
in Matlab and then re-implemented in C using Mbed and flashed to the Nucleo board.
The proposed solution serves as a proof of concept, it is not compatible with any race
management software.

Schematic of the timing system based on RSSI and microphones are shown in figure 34
in the appendix. The parts of the system are described further in detail in next chapters.

3.1 Microphones

Racing drones have 4 motors with propellers which can spin up to 30 000RPM and
produce characteristic sound. The amplitude of the sound signal change with distance of
the drone to the microphone and revolutions of the motors. The record of the sound when
the drone is passing through the gate is shown in figure 9. The dominant frequency of the
sound is between 800Hz and 1kHz as can be seen in the spectrogram.

11
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Figure 9: Sound of the drone

3.1.1 Filtering

The input signal from microphones has to be filtered in order to suppress noise of
the background and maximize the signal to noise ratio. The drone produces sound with
frequency from 800Hz to 1kHz during flight. Finite impulse response (FIR) or infinite
impulse response (IIR) band-pass filter could be used [1]. FIR filter is defined in equation
1

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bNx[n−N ] =
N∑
i=0

bix[n− i] (1)

where y[n] is the output signal, x[n] is the input signal, N is the order of the filter and bi is
the value of the impulse response at the i’th instant. FIR filter is always stable and requires
no feedback, therefore, any rounding errors are not compounded by summed iterations. IIR
filter is defined in equation 2

y[n] =
1

a0
(b0x[n]+b1x[n−1]+· · ·+bPx[n−P ]−a1y[n−1]−a2y[n−2]−· · ·−aQy[n−Q]) (2)

where y[n] is the output signal, x[n] is the input signal, P is the feedforward order of the
filter, Q is the feedback order of the filter, bi are the feedforward filter coefficients and ai
are the feedback filter coefficients. IIR filter is not always stable and requires feedback. The
main advantage over FIR filters is efficiency in implementation. IIR filter can have much
lower order than FIR filter to meet the same requirements.
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FIR filter is used for sound filtration. FIR filter is easy to implement and always stable.
The bigger delay is not an issue since we compare the signals relative to each other as
described in section 3.1.2. The sampling frequency of the sound is 20kHz. FIR band-pass
filter is designed using fir1 Matlab command. The order of the designed filter is 50. The
frequency response of the filter is shown in figure 10.
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Figure 10: FIR band-pass

The performance of the filter is shown in figure 11. Raw data recorded directly by
the microphone are shown in figure 11a. The base frequency between 800Hz-1kHz and
unwanted higher harmonics can be seen in the spectrogram. The filtered data by proposed
FIR filter are shown in figure 11b. The low-frequency noise and higher harmonics are
suppressed and the data are more suitable for further processing.

(a) Raw sound data (b) Filtered sound data

Figure 11: Drone sound
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3.1.2 Time delay

It is possible to estimate the direction of the incoming sound from a sound source
using at least 2 microphones. We have two microphones at positions M1 and M2. Let’s
consider racing drone as a source of the sound. Let’s assume that the distance between
the microphones and the sound source is much greater than the distance between the two
microphones, therefore, we can model the sound approaches as a plane wave and thus
the angle of which it approaches the microphones is constant. The sound from the drone
arrives at the microphones at two different times as shown in figure 12. The signal from the
source arrives at different microphones at times proportional to their distance. The time
delay ∆t = t1 − t2 corresponds to the direction of the sound source. The direction of the
sound source can be estimated just in half plane using this microphone configuration. The
estimated time delay ∆t can be used for determining whether the drone flew through the
gate or missed it as described in section 3.2.

Figure 12: Drone as a source of sound

The time delay ∆t has to be less than 1
2
Tmin of the sound signal, where Tmin is the

minimal period of the sound signal. If we consider the drone as a harmonic sound signal
source with the maximum frequency of 1.5kHz and denote the speed of sound equal 345m

s
,

the maximum distance between microphones could be 115mm according to the equation 3.
The distance between microphones is set to 9cm since it is easier and cheaper to manufac-
ture 10cm wide printed circuit board (PCB). 1.9kHz is the maximal frequency of the signal
for which we can estimate ∆T . The sampling frequency is set to 20kHz. The maximum
difference between sound signals from microphones is 5 samples according to equation 4.
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Dmax =
1

Fmax

· Vs

2
(3)

Sd =
Dm · Fs

Vs

(4)

Dmax is the maximal distance between microphones, Fmax is the maximal frequency of
the sound, Vs is the speed of sound, Sd is the difference in samples, Dm is the distance
between microphones and Fs is sampling frequency.

The time delay between two signals from microphones ∆t = t1 − t2 needs to be es-
timated. Lets denote x1[n] as signal from the first microphone and x2[n] as signal from
the second microphone. The example of received signals with frequency of 1kHz is shown
in figure 13. The common method for estimating time delay between two signals is cross-
correlation algorithm [4, 26, 12]. Cross-correlation is shown in equation 5. The formula
essentially slides the x2[n] signal along the x-axis, calculating the sum of their product at
each position. The value of n that maximizes Ycc[n] leads to approximation ∆T̃ = n · Fs.

We proposed a new approach for estimating time-shift between two signals. The pro-
posed approach is using least mean squares method shown in equation 6. The formula
essentially slides the x2[n] signal along the x-axis, calculating the sum of their squared
difference at each position. The value of n that minimizes Ylms[n] leads to approximation
∆T̃ = n · Fs.

Ycc[n] =
M∑

m=0

x1[m] · x2[m + n] (5)

Ylms[n] =
M∑

m=0

(x1[m]− x2[m + n])2 (6)

Buffers of 100 samples are used for time-shift detection. 100 samples, which corresponds
to 5ms, are recorded. Shift up to 5 samples is checked by the algorithm because 5 samples
are maximum sample shift between the buffers according to the equation 4. Using these
parameters we get sample shift estimated by least mean squares by equation 7 and sample
shift estimated by cross-correlation by equation 8. Comparison of cross-correlation method
and proposed least mean squares method used on a different source signal frequency and
amplitude is shown in figure 14. Proposed least mean square method has better results when
signals from microphones have lower amplitude or frequency. Estimating the sample shift
of the signals using least mean squares will be further referred as sample shift estimator.
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Figure 13: Microphone signals

Slms = arg min
n∈<0,10>

(
95∑

m=0

(x1[m + 5]− x2[m + n])2)

)
− 5 (7)

Scc = arg max
n∈<0,10>

(
95∑

m=0

x1[m + 5]x2[m + n]

)
− 5 (8)
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(a) 1000Hz signal
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(b) 1000Hz signal with low amplitude
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(c) 800Hz signal
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Figure 14: Comparison of least mean squares and cross correlation

The maximal amplitude of the sound signal Amax is calculated from the buffers as
shown in equation 9.
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Amax =
max(x1[n]) + max(x2[n])

2
(9)

Performance of sample shift estimator highly depends on the quality of input signal.
When signal obtained from the microphones has a low amplitude or is just a noise, the
output of sample shift estimator is very noisy. The noise has to be filtered out in for further
use of estimated sample shift. The maximal amplitude of the sound signal is used for this
purpose. Maximal amplitude of the sound signal is compared with a fixed threshold. The
output of the sample shift estimator is set to zero when the maximal amplitude of the
sound signal Amax is lower than the threshold. The raw output from sample shift estimator
and filtered output of sample shift estimator is shown in figure 15.
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Figure 15: Filtered sample shift estimator

3.1.3 Microphone modules

Microphone modules are created as sensors for sample shift estimator. Analog electret
microphones are used in microphone modules. They are cheap, easy to use and easy to
solder. The signal from electret microphone is amplified by an LM386 amplifier. The LM386
amplifier has the gain fixed gain set to 50. This value has been determined empirically by
several experiments. The output signal of the amplifier is lowered in order to be used
with A/D converter with input range 0-3.3V. The schematics is shown in figure 16. The
first prototype of microphone module is shown in figure 17a. The basic functionality of
the microphone modules was tested on the first prototype. When the prototype confirms
it is suitable for its purpose, PCB was designed and manufactured. The PCB is 100mm
wide, 23mm long and 1.6mm thick. The PCB is designed for two electret microphones
with two LM386 SMD amplifiers. The PCB microphone module is shown in figure 17b.
The housing for the PCB was designed in Fusion 360 in order to protect the microphone
module and improve the overall look. The housing is shown in figure 17b. The housing was
3D printed with ABS plastic. The microphone module is connected by 4-pin microphone
XLR connector.
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Microphone modules are connected to the Nucleo-F303RE. Nucleo-F303RE is used for
sampling the microphone signals and computing the sample-shift estimator.

Figure 16: Schematics of microphone module

(a) Microphone module prototype

(b) Microphone module PCB

(c) Microphone module housing (d) Final microphone module

Figure 17: Microphone module
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3.2 Drone Detection

Drones are racing on a racetrack made of several obstacles. Drones fly several laps on
the racetrack during one heat. The time of each lap has to be measured. Drones have to
fly through the same defined space in order to establish beginning and end of the lap.
The beginning and end of the lap is usually defined by a finish gate. The timing system is
placed in the finish gate. The timing system has to detect drone and define the moment
when the drone flies through the finish gate. The RSSI output of the video receiver module
described in section 2.5 and microphone modules used for sample shift estimator described
in section 3.1 are used as a source of the data for drone detection algorithm in this thesis.

The video receiver module RX5808 is placed in the middle of the gate. Two microphone
modules are placed at both corners of the gate. The microphones are aligned with the plane
of the gate. Nucleo-F303RE is used to run the drone detection algorithm. The schematics
is shown in figure 18.

Figure 18: Gate and sensors arrangement [22]

When drone flies through the gate, there is a peak in the RSSI signal and peak in the
maximal amplitude of microphone signals. The direction to the drone from the microphone
module can be estimated using sample shift estimator. Using the estimated sample shift,
it can be decided if the drone passes the microphone module from the right side or left
side thus it can be decided if the drone has flown through the gate or missed it using two
microphone modules with sample shift estimators at the corners of the finish gate. The
data from video receiver module’s RSSI output, maximal amplitude of the sound signal
of both microphone modules and estimated sample shift of both microphone modules are
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shown in figure 19.
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Figure 19: Gate sensor data

3.2.1 Kalman’s filter

The main sensor for detecting the drone is the video receiver module. The video receiver
is tuned to the frequency of the drone and RSSI output is independent of other drones. The
RSSI output is noisy and saturated when the drone is passing through the finish gate. The
flat-top of the signal complicates determining the moment when the drone flies through
the finish gate. The amplitude of the signal from microphone corresponds to the distance
between the microphone and the drone. The maximum amplitude of the sound signal from
microphone modules has sharp peaks when the drone flies through the finish gate. This
peak can increase the precision of estimating the moment when the drone flies through
the finish gate. The estimated sample shift can be used to estimate the moment when the
drone flies through the finish gate since the sample shift is the biggest when the drone is
aligned with the microphones. Kalman’s filter is used in order to filter and fuse data from
video receiver module, sample shift estimator and maximal amplitude of the sound signal
and prepare data suitable for drone detection.

Kalman filter is an algorithm that uses series of measurements observed over time and
produces estimates of unknown variables that tend to be more accurate than those based on
a single measurement alone. The algorithm works in a two-step process. In the prediction
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step, the Kalman filter produces estimates of the current state variables. When the next
measurement is observed, these estimates are updated using a weighted average, with more
weight being given to estimates with higher certainty. It can run in real time, using only
the present input measurements and the previously calculated state and its uncertainty
matrix [25].

The data from figure 19 filtered by Kalman’s filter with raw RSSI data are shown in
figure 20. Filtered data are less noisy and have sharp maximum which helps to determine the
moment when drone passed through the gate. The Kalman’s filter matrices are described
by equations 10, 11 and 12.

xk = Φxk−1 zk = Hxk−1 =
(
Rk A1k A2k S1k S2k

)T
(10)

Φ = 1 H =
(
1 1 1 1 1

)T
(11)

Q = 0.05 R =


0.5 0 0 0 0
0 0.5 0 0 0
0 0 0.5 0 0
0 0 0 1 0
0 0 0 0 1

 (12)

where x denotes a state vector, z denotes measurement vector, Φ denotes a state transition
matrix, H denotes a measurement matrix, R is signal from video receiver module, A1 and
A2 are sound amplitudes from two pairs of microphone modules and S1 and S2 are signals
from two sample shift estimators.
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Figure 20: Kalman’s filter output
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3.2.2 Detection Algorithm

The moment when the drone flies through the gate has to be detected and the time of
the pass has to be saved. The measured lap time is the difference between times of last
two passes. The RSSI data, estimated sample shift, and Kalman’s filter output are used
for drone detection algorithm. The detection algorithm runs with a frequency of 50Hz.

The main data source for drone detection is the RSSI output of the video receiver
module. The RSSI output is independent of other drones on a racetrack tuned to another
video frequency. The RSSI output reaches similar local maximum values when the drone
flies through the finish gate, therefore it is easier to set the proper threshold and de-
tect the drone. Unfortunately, the value of local maximums varies based on environment,
video receiver module, and drone video transmitter power. The RSSI output is filtered
by first-order IIR low-pass filter y(n) = 0.8y(n − 1) + 0.2x(n) in order to suppress the
noise. Performance of the filter is shown in figure 21. Filtered RSSI data by the IIR filter
RSSIf (n) = 0.8RSSIf (n−1) + 0.2RSSI(n) are used in drone detection algorithm further
on.
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Figure 21: Performance of RSSI filter

Drone detection algorithm uses the output of the sample shift estimator to verify that
the drone flies through the finish gate. The output of the sample shift estimator is filtered
by first-order IIR low-pass filter y(n) = 0.65y(n − 1) + 0.35x(n) in order to smooth the
signal. The performance of the filter is shown in figure 22. Filtered sample shifts S1f (n) =
0.65S1f (n − 1) + 0.35S1(n) and S2f (n) = 0.65S2f (n − 1) + 0.35S2(n) are used further on.
The filtered sample shift are multiplied and gate indicator is introduced as G(n) = S1f (n) ·
S2f (n). Gate indicator is positive when the drone flies through the finish gate, negative
when the drone flies next to the finish gate and change from negative to positive and then
back to negative when the drone flies in front of the finish gate. The local maximum and
minimum are detected when gate indicator has non zero values as shown in figure 23.

The detection algorithm uses upper threshold Thup, detection threshold Thdet and
hysteresis threshold Thhyst. Several constants are used for the thresholds calculation. The
constants RSSIMaxLimit, RSSIDetLimit and RSSIHystLimit are described by equation 13, 14
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Figure 22: Performance of sample shift filter
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Figure 23: Gate indicator

and 15. Parameter S stands for sensitivity and parameter H for hysteresis where S ∈ 〈0; 1〉
and H ∈ 〈0; 1〉. The drone detection algorithm can be tuned by changing these parameters.

RSSIMaxLimit = 1.01 + 0.3S (13)

RSSIDetLimit = 0.99− 0.3S (14)

RSSIHystLimit = 0.98− 0.3S − 0.68H + 0.3S ·H (15)

Upper threshold Thup is described by equation 16. Detection threshold Thdet is de-
scribed by equation 17. Hysteresis threshold Thhyst is described by equation 18.

Thup = RSSIMaxLimit ·RSSImax − (RSSIMaxLimit − 1)RSSImin (16)

Thdet = RSSIDetLimit ·RSSImax + (1−RSSIDetLimit)RSSImin (17)

Thhyst = RSSIHystLimit ·RSSImax + (1−RSSIHystLimit)RSSImin (18)

The drone detection algorithm loop is shown in figure 25. Absolute maximum RSSImax,
absolute minimum RSSImin and local maximum RSSIlapMax are checked. The local max-
imum of Kalman’s filter output Kalmax is checked. When the new local maximum is
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found, gate indicator maximum, gate indicator minimum and time are saved. The time
is counted as the number of milliseconds since the timing system is turned on. The
time is saved in variable Kaltime. The filtered RSSI value RSSIf and local maximum
RSSIlapMax are compared with thresholds. The loop starts again when the condition
RSSIf < Thhyst ∧ RSSIlapMax > Thdet is false. If the condition is true, gate indicator
saved maximum and minimum is checked. Both maximum and minimum need to be posi-
tive. When this condition is false, the local maximum is set to zero and the loop starts from
the beginning. When both maximum and minim are positive, condition RSSIlapMax < Thup

is tested. The valid lap is detected and time calculated when the condition is true. Time
of the lap is calculated as a saved time of the found Kalman’s filter output Kaltime minus
saved the time of the last detected drone passes referred as lap tip. The valid lap is detected
when local RSSI maximum RSSIlapMax is between thresholds Thdet and Thup and when
RSSIf is lower than Thhyst. When RSSIlapMax >= Thup, the current lap does not count
as valid because last detected drone pass has not been a drone pass through a gate but
rather just a pass near the gate. This detected drone pass is set as a new lap tip. The local
maximum is set to zero and the algorithm starts to measure a new lap. RSSI data with
detection thresholds are shown in figure 24.
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Figure 24: Drone detection algorithm data
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Figure 25: Drone detection algorithm diagram
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4 Experimental Results

Performance of various timing systems is tested in several experiments and compared
with the enhanced method for drone detection proposed in this thesis.

4.1 Time experiment

The capability of measuring the lap precisely is tested in this experiment. Round race-
track with several obstacles and a finish gate was built. Lap times have been measured by
TBS EventTracker [23], stopwatch using the FPV feed from the drone and proposed drone
detection algorithm using just RSSI data and using RSSI data along with Kalman’s filter
output. GoPro action camera pointed to finish gate was used for precise measuring the lap
times. The video frames used for measuring the lap time is shown in figure 26. The Go-
Pro was set to 240fps. Lap times measured from the video captured by GoPro were used
as ground truth. Ground truth and laps measured by other methods are compared and
subtracted. The differences between ground truth and measured lap times are statistically
evaluated.

Figure 26: Gopro video frames

TBS EventTracker is race timing system made by company Team Black Sheep [23].
TBS EventTracker is used by professionals in bigger events. The indicated accuracy is +/-
10ms. The retail price is 999$. 276 laps were measured by TBS EventTracker. 7 outliers
with errors from 0.54s to 0.84s were measured by the EventTracker which makes 2.5% of all
measurements inaccurate. The outliers were filtered out for further statistical evaluation.
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The histogram of errors with fitted normal distribution is shown in figure 28a. Median of
the errors is -0.005s, mean is 0.0019s and the standard deviation is 0.0675.

Using a stopwatch to measure lap times is widely used method since humans are more
reliable in drone detection than timing systems. Stopwatches are also used on small events
when organizers don’t have access to any timing system. The referee is measuring the lap
times using stopwatch and FPV video from the drone. The video frames from the drone
are shown in figure 27.

Figure 27: DVR video frames

97 laps were measured by stopwatch and used for statistical evaluation. The histogram
of errors with fitted normal distribution is shown in figure 28b. Median of the errors is
0.024s, mean is 0.0175s and the standard deviation is 0.0722.

The proposed drone detection algorithm can be used without microphones using only
the RSSI signal. 106 laps were measured by proposed drone detection algorithm using only
the RSSI data. The histogram of errors with fitted normal distribution is shown in figure
28c. Median of the errors is -0.005s, mean is 0.0005s and the standard deviation is 0.0792.

106 laps were measured by proposed enhanced drone detection algorithm using micro-
phones. The histogram of errors with fitted normal distribution is shown in figure 28d.
Median of the errors is 0.003s, mean is -0.0012s and the standard deviation is 0.0296.
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(a) Time errors of TBS EventTracker
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(b) Time errors of stopwatch
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(c) Time errors of proposed algorithm - RSSI
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Figure 28: Time experiment measured data

Estimated probability density function of errors are shown in figure 29. Method results
are shown in table 1. TBS EventTracker is the biggest disappointment considering it is 999$
timing system designed for professional race organizers. The indicated accuracy of +/-10ms
was not confirmed by this test. 2.5% of the measurements were outliers with errors greater
than 500ms. Surprisingly good results were obtained by stopwatch. We expected that errors
in hundreds of millisecond would be common, since human is not so fast and make mistakes.
Measuring lap times using stopwatch seems to be as precise as measuring lap times using
RSSI based timing systems. Proposed drone detection algorithm has similar results as TBS
EventTracker and stopwatch when using the RSSI output of video receiver module only.
Best precision was achieved by enhanced drone detection algorithm with microphones.
Finding maximum of Kalman’s filter output instead of RSSI signal lowers the standard
deviation from 0.0792 to 0.0295. Standard deviation 0.0295 is satisfactory since the drone
detection algorithm is running on 50Hz.
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Median (s) Mean (s) STD (s)

EventTracker -0.005 0.0019 0.0675
Stopwatch 0.024 0.0175 0.0722
RSSI algorithm -0.005 -0.0005 0.0792
Enhanced algorithm 0.003 -0.0012 0.0295

Table 1: Time experiment results
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Figure 29: Time errors of different methods

4.2 False detection experiments

One of the main drawbacks of pure RSSI-based timing systems is a high number of
false-positive detections of the drone. When the drone flies near the finish gate, the RSSI
signal raises in amplitude and may trigger the timing system. The ability of the proposed
method using microphones to resist false-positive detections is tested and compared with
other methods. Counting the number of laps and measuring the lap times by human using
stopwatch and the video feed from the drone is the most reliable method. This method
is used as a ground truth in these experiments. Lap times PV was measured by TBS
EventTracker, proposed drone detection algorithm using just RSSI data and proposed
enhanced drone detection algorithm using RSSI data along with Kalman’s filter output
and output from sample shift estimators.

4.2.1 Parallel miss

Elliptic race track with one gate aligned with the finish gate in distance of five meters
was built for this experiment. The RSSI value with marked valid laps and gate indicator
value from one of the experimental flights are shown in figure 31. The local maximums of
the RSSI signal are similar and difficult to distinguish.
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Figure 30: Simulated experimental track
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Figure 31: Parallel miss experiment data

TBS EventTracker has detected two times more laps than was flown. Every pass through
the finish gate and the second gate triggered the timing system which counted lap. Per-
formance of the proposed drone detection algorithm using just RSSI data depends on the
value of sensitivity parameter. When sensitivity is low, the algorithm is able to detect
laps correctly. For high sensitivity parameter, the algorithm detects when the drone flies
through the finish gate and the second gate. The proposed drone detection algorithm de-
tected all laps correctly using the output of the sample shift estimator. When drone flies
through the second gate, the maximal amplitude of the sound signal is too low and output
of the sample shift estimator is zero, therefore, gate indicator is zero and false-positive
detections are eliminated.
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4.2.2 Perpendicular miss

Eight-like shaped race track with one gate perpendicular to the finish gate in distance
of three meters was built for this experiment. The RSSI value with marked valid laps and
gate indicator value from one of the experimental flights are shown in figure 33.

Figure 32: Simulated experimental track
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Figure 33: Perpendicular miss experiment data

TBS EventTracker has detected two times more laps than was flown. Every pass through
the finish gate and the second gate triggered the timing system which counted lap. Per-
formance of the proposed drone detection algorithm using just RSSI data depends on the
value of sensitivity parameter. When sensitivity is low, the algorithm is able to detect most
laps correctly. The proposed drone detection algorithm detected all laps correctly using the
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output of the sample shift estimator. When drone flies through the second gate, the gate
indicator has a negative peak before it changes to positive. Using the local maximum and
minimum of the gate indicator signal, false-positive detections are eliminated.
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5. CONCLUSION

5 Conclusion

Timing system based on RSSI signal from the analog video receiver and microphones has
been developed. Enhancing RSSI based timing system by microphones overcome the main
drawbacks of pure RSSI based timing systems. The enhanced timing system is more precise
and robust than standard timing system which relies purely on RSSI signal as described
in section 4. Both hardware and software of the timing system have been developed. PCB
for the microphone module was designed and manufactured. Housing for the microphone
modules was designed and printed on a 3D printer from ABS plastic. The proposed timing
system is small and easy to use. It consists of two microphone modules, video receiver, and
Nucleo kit. It doesn’t require any external additional device to be mounted on the drone.

The sound is measured by two pairs of microphones. The signal from microphones
is filtered and the time delay between a pair of microphones on the microphone module
is estimated. Proposed least mean squares method for sample shift estimation has been
tested and compared to cross-correlation method. Results using the least mean squares
method are sufficient and suitable for drone detection as described in section 3.1. Proposed
least mean squares method provides better results then cross-correlation method when
signals from microphones are noisy and have a lower frequency, therefore, fewer periods
are sampled in the buffer.

Video receiver module placed in the middle of the gate and two microphone mod-
ules placed in the corners of the gate are used for drone detection. RSSI data, maximal
amplitude of the sound signal and output of the sample shift estimator are input mea-
surements for Kalman filter. Estimated state by Kalman filter is smoother with sharper
local maximums which help to determine the moment when drone passes through the gate
more precisely. Drone detection algorithm was designed, tested in real experiments and
compared to other methods. The standard deviation of the measured time errors was low-
ered from 0.0792s using just the RSSI signal to 0.0295s by using the RSSI signal and the
state estimated by Kalman filter. Enhanced drone detection algorithm is more precise then
EventTracker, which is the state of the art RSSI based timing system, with its measured
standard deviation 0.0675s.

The false-positive drone detections are the biggest drawback of the RSSI based timing
systems. When drone flies close to the finish gate, the value of the RSSI signal might
be higher than certain detection threshold a cause false drone detection. This drawback is
eliminated using the output of the sample shift estimator. Using the estimated sample shift,
the drone detection algorithm is able to distinguish whether the drone flies through the gate
or next to it and filter out these false detections. The robustness of the proposed timing
system has been tested by real-world experiments. Unlike EventTracker and detection
algorithm using just RSSI signal, enhanced timing system using sample shift estimator
was able to detect all laps correctly.
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5. CONCLUSION

All goals were fulfilled. The benefits of using microphones along with RSSI signal are
confirmed. In order to use proposed timing system in a real race, several things have to be
done. The proposed timing system should be extended in order to support more drones.
This could be done by connecting more video receivers and running more instances of
Kalman filter and drone detection algorithm. The Nucleo-F303RE has limited resources
and wouldn’t be able to process several instances of Kalman filter and drone detection
algorithm with sufficient frequency, therefore, another more powerful micro-controller or
computer like Raspberry Pi must be used. Timing system should be able to connect to
some race management software. Ethernet interface for connecting the timing system to
the PC running race management software would be welcome.

The timing system can be enhanced further on. Third microphone module can be added
on the top of the gate in order to distinguish whether the drone flies through the gate or
above the gate. Measurements from other sensors might be introduced to Kalman filter
and make the estimated lap times even more precise.
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APPENDIX REFERENCES A. EDHANCED DRONE DETECTION SCHEMATICS

Appendix A Edhanced drone detection schematics

This appendix is described in section 3.

Figure 34: System schematic
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APPENDIX REFERENCES B. EXPERIMETAL DATA

Appendix B Experimetal data

Laps times in seconds measured in experiment described in secition 4.1 are shown in
this appendix in table 2.

Ground Truth Event Tracker Stopwatch RSSI Enhanced Algorithm
11,681 11,66 11,615 11,724 11,681
12,26 12,37 12,37 12,198 12,219
11,485 11,37 11,355 11,508 11,53
12,012 12,19 12,201 12,005 12,048
10,687 10,56 10,612 10,755 10,669
9,55 9,5 9,591 9,483 9,505

12,059 12,17 12,012 12,069 12,004
12,464 12,36 12,582 12,478 12,5
12,884 12,98 12,881 12,845 12,845
10,812 10,81 10,826 10,819 10,841
9,523 9,54 9,484 9,505 9,44
10,154 9,98 10,228 10,151 10,194
11,692 11,68 11,636 11,767 11,724
14,063 14,9 14,055 13,987 14,008
12,435 12,42 12,453 12,436 12,457
11,246 11,25 11,264 11,25 11,229
12,058 12,1 12,019 12,176 12,047
10,744 10,77 10,828 10,733 10,776
14,584 14,68 14,561 14,547 14,676
11,252 11,14 11,302 11,186 11,229
9,436 9,44 9,478 9,31 9,418
8,774 8,79 8,806 8,901 8,793
8,99 8,98 8,914 8,966 8,988
9,037 9,2 9,05 9,052 8,987
8,785 8,78 8,846 8,772 8,815
8,741 8,68 8,697 8,513 8,751
9,419 9,44 9,568 9,677 9,418
8,546 8,56 8,569 8,535 8,535
7,131 7,11 7,029 7,069 7,134
8,703 8,73 8,747 8,751 8,728
8,844 8,82 8,869 8,685 8,837
7,624 7,67 7,577 7,824 7,629
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Ground Truth Event Tracker Stopwatch RSSI Enhanced Algorithm
7,817 7,81 7,887 7,802 7,846
7,705 7,69 7,775 7,694 7,679
10,439 10,46 10,468 10,409 10,387
9,273 9,17 9,318 9,197 9,283
9,22 9,21 9,251 9,326 9,24
9,257 9,38 9,281 9,284 9,218
8,629 8,54 8,553 8,633 8,634
10,165 10,15 10,359 10,128 10,171
9,17 9,28 9,202 9,175 9,154
8,971 8,93 8,974 8,958 8,98
7,799 7,71 7,864 7,682 7,768
8,176 8,18 8,105 8,179 8,201
8,128 8,11 8,172 8,267 8,137
7,527 7,56 7,531 7,552 7,509
7,959 7,93 7,976 7,941 7,984
6,668 6,7 6,721 6,644 6,665
8,212 8,19 8,077 8,18 8,18
8,95 9,3 8,943 8,937 8,958
9,857 9,79 9,933 9,91 9,824
8,67 8,65 8,672 8,591 8,699
8,977 8,99 8,977 9,024 8,959
10,626 10,64 10,655 10,603 10,646
9,665 9,65 9,724 9,672 9,673
9,978 9,99 9,992 10,019 9,997
9,477 9,55 9,53 9,521 9,456
8,536 8,46 8,48 8,504 8,548
9,339 9,34 9,35 9,262 9,305
8,35 8,35 8,35 8,417 8,374
8,263 8,33 8,25 8,266 8,266
8,862 8,79 8,86 8,894 8,85
9,221 9,24 9,24 9,24 9,197
7,648 7,6 7,62 7,509 7,682
7,564 7,6 7,59 7,682 7,552
9,819 9,77 9,748 9,86 9,802
7,77 7,73 7,823 7,595 7,769
9,02 9,6 9,084 9,197 9,002

12,477 12,45 12,531 12,464 12,486
8,156 8,26 8,155 8,202 8,157
9,898 9,81 9,848 9,759 9,911
9,474 9,46 9,549 9,521 9,456
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Ground Truth Event Tracker Stopwatch RSSI Enhanced Algorithm
9,385 9,4 9,275 9,478 9,392
10,245 10,23 10,302 10,214 10,28
8,959 8,91 9,048 8,894 9,002
10,334 10,38 10,243 10,431 10,28
9,939 9,94 10,109 9,912 9,933
9,82 9,83 9,711 9,803 9,824
9,473 9,4 9,635 9,456 9,5
9,926 10,1 9,796 9,932 9,845
8,955 8,89 8,971 8,959 8,981
9,679 9,69 9,751 9,672 9,694
12,276 12,27 12,244 12,313 12,269
11,595 11,67 11,637 11,577 11,556
10,106 10,9 10,127 10,127 10,148
8,409 8,35 8,421 8,374 8,418

Table 2: Measured laps in seconds
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Appendix C CD Content

In Table 3 are listed names of all root directories on CD.

Directory name Description
thesis Diplomas’s thesis in pdf format.
thesis sources latex source codes
experiments data measured during experiments
firmware program for Nucleo F303RE
microphone module data for microphone module PCB
sound analyze data and matlab codes for sound analysis
sound correlation cross-correlation and last mean squares method
drone detection Kalman filter and drone detection algorithm

Table 3: CD Content
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APPENDIX REFERENCES D. LIST OF ABBREVIATIONS

Appendix D List of abbreviations

In Table 4 are listed abbreviations used in this thesis.

Abbreviation Meaning
FPV first person view
RC radio control
RSSI reveived signal strength indicator
DRL drone racing league
DCL drone champions league
RFID radio frequency identification
LED light emitting diode
IR infra red
SPI serial peripheral interface
TBS team black sheep
RPM revolutions per second
FIR finite impulse response
IIR infinite impulse response
PCB printed circuit board

Table 4: Lists of abbreviations
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