
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Part localization for robotic manipulation

César Augusto Sinchiguano Chiriboga

Supervisor: Dr Gaël Écorchard.
May 2019

ii

Acknowledgements
Thanks a lot to Dr Gaël, not only for the
quick attention, the unconditional help
and the constant patience given to the
project, but thanks again to him for be-
lieving in me to the extent of having no
doubt in granting me the opportunity
to be part of the Intelligent and Mobile
Robotics Group by assigning me my final
project.

Dedicated to my beloved parents, Julia
Chiriboga and César Sinchiguano.

Declaration
I hereby declare that the presented work
was developed independently and that I
have listed all sources of information used
within it in accordance with methodical
instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 24, 2019

iii

Abstract
The new generation of collaborative

robots allows the use of small robot arms
working with human workers, e.g. the
YuMi robot, a dual 7-DOF robot arms
designed for precise manipulation of small
objects. For the further acceptance of
such a robot in the industry, some meth-
ods and sensors systems have to be de-
veloped to allow them to perform a task
such as grasping a specific object. If the
robot wants to grasp an object, it has to
localize the object relative to itself. This
is a task of object recognition in com-
puter vision, the art of localizing prede-
fined objects in image sensor data. This
master thesis presents a pipeline for ob-
ject recognition of a single isolated model
in point cloud. The system uses point
cloud data generated from a 3D CAD
model and describes its characteristics us-
ing local feature descriptors. These are
then matched with the descriptors of the
point cloud data from the scene to find
the 6-DoF pose of the model in the robot
coordinate frame. This initial pose esti-
mation is then refined by a registration
method such as ICP. A robot-camera cal-
ibration is performed also. The contri-
butions of this thesis are as follows: The
system uses FPFH (Fast Point Feature
Histogram) for describing the local region
and a hypothesize-and-test paradigm, e.g.
RANSAC in the matching process. In con-
trast to several approaches, those whose
rely on Point Pair Features as feature
descriptors and a geometry hashing, e.g.
voting-scheme as the matching process.

Keywords: Object Detection, Pose
Estimation, Robotics, Point Cloud Data

Supervisor: Dr Gaël Écorchard.
Czech Institute of Informatics, Robotics,
and Cybernetics, Office
B-323,Jugoslávských partyzánů 3, 160 00
Prague 6

iv

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 1
1.3 Thesis structure 2
2 Related work 3
2.1 Global Feature-Based Methods . . 3
2.2 Local Feature-Based Methods . . . 3
3 Background 5
3.1 Mathematical Tools 5
3.1.1 Rigid Transformations 5
3.1.2 Rotation Matrices 5

3.2 Basics of 3D Computer Vision . . . 6
3.2.1 RGB-D sensors 6
3.2.2 Camera Pinhole Model 7
3.2.3 Parameters of camera model . . 7
3.2.4 Camera’s Intrinsic Parameters 8
3.2.5 Camera’s Extrinsic Parameters 9

3.3 Robotic Operating System 9
3.4 Open-source Libraries 10
3.4.1 PCL . 10
3.4.2 Open3D 11

3.5 Software tools 11
3.5.1 CloudCompare 11
3.5.2 MeshLab 11
3.5.3 FreeCAD 12

4 Robot-Camera Calibration 15
4.1 Camera Calibration 15
4.2 Sensor internal parameter
calibration . 16
4.2.1 Camera Model 16

4.3 Eye-to-Hand Calibration 17
4.3.1 Calibration Targets 18
4.3.2 Checkerboard Patterns 18
4.3.3 Augmented Reality (AR) . . . 18
4.3.4 Selection 19
4.3.5 Pose Estimation Using a
Checkerboard Pattern 19

4.3.6 Coordinate Transformation
From Robot Base To Camera
Frame . 21

5 A 3D Object Pose Estimation
Pipeline 23
5.1 Pose estimation pipeline 23
5.1.1 Preprocessing stage 24
5.1.2 Filtering a Point cloud 24

5.1.3 Extract geometric feature . . . 26
5.1.4 Searching Strategies 28
5.1.5 Local refinement 29

6 Experimental Results 33
6.1 Robot-Camera Calibration on the
YuMi Robot 33
6.1.1 Reprojection Error 35
6.1.2 Result Analysis 38
6.1.3 Eye-To-Hand Calibration . . . 39
6.1.4 Calibration results 40
6.1.5 Result Analysis 41

6.2 Pose Estimation Pipeline 43
6.2.1 Validation Test 44
6.2.2 Pose Estimation Results 45
6.2.3 Result Analysis 47

6.3 Testing The RealSense D-415
Camera . 52

7 Conclusions and Future
Directions 59
Bibliography 61
A List of Notation 65
B Intrinsic Parameters 67
C Eye-To-Hand Calibration Results 69
D Assignment of this thesis 73
E CD contents 75

v

Figures
3.1 2 RGB-D sensors 6
3.2 Overview of a point cloud (from
MathWorks documentation) 7

3.3 View of a pinhole camera geometry
(from Camera Calibration and 3D
Reconstruction, OpenCV) 8

3.4 Overview of the transformation
between the focal plane and the
image plane . 8

3.5 Overview of a world coordinate
system and camera coordinate system 9

3.6 A ROS Overview 10
3.7 CloudCompare (view, edit and
process). 12

3.8 MeshLab (view, edit and process). 12
3.9 A view of the FreeCAD interface. 13

4.1 Overview of the camera pose
estimation system. The system
estimates the pose of the camera
frame relative to the world frame(also
known as robot base frame). Image
from [22]. 16

4.2 Overview of the intrinsic
calibration based on industrial
calibration ROS package with a 6× 9
checkerboard calibration target . . . 17

4.3 Overview of the camera pose
estimation system. The system
estimates the distance and
orientation to the local coordinate
system of the checkerboard 17

4.4 Overview of a 7× 9 checkerboard
calibration grid 18

4.5 ARTag, AprilTag and CALTag
markers example. Image from [20] 19

4.6 An 8× 9 Checkerboard Calibration
Target fixed on a custom-made plate 19

4.7 Visualization of the 3D world
coordinates system projeted onto the
2D image plane 21

4.8 Left: Visualization of the transform
(camera and target) relative to the
robot base frame using ROS Rviz
package. Right: Show an image used
in the camera pose estimation. . . . 22

5.1 General architecture of proposed
pose estimation pipeline 24

5.2 Flow Chart of Point Cloud
Processing For Filtering Outliar . . 25

5.3 Flow Chart of Point Cloud
Processing For Plane Segmentation 26

5.4 Left to Right: Input Image,
Output after voxelGrid 27

5.5 Flow Chart of Point Cloud
Processing For Keypoints detection 27

5.6 Flow Chart of Point Cloud
Processing For Plane Segmentation 27

5.7 Flow Chart of Point Cloud
Processing For Feature Detection . 28

5.8 Flow Chart of Point Cloud
Processing For Finding
Correspondence 30

5.9 Flow Chart of The Pose
Estimation Pipeline 31

6.1 Overview of the Validation System:
Checkerboard placement. 34

6.2 Overview of the Validation System:
Checkerboard placement and
Visualization in Rviz simulator. . . . 35

6.3 Mean Reprojection Error per
Image with the ROS Method (Astra
Orbbec Camera) 36

6.4 Mean Reprojection Error per
Image with the ROS Method
(RealSense D-435) 36
6.5 Mean Reprojection Error per
Image with the OpenCV Method
(Astra Orbbec Camera) 37
6.6 Mean Reprojection Error per
Image with the OpenCV Method
(RealSense D-435) 37
6.7 System setup and Visualization in
Rviz of the Validation Test with a
Constant Orientation. 40

6.8 System setup and Visualization in
Rviz of the Validation Test with
Tilting Motion. 41

6.9 System Setup for the Validation
Test . 44

vi

6.10 Ground Truth and Pose
Estimation: x-axis (1st Experiment,
Astra Camera) 45

6.11 Ground Truth and Pose
Estimation: y-axis (1st Experiment,
Astra Camera) 46

6.12 Ground Truth and Pose
Estimation: yaw angle (1st

Experiment, Astra Camera) 46
6.13 Ground Truth and Pose
Estimation: x-axis (2nd Experiment,
Astra Camera) 47

6.14 Ground Truth and Pose
Estimation: y-axis (2nd Experiment,
Astra Camera) 48

6.15 Ground Truth and Pose
Estimation: yaw angle (2nd

Experiment, Astra Camera) 48
6.16 Absolute Error: x-axis 49
6.17 Absolute Error: y-axis 49
6.18 Absolute Error: yaw angle 50
6.19 Point Cloud Sources: CAD model,
Astra Camera and RealSense D-435
Camera from top to bottom 51

6.20 Point Cloud Source: RealSense
D-415 Camera 53

6.21 Ground Truth and Pose
Estimation (2nd Experiment,
RealSense D-415 54

6.22 RGB Images of the Dataset . . 55
6.23 Results: Pose Estimation System
with the RealSense D-415 Camera 56

6.24 Overview 1: Pose Estimation
System with the RealSense D-415
Camera. 57

6.25 Overview 2: Pose Estimation
System with the RealSense D-415
Camera. 58

C.1 Eye-To-Hand Result with a
Constant Orientation of the
Calibration Plate (Astra Camera) . 69

C.2 Eye-To-Hand Result with Tilting
Motion of the Calibration Plate
(Astra Camera) 70

C.3 Eye-To-Hand Result with a
Constant Orientation of the
Calibration Plate (RealSense) 71

C.4 Eye-To-Hand Result with Tilting
Motion of the Calibration Plate
(RealSense Camera) 72

vii

Tables
6.1 Experimental data for internal
Astra sensor calibration. 38

6.2 Experimental data for internal
RealSense sensor calibration. 38

6.3 Mean Values and Standard
Deviation of the Repeatability Test
with a Constant Orientation of the
Calibration Plate(Astra Camera). . 42

6.4 Mean Values and Standard
Deviation of the Repeatability Test
with Tilting Motion of the
Calibration Plate (Astra Camera). 43

6.5 Mean Values and Standard
Deviation of the Repeatability Test
with a Constant Orientation of the
Calibration Plate (RealSense D-435
Camera). 43

6.6 Mean Values and Standard
Deviation of the Repeatability Test
with Tilting Motion of the
Calibration Plate (RealSense D-435
Camera). 44

6.7 Absolute Error Values between
Pose Estimation and Ground Truth
(Astra Camera). 52
6.8 Absolute Error Values between
Pose Estimation and Ground Truth
(RealSense D-415 Camera). 53

B.1 Calibration results: Intrinsic
Parameters . 67

viii

Chapter 1
Introduction

Within this chapter, the reader receives an outline of the general context
which surrounds this thesis. It starts with the motivation section and the
ultimate goal to be accomplished, and a summary of the thesis’ structure
follows.

1.1 Motivation

For years, the industrial robot has undergone enormous development. A
robot nowadays not only receives a command from the computer, but also
has the ability to make decisions itself. Such abilities are well known in the
world of the computer vision as recognizing and determining the 6D pose of
a rigid body (3D translation and 3D rotation).
However, finding the object of interest or determining its pose in either 2D
or 3D scenes is still a challenging task for computer vision. There are many
researchers working on it with methods that go from state-of-the-art to deep
learning ones where the object is usually represented with a CAD model or
object’s 3D reconstruction and typical task is the detection of this particular
object in the scene captured with RBGD or depth camera. Detection considers
determining the location of the object in the input image. This is typical
in robotics and machine vision applications where the robot usually does a
task like pick-and-place object. However, localization and pose estimation is
a difficult task due to the high dimension of the workspace. In addition, the
object of interest is usually sought in cluttered scenes under occlusion with
the requirement of real-time performance which makes the entire task much
more difficult.

1.2 Goal

We attempt to provide a system or pipeline for pose estimation of a rigid
object in point cloud design for random picking of an isolated object by
using depth images acquired from an RGB-D sensor. In addition to that, the
development of a system for determining the camera-robot pose.

The goal is to develop a suitable pipeline to localize an isolated object
where it can be suitable for future work such as a bin-picking system.

1

1. Introduction
1.3 Thesis structure

The thesis consists of eight chapters, References and Appendix. Chapter
2 gives a brief introduction to related work, Chapter 3 gives a theoretical
background to camera calibration and a gentle description to the main tools
used in this thesis such as OpenCV, Open3D, ROS, and software where the
CAD model is rendered. Chapter 4 presents the theory as well as every
individual step in details of the robot-camera calibration. Chapter 5 presents
the theory as well as every individual step in details of the implemented
system, and chapter 6 describes the evaluation of the system. Chapter 7
concludes the thesis and showcases possible future works.

2

Chapter 2
Related work

Most of the literature tackle the problem of 3D Object Recognition (object
detection and 3D pose estimation) by dividing into two broad categories as
follow:..1. Global Feature-Based Methods..2. Local Feature-Based Methods

The global feature-based methods process the object as a whole for recog-
nition. They define a set of global features which describe the entire 3D
object. On the other hand, the local feature based methods extract only local
surfaces around specific keypoints. They can handle occlusion and clutter
better when compared to the global feature-based methods.

2.1 Global Feature-Based Methods

The global feature-based methods define a set of global features which effec-
tively and concisely describe the entire model. Examples of the global feature
approach include shape distribution [5], and viewpoint feature histogram [4].
The global feature method ignores all details when it comes to the shape of
the object and requires a priori segmentation of the object from the scene.
Therefore, they are not suitable for recognition of a partially visible object
from cluttered scenes.

2.2 Local Feature-Based Methods

The second class of method, the local feature based methods extract only local
surfaces around specific keypoint. Yulan Guo et al. [29] presents a survey of
local feature descriptors and cluster them into the three main groups which
follow:..1. signature-based,..2. histogram-based, and..3. transform-based methods.

3

2. Related work.....................................
Yulan Guo et al. [29] in his survey claims that local features are much

better than global features 2.1 for object recognition in occlusion and clutter
scenes. This type of features has also proven to perform better in the area
of 2D object recognition. That is why it has been extended to the area of
3D object recognition. Most articles such as [30] and [25] follow this pipeline
and compare this with other local descriptors.

4

Chapter 3
Background

This chapter presents a brief theoretical background of mathematical tools
and basics of computer vision. In addition, the API and tools used in this
thesis. A reference is given for each topic described ahead.

3.1 Mathematical Tools

3.1.1 Rigid Transformations

A rigid transformation also called Euclidean transformation is a geometric
transformation of a Euclidean space that preserves the Euclidean distance
between every pair of points. The rigid transformations include rotations,
translations, reflections, or their combination. It can be shown that all rigid
transformations can be expressed as follows.

g(v) = R · v + t, R ∈ R3 (3.1)

A rigid transformation can be represented by using 4 × 4 matrices by
employing homogenous coordinates as follows:(

R t
0 1

)(
P
1

)
=
(
RP + t

1

)

In the equation 3.1 the matrix, R, is referred to as a rotation matrix and
has the following special properties.. R = (a b c), a, b, c ∈ R3. ‖a‖ = ‖b‖ = ‖c‖ = 1 All columns are unit length. a · b = b · c = c · a = 0 The columns are mutually orthogonal

3.1.2 Rotation Matrices

The matrix R, a set of 3× 3 matrices with the following properties, plus the
operation of matrix multiplication forms a group called SO(3) which stands
for special orthogonal group ∈ R3

R = (a b c), a, b, c ∈ R3 is a rotation matrix for R3 iff

5

3. Background

(a) : Astra Camera (b) : RealSense Camera

Figure 3.1: 2 RGB-D sensors

. RT ·R = I. det(R) = 1

Rotation Representations. A rotation can be expressed as a 3×3 matrix R ∈ SO(3) where RT ·R =
R ·RT = I and det(R) = 1. A rotation can also be expressed in terms of an angle θ and an axis
ω̂ ∈ R3 where ‖ω̂‖ = 1. It can relate to the matrix form via the Rodrigues
formula.

R = exp(θJ(ω)) = I + sin θJ(ω) + (1− cos θ)J(ω̂)2

. And finally a rotation matrix expressed as a unit quaternion:

(u0, u) = (cos(θ2), sin(θ2)ω̂)

3.2 Basics of 3D Computer Vision

3.2.1 RGB-D sensors

Nowadays novel camera systems like the Astra Orbbec and RealSense which
provide both color and depth images have become readily available. Therefore,
there are great expectations that such sensory devices will lead to a boost
of new 3D perception-based applications in the fields of robotics. We are
specifically interested in using RGB-D sensors for recognition and localization
of an isolated part. In this thesis, both cameras are used. See Figure 3.1 in
order to be acquainted with them.

Point Cloud

The received measurement data from the sensory device is converted into
a more generic data structure called point cloud, which is a set of vertices
in a three-dimensional coordinate system usually defined by X, Y, and Z

6

............................. 3.2. Basics of 3D Computer Vision

coordinates. The vertices are typically intended to represent the external
surface of an object. Point clouds can be acquired from hardware sensors
such as stereo cameras, 3D scanners, or time-of-flight cameras, or generated
from a computer program synthetically. In this thesis, the point cloud is
acquired from the sensory devices briefly described above in 3.2.1. Figure 3.2
shows an overview of a point cloud data.

Figure 3.2: Overview of a point cloud (from MathWorks documentation)

3.2.2 Camera Pinhole Model

There are many lens models but Pinhole camera is used in this thesis. A
pinhole camera is the simplest model that captures accurately the geometry of
perspective projection. The image of the object is formed by the intersection
of the light rays with the image plane. An illustration of the pinhole camera
is seen in Figure 3.3. This mapping from the three dimensions onto two
dimensions is called perspective projection. The camera projects point in
the world frame Pw = (X,Y, Z)T ∈ R3 through the pinhole to the point
pc = (u, v) on the image plane.

3.2.3 Parameters of camera model

We use (u, v, 1)T to represent a 2D point position in pixel coordinates or
image plane. And (xw, yw, zw, 1)T is used to represent a 3D point position
in world coordinates. Note: they were expressed in augmented notation of
homogeneous coordinates which is the most common notation in robotics
and rigid body transforms. Referring to the pinhole camera model, a camera
matrix is used to denote a projective mapping from world coordinates to pixel
coordinates (or image plane), the camera matrix is giving by Eq. 3.2.

7

3. Background

Figure 3.3: View of a pinhole camera geometry (from Camera Calibration and
3D Reconstruction, OpenCV)

zc ∗

 u
v
1

 = K ∗
[

R t
]
∗


Xw

Yw

Zw

1

 (3.2)

3.2.4 Camera’s Intrinsic Parameters

Images coordinates are measured in pixels, normally with the origin in the
left upper corner. The focal plane in the pinhole camera model is embedded
∈ R3 so we need to have a mapping that translates the points from the image
plane to pixels, see Figure 3.4.

K =

 fx 0 cx

0 fy cy

0 0 1

 (3.3)

Figure 3.4: Overview of the transformation between the focal plane and the
image plane

8

...............................3.3. Robotic Operating System

3.2.5 Camera’s Extrinsic Parameters

The transformation between the world coordinate system and the camera
coordinate system is achieved be a rotation and a translation. The translation
is represented by a vector t ∈ R3 and the rotation by a 3 × 3 orthogonal
matrix R. So R represents a rotation matrix, and it must satisfy the following
properties:

det(R) = 1 (3.4)

RT R = I (3.5)

Where I is the identity matrix. The matrix R and the vector t altogether
are called camera’s extrinsic parameters, see Figure.

Figure 3.5: Overview of a world coordinate system and camera coordinate system

The transformation of a representation of point in the world coordinate
system, Pw = (X,Y, Z)T into the camera coordinate system, Pc = (X,Y, Z)T

can be done with the following equation.

Pc = R.Pw + t (3.6)

The Equation 3.6 can also be written as:

Pc = [R t]
[
Pw

1

]
(3.7)

3.3 Robotic Operating System

For this thesis The Robotic Operating System (ROS) is used as main platform.
In addition to that, it is used for visualization purpose and debugging steps.
ROS is a flexible framework for writing robot software. It is a collection of
tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behaviour across a wide variety of robotic platforms.
It is based on the concepts of nodes, topics, messages and services. A node is an

9

3. Background
executable program that performs computation. Nodes need to communicate
with each other to complete the whole task. The communicated data are called
messages. ROS provides an easy way for passing messages and establishing
communication links between nodes, which are running independently. They
pass these messages to each other over a topic. Topics are asynchronous
communication. As to, a synchronous communication, it is provided by
services. Services act in a call-response manner where one node requests that
another node execute a one-time computation and provide a response. For
more details about ROS, the reader can refer to [6].

Figure 3.6: A ROS Overview

3.4 Open-source Libraries

3.4.1 PCL

The PCL framework [7] contains numerous state-of-the art algorithms includ-
ing filtering, feature estimation, surface reconstruction, registration, model
fitting and segmentation. These algorithms can be used, for example, to filter
outliers from noisy data, align 3D point clouds together, segment relevant
parts of a scene, extract keypoints and compute descriptors to recognize
objects in the world based on their geometric appearance, and create surfaces
from point clouds and visualize them.

For different processing steps, a Python bindings for the Point Cloud
Library (PCL) is used. This is a released with few capabilities of PCL
designed for python developers. At present the following features of PCL,
using PointXYZ point clouds, are available;..1. I/O and integration; saving and loading PCD (point cloud data) files..2. segmentation..3. sample consensus model fitting (RANSAC, cylinders, planes, common

geometry)

10

.................................... 3.5. Software tools..4. smoothing (median least squares)..5. filtering (voxel grid downsampling, passthrough, statistical outlier re-
moval)..6. exporting, importing and analysing pointclouds with numpy

3.4.2 Open3D

For 3D registration, Open3D is used in this thesis which is an open-source
library that supports rapid development of software that deals with 3D
data. The Open3D frontend libray exposes a set of carefully selected data
structures and algorithms in both C++ and Python. Open3D provides
data structures for three kinds of representations: point clouds, meshes, and
RGB-D images. For each representation, it offers a complete set of basic
processing algorithms such as sampling, visualization, and data conversion.
In addition, Open3D provides implementations of multiple state-of-the-art
surface registration methods, including pairwise global registration, pairwise
local refinement as the ICP registration [9], and multiway registration using
pose graph optimization.

3.5 Software tools

For the purpose of rendering, convertion and manipulation of any 3D data
(CAD model) several tools from the open-source communities are used in this
thesis such as CloudCompare, MeshLab and FreeCAD.

3.5.1 CloudCompare

CloudCompare is a 3D point cloud (and triangular mesh) processing software.
It has been originally designed to perform a comparison between two dense
3D points clouds or between a point cloud and a triangular mesh. In addi-
tion to that, it has tools for dealing with point cloud processing, including
many advanced algorithms (registration, resampling, colour/normal/scalar
fields handling, statistics computation, interactive or automatic segmentation,
etc.)[12]. In this thesis, the tools of resampling and scaling are used for the
purpose of producing an adequate point cloud generated from a CAD model
or sensory device.

3.5.2 MeshLab

For purpose of inspecting the quality of point cloud either the reference point
cloud or the target point cloud Meshlab is used in this thesis. It is an open
source system for processing and editing 3D triangular meshes. It provides a
set of tools for editing, cleaning, healing, inspecting, rendering, texturing and
converting meshes. It offers features for processing raw data produced by 3D
digitization tools/devices and for preparing models for 3D printing [13].

11

3. Background

Figure 3.7: CloudCompare (view, edit and process).

Figure 3.8: MeshLab (view, edit and process).

3.5.3 FreeCAD

In this thesis, FreeCAD is used for modeling and rendering a 3D object. It is
primarily made for mechanical design, but also serves all other uses where you
need to model 3D objects with precision and control over modeling history
[14].

12

.................................... 3.5. Software tools

Figure 3.9: A view of the FreeCAD interface.

13

14

Chapter 4
Robot-Camera Calibration

This section presents the theory as well as each individual step of the proposed
system for estimating the tranformation between the camera and the robot.
Such a task is also known as a robot-camera calibration. The robot-camera
calibration can be divided into intrinsic and extrinsic camera calibration
also known as Eye-To-Hand calibration. Normally, it is sufficient to perform
an intrinsic camera calibration only once. And reliable methods already
exist. As to the extrinsic camera calibration is more application specific. It
generally requires the position of the camera frame relative to a calibration
target frame to be known. Therefore, the proposed method for estimating
the robot-camera pose in this thesis is based on tracking a calibration target
attached to the end-effector of the robot with known forward kinematics.

4.1 Camera Calibration

Camera calibration is the process of estimating intrinsic and extrinsic parame-
ters. The intrinsic parameters deal with the camera’s internal characteristics,
such as its focal distance, distortion and image centre. The extrinsic parame-
ters represent the position and orientation relative to the calibration target.
In this thesis the camera calibration is treated separately and can be divided
into two main stages:

. Sensor internal parameter calibration such as lens distortion, focal dis-
tance, and optical center (image center). In addiction to that, for RGB-D
cameras, color and depth image.. Robot-camera calibration: the pose (position and orientation) of a camera
coordinate system in a reference coordinate frame. In this thesis we also
refer to it as to Eye-to-Hand calibration. The transformation from the
camera coordinate system to the robot base coordinates system (also
called world coordinates system interchangeably in this thesis) is shown
in Figure4.1

Normally, it is sufficient to perform an internal camera parameter calibration
only once for each device unless the lens or sensors itself will be changed or

15

4. Robot-Camera Calibration

Figure 4.1: Overview of the camera pose estimation system. The system
estimates the pose of the camera frame relative to the world frame(also known
as robot base frame). Image from [22].

modified. Reliable calibration methods already exist, which are widely used
[15] [16].

Robot-camera calibration, on the other hand, is more application specific
and an important stage of any 6-DoF pose estimation system according to
[23] [24].

4.2 Sensor internal parameter calibration

4.2.1 Camera Model

The choice of camera model influences the final calibration results, so the
first step is to select an appropriate camera model. In this thesis, the pinhole
camera model 3.2.2 is used. It describes the mathematical relationship between
the coordinates of a point in three-dimensional space and its projection onto
the image plane of an ideal camera.

The MATLAB, OpenCV and the camera_calibration ROS [17] packages
are the most popular systems for camera calibration. They are already
available for checkerboard detection based on the pinhole model and the
method proposed by Zhang [15], All of them introduce the radial distortion and
tangential distortion. In this thesis, the OpenCV and camera_calibration
ROS packages are used for the purpose of comparison. The technique proposed
by Zhang only requires the camera to observe a calibration target shown at
a few (at least three) different orientations. The technique relates known
points in the world to points in an image, in order to do so, one must first
acquire a series of known world points. The most common method is to use
known planar objects (checkerboard calibration grid) at different orientations

16

................................4.3. Eye-to-Hand Calibration

with respect to the camera to develop an independent series of data points.
The calibration object chosen in this thesis is a 6× 9 checkerboard with the
corner points as the known world points as seen in Figure 4.2.

Figure 4.2: Overview of the intrinsic calibration based on industrial calibration
ROS package with a 6× 9 checkerboard calibration target

4.3 Eye-to-Hand Calibration

In order to know the pose of the camera coordinate system relative to the
world coordinate system, also known as robot base frame, extrinsic calibration
(estimation of the rotation and translation of the camera frame) method will
be used. In this thesis, the method for extrinsic camera calibration based on
a planar calibration target is used. It is assumed, camera intrinsic parameters
and distortion coefficients are known in advance 4.2.1 and fixed during the
entire sequence. Such a system is shown in Figure 4.3.

Figure 4.3: Overview of the camera pose estimation system. The system
estimates the distance and orientation to the local coordinate system of the
checkerboard

17

4. Robot-Camera Calibration
4.3.1 Calibration Targets

There are many types of camera calibration targets for use in imaging systems.
In this thesis the planar targets are use since they can be easily printed with
a standard printer and fixed to a surface. Planar targets can be subdivided
as follow:. Repeated pattern e.g. checkerboard patterns. Non repeated pattern e.g augmented Reality (AR)

4.3.2 Checkerboard Patterns

Checkerboard calibration targets, where the calibration points are the corner
points between squares, are one of the most frequently-used targets. This
pattern is simple to produce and allows for high accuracy because the corner
points can be detected to subpixel precision. For example, the popular
OpenCV library already contains algorithms to automatically locate plain
checkerboards. Figure 4.4 shows an example of checkerboard calibration
target.

Figure 4.4: Overview of a 7× 9 checkerboard calibration grid

4.3.3 Augmented Reality (AR)

AR markers also called Fiducial (individually identifiable) markers have
become increasingly popular in recent years. Such markers can be used in
a variety of settings such as camera calibration, where small markers are
used, those who encode a unique code for identification purposes. There are a
large number of markers available. One of the most common fiducial marker
designs includes rectangular patterns with identification codes in the interior
such as ARTag(2005), AprilTag and CALTag to name few. Refer to [20]

18

................................4.3. Eye-to-Hand Calibration

Figure 4.5: ARTag, AprilTag and CALTag markers example. Image from [20]

4.3.4 Selection

In this thesis, the checkerboard pattern is used. This pattern is simple
to produce and allows for high accuracy because the corner points can be
detected to subpixel precision [19]. The calibration target located on the
custom-made plate is shown in Figure 4.6

Figure 4.6: An 8× 9 Checkerboard Calibration Target fixed on a custom-made
plate

4.3.5 Pose Estimation Using a Checkerboard Pattern

The task of estimating the pose of a calibrated camera given a set of n 3D
points relative to a world and their corresponding 2D projections on the
image plane is a fundamental and well-understood topic in computer vision,
and it is referred to as a Perspective-n-Point problem in most of the literature.
OpenCV provides several methods to solve the Perspective-n-Point problem
which returns R (rotation) and t (translation). In order to use the OpenCV

19

4. Robot-Camera Calibration
capabilities, the image needs to have a suitable format that OpenCV can
use. In this thesis, the Robot Operative System is used, which is a suitable
platform due to its modular design and rapid integration for a large amount
of robot and sensor types. With the help of ROS, the system is split into two
nodes also called scripts. The first one which deals with the image acquisition
and converting into the right format that OpenCV can use. And the second
one, where the algorithm for the pose estimation is implemented. It takes
into account the modified image done in the first part. Since a ROS system
is modular and each node communicates one another with pass-through
messages. The algorithm can be seen in Algorithm 1.

Data:..1. RGB image data..2. Intrinsic parameters

Result:..1. R ∈ R3 and t ∈ R3

T ← T0 ;
while ros :: ok() do

if image then
Corners are searched in the image scene where a checkerboard is
placed with corner detector algorithm already available in
OpenCV.

The pose of the camera is calculated with the OpenCV algorithm
such as solvepnp()
Publish T, pose, to the ROS network.

else
continue

end
end

Algorithm 1: Pose Estimation Using a Checkerboard Pattern
As seen in 1, solution to the Perspective-N-Point problem is solved by the

OpenCV solvepnp() or solvePnPRansac() functions. Both methods solved the
problem by matching a predefined grid of corner locations in the checkerboard
to the grid of detected corners in the image plane. These functions need to
know the camera matrix and the distortion coefficients in advance. A main
feature of the solvePnPRansac function, is that it uses a RANdom SAmple
Consensus (RANSAC) method to minimize the error between correspondence
points. Both functions can use the following methods to solve the PnP
problem:

. CV_ITERATIV E(default).. CV_P3P.. CV_EPNP.

20

................................4.3. Eye-to-Hand Calibration

In this thesis, the default one is used. The function outputs a translation
and rotation of the object in the camera coordinate system. The rotation is
given as 3× 1 Rodrigues rotation vector. This later is converted first into a
rotation matrix, then to a quaternion which is the standard representation
for rotation in ROS. The resulting transformation is published over ROS
network for subsequent use. A projection of 3D points expressed in world
frame onto the 2D image plane is shown in Figure 4.7. For more details about
the solution Perspective-n-point(PnP) refer to [21]

Figure 4.7: Visualization of the 3D world coordinates system projeted onto the
2D image plane

4.3.6 Coordinate Transformation From Robot Base To
Camera Frame

From the rigid transformation theory described in 3.1.1, the orientation
and translation calculated in 4.3.5, can be represented in a 4× 4 matrix by
employing homogeneous coordinates as follows:(

R t
0 1

)
(4.1)

Eq. 4.1 is called the Euclidean transformation, also known as transform.
Where R ∈ R3 is the rotation matrix and t ∈ R3 is the translation vector,
altogether representing the pose of the camera frame relative to the calibration
target frame.
It is assumed that the transform between the end-effector (or tool centre
point) and the robot base, RTT CP , is known from the forward kinematics of
the robot. In addition to that, the transform from the end-effector frame

21

4. Robot-Camera Calibration
relative to the calibration target frame, T CPTT , was defined according to our
need when the custom-made plate, Figure 4.7, was designed.

Since the transform tree is already made, we can retrieve the pose of the
camera relative to the robot base frame as follow:

RTC =R TT CP ·T CP TT ·T TC (4.2)

In Eq. 4.2, RTC represents the transform from the camera frame relative to
the robot base frame. Since the whole system is based on the Robot Operative
System (ROS), which is due to its modular design and available integration
for a large amount of robot and sensory device, the pose of the camera frame
relative to the base frame can be also found with the help of ROS package tf.
In Figure 4.8, RTC is shown calculated by software mean.

Figure 4.8: Left: Visualization of the transform (camera and target) relative to
the robot base frame using ROS Rviz package. Right: Show an image used in
the camera pose estimation.

22

Chapter 5
A 3D Object Pose Estimation Pipeline

This section presents the theory as well as each individual step of the im-
plemented system in detail. The implemented system, or pose estimation
pipeline as we refer to interchangeably in this thesis, is fed with two point
clouds as input data, one generated from the CAD model and the other one
is generated from the output sensory device (RealSense or Astra camera for
purpose of comparison).

The 3D CAD model is rendered with the use of software tools described in
the previous chapter. The pipeline has two parts, the first part as we refer to
as the offline stage where the CAD model is preprocessed, and the second
one is an online stage where the point cloud taken from the scene undergoes
a preprocessing step similar to the one described above. In addition, several
filter techniques are used in order to segment the ROI (region of interest) and
as a final step a matching strategy is applied where it outputs a 6-DOF pose
estimation of the object.

5.1 Pose estimation pipeline

Using a local feature base method, the pose estimation pipeline is seen in
Figure 5.1. The pipeline used in this thesis is inspired by [1], [2] and [3]
with two major modifications. The first one being that the pipeline used in
this thesis has the filtering part included in the preprocessing stage in order
to better isolate the 3D object. The second modification is related to the
matching strategy[25], where in most of the literature, the preferred strategy
is hash-table-based voting scheme. A hypothesize-and-test paradigm[25], e.g.
RANSAC scheme, is a more suitable method for the purpose of this thesis.
For more detail about matching strategies, the reader should refer to the
reference.

For the offline stage the 3D CAD model is converted to a point cloud data
(PCD) format for a better subsequent use. As to the online stage, the pose
estimation pipeline takes as input both clouds, the first one, a cloud from
the 3D CAD model and the second one, a cloud from the scene, both clouds
are filtered in order to remove noise and outliers. Since this is a tabletop
application, we need to extract the candidate point cloud from the table.
The table can be removed from the cloud with RANSAC as it was done in

23

5. A 3D Object Pose Estimation Pipeline..........................
[3], which is used to find the largest plane in the image. After, both clouds
are downsampled by a Voxel Grid (VG) filtering method, and key points
with their features descriptors are computed. Then the two clouds are fed to
the matching algorithm where a coarse 6-DoF pose (3 for translation and 3
for rotation) is obtained. The coarse pose is refined with an ICP algorithm
registration. Each step is carefully explained in details ahead.

Figure 5.1: General architecture of proposed pose estimation pipeline

5.1.1 Preprocessing stage

After the filtering step, which is only applied to the point cloud representing
the scene. The two clouds are downsampled with the technique already
implemented in the Point Cloud Library, such as voxelgrid (VG) filter or
approximate voxelgrid filtering. This step is required for speeding up the
computation process. Since it is a computer vision problem known as tabletop,
it has a dominant plane. Therefore, RANSAC is used to find this dominant
plane in the image.

5.1.2 Filtering a Point cloud

The point cloud from the output sensory device contains undesired points,
those are often noisy and contains outliers that lead to a high computation
time and possibly produces a wrong pose estimation of object. Therefore, it
is crucial to remove the noise and outliers from the point cloud in order to
obtain accurate point clouds that are suitable for further processing.

In order to identify these suitable point clouds, algorithms for filtering them
are already implemented in the Point Cloud Library such as Conditional Re-
moval, Radius/Statistical Outlier Removal, Color Filtering and Passthrough.
Since there are few widely used techniques already developed for point cloud
filtering. Some of them are aimed at reducing the amount of points in order
to speed up the computation time. Others are used to discard outliar. In this
thesis we exploit a simple and commonly used filtration pipeline which has
been proven to be an effective combination of methods in several works [26].

24

................................5.1. Pose estimation pipeline

Filtering a PointCloud using a PassThrough filter

PassThrough passes points in a cloud based on constraints or threshold for
one particular field (X,Y,Z) of the point type. Namely, it removes points
where values of selected field are out of range. The filtration pipeline can be
seen in the Figure 5.2. For more details and working examples the reader
should refer to [7]

Figure 5.2: Flow Chart of Point Cloud Processing For Filtering Outliar

Plane Segmentation

Since the point cloud from the scene contains undesirable points such as
points that represent a table where the object is kept. Further filtering is
needed, such filtering is known as plane segmentation. And it is achievable
with the RAMSAC based plane fitting method. RAMSAC method finds the
largest set of points that fit a plane. The plane equation in three-dimensional
point cloud can be defined as:

ax+ by + cz + d = 0 (5.1)

Where the a,b, and c, are the parameters of the plane and d is the distance
of the plane from the origin.

RAMSAC selects randomly three points from the dataset and computes
the parameters of the corresponding plane, after that it tries to make the
plane bigger according to a given threshold,[28]. The step of segmenting the
plane in order to remove it is a required condition for the subsequent use.
Where a global registration is applied. The method is seen in Algorithm 2

25

5. A 3D Object Pose Estimation Pipeline..........................
and the flow chart is seen in Figure 5.6

Result: o (object candidate point cloud)
Data: p (3D point cloud), τ , MaxIter, IR
while t < MaxIter - InlierRatio > IR do

Pick 3 points (A, B, C) at random from p ;
Fit a plane (ax + by + cz + d = 0) to these 3 points;
AB = B - A;
AC = C - A;
N = AB x AC;
N has the values of (a, b, c);
d = −AT ·N ;
Find outlier points o (object candidate points)
f(x) > τ
Here, f (x) is plugging in point x into the plane equation divided by
the norm of N to measure residual and τ is the threshold
Find Inlier Ratio as ratio of number of inlier points to total number
of points

end
Algorithm 2: RANSAC for plane segmentation [3]

Figure 5.3: Flow Chart of Point Cloud Processing For Plane Segmentation

5.1.3 Extract geometric feature

3D keypoint Detection

Keypoints are relevant points that maintain as much as possible the shape of
the object. In order to identify these relevant points, detection methods are
used. In addition to that, keypoints are found by sampling the point cloud
or downsampling the cloud with VoxelGrid filter.

Voxel Grid filtering method [26] creates a 3D Voxel Grid (3D boxes in 3D
space) for each one of the point cloud (model and scene cloud). Then, in
each voxel, a point is chosen to approximate all the points that lie on that
voxel. Usually, the centroid of these points is used as the approximation. The
centroid is slower than the center approximation. As a remark, the voxel grid
method often drives to geometric information loss. See Figure 5.4 to see the
result of applying voxel grid. For more information, the reader should see
[27].

Local surface feature description

Vertex normal estimation

26

................................5.1. Pose estimation pipeline

Figure 5.4: Left to Right: Input Image, Output after voxelGrid

Figure 5.5: Flow Chart of Point Cloud Processing For Keypoints detection

For the subsequent use, normal estimation of both point clouds, model and
scene are computed. The approach implemented to compute the normal in
this thesis is the vertex normal estimation, a directional vector associated
with a vertex, intended as a replacement to the true geometric normal of the
surface. The algorithm is already implemented in the open3D [8] library. It
computes the normal for every point by finding adjacent points and calculating
the principal axis of the adjacent points.

Figure 5.6: Flow Chart of Point Cloud Processing For Plane Segmentation

27

5. A 3D Object Pose Estimation Pipeline..........................
Local surface feature description

Once the keypoints have been detected for the model and scene point clouds,
geometric information of the local surface around those keypoints are extracted
and encoded into feature descriptors. According to the approaches employed
to construct the feature descriptors in [29], is classified into three group:
signature-based, histogram-based and transform-based method. In this thesis
the approach of histogram-based method is used. Namely, Fast Point Feature
Histogram, FPFH, this method describe the local neighborhood of a keypoint
by generating histograms according to the geometric attributes(e.g normals)
of the local surface.

Figure 5.7: Flow Chart of Point Cloud Processing For Feature Detection

Fast Point Feature Histogram
Fast Point Feature Histogram (FPFH) [30], is a developed version of the Point
Feature Histogram (PFH) [30] with a reduced computational complexity and
the same discriminative power.

The generation of a FPFH descriptor consists of two steps. In the first
step, a Darboux frame is defined (u = ni, v = (pj × pi) · u,w = u × v) for
each point pair (pi and pj). Then for each query point p it computes only
the relationships between itself and its neighbors as follows:

α = v · nj

φ = u · (pj − pi)
|pj − pi|

(5.2)

θ = arctan(w · nj , u · ni)

The computation above is called a Simplified Point Feature Histogram (SPFH)
which is binned by three angular variations (α, φ, θ). Then in the second step,
the FPFH of each point is computed using both the SPFH of itself and the
weighted ones of its neighbours as follow:

FPFH(p) = SPFH(p) + 1
k

k∑
n=1

1
ωk
SPFH(pk) (5.3)

Where the weight ωk represents the distance between query point p and a
neighbor point pk in a given metric space.

5.1.4 Searching Strategies

Once both point clouds (object and scene) have been filtered and their
shape described, the next step is to find correspondences between them.

28

................................5.1. Pose estimation pipeline

Therefore, a searching strategy is needed in order to find the proper point
correspondence between the two point clouds. Approaches vary in terms of
how the correspondence between the scene and model feature is achieved,
how a consistent set of matches is derived from the scene-model feature
correspondence and how the pose is estimated from a consistent set of
correspondence. [25] describes the popular and important approaches to
recognition and localization of 3D objects as follow:. hypothesize and test.matching. relational structures. Hough (pose) clustering. geometry hashing. interpretation tree search and. iterative model fitting techniques.

In this thesis, a hypothesize-and-test approach is used due to its availability
in the Open3D library. In the hypothesize-and-test paradigm, 3D transforma-
tion from the object model coordinate frame to the scene coordinate frame is
first hypothesize to relate the model features with the scene features. The
transformation is used to verify the match of model features to the scene
features. This hypothesized matching is either accepted or rejected depend-
ing on the amount of matching error, e.g. RANdom SAmple and Consesus
(RANSAC) is a representative method of this approach.

RANSAC-based method

RANdom SAmple and Consesus (RANSAC)[25] is an iterative method de-
signed to find the parameters of a model from a set of data which contains
outliers. Given an input noisy data, RANSAC finds the parameters that
adjust the input data to a given model, discarding the outliers. In this thesis
the RANSAC is used for global registration. In each RANSAC iteration,
random points are picked from the model point cloud. Their corresponding
points in the scene point cloud are detected by querying the nearest neighbor
in the 33-dimensional FPFH feature space. The pruning step uses fast pruning
algorithms to quickly reject false matches early. Only matches that pass the
pruning step are used to compute the transformation, which is validated on
the entire point cloud.

5.1.5 Local refinement

The last step of the pipeline is the refinement of the alignment achieved by a
coarse matching generated in 5.1.4. This step is also commonly referred to as
"Fine matching". This alignment is further refined using a surface registration

29

5. A 3D Object Pose Estimation Pipeline..........................

Figure 5.8: Flow Chart of Point Cloud Processing For Finding Correspondence

method, such as the Iterative Closest Point (ICP) algorithm, this method is
a standard step after the initial estimates for the relative poses due to its
sensitivity to local optimal and reliability.

Iterative Closest Point

The key concept of the standard ICP algorithm can be summarized as follow:..1. For each point in the source point cloud, finds the closest point in the
target point cloud...2. Estimate the combination of rotation and translation using a root mean
square point to point distance metric minimization technique which will
best align each source point to its correspondence found in the previous
step...3. Transform the source points using the obtained transformation...4. Iterate.

Iteratively repeating these steps typically results in convergence to the
desired transformation. In most implementations of ICP, the choice of the
distance metric which we refer to as dmax represents a trade off between con-
vergence and accuracy. A low value results in bad convergence(the algorithm
becomes "short sighted"), a large value causes incorrect correspondences to
pull the final alignment away from the correct value. The standard ICP
algorithm is seen in Algorithm 3. For more details about the ICP and its
variants, the reader should refer to [25] and [31].

30

................................5.1. Pose estimation pipeline

Standard ICP is seen in Algorithm 3.
Data:..1. Two point clouds: A = {ai}, B = {bi}..2. An initial transformation: T0

Result:..1. The correct transformation, T, which aligns A and B

T ← T0 ;
while not converged do

for i← 1 to N do
mi ← FindClosestPointInA(T · bi);
if ‖mi − T · bi‖ 6 dmax then

ωi ← 1;
else

ωi ← 0;
end

end

T ← argmin
T

N∑
n=1

ωi‖mi − T · bi‖2;

end
Algorithm 3: Standard ICP

Figure 5.9: Flow Chart of The Pose Estimation Pipeline

31

32

Chapter 6
Experimental Results

This chapter presents the experiments and the results for the evaluation of
the following methods: a proposed robot-camera calibration method and the
3D object pose estimation method. The robot-camera calibration method was
inspired by [24]. As to this method, the internal parameters of the camera
need to be estimated. Methods for estimating the internal parameters, also
known as intrinsic parameters of the camera already exists and two of the
most popular methods available in the open-source community were selected.
A detailed description of these methods is in Chapter 4. In order to validate
the output of the intrinsic parameters, a reprojection error as a metric is
selected in this thesis. Then, with the most accurate internal parameters,
the camera-robot calibration proceeds. A repeatability test, as a validation
test for the result of the robot-camera calibration follows the calibration
step. Finally, with the most accurate result of the robot-camera calibration,
experiments for testing the 3D pose estimation system starts. For the purpose
of testing, an industrial object is required as well as its CAD model. The
latter is accomplished with the use of the FreeCAD software 3.5.3, then,
a suitable scaling undergoes with the use of CloudCompare software 3.5.1,
where a point cloud is generated. As to the validation of the method, a ground
truth of the object needs to be known in advance. For such a requirement a
checkerboard is used as described in Figure 6.1 and Figure 6.2. By placing
the robot TCP at specific points (three points in total), the checkerboard can
be localized and a new workobject is produced. The checkboard workspace is
used to determine the ground-truth of the object pose which is compared with
the 3D object pose estimation system described in Chapter 5. The system is
evaluated by analyzing the translation and rotation errors.

6.1 Robot-Camera Calibration on the YuMi Robot

In order to get the most accurate estimation of the robot-camera pose, careful
attention must be given to the internal parameters of the camera which is a
determining factor when determining the accuracy of the extrinsic parameters.
For such estimation of those parameters, two methods were selected and a
detailed description of both is shown in Chapter 4. An Astra camera and a
RealSense D-435 camera are used in this thesis. The cameras are calibrated

33

6. Experimental Results

Figure 6.1: Overview of the Validation System: Checkerboard placement.

34

...................... 6.1. Robot-Camera Calibration on the YuMi Robot

Figure 6.2: Overview of the Validation System: Checkerboard placement and
Visualization in Rviz simulator.

with the methods previously mentioned and their results are shown in B. As
to the validation process, a reprojection error is used. Since it is one of the
most used metrics, it is used in this thesis.

6.1.1 Reprojection Error

The reprojection error is the distance between a pattern keypoint detected in
a calibration image and a corresponding world point projected into the same
image. Figure 6.6 and Figure 6.4 show the calibration results by analyzing
the reprojection error per image using a RealSense D-435 camera with the
OpenCV and camera_industrial calibration methods. Figures 6.5, 6.3 show
the calibration results by analyzing the reprojection error per image using
an Astra camera. The results were analyzed using the reprojection error per
image with both methods: the OpenCV and camera_industrial calibration.

In order to discuss the results for each case, an average error is calculated.
This is done by computing the arithmetical mean of the errors calculated

35

6. Experimental Results

Figure 6.3: Mean Reprojection Error per Image with the ROS Method (Astra
Orbbec Camera)

Figure 6.4: Mean Reprojection Error per Image with the ROS Method (Re-
alSense D-435)

36

...................... 6.1. Robot-Camera Calibration on the YuMi Robot

Figure 6.5: Mean Reprojection Error per Image with the OpenCV Method
(Astra Orbbec Camera)

Figure 6.6: Mean Reprojection Error per Image with the OpenCV Method
(RealSense D-435)

37

6. Experimental Results
for all the calibration images. And that result should be as close to zero as
possible according to the literature in computer vision.

6.1.2 Result Analysis

After computing the average error for both cameras, the results are shown
in Table 6.1 for the Astra camera and Table 6.2 which is for the RealSense
D-435.
As seen in Figure 6.3 and Figure 6.5, the overall mean errors of the Astra
camera computed for both method are correlated to each other. The repro-
jection error was obtained from OpenCV and camera_industrial calibration,
which showed very similar figures with only a small offset. This difference
is acceptable. The requirement is to be under 0.5 pixels, a specified value
accepted as determining how accurate a device sensor is.

On the other hand, the results for the RealSense camera are not as closely
correlated to one another method. The sensor might be more sensitive to small
movement in the calibration target resulting in taking wrong measurements.
In addition to that, the light condition can also affect the sensory device since
the data taken is an RGB image. Such a difference presented in the mean
reprojection error can largely affect the output accuracy of the estimation of
the camera frame relative to the robot frame by applying the eye-to-hand
calibration. In order to confirm that this difference holds we proceeded to
take new measurements, without moving the calibration target when the
sensory device is taking its sample. Then the whole process is evaluated again.
The difference holds between methods, but meet the requirements of being
under 0.5 pixels. With the results it is too early to conclude the effectiveness
of the RealSense D-435 camera. Keeping this difference in mind, we proceed
with the next experiment for validating the robot-camera calibration.
Both cameras were calibrated with the same light conditions, calibration
target and an equal number of images. Considering all of this, it can be
concluded that the Astra camera seems to perform well and it can be our
final choice for the pose estimation system evaluation.

Method Overall Mean Error (pixels)
OpenCV 0.1041954808
ROS 0.1081118023

Table 6.1: Experimental data for internal Astra sensor calibration.

Method Overall Mean Error (pixels)
OpenCV 0.1684388411
ROS 0.122868849

Table 6.2: Experimental data for internal RealSense sensor calibration.

38

...................... 6.1. Robot-Camera Calibration on the YuMi Robot

6.1.3 Eye-To-Hand Calibration

The second experiment in this Chapter 6 is related to the eye-to-hand cali-
bration. In this experiment, both cameras, the Astra and RealSense D-435,
are used for the validation test. Since the quality of the extrinsic calibration
depends on how good the estimation of the internal parameters is, we proceed
with taking the most accurate internal parameters based on the reprojection
error as described previously.
By defining the best internal parameters, the validation test is divided into
two types. In the first part of the experiment, the calibration plate with a
checkerboard placed on it as described in Chapter 4 is kept at a constant
angle, parallel to the XY plane of the robot coordinate system. Figure 6.7
shows the basic setup for the extrinsic calibration with a constant orien-
tation parallel to the XY plane of the robot. The whole process includes
movements with a small offset between every pose of the TCP (Tool Center
Point). The joint configuration values for each pose is known in advance.
Each pose guarantees that the checkerboard is detected by the robot. Basi-
cally, the robot executes a translation of the calibration target in its XY plane.

As to the second part of the experiment, the calibration plate is not kept
at a constant angle, but is tilted with predefined orientations provided that
the checkerboard is always detected by the camera. Figure 6.8 shows the
basic setup for the extrinsic calibration with tilting motion. After defining
the type of movement, several criteria for obtaining a reasonable estimation
of the camera relative to the robot frame are taken into account. One of the
considerations is to pause for few seconds among the movements. This is
with the aim to cancel the effects of possible vibrations that the robot can
produce, in an attempt to avoid wrong measurement throughout the extrinsic
calibration process. Another consideration is related to speed. A reasonable
speed of 25% is set for the validation test.

With the types of experiments and the main criteria to consider for each
one known in advance, the execution of the robot movement can be started.
To be able to control the robot arm, interface one of each camera in each test,
and estimate the pose of the camera relative to the robot base, three nodes
were developed as described in Chapter 4. The node named publishingTF.py
is responsible for controlling the robot movement and publishing the trans-
formation from the robot frame to TCP (Tool Center Point) frame into the
ROS network (tf topic to be specific).
The second node named target_locator_astra.py or target_locator_rsense.py
which depends on the camera used, is responsible for computing the esti-
mation of the camera pose relative to the calibration target (checkerboard)
frame. In addition to that, it broadcasts the estimation of camera pose into
the ROS network. A third node named listeningTF.py is responsible for
keeping track of all the coordinate frames over time, and querying for the
transformation of the camera frame relative to the robot frame.

39

6. Experimental Results

Figure 6.7: System setup and Visualization in Rviz of the Validation Test with
a Constant Orientation.

6.1.4 Calibration results. The following eye-to-hand transform was obtained for the Astra Camera
with the calibration plate parallel to the XY plane in robot frame:

RTC =

−0.023 0.730 −0.683 1.192
0.999 0.001 −0.032 0.121
−0.023 −0.683 −0.729 0.536

 (6.1)

. The following eye-to-hand transform was obtained for the Astra Camera
by tilting the calibration plate:

RTC =

−0.014 0.724 −0.689 1.195
0.999 −0.003 −0.024 0.114
−0.019 −0.689 −0.724 0.536

 (6.2)

. The following eye-to-hand transform was obtained for the RealSense
D-435 camera with the calibration plate parallel to the XY plane in

40

...................... 6.1. Robot-Camera Calibration on the YuMi Robot

Figure 6.8: System setup and Visualization in Rviz of the Validation Test with
Tilting Motion.

robot frame:

RTC =

−0.022 0.294 −0.956 1.223
−0.999 −0.001 −0.023 0.118
−0.007 −0.956 −0.294 0.324

 (6.3)

. The following eye-to-hand transform was obtained for the RealSense
D-435 camera by tilting the calibration plate:

RTC =

−0.0183 0.309 −0.953 1.219
0.999 −0.004 −0.020 0.094
−0.010 −0.953 −0.301 0.332

 (6.4)

6.1.5 Result Analysis

The proposed robot-camera calibration method was successfully performed
provided that the calibration target was detected by the 3D camera being

41

6. Experimental Results
calibrated. In order to validate whether the proposed method is accurate
enough for the pose estimation system described in Chapter 4, it is necessary
to know the ground truth in advance. It was a challenge to measure an exact
orientation and translation of the camera with respect to the robot frame.
Such difficulty is normal to encounter since the cameras used in this thesis are
not suitable for the problem to be solved. Suitable cameras for the assignment
of this thesis are the so-called industrial cameras, but such cameras were not
available. For the given conditions, a validation test is still considered. A
rough estimation of the camera pose relative to the robot was calculated. A
measuring tape was used for the rough estimation but it is not considered
as ground truth to evaluate the result of the robot-camera calibration but
rather a good idea of what the result should be.
The repeatability test is proposed for the validation of the extrinsic parameters.
It consists of repeating the whole process over again when it comes to the
estimation of the external values, those that represent the camera pose
relative to the robot frame. But a major difference exists. The number of the
movements is increased provided that the checkerboard was detected by the
camera used.

Given the previous condition, the repeatability test was executed. The
results are shown in Annex C. Standard deviation and mean values are com-
puted from those results. The mean value and standard deviation for the
Astra camera are shown in Table 6.3 when the orientation of the camera is
kept constant. When it comes to the type of experiments where the robot
moves with tilting motion, the results are shown in Table 6.4.
From the values, it can be seen that the external parameters differ in the
range of 1 cm for the x-axis and y-axis. And on the z-axis, a difference of
1mm is reported. It can be concluded that the external parameters for the
Astra camera are acceptable. As to the RealSense Camera, the standard
deviation and mean values are shown in Table 6.5 when a constant angle was
used. When a tilting angle is applied, the results are shown in Table 6.6.
From the values, it can be seen that the external parameters differ approx-
imately 1 cm for the x-axis, 2 cm for the y-axis and 1 cm when it comes to
vertical displacement. It can be concluded that the Astra has produced more
estable values in the repeatability test compared to the RealSense camera.
But a new validation test should be applied.
By doing intrinsic calibration and the eye-to-hand calibration, the next and
final validation test takes place for the 3D pose estimation system.

x[m] y[m] z[m]
1.1926 0.1245 0.5368

σx[m] σy[m] σz[m]

0.011012 0.009877 0.000906

Table 6.3: Mean Values and Standard Deviation of the Repeatability Test with
a Constant Orientation of the Calibration Plate(Astra Camera).

42

............................... 6.2. Pose Estimation Pipeline

x[m] y[m] z[m]
1.197089 0.116571 0.539509

σx[m] σy[m] σz[m]

0.012046 0.010473 0.008465

Table 6.4: Mean Values and Standard Deviation of the Repeatability Test with
Tilting Motion of the Calibration Plate (Astra Camera).

x[m] y[m] z[m]
1.222425 0.112532 0.324441

σx[m] σy[m] σz[m]

0.000160 0.007729 0.000294

Table 6.5: Mean Values and Standard Deviation of the Repeatability Test with
a Constant Orientation of the Calibration Plate (RealSense D-435 Camera).

6.2 Pose Estimation Pipeline

This section presents the experiments and the results and how the validation
test was performed for the 3D object pose estimation system. Before executing
such an experiment, a few requirements need to be met. The first requirement
being a 3D industrial object, preferably a textured object. Secondly, its CAD
model is needed. For the purpose of this thesis, one was created using the
FreeCAD software 3.5.3. Lastly, the pose of the object must be known in
advance. This pose should be computed in a different fashion in order to
compare the results with the output of the pose estimation pipeline.
With the output from the pose estimation pipeline and the available pose,
which it is referred to as ground truth, the accuracy of the system can be
determined. It proved to be difficult to determine the real pose of the object
for the given thesis research. A method for determining the ground truth is
based on direct observation of the object by the author of this thesis, such
a method is known as an empirical observation. A checkerboard pattern
is placed on the table where the localization object feature of the robot is
used. This is done by position the TCP onto three different points of the
checkerboard, by doing so, a new coordinates system is defined where the
object is placed on a desired grid of the checkboard with a width and height
of 2 cm each. By moving the object through the x-axis for the first type
of movement, and y-axis for the second type of movement, the pose can
be estimated with some confidence, knowing the displacement in the XY
coordinates of the checkerboard plane. As to the orientation, a digital angle
ruler was used in this thesis and it can seen in Figure 6.9. An overview of the
setup for the experiment can be seen in Figure 6.1 where the checkerboard
object is localized onto the top of the table, by doing so a new workobject
is set. Figure 6.2 shows a general view of the system setup with its Rviz

43

6. Experimental Results
x[m] y[m] z[m]

1.222425 0.112532 0.324441

σx[m] σy[m] σz[m]

0.000160 0.007729 0.000294

Table 6.6: Mean Values and Standard Deviation of the Repeatability Test with
Tilting Motion of the Calibration Plate (RealSense D-435 Camera).

simulation, where the relationship between transformations is clearly seen
over time.

Figure 6.9: System Setup for the Validation Test

6.2.1 Validation Test

In this section, two experiments were executed. The objective of the ex-
periments is to validate the pose estimation pipeline in terms of robustness
and accuracy by the means of the overall mean errors. The pose estimation
pipeline is described in Chapter 5, where it explains that two 3D data sets are
required: a point cloud generated from the CAD model, and a point cloud
generated from the scene, acquired from the output of the sensory device,
Astra or RealSense D-435 camera. The point cloud generated from the CAD
model is called source cloud and the point cloud generated from the camera
is called the target cloud in this thesis.
In order to validate the first experiment, displacements and angles are applied
to the industrial object. There are two types of displacement related to this

44

............................... 6.2. Pose Estimation Pipeline

experiment: the first type along the x-axis, and the second type along the
y-axis of the checkerboard frame. The distance of such a displacement is
2 cm each. Since the transformation of the checkboard is known in advance
plus the displacement applied to the object, the ground-truth object pose
can be known by visual inspection. When it comes to the validation test
of the angle, a digital angle ruler is used, and the orientation is applied on
the z-axis, in a clockwise rotation as seen in Figure 6.9. For the validation
of the second experiment, the same principle is applied as described above
when it comes to changing the pose of the object around the XY plane of
the checkerboard. However, a major difference exists for the source point
cloud (CAD model). The CAD model is substituted for a partial view point
cloud generated by the camera used. The change was applied in order to
see whether an improvement exists since the pose estimation system did not
perform well with the CAD data in the first experiment.

6.2.2 Pose Estimation Results

For the case when the source cloud is generated from CAD model and the
target cloud from the sensory device as described in 6.2.1 Figures 6.10, 6.11,
and 6.12 were obtained. It can bee seen that the estimated pose deviates
from its ground-truth values.

Figure 6.10: Ground Truth and Pose Estimation: x-axis (1st Experiment, Astra
Camera)

For the case when the source cloud as well as the target cloud are generated
from the sensory device as described in 6.2.1. Figures 6.13, 6.14, and 6.15

45

6. Experimental Results

Figure 6.11: Ground Truth and Pose Estimation: y-axis (1st Experiment, Astra
Camera)

Figure 6.12: Ground Truth and Pose Estimation: yaw angle (1st Experiment,
Astra Camera)

46

............................... 6.2. Pose Estimation Pipeline

were obtained for the second experiment. The graphs show that the estimated
pose deviates slightly from its ground values.

Figure 6.13: Ground Truth and Pose Estimation: x-axis (2nd Experiment, Astra
Camera)

From the deviation graph an absolute error can be calculated. Figures 6.16,
6.17 and 6.18 show the error calculated for both experiments.

6.2.3 Result Analysis

After analyzing the outcomes of the first experiment, it was concluded that
the pose estimation did not perform well. Since the cloud generated from
the CAD model did not converge to the cloud generated from the scene in
most cases. This unsuccessful event can occur for several reasons. One of the
reasons could be that in the matching process, the block that performs the
coarse estimation of the object pose failed due to the lack of correspondence
between the points clouds representing the CAD model and point clouds
representing the scene. Another reason could be that, in the target cloud,
noise and outlier were present, but in the source, they were not. In addition to
that, the point cloud generated from the sensory device was too wavy (having
a series of curves), as it was the case for the RealSense D-435 camera where
no results were reported. Figure 6.19 shows the point clouds representing
the industrial object, where the clouds were generated from the CAD model,
RealSense D-435 camera and Astra camera.

Since the issue described previously was regularly present, it was concluded

47

6. Experimental Results

Figure 6.14: Ground Truth and Pose Estimation: y-axis (2nd Experiment, Astra
Camera)

Figure 6.15: Ground Truth and Pose Estimation: yaw angle (2nd Experiment,
Astra Camera)

48

............................... 6.2. Pose Estimation Pipeline

Figure 6.16: Absolute Error: x-axis

Figure 6.17: Absolute Error: y-axis

that matching a point cloud from the CAD model with a point cloud of a
partial view of the scene was a difficult task to accomplish. A normal issue

49

6. Experimental Results

Figure 6.18: Absolute Error: yaw angle

has already registered in most of the literature of the computer vision that
deals with the task of estimation of object pose giving the CAD model and
point cloud taken from domestic camera.
With the issue encountered and briefly discussed above, the result was good
enough provided that the camera used in the validation test was the Astra
camera. Table B.1 shows an overall mean error of 2.6 cm for the x-axis, with a
standard deviation; 2.45 cm, for the y-axis the overall mean error was 0,63 cm
with a standard deviation; 0.5 cm and finally the orientation angle with an
overall error of 2.9◦ with a standard deviation of 1.27◦. It can be concluded
that the results are quite promising under the giving conditions, where a
domestic camera was used during the whole thesis, and not an industrial one
which would be suitable for this type of task.

The second experiment is executed, where the source cloud needed to be
changed. To accomplish that, a partial view of the scene is taken and used as a
source cloud, which is fed to the pose estimation system in the offline stage as
described in 5. The workaround may not be a proper solution since a partial
view of the scene is taken into account, but it was proved to be good enough
according to the output from the pose estimation system. An ideal solution
would require the whole reconstruction of the 3D object with the camera to
be used and then to render the object in order to prove the robustness of the
system for different views. But it proved to be quite laborious since special
hardware as well as software, needed to be implemented. For the purpose of
the thesis, where an isolated object needed to be taken, free of occlusion and
clutter scene, this approach has been proven successful.

50

............................... 6.2. Pose Estimation Pipeline

Figure 6.19: Point Cloud Sources: CAD model, Astra Camera and RealSense
D-435 Camera from top to bottom

51

6. Experimental Results
In Table B.1, the absolute error values calculated for the second experiment

are shown. It clearly shows an improvement when the source cloud generated
from the CAD was replaced for a point cloud representing a partial view of
the scene. It reports an overall mean value for the x-axis of 0.152 cm, with
standard deviation of 0.1134 cm. For the y-axis reported an overall mean error
of 0.406 cm with a standard deviation of 0.5492 cm. As to the orientation
around the z-axis, an overall mean of 1.21◦ with a standard deviation of
1.019◦ was reported. It was proved satisfactory that the pose estimation
system performed successfully as long as the source cloud and target cloud
are generated from the same sensory device, which in our case, was the Astra
camera. It is also concluded, from the validation tests, that the RealSense
D-435 camera is not suitable for this type of task where a reasonable quality
of point cloud is needed.

Mean (1st Exp) STD Mean (2nd Exp) STD
x-axis (cm) 2.6052 2.4562 0.1520 0.1134
y-axis (cm) 0.6306 0.5354 0.4062 0.5492

yaw angle (degrees) 2.8748 1.2741 1.2177 1.0197

Table 6.7: Absolute Error Values between Pose Estimation and Ground Truth
(Astra Camera).

6.3 Testing The RealSense D-415 Camera

During the whole thesis, the proposed methods were developed with two cam-
eras (Astra and RealSense D-435) and their repective results were validated.
On the one hand, the results already showed, clearly suggest that the Astra
camera can be considered as a better choice to determine the pose estimation
of an industrial object. On the other hand, it proved that the RealSense
D-435 camera is not suitable for this type of task given the fact that the
point cloud generated showed poor quality during the whole validation test.
Unfortunately, a third camera (RealSense D-415) which is supposed to be
more accurate, came to the laboratory a few days before submitting this thesis
work. In spite of this, a third experiment was carried out with this camera.
Where intrinsic calibration and camera-robot calibration were executed, but
no validation test results are reported in this thesis for lack of time. However,
a validation test for the pose estimation system is reported given the fact
the intrinsic parameters and the pose of the camera relative to the robot
frame were computed with the methods described above. The experiment
executed was the one where a cloud source is generated from the sensory
device (RealSense D-415). Figure 6.20 shows the point cloud generated from
the RealSense D-415 camera which is used as a reference cloud (source cloud).
For the new case where the RealSense D-415 camera is used, Figure 6.21 was
obtained. It can bee seen that the estimated pose does not deviate from its
ground-truth values as it was the case when the Astra camera was used.

52

..........................6.3. Testing The RealSense D-415 Camera

Figure 6.20: Point Cloud Source: RealSense D-415 Camera

In Table 6.8, the absolute error values between the estimated pose and the
ground-truth are shown. It clearly shows a huge improvement with the new
camera. It reports an overall mean value for the displacement along x-axis
of 9mm, with standard deviation of 1mm. The y-axis reported an overall
mean error of 1mm with a standard deviation of 1mm. As to the orientation
around the z-axis, an overall mean of 0.698◦ with a standard deviation of
0.400◦ was reported. It was proven satisfactory that the pose estimation
system performed successfully as long as the source cloud and target cloud
are generated from the same sensory device (RealSense D-415 camera).

Mean (2nd Exp) STD
x-axis (mm) 9 1
y-axis (mm) 1 1

yaw angle (degrees) 0.698 0.400

Table 6.8: Absolute Error Values between Pose Estimation and Ground Truth
(RealSense D-415 Camera).

The results shown in Table 6.8 were quite promising, giving enough con-
fidence to execute one more experiment, where a small database of source
clouds (representing a partial view of the object in different poses, in total 4)
was generated from the new camera (RealSense D-415). The database was
generated due to lack of time to create a 3D model with the camera itself.
Figures 6.22 shows the RGB images instead of the point clouds for a better
understanding of which templates the dataset has. By defining the dataset,
the robustness of the pose estimation system was evaluated by calculating two
metrics: fitness, which measures the overlapping area where the higher value
the better, and the Root Mean Square Error, which measures the deviation
of the residual, the lower value the better. The results were satisfactory
and acceptable for this type of task provided that between measurements,

53

6. Experimental Results

Figure 6.21: Ground Truth and Pose Estimation (2nd Experiment, RealSense
D-415

54

..........................6.3. Testing The RealSense D-415 Camera

(a) : Template 1 (b) : Template 2

(c) : Template 3 (d) : Template 4

Figure 6.22: RGB Images of the Dataset

translation and rotation were applied to the object. Figure 6.24 and Figure
6.25 show the different experiment applied to the object with the RealSense
D-415 camera used. Figure 6.25 shows that the pose estimation pipeline
under the conditions where outlier was present. The outlier was created on
purpose to see how the system will behave, it was generated by placing the
robot arm near to the object. It proved to be robust even when outlier was
present and given the fact that several poses can be given to the object.

Figure 6.23 shows two images: the upper image representing the fitness of
the pipeline and the lower image representing the Root Mean Square Error
which are the two metrics used by the pose estimation system in order to
select the best match and showcase the final pose of the object.

From the experiments executed in this Chapter 6, it can be concluded that
the Astra Camera and the RealSense D-415 are suitable when it comes to
estimating the pose of an aisolated object given the fact that the reference
point cloud and the target point cloud are generated from the camera used.

55

6. Experimental Results

Figure 6.23: Results: Pose Estimation System with the RealSense D-415 Camera

56

..........................6.3. Testing The RealSense D-415 Camera

Figure 6.24: Overview 1: Pose Estimation System with the RealSense D-415
Camera.

57

6. Experimental Results

Figure 6.25: Overview 2: Pose Estimation System with the RealSense D-415
Camera.

58

Chapter 7
Conclusions and Future Directions

The thesis has proposed a practical and simple method for robot-camera
calibration as well as a system for localizing an isolated part. The robot-
camera calibration also referred to as an Eye-To-Hand calibration was based
on the robot moving a standard calibration checkerboard. The 3D object
pose estimation system was implemented and evaluated for a single isolated
industrial object in depth image taken from the sensory device used. For
the validation of the system, two experiments were executed as described in
Chapter 6. It was concluded that the RealSense D435 camera is not suitable
for the task of pose estimation where a high quality of point cloud is needed.
As to the Astra camera, it was proven to show good performance when the
reference cloud is generated by the camera itself.

In the future, in order to test the pose estimation system in bin-picking
scenarios, careful attention should be given to the steps of featur descriptors
and matching strategy. These two are fundamental in dealing with occlusion
and scene with clutter which is common in bin-picking scenarios. The
proposed methods were evaluated with two cameras. Unfortunately, a third
camera (RealSense D415) which is supposed to be more accurate, came to
the laboratory a few days before submitting this thesis work. However, the
author of this thesis managed to carry on a third experiment. The results
were satisfactory and acceptable for this type of task while performing better
than the Astra camera during the whole process of validation testing. The
validation system results can be seen in section 6.3. However, a more thorough
evaluation and discussion should be carried out for this sensor for future
applications.

59

60

Bibliography

[1] Cheng-Hei Wu, Sin-Yi Jiang and Kai-Tai Song*, "CAD-Based Pose Es-
timation for Random Bin-Picking of Multiple Objects Using a RGB-D
Camera" in: International Conference on Control, Automation and Sys-
tems (ICCAS 2015),Oct. 13-16,2015 in BEXCO, Busan, Korea,https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7364621.

[2] Ajmal S. Mian, Mohammed Bennamoun, and Robyn Owens, "Three-
Dimensional Model-Based Object Recognition and Segmentation in Clut-
tered Scenes" in: IEEE TRANSACTIONS ON PATTERN ANALY-
SIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTO-
BER 2006,http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.123.6478&rep=rep1&type=pdf.

[3] Nitin J. Sanket and Daniel D. Lee, "6D Object Pose Estimation us-
ing RGBD Data and Fast-ICP" , https://nitinjsanket.github.io/
project/ese650/p6/nitinsan_project6.pdf.

[4] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, John Hsu, "Fast 3D
recognition and pose using the Viewpoint Feature Histogram" in: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems ,
https://ieeexplore.ieee.org/document/5651280.

[5] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David
Dobkin, "Shape Distributions", http://graphics.stanford.edu/
courses/cs468-08-fall/pdf/osada.pdf.

[6] Quigley, Morgan., Conley, Ken., Gerkey, Brian P.., Faust, Josh.,
Foote, Tully., Leibs, “ROS: an open-source Robot Operating System”
in: Conference Paper; 2009. http://www.willowgarage.com/papers/
ros-open-source-robot-operating-system

[7] Radu Bogdan Rusu and Steve Cousins, “3D is here: Point Cloud Li-
brary (PCL)” in: IEEE International Conference on Robotics and Au-
tomation (ICRA); 2011. http://pointclouds.org/assets/pdf/pcl_
icra2011.pdf

61

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7364621
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7364621
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.6478&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.6478&rep=rep1&type=pdf
https://nitinjsanket.github.io/project/ese650/p6/nitinsan_project6.pdf
https://nitinjsanket.github.io/project/ese650/p6/nitinsan_project6.pdf
https://ieeexplore.ieee.org/document/5651280
http://graphics.stanford.edu/courses/cs468-08-fall/pdf/osada.pdf
http://graphics.stanford.edu/courses/cs468-08-fall/pdf/osada.pdf
http://www.willowgarage.com/papers/ros-open-source-robot-operating-system
http://www.willowgarage.com/papers/ros-open-source-robot-operating-system
http://pointclouds.org/assets/pdf/pcl_icra2011.pdf
http://pointclouds.org/assets/pdf/pcl_icra2011.pdf

Bibliography
[8] Qian-Yi Zhou and Jaesik Park and Vladlen Koltun, “Open3D: A Modern

Library for 3D Data Processing” arXiv:1801.09847; 2018. http://www.
open3d.org/

[9] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes”in:
PAMI:1801.09847;1992.

[10] Klaas Klasing, Daniel Althoff, Dirk Wollherr and Martin Buss, “Com-
parison of Surface Normal Estimation Methods for Range Sensing Appli-
cations”

[11] Radu Bogdan Rusu, Nico Blodow, Michael Beetz, “Fast Point Feature
Histograms (FPFH) for 3D Registration” in: IEEE International Confer-
ence on Robotics and Automation, Kobe International Conference Center
Kobe, Japan, May 12-17, 2009.

[12] CloudCompare, https://www.danielgm.net/cc/

[13] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G.
Ranzuglia, "MeshLab: an Open-Source Mesh Processing Tool" in: Sixth
Eurographics Italian Chapter Conference, page 129-136, 2008, http:
//www.meshlab.net/.

[14] FreeCAD, https://www.freecadweb.org/

[15] Zhengyou Zhang, "A Flexible New Technique for Camera Calibration"
in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov
2000 , https://ieeexplore.ieee.org/document/888718.

[16] Berthold K.P. Horn, "Tsai’s camera calibration method revisited", 2000
,https://www.researchgate.net/publication/238495425_Tsai%
27s_camera_calibration_method_revisited.

[17] camera calibration ROS, http://wiki.ros.org/camera_calibration?
distro=melodic.

[18] Y. M. Wang, Y. Li, and J. B. Zheng, "A Camera Calibration Technique
Based on OpenCV", https://ieeexplore.ieee.org/document/888718.

[19] B. Atcheson, F. Heide, and W. Heidrich, "CALTag: High Preci-
sion Fiducial Markers for CameraCalibration" in: Vision, Modeling,
and Visualization, 2010, https://pdfs.semanticscholar.org/2dba/
e046717b058382a5a04f800405f92d040200.pdf.

[20] Artur Sagitov, Ksenia Shabalina, Leysan Sabirova, Hongbing
Li, and Evgeni Magid, "ARTag, AprilTag and CALTag Fiducial
Marker Systems: Comparison in a Presence of Partial Marker Oc-
clusion and Rotation", https://pdfs.semanticscholar.org/4b31/
a78ff17b43b27afbddc63e0eede94bcec334.pdf?_ga=2.61993516.
127748258.1556187821-1484823862.1553547725.

62

http://www.open3d.org/
http://www.open3d.org/
https://www.danielgm.net/cc/
http://www.meshlab.net/
http://www.meshlab.net/
https://www.freecadweb.org/
https://ieeexplore.ieee.org/document/888718
https://www.researchgate.net/publication/238495425_Tsai%27s_camera_calibration_method_revisited
https://www.researchgate.net/publication/238495425_Tsai%27s_camera_calibration_method_revisited
http://wiki.ros.org/camera_calibration?distro=melodic
http://wiki.ros.org/camera_calibration?distro=melodic
https://ieeexplore.ieee.org/document/888718
https://pdfs.semanticscholar.org/2dba/e046717b058382a5a04f800405f92d040200.pdf
https://pdfs.semanticscholar.org/2dba/e046717b058382a5a04f800405f92d040200.pdf
https://pdfs.semanticscholar.org/4b31/a78ff17b43b27afbddc63e0eede94bcec334.pdf?_ga=2.61993516.127748258.1556187821-1484823862.1553547725
https://pdfs.semanticscholar.org/4b31/a78ff17b43b27afbddc63e0eede94bcec334.pdf?_ga=2.61993516.127748258.1556187821-1484823862.1553547725
https://pdfs.semanticscholar.org/4b31/a78ff17b43b27afbddc63e0eede94bcec334.pdf?_ga=2.61993516.127748258.1556187821-1484823862.1553547725

.......................................Bibliography

[21] OpenCV PnP problem, https://docs.opencv.org/3.4.3/d9/d0c/
group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d.

[22] Bernard Schmidt and Lihui Wang, "Automatic work objects calibra-
tion via a global–local camera system" in: obotics and Computer-
Integrated Manufacturing, 2014, https://www.sciencedirect.com/
science/article/pii/S0736584513001014.

[23] J. Ilonen , V. Kyrki , "Robust robot-camera calibration" in: International
Conference on Advanced Robotics (ICAR),2011, https://ieeexplore.
ieee.org/document/6088553.

[24] Justinas Miseikis,Kyrre Glette,Ole Jakob Elle and Jim Torresen,
"Automatic Calibration of a Robot Manipulator and Multi 3D Cam-
era System" in: Robotics and Computer-Integrated Manufacturing,
2014, https://www.researchgate.net/publication/289587273_
Automatic_Calibration_of_a_Robot_Manipulator_and_Multi_3D_
Camera_System.

[25] Anil K. Jain and Chitra Dorai, "3D object recognition: Representation
and matching" in: Statistics and Computing(2000)10,167–182, https://
epdf.tips/3d-object-recognition-representation-and-matching.
html.

[26] Xian-Feng Han *, Jesse S. Jin, Ming-Jie Wang, Wei Jiang, Lei Gao,
Liping Xiao, "A review of algorithms for filtering the 3D point cloud"
in: Signal Processing Image Communication, May 2017, https://www.
freecadweb.org/.

[27] Carlos Moreno and Ming Li, "A Comparative Study of Filtering Methods
for Point Clouds in Real-Time Video Streaming" in: Proceedings of the
World Congress on Engineering and Computer Science 2016 Vol I, October
19-21, 2016, San Francisco, USA, http://www.iaeng.org/publication/
WCECS2016/WCECS2016_pp389-393.pdf.

[28] Rifat Kurban, Florenc Skuka, Hakki Bozpolat, "Plane
Segmentation of Kinect Point Clouds using RANSAC" in:
CIT 2015 The 7th International Conference on Informa-
tion Technology, https://www.semanticscholar.org/paper/
Plane-Segmentation-of-Kinect-Point-Clouds-using-Kurban-Skuka/
5f8d9a32a21db5a7aa5bc68ce8ee8e486002ea06.

[29] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and
Jianwei Wan, "3D Object Recognition in Cluttered Sceneswith Local
Surface Features: A Survey" in: IEEE TRANSACTIONS ON PAT-
TERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO.
11, NOVEMBER 2014, https://www.semanticscholar.org/paper/
3D-Object-Recognition-in-Cluttered-Scenes-with-A-Guo-Bennamoun/
fa50e835690611b81929714602f06048ca1c2012.

63

https://docs.opencv.org/3.4.3/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
https://docs.opencv.org/3.4.3/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
https://www.sciencedirect.com/science/article/pii/S0736584513001014
https://www.sciencedirect.com/science/article/pii/S0736584513001014
https://ieeexplore.ieee.org/document/6088553
https://ieeexplore.ieee.org/document/6088553
https://www.researchgate.net/publication/289587273_Automatic_Calibration_of_a_Robot_Manipulator_and_Multi_3D_Camera_System
https://www.researchgate.net/publication/289587273_Automatic_Calibration_of_a_Robot_Manipulator_and_Multi_3D_Camera_System
https://www.researchgate.net/publication/289587273_Automatic_Calibration_of_a_Robot_Manipulator_and_Multi_3D_Camera_System
https://epdf.tips/3d-object-recognition-representation-and-matching.html
https://epdf.tips/3d-object-recognition-representation-and-matching.html
https://epdf.tips/3d-object-recognition-representation-and-matching.html
https://www.freecadweb.org/
https://www.freecadweb.org/
http://www.iaeng.org/publication/WCECS2016/WCECS2016_pp389-393.pdf
http://www.iaeng.org/publication/WCECS2016/WCECS2016_pp389-393.pdf
https://www.semanticscholar.org/paper/Plane-Segmentation-of-Kinect-Point-Clouds-using-Kurban-Skuka/5f8d9a32a21db5a7aa5bc68ce8ee8e486002ea06
https://www.semanticscholar.org/paper/Plane-Segmentation-of-Kinect-Point-Clouds-using-Kurban-Skuka/5f8d9a32a21db5a7aa5bc68ce8ee8e486002ea06
https://www.semanticscholar.org/paper/Plane-Segmentation-of-Kinect-Point-Clouds-using-Kurban-Skuka/5f8d9a32a21db5a7aa5bc68ce8ee8e486002ea06
https://www.semanticscholar.org/paper/3D-Object-Recognition-in-Cluttered-Scenes-with-A-Guo-Bennamoun/fa50e835690611b81929714602f06048ca1c2012
https://www.semanticscholar.org/paper/3D-Object-Recognition-in-Cluttered-Scenes-with-A-Guo-Bennamoun/fa50e835690611b81929714602f06048ca1c2012
https://www.semanticscholar.org/paper/3D-Object-Recognition-in-Cluttered-Scenes-with-A-Guo-Bennamoun/fa50e835690611b81929714602f06048ca1c2012

Bibliography
[30] Radu Bogdan Rusu, Nico Blodow, Michael Beetz, "Fast Point Feature

Histograms (FPFH) for 3D registration" in: IEEE International Con-
ference on Robotics and Automation, 2009, https://ieeexplore.ieee.
org/document/5152473.

[31] Sebastian Thrun,Dirk Haehnel,Aleksandr V. Segal, "Generalized-
ICP", http://www.robots.ox.ac.uk/~avsegal/resources/papers/
Generalized_ICP.pdf.

[32] Cesar Sinchiguano, "Part localization for robotic manipulation", https:
//github.com/Sinchiguano/Ms-Thesis-CVUT.

64

https://ieeexplore.ieee.org/document/5152473
https://ieeexplore.ieee.org/document/5152473
http://www.robots.ox.ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf
http://www.robots.ox.ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf
https://github.com/Sinchiguano/Ms-Thesis-CVUT
https://github.com/Sinchiguano/Ms-Thesis-CVUT

Appendix A
List of Notation

Symbol Meaning

R The real numbers
ICP Iterative Closest Point
DOF Degree(s) of Freedom.
CAD Computer Aided Design.
FPFH Fast Point Feature Histogram.
PCL The Point Cloud Library is an open-source library of

algorithms for point cloud processing tasks and 3D
geometry processing.

Open3D Open3D is an open-source library that supports rapid
development of software that deals with 3D data.

RGB-D Camera Specific type of depth sensing device that work in
association with a RGB camera.

RANSAC Random sample consensus. An iterative method to
estimate parameters of a mathematical model from a
set of observed data that contains outliers.

ROS The Robot Operating System is a set of software
libraries and tools that help you build robot
applications.

ToF Time-Of-Flight denotes a variety of methods that
measure the time that it takes for an object, particle or
wave to travel a distance through space.

65

66

Appendix B
Intrinsic Parameters

Astra RealSense D-435 RealSense D-415
fx : 513.916180 605.639808 630.502008
fy : 514.377333 605.730544 633.083577
cx : 308.570130 299.642146 321.816337
cy : 240.628363 253.182947 239.328291
k1 : 0.071388 0.100646 0.135824
k2 : -0.188724 -0.217538 -0.338182
p1 : -0.002271 0.000350 0.004157
p2 : 0.002146 -0.004858 -0.006478
k3 : 0.000000 0.000000 0.000000

Table B.1: Calibration results: Intrinsic Parameters

67

68

Appendix C
Eye-To-Hand Calibration Results

Figure C.1: Eye-To-Hand Result with a Constant Orientation of the Calibration
Plate (Astra Camera)

69

C. Eye-To-Hand Calibration Results

Figure C.2: Eye-To-Hand Result with Tilting Motion of the Calibration Plate
(Astra Camera)

70

.............................C. Eye-To-Hand Calibration Results

Figure C.3: Eye-To-Hand Result with a Constant Orientation of the Calibration
Plate (RealSense)

71

C. Eye-To-Hand Calibration Results

Figure C.4: Eye-To-Hand Result with Tilting Motion of the Calibration Plate
(RealSense Camera)

72

Appendix D
Assignment of this thesis

73

D. Assignment of this thesis

74

Appendix E
CD contents

The CD contains:. copy of this thesis. thesis_scripts folder where the methods were implemented inside a ROS
package. For more details of the package, the reader should refer to [32]

75

	Introduction
	Motivation
	Goal
	Thesis structure

	Related work
	Global Feature-Based Methods
	Local Feature-Based Methods

	Background
	 Mathematical Tools
	Rigid Transformations
	Rotation Matrices

	Basics of 3D Computer Vision
	 RGB-D sensors
	 Camera Pinhole Model
	Parameters of camera model
	Camera's Intrinsic Parameters
	Camera's Extrinsic Parameters

	Robotic Operating System
	Open-source Libraries
	PCL
	Open3D

	Software tools
	CloudCompare
	MeshLab
	FreeCAD

	Robot-Camera Calibration
	Camera Calibration
	Sensor internal parameter calibration
	Camera Model

	Eye-to-Hand Calibration
	Calibration Targets
	Checkerboard Patterns
	Augmented Reality (AR)
	Selection
	Pose Estimation Using a Checkerboard Pattern
	Coordinate Transformation From Robot Base To Camera Frame

	A 3D Object Pose Estimation Pipeline
	Pose estimation pipeline
	Preprocessing stage
	Filtering a Point cloud
	Extract geometric feature
	Searching Strategies
	Local refinement

	Experimental Results
	Robot-Camera Calibration on the YuMi Robot
	Reprojection Error
	Result Analysis
	Eye-To-Hand Calibration
	Calibration results
	Result Analysis

	Pose Estimation Pipeline
	Validation Test
	Pose Estimation Results
	Result Analysis

	Testing The RealSense D-415 Camera

	Conclusions and Future Directions
	Bibliography
	List of Notation
	Intrinsic Parameters
	Eye-To-Hand Calibration Results
	Assignment of this thesis
	CD contents

