. ||CTU
Y
/ traé czrenrecumcn

IN PRAGUE

Faculty of Electrical Engineering
Department of Control Engineering

Bachelor’s thesis
Hardware accelerated
risk-aware motion planning

Ondrej Toman

May 2023
Supervisor: Ing. Petr Cizek
Supervisor specialist: Ing. Jakub Slama

U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY

IN PRAGUE

I. Personal and study details
4 N\
Student's name: Toman Ondfej Personal ID number: 498998

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics
_

Il. Bachelor’s thesis details

e R
Bachelor’s thesis title in English:

Hardware accelerated risk-aware motion planning

Bachelor’s thesis title in Czech:

Hardwarové akcelerované rizikové planovani ve scénafich méstské vzdusné mobility

Guidelines:

1) Get familiar with development for FPGA System on a Programmable Chip boards such as DE10 nano [1] with a focus
on the High Level Synthesis using C code [2].

2) Get familiar with the risk-aware trajectory planning for unmanned air vehicles and its implementation [3].

3) Benchmark the baseline CPU-based implementation of the risk-aware trajectory planning, identify parts suitable for
hardware-acceleration and propose implementation on the FPGA.

4) Benchmark the performance of the FPGA implementation in comparison to the CPU-based implementation.

Bibliography / sources:

[1] DE10 nano get started guide, available:
https://software.intel.com/content/iwww/us/en/develop/articles/terasic-de10-nano-get-started-guide.html [cited on 2023-26-01]
[2] Intel High Level Synthesis Compiler Pro Edition - User Guide, available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls.pdf

[cited on 2023-26-01]

[3] J. Slama, P. Vana, and J. Faigl: Risk-aware Trajectory Planning in Urban Environments with Safe Emergency Landing
Guarantee, IEEE International Conference on Automation Science and Engineering (CASE), 2021, pp. 1606-1612.

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Cizek Department of Computer Science FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 06.02.2023 Deadline for bachelor thesis submission: 26.05.2023

Assignment valid until: 22.09.2024

Ing. Petr Cizek prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Péta, Ph.D.
Supervisor's signature Head of department’s signature Dean'’s signature

_ J
lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Declaration

I declare that the presented work was developed independently and that I have listed all sources
of the information used within it in accordance with the methodical instructions for observing

the ethiclal principles in the preparation of university theses.

Prague, May 26, 2023

Ondfej Toman

Acknowledgement

First of all, I would like to thank my supervisor Ing. Petr Cizek for his feedback and guidance
during the writing of this thesis. I am also grateful to my family for supporting me during my
studies.

ii

Abstract

The Risk-based RRT* algorithm is used for the trajectory planning for aerial vehicles to min-
imize the damage caused by a potential crash. However, a major limitation of this algorithm
is its computational complexity. In this thesis, we focus on hardware acceleration of the algo-
rithm using the Field-programmable Gate Array (FPGA). First, we theoretically analyze the
computational complexity of the different parts of the algorithm. We verify the conclusions of
the analysis by benchmarking the existing Julia and developed C++ implementations of the algo-
rithm and identify the crash risk calculation as the main performance bottleneck of the existing,
purely CPU-based, implementation of the algorithm. Next, we design and benchmark a custom
developed FPGA component for hardware acceleration of the crash risk calculation that is inte-
grated within the System on a Programmable Chip (SoPC) design of the developed architecture.
Based on the properties of the developed component and its benchmarking results, we propose
an SoPC FPGA architecture for acceleration of the Risk-based RRT* algorithm.

Keywords: Risk-based RRT*, risk planning, hardware acceleration, FPGA

iii

Abstrakt

Algoritmus Risk-based RRT* umoziiuje planovat trajektorie bezpilotnich letouni tak, aby byly
minimalizovany $kody zpisobené pfipadnou havarii. Moznost redlného nasazeni a tim i zvyseni
bezpecnosti leteckého provozu vSak omezuje relativné zna¢nd vypocetni ndro¢nost tohoto algo-
ritmu. Proto jsme se v této praci zaméfili na moZnosti hardwarové akcelerace pomoci technolo-
gie Field-programmable Gate Array (FPGA). Nejprve jsme teoreticky analyzovali vypocetni
naroc¢nost jednotlivych ¢asti piivodniho algoritmu. Zavéry této analyzy jsme ovéfili méfenim,
nejprve na jiz existujici implementaci v jazyce Julia, pozdé&ji i na vyvinuté implementaci v
jazyce C++ pfimo na vyvojové FPGA desce DE10-Nano. Na zdkladé naméfenych hodnot jsme
urychleni tohoto vypoctu jsme navrhli a otestovali FPGA komponentu maticového ndsobeni po
prvcich. Nakonec jsme na zdkladé vlastnosti komponenty navrhli systémovou architekturu ob-
vodu pro zrychleni kompletniho pldnovaciho algoritmu Risk-based RRT*.

Klicova slova: Risk-based RRT*, rizikové planovani, hardwarova akcelerace, FPGA

v

Contents

1 Introduction

2 Background
2.1 RRT andits Variants
2.1.1 RRT*
2.1.2 Improvements of RRT* . .
2.1.3 Risk-based RRT*
2.2 Field-programmable Gate Array .
2.2.1 High-level Synthesis . . .

3 Performace analysis
3.1 Bottlenecks of RRT Algorithm .
3.2 Bottlenecks of Risk-based RRT*
4 Proposed Method
4.1 Benchmark
4.2 Component Design
4.3 Measuring Hardware Acceleration
S Discussion of the Results

6 Conclusion

References

12
12
15
17
19
22

23

Acronyms

CPU
DMA
EWMM
FPGA
HDL
HLS
HPS
NNS
RRT
RRT*
SoPC
UAV

Central Processing Unit

Direct Memory Access
Element-wise Matrix Multiplication
Field-programmable Gate Array
Hardware Description Language
High-level Synthesis

Hard Processor System

Nearest Neighbor Search
Rapidly-exploring Random Tree
Asymptotically optimal RRT
System on a Programmable Chip

Unmanned Aerial Vehicle

Vi

List of Figures

2.1
22
23
3.1
4.1
5.1
5.2

Onestepof RRT 3
Comparison of RRT and RRT*, 4
FPGAblock 7
k-dtree structure 9
Connections in Platform designer L. 17
Calculation of risk along the trajectory 20
Streaming architecture Lo 21

List of Tables

4.1
42
4.3
4.4
4.5

Benchmark of Julia implementation 13
Benchmark of risk computing inJulia 14
Benchmark of risk computing on DE10-Nano 14
Benchmark of risk computing on DE10-Nano after loop optimization 15
Benchmark of risk computing using FPGA component 18

List of Algorithms

1
2
3

RRT . . 3
Risk-based RRT* 5
HLS code of component 16

vii

Chapter 1
Introduction

With the advent of Unmanned Aerial Vehicles (UAVs) and their anticipated use in transporting
packages or people in cities, a new risk is emerging. With large number of UAVs moving over cities,
the likelihood of a crash increases. This increases not only the risk of destroying the aircraft itself, but
also the risk of injury to persons present at the point of impact.

This risk cannot be eliminated completely, but it can be minimised. We can choose a flight path
that minimises the risk of damage in the case of a crash. The risk-based Asymptotically optimal RRT
(RRT#*) algorithm [1] is based on this principle. However, as mentioned in [2], the time to calculate a
trajectory using this algorithm can reach hundreds of seconds in some cases. Moreover, these values
were measured on a desktop processor. Thus, we can expect that when deployed on small UAVs with
limited computational resources the result will be even worse. Waiting several minutes to calculate
the trajectory before actual take-off can pose a logistical problem when transporting packages. When
transporting people, this would mean an increase in flight time. The current algorithm also takes into
account only ballistic fall in assessment of the trajectory risk, while there are many different causes of
UAV failure [1]. Therefore, it is desirable to optimise the speed of the algorithm.

Various software accelerations of the underlying sampling based planning have been presented
in the literature [3-5]. Thus, finding further ways of software optimization could be difficult. In-
stead, we focus on hardware acceleration of the algorithm using the Field-programmable Gate Ar-
ray (FPGA) architecture. We approach the problem by as follows. First, we need to determine which
parts are the slowest and in which cases hardware acceleration is beneficial. Nowadays FPGA sys-
tems allows for efficient division of the computation between the parts that are beneficial to accelerate
using custom-designed hardware, and parts that are too costly to implement in hardware through the
SoPC design. The SoPC design combines the benefits of both the general purpose Central Processing
Unit (CPU)-based architecture and highly optimized FPGA circuits. The architectures communicate
through bridges, that allow them to seamlesly transfer data and results between each other. However,
a clever approach is necessary to the design of the SoPC systems, as communication with the hard-
ware component requires additional arbitrage, which could slow down the computation more than the
original software implementation.

Moreover, as the RRT* algorithm is asymptotically optimal, the longer the computation takes, the
better trajectory is found. Thus, if we could speed up significantly a certain part of the computation,
we would not only get a faster result with less energy consumption, but also the possibility of finding
a better solution to the problem in a given time.

The thesis is structured as follows. The principle of RRT* and the risk-based RRT* developed
from it are described in Chapter 2, together with the identification of the computationally intensive
parts and analysis of the possibilities of hardware acceleration using FPGA/Hard Processor Sys-
tem (HPS). Theoretical analysis of the algorithm is performed in Chapter 3, followed by the practical
benchmarking at the beginning of Chapter 4. Next, design and benchmark of a component to com-
pute Element-wise Matrix Multiplication (EWMM), which we identify as the most computationally
expensive operation in trajectory risk computation, is presented in Chapter 4. Finally, based on the
identified properties of this component, we propose an architecture that should provide an acceleration
of the whole algorithm due to a series of optimizations, in Chapter 5.

Chapter 2
Background

Our work is focused on the hardware acceleration of the risk-based RRT* algorithm. Therefore, in
the first part of this chapter we describe the principles of the Rapidly-exploring Random Tree (RRT)
algorithm and its variants. Next, we explain the risk-based RRT* algorithm which we build upon
in the following chapters. In the last part, we introduce the FPGA technology and the High-level
Synthesis (HLS) method, which we will use to test our designed circuit.

B 2.1 RRT and its Variants

RRT [6] is a path-finding algorithm based on random sampling of the configuration space. It is based
on the principle of covering a continuous space with a graph to find a path from the starting configura-
tion to the goal configuration. The goal of the algorithm is to cover the search space with a tree where
a path to the specified goal can be found using backtracking.

The algorithm starts with a given initial configuration gin;;, a maximum edge length Age, and
the number of iterations IN. The tree is generated by repeating four steps - sample, Nearest Neighbor
Search (NNS), steer and configuration adding. First, a graph G containing the configuration giyjt 1S
created. Next, in the sample step, a configuration ¢,,,,q is randomly selected from the search space.
If we also know the goal configuration of the path at the time of running the algorithm, we can affect
this selection by choosing the probability distribution from which the point is generated. In the basic
version of RRT, a uniform distribution is used, but in case we have expert knowledge of the planning
problem, choosing a different distribution may lead to faster path finding.

The next step is the NNS, in which the closest configuration gye,, from the graph G to the point
Grand 1s found. The NNS itself is a non-trivial operation. In practice, this step can be implemented
using the k-d tree algorithm [7].

Once the closest node in graph is found, the steering step is performed. A new configuration gnew
is created such that it lies on the curve between the vertices ¢pear and ¢rang, While at the same time it
is located at most at distance Agep from gnear and the space between gnew and gnear along this curve
is free. The curve can be a line segment, or a more general curve can be choosed, depending on the
application. This case is further discussed in the Section 2.1.3 as the risk-based RRT* uses aircraft
motion model to model the curve [2].

Finally, the configuration gney and the edge (gnew, gnear) are added to the graph G. After N it-
erations, we obtain a tree covering the search space. The larger N we choose, the better coverage
of the space we get. If the path goal configuration is known during the algorithm run, the algorithm
terminates as soon as a configuration close enough to the goal configuration is added. To find a path
in this tree, we only need to find the closest configuration of the graph to the given goal configuration
and follow the parents until the initial configuration is reached. The pseudocode of the algorithm is
listed in Algorithm 1 and one step of the algorithm is visualized in Figure 2.1.

The advantage of RRT over standard planning algorithms is its efficiency in high-dimensional
configuration spaces. Another advantage is that once the configuration space is covered by the graph,
finding a path from this initial configuration to the various targets is almost instantaneous. However,
once the initial configuration ¢y is changed, a new graph must be generated. The narrow corridors in
the configuration space are difficult for the RRT to pass by random sampling. This problem is partially

2.1.1 RRT*

Algorithm 1 RRT
Require: ¢;,i; — Initial configuration
Require: Ao, — Maximum edge length
Require: N — Number of iterations
Ensure: G — RRT graph

1: G.init(qinit)

2: fori =1to N do

3: Qrand < Sample()
Qnear < NeareSt<Qrand7 G)
(new < Steer(QHeara Grand; Astep)
G.AddConfiguration(gpevw)
G.AddEdge(gnears qnew)
8: end for
9: return G

A A

2

-
- Grand

Figure 2.1: One step of RRT. First, the point ¢,.,q is generated. The closest configuration gpea; to it
is found. At a distance Agep from gnear, @ new configuration gy is created and added to the tree.

solvable by choosing a different probability distribution from which the ¢4 point is generated. By
doing so, the probability of generating a point in this narrow spot can be increased, allowing the space
to be covered faster [8]. However, this modification can also have the opposite effect. RRT also does
not include any mechanism for optimizing the path found, which is the main disadvantage of this
algorithm, but path finding itself may be sufficient in hard-to-solve problems.

B 211 RRT*

To find an asymptotically optimal path, an RRT* [9] can be used, which also optimizes the connections
between vertices as the tree is expanded. The comparison of RRT and RRT* is shown in Figure 2.2
When a configuration gncy is added, all vertices in the A neighborhood are found.

For these vertices, it is tested whether linking them through the newly generated configuration
creates a shorter path to the initial configuration. If so, the node is reconnected. The L2-norm is
usually used to calculate the distance, but other variants of RRT* may calculate the distance in a
different way. In the case of an RRT with a specified goal configuration, the algorithm is usually
terminated when the path is found, since a longer run of the algorithm will not improve the path
found. In the case of RRT* with a specified goal configuration, where the path is optimized when a
configuration is added, a longer run of the algorithm makes sense. This modification makes the RRT*
asymptotically optimal. Thus, the longer the algorithm runs, the closer the found path will be to the
optimal solution. Although the RRT* is asymptotically optimal, it can be computationally expensive.
Thus, further variants of RRT-based algorithms have been proposed to improve their performance.

2.1.2 Improvements of RRT*

(a) RRT tree (b) RRT* tree

Figure 2.2: Comparison of RRT tree (a) and RRT* tree (b). While RRT only builds the search tree,
RRT* adjusts the connections between the tree vertices to optimize the path found. This makes RRT*
asymptotically optimal. Generated using [10].

B 2.1.2 Improvements of RRT*

RRT-based algorithms are widely used in robotics for their efficiency in high-dimensional spaces.
However, since robots and drones are typically small battery-powered devices with limited compu-
tational power, it is important to look for more efficient algorithms. One of those improvements to
RRT* is the Informed RRT* [3], which uses heuristics to converge faster to an optimal solution. This
variant starts the same way as RRT* until a path to the goal is found. Then, the selection of random
points from the space is restricted to a region defined by an ellipse, where the start and goal points
serve as focal points and the length of the found path corresponds to twice the length of semi-major
axis. This ensures that points that cannot form a shorter path than the one already found will not be
selected. Once a better path is found the ellipse is recalculated.

Another option is for example Real-Time RRT* [11]. This is an adaptive variant of RRT* that
allows the search tree to change dynamically as the starting position or obstacle movement changes.
This variant can be useful when exploring unfamiliar terrain where frequent planning is required as
new terrain is revealed.

B 2.1.3 Risk-based RRT*

A shortest path is the typical goal of a path planning task, and so a distance function is used as a
cost function in RRT-based algorithms. However, in certain specific path planning problems, it may
be desirable to optimize different cost function. One example is a risk-based RRT* variant [2]. This
variant is proposed for small aircraft flying over cities and minimizes the number of casualties in
the case of in-flight failure. Furthermore, the risk increases with the length of the flight, so it also
naturally provides short trajectories but avoids areas with high population densities. Pseudocode of
this algorithm is listed in algorithm 2.

The input parameters are initial and target configurations, terrain altitude map, and no-fly zone
map.

First, based on the terrain altitudes, aircraft dynamics and locations of the landing sites, a safe
altitude map is generated to guarantee a safe landing under loss of thrust [12]. This is followed by
tree expansion, which unlike RRT* starts from the target configuration g¢. The tree expansion process
starts by randomly selecting the configuration ¢,,,q from this space. The nearest neighbor to this
configuration gpear in the sense of the length of Dubins maneuver is found [13]. In the steer step, a

4

2.1 Risk-based RRT*

Algorithm 2 Risk-based RRT* (inspired by [2])

Require: ginit — Initial configuration of the aircraft
Require: ¢; — Final configuration of the aircraft
Require: 7,;; — Altitude of the terrain (or obstacles)
Require: Z — Map of no-flight zones

Ensure: I' — The least risky trajectory

Ensure: R(q;) — Risk of trajectory I'

: Gy, A < SafeLandingMap(Z, Tat)

—_

20 G4+ (V< qp, E < 0)

3 Riqp) <0

4: repeat

5: Qrand < Sample()

6: (near < Nearest(grand, G)

7: Qnew < Steer(Qneara Qrand)

8: Qnear — Near(QHeW) G)

9: q* < argminanQnear [R(QH) + R(QneW7 QH)}
10: R(Qnew) — R(Q*) + R(QHevw Q*)

11: if isAdmissible((gnew, %), G1, A, Tai, Z) then
12: V + VU {¢new}

13: E + E U {(q*, gnew) }

14 G « Rewire(Qnpear, G)

15: end if

16: until HQnew - QzH < Aol

17: Qnear < Near(qiv G)

18: g* < argming co, . [R(qn) + R(qi, qn)]

19: R(q;) + R(gx) + R(qi, qx)

20: if not isAdmissible((¢;, g%), Gi, A, Tait, Z) then
21: goto Line 4

22: end if

new configuration gyey is created, at maximum distance Agiep. Since the configuration gynear has been
selected using the length of Dubins maneuver, the edge (Gnew, gnear) May not be an ideal edge in the
meaning of risk. Since computing the risk is computationally more demanding than computing the
length of Dubins maneuver, the set of k nearest neighbors Qycar in the sense of the length of Dubins
maneuver is first found. We assume that the risk of an edge will be correlated with its length. Now the
best parent g of a configuration gyney 18 selected from this small set, this time according to the risk.
If the edge (g*, gnew) is admissible, the configuration gney, with this edge is added to the graph. To
ensure optimality, edges in the vicinity of configuration gyey are rewire in the rewire step to minimize
the risk to the goal. Tree expansion continues until the distance from the initial configuration is less
than Ay,). Finally, the initial configuration itself is added to the graph and by following the parents
towards the target configuration, the resulting trajectory is retrieved.

Since this algorithm is used to plan the trajectory of the aircraft, it is necessary to respect its
dynamic constraints when planning. These constraints can be modelled by a Dubins airplane model

cos 0 cos)
_|sinf@cos®
=v sin 1 , (2.1)
ugp™!

where v is the speed of the aircraft, uy is the control input affecting heading angle, and p denotes the

minimum turning radius [2].

The edge admissibility check is performed by sampling the trajectory with sample distance dstep.
An edge is marked as admissible if none of the points intersects the no-fly zone and also is not below
the minimum safe height. Edges evaluated as inadmissible are rated with infinite risk.

The risk of an edge is defined as the integral of the risk in each aircraft configuration along trajec-
tory I multiplied by the probability of aircraft failure. This can be described by equation

T
R :pfaﬂ/o M(T'(t))dt, (2.2)

where the configuration risk is then defined as
M(@) = [pop(xIla) M, B2)i, @3
R

where pimp (x|T'bar) is the probability of impact and M (x, E,) denotes ground risk. + is the angle of
impact. The location = and energy E of impact can be determined from the description of the ballistic
curve described by equation

1
mv =mg — icpSHvHv. (2.4)
Ground risk is defined as

M(X7 Ea 7) = Dhnit (X, 7) Pcasualty (X> E), (25)

where ppit (X,) is the probability of hitting a person and Dcasualty (x, E) is the probability of casualty.
Peasualty (X, E) is described by equation

Phit (X,7) = p(x) Aexp (7)), (2.6)

where p(x) denotes the population density at the point of impact and the size of the exposed area
Aexp(77). Exposed area is described by equation

hy

2
tan('y) + 7T("“p + ruav) ; (27)

Aexp (’7) = 2(7"13 + ruav)

where hp, rp, and 7, denotes the height and radius of the average person and the radius of the aircraft.
Pcasualty (X, E) is defined as

1—-k
Pcasualty (X7 E) = N (2.8)
ﬁ S(x)
12k + \/% (E)
where S(x) is the shelter factor, « is the impact energy required to achieve peasuaity = 50 % for S = 6
and f is the impact energy causing the accident for S — 0 [2]. k is then defined as

k = min (1, (g) S(X)> . 2.9)

B 2.2 Field-programmable Gate Array

FPGA is a programmable digital circuit that allows to implement arbitrary combinational and sequen-
tial logic circuits based on software description. This is achieved by a large number of programmable
blocks that are capable of implementing basic logic operations. Each block contains a look-up table,
a multiplexer and a flip-flop circuit as shown in Figure 2.3 which shows a logic block structure of the

2.2.1 High-level Synthesis

LUT MUX

— CLK

Figure 2.3: One FPGA block of the Intel Cyclone V FPGA. The multiplexer interconnects the
look-up table and the D flip-flop circuit. By interconnecting multiple blocks using interconnecting
segments, any sequential circuit can be implemented.

Intel Cyclone V architecture. Any logic function with up to four inputs can be implemented using the
look-up table. By combining multiple blocks with flip-flop circuits, memory circuits can be created
and the multiplexer can be used to switch between these operations. These blocks can be connected
using interconnecting segments to create various logic circuits.

In addition to the programmable blocks, the FPGA contains several frequently used circuits that
are embedded as classical unchangeable circuits because of the efficiency and size of the correspond-
ing circuits built using programmable blocks, such as communication endpoints, memory blocks,
multipliers, and phase lock loops [14].

The process of building an FPGA circuit consist of multiple phases. First, the functionality of the
circuit has to be defined using the Hardware Description Language (HDL) code. Through the proces
of synthesis, the HDL code is converted into the desired gait circuit. The gait circuit is converted into
programmable blocks during mapping and the programmable blocks are placed in specific regions in
the FPGA during the place and route phase. Finally, the result is converted into a bitstream, which
can be loaded into the FPGA. This bitstream is used to configure the individual blocks and their
interconnections.

FPGAs represent an option in hardware development that brings a number of advantages. One
of the main advantages of the FPGAs is that there is no need to manufacture expensive custom chips
to create a custom circuit. This is advantageous for small series production where making custom
chips does not make economic sense. Compared to software emulation, an FPGA is much faster and
more economical. However, developing a hardware implementation is more challenging and more
time consuming than a software implementation for the CPU. Therefore, FPGAs are combined with
HPS containing traditional CPU. This allows to divide certain problems between the software part
and hardware part and exploit the benefits of both architectures. These combined systems are called
SoPC. Thus, while FPGA is suitable for real-time data processing due to its low latency and parallel
processing, HPS can perform sequential operations that are not worth implementing on FPGA.

B 2.2.1 High-level Synthesis

In this thesis, we design a component on FPGA to speed up the risk-based RRT* algorithm. To make
the design of the circuit easier, we use the HLS method. Unlike HDL languages, HLS allows us to
describe the circuit using a high-level programming language, usually C or C++. This allows the
circuit to be described at a higher level of abstraction, simplifying and speeding up the circuit design
process. The main advantage is that when the design is modified, the architecture is automatically
adjusted to optimize the circuit for the application. However, this also means that the designer has less
control over the architecture of the synthesized circuit.

Chapter 3
Performace analysis

In this chapter, we theoretically evaluate the computational complexity of each part of the RRT and
risk-based RRT* algorithms. In the first part, we examine the RRT algorithm in detail and determine
which of the sample, nearest neighbor search, steer, and configuration adding steps represent the
major bottleneck of the algorithm. We also describe some methods for accelerating these steps. In the
second part, we focus on the risk-based RRT* algorithm, emphasizing its differences from the basic
RRT variant.

B 3.1 Bottlenecks of RRT Algorithm

RRT algorithm is composed of four general steps - sample, nearest neighbor search, steer, and config-
uration adding. Changing this structure would imply the creation of a new algorithm, which is not the
goal of this thesis. Thus, to speed up the algorithm, we will look into the possibility of speeding up
these subproblems.

We first examine the sample and configuration adding steps. In the sample step, a new point in
the state-space is sampled. This operation can be accelerated by using more efficient pseudorandom
number generation algorithms, but this may result in non-uniform sampling. Since this operation
generally has constant time complexity, the speedup obtained by this modification is negligible. When
adding a new configuration to a graph, it depends mainly on the representation of the graph structure
in the memory. Using a different data structure may be more efficient, even at the cost of slower
configuration addition to the graph. Typically, the graph is represented by structures with constant
time complexity of adding a configuration, and thus it does not make sense to improve this step.

Finding nearest neighbour is a well-known non-trivial problem. Therefore, a number of solutions
have emerged. A straightforward solution is a linear search, i.e., compute the distance to each point
in the search set and select the point with the smallest distance. This solution has a time complexity
of O(n), but in the case of RRT-based algorithms in which this computation occurs repeatedly on an
ever-increasing set of points, this approach is impractical.

A better solution may be to use the k-d tree structure. As new points are added, they are arranged
in a binary tree according to their position in space. Each point divides the subspace in which it is
located into two parts according to the coordinate determined by its depth in the tree. Thus, if we
assume a two-dimensional space and the root node divides the space according to the x-axis, then
its descendants divide these parts of the space according to the y-axis. The descendants of those
descendants again divide that part of space along the x-axis, and so on. In such an ordered set of
points, finding the nearest neighbor is simple. We just use binary search to find the location of a point
in the tree and at each step calculate the distance between the point and present configuration. If the
distance is shorter than the distance found so far, we declare this point to be the nearest. This gives
us an approximate solution to the problem. We can now discard all branches that cannot contain a
closer point, allowing us to easily reject large groups of points. Finally, we verify the distance for
the remaining points, which will accurately determine the nearest neighbor. This solution has the
advantage of using a binary tree, which makes the time complexity only O(logn) [7]. Figure 3.1
shows a visualization of the k-d tree for two dimensional data.

Similarly, we can use an R-tree structure in which points are partitioned into a hierarchy of nested

Figure 3.1: Example of k-d tree structure for two-dimensional configuration space. Each point of
the tree divides the space into two parts. The first floor of the tree divides the space along the x-axis,
the second along the y-axis, and so on.

rectangles. Nearby points are enclosed in rectangles, nearby rectangles are enclosed in larger rectan-
gles, and so on. Finally, we obtain a tree structure of nested rectangles. This ensures that the nearest
neighbor is likely to be in the same rectangle as the reference point. This allows us to easily exclude
large groups of points that cannot be nearest neighbors [15].

Since RRT*-based algorithms include additional NNS calculations in the rewire step, the effi-
ciency of this algorithm has an even greater impact on performance. Another issue can be frequent
computation of the norm. In variants that use a more complicated relation instead of the standard
L2-norm, even with efficient NNS algorithms, the complexity of this step can be high.

The last, also non-trivial problem, is the steer step, in which a new configuration in the graph is
moved along the curve, between the new point and the closest configuration in the graph. This step
is mainly used to detect collisions with obstacles. The simplest solution is to sample the connecting
curve at several points where collisions will be checked. However, regardless of the sampling density,
this solution does not guarantee a collision-free edge. For robust collision detection, the obstacles in
the space must be made artificially larger, by more than half the sampling distance, and the curve must
be linear between these points. This ensures that if a pair of adjacent samples does not collide with an
obstacle, the edge between these samples cannot collide. While this solution ensures detection, it may
cause false collisions due to artificially enlarged obstacles [8].

Another option is to represent obstacles using polygons, which allows for linear edges to detect
collisions analytically. Since the polyhedrons can be complicated or high-dimensional, methods that
speed up detection are used in practice. One of these methods is using bounding boxes [16]. By
bordering the polyhedron using a bounding box, the o