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Abstract

In this master’s thesis, I explore the application of reinforcement
learning techniques to balancing and velocity tracking of a
bipedal wheeled robot named SK8O. To this end, two distinct
training environments are developed: one emulating a linear
Segway model and another that performs a full 3D rigid body
simulation. These environments are then used to train deep
neural networks using the Soft Actor-Critic algorithm and its
variants. The resulting controllers are verified in simulations
and on the embedded system in the real robot. The work con-
cludes with a consideration of artificial intelligence liability and
an introduction to themethods of explainable artificial intelligence.

keywords: reinforcement learning, sim-to-real transfer, mujoco,
soft actor-critic, explainable artificial intelligence, SK8O
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Abstrakt

V této diplomové práci se věnuji posilovanému učení a jeho
využití pro balancování a sledování rychlostní reference kolového
dvounohého robota zvaného SK8O. Za tímto účelem jsou vytvo-
řena dvě simulační prostředí: první modeluje linearní aproximaci
Segwaye a druhý je plnou 3D simulací systému. Tato prostředí
jsou následně použita k tréninku hlubokých neuronových sítí
pomocí algoritmu Soft Actor-Critic a jeho variant. Výsledné
regulátory jsou oveřeny v simulacích a na vestavném systému ve
skutečném robotovi. Práci zakončuje zvážení odpovědnosti umělé
inteligence spolu s úvodem do metod oboru vysvětlitelné umělé
inteligence.

klíčová slova: posilované učení, transfer ze simulace na skutečný
systém, mujoco, soft actor-critic, vysvětlitelná umělá inteligence,
SK8O
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Chapter 1

Introduction

In late March 2023, news outlets around the world reported about the Future of Life
Institute, a nonprofit organization, issuing an open letter with a rather plain title – Pause
Giant AI Experiments. This text, signed by the likes of Steve Wozniak and Elon Musk,
warns that models more capable than GPT-4 ”should be developed only once we are
confident that their effects will be positive and their risks will be manageable” [1]. Even
if we step back from this affair, it is clear that Artificial Intelligence (AI) is becoming more
influencial to the society at large by the year.

One field that seems to resist the advance of AI is control engineering. There are
two main obstacles hindering its adoption. First, while the recent success of AI has been
largely achieved by the ever-larger deep neural models, those used in Reinforcement
Learning (RL), which aims to solve similar problems as control, are typicallymuch simpler
and less capable due to poor sample efficiency.

The second reason is the black-box nature of deep models and its implications for
their safety and guarantees. Indeed, while a chatbot claiming that 2+ 2 = 5 might conjure
up a smile and perhaps a memory of a certain old book, an airplane making the same
mistake may have more serious ramifications.

This thesis is, in a sense, a case study on RL applied in real-life. We will explore
whether the current methods can beat a classical controller in a standard task. We will
also see whether the state of the art (SOTA) can provide us with any assurances about its
behavior.
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Chapter 1. Introduction

1.1
�� Outline

In Chapter 2, you can read about SK8O, the robotic test subject of this work. Apart from a
standard description of its features, we will focus on its computational capabilities, which
may be critical for running Machine Learning (ML) models. I also cover the related work
that has been done on the robot – mainly on its modeling.

In Chapter 3, we will discuss Reinforcement Learning. After a short introduction,
I cover the main method in this thesis, Soft Actor-Critic (SAC), and a large variety of
possible extensions. We will also mention many possible issues with RL and how SOTA
methods attempt to tackle them.

Chapters 4 and 5 each deal with a different way of simulating the robot’s dynamics:
as a linearized Segway model and as a full 3D rigid body simulation. We will then see
how the algorithms introduced in the preceding chapter learn to stabilize the respective
systems and to make them follow a velocity reference. At the end of each chapter, the
best performing controllers are evaluated. The results are then validated on the real robot
in Chapter 6.

We finish by discussing a possible upcoming European Union (EU) directive on AI
liability in Chapter 7. There, I also review several techniques of Explainable Artificial
Intelligence (XAI) that could potentially be used to comply with the directive in future
applied research and in the industry.
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Chapter 2

SK8O Robot

The centerpoint of this thesis is SK8O, a bipedal wheeled robot, meaning that it has two
legs, at the end of which are wheels. It was designed and constructed in the Advanced
Algorithms for Control and Communications (AA4CC) group at Faculty of Electrical
Engineering (FEE) Czech Technical University in Prague (CTU) and its topology (particu-
larly the way its legs include a kinematic loop) was inspired by a similar robot developed
at ETH Zürich known as Ascento.¹ To a large extent, the robot is 3D-printed with a focus
on keeping the costs down and using off-the-shelf components, as it is planned to be
open-sourced in the near future.

A photo of the robot is shown in Figure 2.1. If you would like to see the robot in
action, an interview with its creators, Krištof Pučejdl and Martin Gurtner, is available
on YouTube (in Czech).²

2.1
�� Related work

The robot has already shown its merit as a learning tool – apart from this thesis, two have
been already defended and there is concurrent work being done as well. Hopefully, its
popularity among students will continue in the future and particularly the simulator
developed in Chapter 5 can be reused.

An important source of information for this work was the thesis of Adam Kollarčík.
[2] It contains a more detailed technical description of the robot than the one provided
here, as well as system identification and the derivation of the segway model covered in
Chapter 4. This work also developed a Linear Quadratic Regulator (LQR), which will be
used as the baseline controller in this thesis.

Higher level control followed soon after. In [3], SK8O was equipped with an Intel
Realsense camera, which was used to perform Simultaneous Localization and Mapping
(SLAM). The reference is only included here for completeness and will not be used in
any other way.

¹https://www.ascento.ch/
²https://www.youtube.com/watch?v=-7dsug0FtP8
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Chapter 2. SK8O Robot

Figure 2.1: Photo of the SK8O robot

2.2
�� Description

Now, we will take a look at some of the features of the robot relevant for this thesis, be it
for modeling or control. Should the reader be interested in a more detailed description,
they may consult [2].

Actuators

The configuration of each leg can be controlled by a motor at the hip. Due to a closed
kinematic chain, each leg only has one degree of freedom (ignoring the rotation of the
wheel). The dimensions of the links were designed so that changing the angle at the hip
translates to the wheels moving approximately along a vertical straight line.

Often in this text, we will allow for another anthropomorphization by referring to the
revolute joint between the hip and the wheel as the knee. By bending the knees, SK8O
is able to move its center of mass up and down and potentially pass under obstacles.
Furthermore, a rapid extension of both legs allows the robot to jump. The knees contain
a torsion spring that partially counteracts gravity.

Additionally, each of the wheels is powered by its own separate motor, bringing the
number of system inputs to four.

All four of the brushless DC motors are the same, position or torque-controlled at a
frequency of 40 kHz – at least an order of magnitude faster than any controller that might
interact with them. Therefore, we will assume ideal behavior when modeling them. The
torques are software-limited to 1 N m. However, the hip actuators are geared up by a
factor of 16.5 to provide sufficient torque.

4



2.2. Description

Sensors

An Inertial Measurement Unit (IMU) provides linear accelerations and angular velocities
at 1 kHz. Its outputs are then fused to obtain Euler angles of the robot’s main body.
Additionally, each of the motors provides its position, velocity and the torque being
applied.

2.2.1
�� Computational resources

The current boom of Deep Learning (DL) can be partially attributed to rising compu-
tational power – Neural Networks (NNs) are notoriously demanding. Even though RL
typically employs much smaller and simpler models than other fields of ML where they
have been applied, such as Natural Language Processing (NLP) or Computer Vision (CV),
this is something that we will need to keep in mind, should we want to deploy the models
on the real robot. Therefore, we will take a closer look at SK8O’s “brains”.

The plural at the end of last paragraph was no mistake – the robot is controlled by
a pair of computers. As of right now, any real-time operation is performed on a Teensy
4.0, which runs the feedback controller introduced in Section 4.1.1. More demanding
tasks that do not require real-time computation can be offloaded to an Odroid N2+ board.
This board also facilitates remote interaction with the robot over Wi-Fi and/or an Xbox
controller. A schematic diagram can be seen in Figure 2.2.

There was also work being done by Petr Brož to enable real-time control on theODroid
board, which was concurrent with this thesis. Thanks to his advances, it is possible to
deploy the models to the ODroid board, which is significantly less resource contrained.
Additionally, it runs Ubuntu Linux and makes it easy to deploy models for example in
the ONNX format.

ODroid

UART

Teensy

IMU

motor

motor

motor

motor
I2C

CAN1

CAN2

interfaces

Wi-Fi

Xbox controller


...

Figure 2.2: Diagram of the electronics, reproduced from [2]

USB accelerators

Should we need to increase computational power of the ODroid, a possible solution
would be to use a USB inference dongle designed to efficiently evaluate neural networks
when they are deployed. Two popular choices exist – Coral USB accelerator³ (supports the
TFLite format) and Intel Neural Compute Stick 2⁴ (supports TFLite, Pytorch, ONNX and
others). Unfortunately, as of early 2023, the Coral accelerator is facing shortages and is
not in stock anywhere and Intel has discontinued production of the latter altogether.

³https://coral.ai/products/accelerator
⁴https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-stick.html
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Chapter 2. SK8O Robot

2.3
�� Modeling

Even though themethods explored later in this thesis can in principle be applied evenwith
data collected on the real robot (they are so-called off-policy methods) as demonstrated
for example by [4], it is still beneficial to have a simulator available for testing. This also
has the benefit that when SK8O is open-sourced, having a functioning simulation can be
a very convenient addition to the whole package.

In a previous work done by Adam Kollarčík, several mathematical models of the
robot were devised [2]. I implemented two of the models presented there as a part of this
thesis. In particular, these were the Segway model and a full numerical simulation of the
3D model. Unfortunately, both models had to be completely reimplemented in different
languages/systems.

There were two main reasons why we decided to create two models. First, the lin-
earized and discretized version of the Segway model is very simple to implement in
Python (the original was implemented in MATLAB), so it was fast to get the training up
and running. Second, because of its simplicity, it is also very light-weight, making it good
for trying out different algorithms. On the other hand, there are numerous benefits of an
accurate full simulation, such as the chance to verify controllers before they are deployed
onto the real robot, where they may cause damages.

In Chapter 4, we will take a look at the linear Segway model and in Chapter 5, we will
discuss the full 3D numerical simulation implemented in MuJoCo.
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Chapter 3

Reinforcement Learning

In this chapter, we will set SK8O aside for a moment and focus on the main objective of
this thesis. As the title suggests, we will apply methods of Reinforcement Learning to
control the robot we introduced in the previous part.

In RL, the goal is to deduce what actions to take in an environment to maximize
numerical rewards given to us at each time step [5]. The online problem formulation,
in which the agent can interact with the environment to gauge the effects of its actions,
should be very familiar to us – a child learns to conform to societal expectations (such as
not taking the question “How are you?” at face value in some cultures) in such a way
that receives the best response from the people around them, subconsciously solving a
very similar task.

We begin in Section 3.1 by quickly defining the terminology that will be used later
on. In Section 3.2, we will go over one of the most popular model-free algorithms, SAC,
as well as its recent modifications. In Section 3.3, we will explore methods that attempt
to speed up the training and finish by a slight detour, in which we will consider the
(dis)advantages of model-based methods in Section 3.4.

3.1
�� Formal Setting

Let us quickly go over the problem RL aims to solve – the (Partially observable) Markov
decision process (POMDP). This will also naturally let us properly define the quantities
of interest in a POMDP and the chosen notation.

The environment

The cornerstone of each RL problem is the environment, something a control engineer
might loosely imagine as a dynamical system. It is typically either inherently discrete
in time or a sampled process and we model it as a Markov decision process (MDP). In
the simplest relevant case, it can be specified by a tuple (S ,A , �, �). To illustrate their
meaning, let us go over what happens in a single time instance.

At the beginning of time C, the environment finds itself in state BC – an element of its
state space S, where dimS = (. As this thesis is oriented towards control engineering,

7



Chapter 3. Reinforcement Learning

we will only consider continuous observation spaces, i.e., S ⊆ R(. Upon receiving an
input (an action) 0C ∈ A ⊆ R�, it transitions to a new state BC+1 according to its transition
function

� : S ×A → S. (3.1)

If we allow the environment to be stochastic, which is often desirable when modeling a
real system, we say

� : S ×A → P(S) (3.2)

andunderstand the new state to be sampled from the probability distribution, BC+1 ∼ �(BC , 0C).
Lastly, the environment produces a reward according to its reward function

� : S ×A × S → R (3.3)

as AC = �(BC , 0C , BC+1). When it will not lead to confusion, we will use the standard
shorthand notation (B, 0, A, B′) := (BC , 0C , AC , BC+1).

Only a slight complication (from a notational point of view) is to consider a Partially
Observable Markov Decision Process. In that case, the environment is specified by
(S ,O ,A , �, �, $). The extra function

$ : S → O ⊆ R> (3.4)

takes the environment state and returns an >−dimensional observation. Of course, we can
again consider a stochastic version of the observation function (e.g. tomodelmeasurement
noise), which would be analogous to the stochastic transition from Equation (3.2).

Note that all variables at time C + 1 depend only on variables at time C – this “lack
of memory” is a crucial feature of MDPs. This still holds true for POMDPs. However,
because the true state is hidden from us, we might need to infer it based on a sequence of
observations, which need not be that short.

The agent

In online RL, an agent interacts with the environment in discrete timesteps. It can be rep-
resented by a policy � parametrized by ), denoted jointly �), though we will frequently
omit the subscript for brevity.

Often, a policy is simply a function � : O → A. However, the algorithms we will
use throughout this text produce stochastic actors. Therefore, our policies will in fact
generate a probability distribution over the action space, which can be denoted by

� : O → P(A). (3.5)

In a slight abuse of notation, we will sometimes write �(0C | BC) as “the likelihood of
sampling action 0C from distribution �(BC)”.

The above summary of the interaction between the agent and the environment is
depicted in Figure 3.1.

8



3.1. Formal Setting

environment agent

Figure 3.1: An illustration of the interaction between the agent and the environment in a
single time step

3.1.1
�� Q-learning

As we have said before, in RL, the goal of the agent it to maximize a function of the
rewards. Commonly, the quantity of interest is the return, defined as

') =

∞∑
C=)

�CAC , (3.6)

where � is known as the discount-rate, typically chosen as � ∈ [0.9, 1]. This factor affects
the effective horizon length.

Furthermore, there are two common functions of interest that tie the return ' to the
states, actions and policy we defined previously. Namely, they are the (state-)value function,
which describes the expected return when starting in a particular state and behaving
according to policy �,

+� : S → R, +�(B) = E0C∼�(BC )['0 | B0 = B], (3.7)

and the &−function, which additionally considers the “desirability” of a specific initial
action,

&� : S ×A → R, &�(B, 0) = E0C∼�(BC ),C>0['0 | B0 = B, 00 = 0]. (3.8)

If optimal actions (those that maximize the expected return) are taken, we get the
optimal + and & functions,

+∗(B) = max
�
E[+�(B)], (3.9)

&∗(B, 0) = max
�
E[&�(B, 0)]. (3.10)

9



Chapter 3. Reinforcement Learning

Notice that knowing &∗ theoretically enables us to always choose the optimal policy as

�∗(B) = arg max
0
&∗(B, 0), (3.11)

though this is complicated by the fact that finding the maximum is often not feasible.
There are two important observations about the relationship of the two functions:

+�(B) = E0∼�(B)[&�(B, 0)], (3.12)
+∗(B) = max

0
&∗(B, 0). (3.13)

Crucially, the optimal functions satisfy the Bellman equations:

+∗(B) = max
0
EB∼�[�(B, 0, B′) + �+∗(B′)], (3.14)

&∗(B, 0) = EB∼�[�(B, 0, B′) + � max
0′

&∗(B′, 0′)]. (3.15)

Often, such as in the SAC algorithm, we perform iteration over a similar set of equations,

+�(B) = E0∼�,B′∼�[�(B, 0, B′) + �+�(B′)], (3.16)
&�(B, 0) = EB′∼�[�(B, 0, B′) + �EB′∼�[&�(B′, 0′)]], (3.17)

to approximate the optimal functions.
The family of methods that set out to find (or approximate) the &−function bears an

impressively descriptive name: &−learning. Notice that for the &−function iteration in
Equation (3.17), the action 0 need not be generated by the policy �. This ability to “learn
from the mistakes of others” is a major advantage of these so-called off-policy methods.
In practice, we typically create a replay buffer, where past transitions (B, 0, A, B′) are stored
for later use.

3.2
�� Soft Actor-Critic

In the 2010’s and early 2020’s, many new algorithms for continuous RL have been devel-
oped. One of the most popular algorithms currently is called Soft Actor-Critic, introduced
in [6] and later improved upon by the same authors in [7].

SAC outperforms other vanilla algorithms in most benchmarks. For example, the
benchmarks of the RL library Tianshou show that SAC achieves the best score in all but
one of the standard OpenAI Gym MuJoCo tasks – and in the single case where it does
not (the Hopper environment), it achieved 99.4% of the best result [8].

Similarly, [9] found SAC to be the “best performing across the board” of the algorithms
tested. There, the dominance was not as significant and another off-policy model-free
algorithm called TD3 outperformed it at a few problems. However, it was often at the
cost of higher variance between different runs. For the limited amount of time I had, I
decided to use SAC and not compare it with other vanilla algorithms here (though I did
try two other algorithms, A2C and TD3, which performed worse in preliminary tests).

10



3.2. Soft Actor-Critic

3.2.1
�� Algorithm overview

Because SAC and its variations will be applied extensively throughout the rest of this
thesis, let us briefly go over the key parts of the algorithm. All of the information in this
section is taken from the original paper [7], and the reader is encouraged to consult the
source for more details.

The algorithm slightly modifies the optimization problem from Equation (3.6) by
adding a constraint, attempting to find the optimal policy �∗ defined as

�∗ = arg max
�∈Π
E0∼�

[
)∑
C=0

A(BC , 0C)
]

(3.18)

s.t. E
[
− log (�C(0C | BC))

]
≥ ℋ , ∀C , (3.19)

whereℋ is the desired minimum expected entropy, typically set toℋ = −dimA. Intu-
itively, the reason for this choice is to scale the “amount of randomness” with the number
of actions, as discussed in [10].

Even though SAC can be considered a &−learning algorithm, there are a few changes.
It has been observed that using only a single &−function approximator leads to an
overestimation of action-value pairs (predicting higher future returns). Therefore, SAC
employs a pair of &−networks for a more accurate estimate, which we will denote &�1

and &�2 (or &1 and &2).
Another “trick” is that for the iteration in Equation (3.17) each parameter is updated

using yet another&−function that is the running average of itself, called the target function,
denoted by &�̄8 . This was again shown to stabilize learning [11].

The two &−networks are updated via Stochastic Gradient Descent (SGD) by minimiz-
ing the loss function

!&8
= E

[(
&�8 (BC , 0C) − (A(BC , 0C) + �+�

�̄1 ,�̄2
(BC+1))

)2
]
, (3.20)

where the value function is computed as

+�
�̄1 ,�̄2
(BC+1) = E0C+1∼�

[
min
8=1,2

&�̄8 (BC+1 , 0C+1) − 
 log�)(0C+1 | BC+1)
]
, (3.21)

where 
 is a hyperparameter of the algorithm known as the temperature.
Their targets are updated simply by

�̄8 ← (1 − �)�̄8 + ��8 , (3.22)

where � ∈ (0, 1), typically chosen as � = 0.05.
The policy is updated by minimizing

!� = E

[

 log�)(0C | BC) − min

8∈{1,2}
&�8 (BC , 0C)

]
. (3.23)
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Chapter 3. Reinforcement Learning

In [7], the algorithmwas extended to automatically adjust the temperature 
 by further
minimizing

!
 = E0C∼�[−
 log�(0C | BC) − 
ℋ]. (3.24)

The full algorithm is outlined in Algorithm 1. Notice that in practice, we approximate
the expectations in the above equations by sampling minibatches from the replay buffer
denoted byD.

Algorithm 1: Soft Actor-Critic
initialize 
, �1 , �2 , ) to random values
initialize replay bufferD
copy parameters �′

8
← �8 ,

repeat
reset environment and sample new state B
for = = 1, . . . , # do

select action 0 ∼ �(B)
perform action 0, receive B′, A , truncated, terminated
store new transitionD ← D ∪ (B, 0, B′, A)
sample a random batch � of transitions from buffer, � ∼ D
�8 ← � − ��∇�8!&8

)← ) − �)∇)!�

← 
 − �
∇
!

update target networks using 3.22
if terminated or truncated then

break
end

end
until satisfied

As for the structure, the vanilla algorithm uses simple Multilayer Perceptrons (MLPs)
with linear layers alternating with ReLU¹ activation functions, as shown in Figure 3.2.
Below, we will also explore different strucures.
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Figure 3.2: SAC uses simple MLPs for both the &−networks and the policy �.

¹https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
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3.2. Soft Actor-Critic

3.2.2
�� Improving sample efficiency

Muchwork has been done in the past few years to improve this algorithm further. Despite
using two critic networks, it has been shown that it still suffers from &−value overes-
timation. Therefore, many methods have been devised that attempt to alleviate this
issue.

Recently, REDQ ([12]) has shown that using an ensemble of critics and then using a
random subset of them for Equation (3.23) significantly improves the sample efficiency of
the algorithm, at the cost of much greater computational demands during training. Later,
an algorithm called DroQ showed similar performance with a much smaller footprint,
sufficing with the same amount of networks as the original algorithm. [13]

DroQ uses two regularization techniques popular in Computer Vision. Namely
dropout layers, which randomly drop a certain percentage of neuron connections during
training to prevent overfitting [14] and layer normalization, which rescales the feature
vectors that propagate through the network. This allows the &−networks to be updated
20 times per environment interaction. The full structure of the &−function is depicted in
Figure 3.3.
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Figure 3.3: Structure of the Q-function in DroQ

Even though sample efficiency is not strictly necessary for our application (we can
train in simulation), it can still be interesting to see whether this approach can learn faster,
so I decided to implement and test DroQ. Additionally, should we need fine-tuning after
deployment to SK8O, sample efficiency can be beneficial. It has even been shown, that
this algorithm is able to learn to walk on a real robot “in the wild” within 20 minutes [4],
which is a very encouraging result for RL in my opinion.

In the future, it may be interesting to test another improvement of REDQ – the AQC
algorithm from [15], showing both better sample efficiency and asymptotic performance.
This algorithm uses multiple heads (network outputs that share the same low-level
features) for each of the &−networks in the ensemble, reducing the demands as well,
though not as significantly as DroQ.
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Chapter 3. Reinforcement Learning

3.2.3
�� Network structure

In model-free RL, improvements are typically made by introducing more sophisticated
algorithms. Indeed, the network used most commonly with SAC is a MLP, which was
published already in 1986 [16]. This is in stark contrast to other fields of ML, where
complicated network architectures are being developed – compare the block diagram of
a Transformer (introduced in [17]), an architecture popular in NLP, with the MLP.

As someone who has worked in CV, I was curious to see whether I can replicate the
results from [18]. Their method named D2RL uses skip-connections as seen in 3.4, which,
according to their experiments, drastically improve the performance of deeper models
in RL and such deeper models beat vanilla SAC in 4/5 MuJoCo environments. The best
performing models had 4 layers, which is double the amount in SAC, yet the network is
still small enough to be deployed on many embedded devices, such as SK8O’s ODroid.
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Figure 3.4: Structure of the &−network in D2RL. The agent has an analogous structure.

3.2.4
�� Domain randomization

One major obstacle when training in a simulated environment is the leap to the real
system. The inaccuracies in our mathematical model can cause poor performance of the
trained agent if it is not able to generalize well. Therefore, many methods have been
developed to curb this problem. [19] lists a plethora of such approaches. However, we
will only focus on one – domain randomization.

The idea is simple: if we need the agent to be robust against model inaccuracies, we
train it on many similar environments with slightly modified simulation parameters. This
method is rather easy to implement as we have our own simulation. As a bonus one can
even intrinsically include parameter uncertainties if they are known.

The authors of [19] test this approach on a robot arm that is tasked to push an object
on a flat surface. Although they achieve the highest success rate on the real robot using
a recurrent Long Short-Term Memory (LSTM) network, even the MLP shows a drastic
improvement over the agent that did not learn with domain randomization. They show
that the performance can be further improved if instead of only showing the agent the
last observation, one concatenates the last = observations. This is known as frame-stacking.

Domain randomizationwas also tested in [20], which is a system that is ever-so-slightly
similar to SK8O – a robot with four wheeled legs.
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3.3. Exploration

3.3
�� Exploration

When the observation and action spaces are large, it may be hard to “stumble upon” even
a slightly reasonable policy, which can then be refined into a near-optimal one. This is
true especially for environments with sparse rewards, i.e., when only the terminal states
have non-zero rewards – the agent may never find such a state during training!

Some of the advances in RL have been due to better exploration strategies that help
mitigate this problem. In the DDPG algorithm from 2016, temporally correlated noise is
used (in particular, the Ornstein-Uhlenbeck process) [21]. In contrast, the authors of SAC
use a stochastic actor and include entropy in the loss function to promote exploration
and argue that this is an important ingredient that leads to lower brittleness (sensitivity
to hyperparameters) of the algorithm [6].

An orthogonal approach to solve this problem is to modify the experience replay
buffer to include samples from successful policies. We will now take a look at two such
methods.

3.3.1
�� Hindsight experience replay

One popular approach, introduced in [22], is called Hindsight Experience Replay (HER).
The idea is rather simple – if the agent did not succeed in the required task, find a similar
task where it did. One of the problems the authors use to illustrate the method is puck
sliding – the goal is to use a robotic arm to move a puck to a specified position of the
hand’s reach, as illustrated in Figure 3.5.

Figure 3.5: Puck sliding example of HER, from [23]

Even though HER has shown promising results, I decided not to use it. The main
reason is that unlike in the puck sliding problem (and other tasks I have seen where HER
has shown significant improvements), not all final states are created equal in our case of
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an unstable system. In fact, only a minuscule subset of states is favorable due to the need
to keep the acceleration near zero (more on that later in Section 4.3.1 and 5.3.3).

Yet another reason against using HER in our problem is the fact that it does not play
well with dense rewards, as shown already in the original paper. While from a different
point of view, this can be seen as one of its benefits (reward shaping requires domain-
expertise), we already have an LQR controller for this system, so we have an idea about
what features are important and what to penalize. In fact, a large portion of the reward
we will use is potential, as recommended by [24].

3.3.2
�� Hierarchical learning

When solving problems in the “classical” way (for lack of a better word), it is often
beneficial to decompose the problem into smaller, more manageable tasks. Even though it
is tempting to try to use the expressivity of NNs to get a plug-and-play all-encompassing
solution, this approach has been tested in ML as well.

An interesting strategy is shown in [25], where conventional control is used to ensure
stability of the system, and RL was used to compensate for disturbances and uncertainties
based on measured data. Such combined control law outperformed both methods used
separately.

For a purely DL approach, in [26], the authors learn a set of nested policies in parallel.
To illustrate their approach, they showcase a problem where the Ant has to move into a
different room in the world map, as shown in Figure 3.6. The outermost policy obtains
the true goal position as well as the standard observation and outputs a subgoal – a target
position that is easier to achieve. This subgoal, along with the observation, is then used
as the input for the next policy. The final policy has a much closer subgoal and outputs
the action. To solve the issues with sparse rewards for the lower level policies, HER is
used (introduced above in Section 3.3.1).

Figure 3.6: Illustration of the HAC algorithm from [26]. The goal position is in yellow and the
subgoals generated by the first two policies are in green and pink. Image from the original

paper.
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Although the tasks presented in the paper solve trajectory planning, it might be an
interesting exercise to reformulate this for our velocity tracking problem, where each
policy would instead output a velocity reference subgoal instead of a position. Likewise,
the hip control could be decomposed into two separate problems: chosing hip position
and actually achieving it. I leave this as a possible future research direction.

3.3.3
�� Imitation learning

A whole family of algorithms known as imitation learning use an expert (controller) to
guide the agent during training. The most straightforward way to do this when we work
with off-policy algorithms is to generate sample trajectories using the expert, save these
into the replay buffer and let the algorithm learn on the dataset, effectively converting
the RL problem into supervised learning. This is known as Behavioural cloning and
often shows poor performance in practice. Typically, this is attributed to two issues: first,
the samples from a trajectory are certainly not independent, and hence the independent
identically distributed (i.i.d.) assumption of ML is broken. Second, due to imperfect
learning, the agent might encounter situations the expert never did, and it might not be
able to generalize properly [27].

Numerous algorithms try to improve this approach e.g., by

� querying the expert online on trajectories generated by the policy (DAgger, [27]),

� slowly shifting the generated actions from the expert policy to the learned policy
(SMILe, [28]),

� employing the generative adversarial network training structure to generate actions
similar to the expert (GAIL, [29]).

In spite of many such methods being implemented in the imitation Python package,
I think that they are not what we are looking for – even though realistically, we cannot
expect the RL to outperform the current controller used on SK8O on all fronts, we would
still like it to have more tricks up its sleeve, in particular leaning into curves.

I personally liked the approach used in [30], where they use a simple PID controller
to help train an RL controller – at each step, either the action of the policy or the classical
controller is chosen. In their paper, the critic chooses the action to be taken based on the
respective &−values. However, I used a simpler approach where I have an exponentially
decaying probability of choosing the action proposed by the controller. Additionally, I
implemented Behavioural cloning, except the transitions experienced by the agent during
training are also added to the replay buffer to allow the agent to surprass the baseline
controller.

17



Chapter 3. Reinforcement Learning

3.4
�� Model-based algorithms

So far, we have only considered model-free algorithms. That is, those that do not (attempt
to) explicitly use a model of the environment other than by interacting with it. However,
this is not to say that model-based algorithms are not an active branch of research – the
reader might be familiar, for example, with Google’s MuZero [31] or DreamerV2, in
which the agent is trained on a learned latent-space representation of the environment
[32]. There have also even been attempts to bring Transformers, an architecture popular
in NLP, to model-based RL [33].

Despite their successes in the Atari benchmark suite, model-based methods have yet
to show as much success in the AI Gym MuJoCo benchmark, which is more relevant
for us. Often, they assume a discrete aobservation and/or action space, so they are not
directly transferable to control tasks. Perhaps more importantly, however, they typically
utilize much larger models. One exception to both of these, which could be tested in
the future, is a model-based algorithm known as MBPO which uses SAC as its policy
optimization algorithm [34].

3.4.1
�� Variational Recurrent Models

As we will see in the following chapters, including several observations has a notable
benefit when uncertainty is present in the system. However, deciding on how many past
observations to include is yet another hyperparameter to tune, and I personally do not
find that to be an elegant solution. After all, the Kalman filter does not work with a fixed
set of observations to estimate the true state either, so perhaps it might be worthwhile to
look at approaches that use Reccurent Neural Networks (RNNs).

An excellent opinion article I read about the (lack of) success of RL mentioned that
one of the problems of RL is the need for rather complex tooling compared to other
fields of ML [35]. This is even more true for recurrent techniques for off-policy learning.
This is due to a process called burn-in, in which the internal states of the RNN process
several previous observations before the one we need to make a prediction about. This
requires more complex sampling from the replay buffer and slows down training by itself
in addition to using more complex networks, which also take longer to train.

Despite these drawbacks, I was intrigued by the architecture proposed in [36], which
uses a recurrent variational autoencoder. A control engineer might think of it as a state
observer, except at no place do we specify the state – the network is left on its own to
find a good latent space representation that can be used to encode the observation and to
predict the next one. This latent representation is then used, along with the observation
generated by the environment, as inputs to the networks in SAC, as shown in Figure 3.7.

I was hoping that such a model could learn to perform model estimation “on-the-fly”
and thus be more robust against uncertainty in the model. I reimplemented their model
and replicated their results on partially observable MuJoCo tasks, such as the Pendulum
environment with only velocities available.

Unfortunately, when I tested the algorithm even on a simple integrator environment,
where BC+1 = BC + 0C andA = [−1, 1], the predictor was unable to predict the next state
with a consistent error below 0.5. The authors themselves note that the “prediction
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Figure 3.7: Architecture from [36] that uses a recurrent variational autoencoder to model
the environment. Image reproduced from the original paper.

accuracy of the models was imperfect”. Nonetheless, it was still a surprise for me, given
the simplicity of this environment.

In my preliminary tests on the linearized segway environment (Chapter 4), this algo-
rithm did not show the robustness that I had hoped for, so considering the significantly
longer training time and the number of parameters possibly unsuitable for microcon-
trollers, I decided not to use this algorithm any further.
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Chapter 4

Linearized Segway Model

The first training environment we will consider is based on a model resembling a Segway
(awheeled inverted pendulum). To be precise, wewill onlymodel the linearized dynamics
to make the simulation fast and easy to implement. We will also create a full rigid body
model later in 5, where we can verify the resulting controllers (and train different ones).

In Section 4.1, we go over how the linearized dynamics are obtained from the physical
parameters of the Segwaymodel. Due to reasons described in Section 4.2.1, I implemented
the full procedure in Python. For completeness, I will now reiterate results from [2] and
[37] that are used there. More detail can be found in the original works. Note that values
of some of the parameters as well as the controller are slightly different and describe the
current robot with its latest modifications. This section also includes information about
the LQR controller used as a baseline throughout this chapter and also later in Chapter 6.

With the mathematical description ready, we will define the AI Gym environment
that can be used to train RL controllers in Section 4.2. We will explore the effect of several
hyperparameters on training of balancing (Section 4.3) and velocity tracking (Section 4.4).

The best performing agents will then be evaluated in Section 4.5 on the linear Seg-
way model, in Section 5.5 in the rigid body simulation and finally on the real robot in
Section 6.1.

4.1
�� Deriving the State-Space Model

We begin with a non-linear Lagrangian model for a vector of generalized coordinates
@6 = (G, !,#) and input D = (D! , D') (see Figure 4.1) in matrix form

¥@6 = "(@6)−1 (�D − �(@6 , ¤@6) − � ¤@6 − �(@6)) (4.1)

with inertia matrix", Coriolis matrix �, dissipationmatrix�, gravity matrix � and input
matrix �. The elements of the matrices and model’s parameters are given in Appendix C
and Table C.1, respectively.

Because the set of second order differential equations is explicit, we can transform it
into a state-space description using a standard trick by defining @ := (@6 , ¤@6) and adding
the three corresponding differential equations.
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Figure 4.1: The Segway model, its state and parameters

We then find a linear approximation of the system about the equilibrium @ = ¤@ = D = 0,
defining

�2 :=
% 5

%@

����
@=D=0

, �2 :=
% 5

%D

����
@=D=0

(4.2)

and then discretize it using the zero-order hold method, i.e.,

�3 := 4�2) and �3 :=
∫ )

0
4�2) dC �2 . (4.3)

The sampling period is configurable with the default value being ) = 1 ms (the highest
control frequency used on the real robot).

Finally, if one considers a Segway on a flat uniform surface, the pose in the plane does
not affect the dynamics. Since our goal is to follow a (possibly zero) velocity reference, we
can remove the decoupled states G and #, reducing the dimension to four and removing
the non-holonomic constraints in the process. We will denote this new state by @̄. The
system matrices with the corresponding rows and columns dropped will be denoted �̄3
and �̄3. We have now arrived at our final linear discrete state-space model

@̄:+1 = �̄3 @̄: + �̄3D: . (4.4)

4.1.1
�� Control

The current control algorithm which we will use as a baseline for comparison with the
trained controller is based on this very model. It is an LQR running at 1 kHz. The
extended system that allows for integral action of the controller (for zero steady-state
error) is defined as [

Δ@̄:+1

�:+1

]
=

[
�̄3 0
! �2

] [
Δ@̄:

�:

]
+
[
�̄3

0

]
D: +

[
0
A

]
, (4.5)
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where A = ( ¤Gref , ¤#ref) is the velocity reference, �2 ∈ R2×2 is the identity matrix and

! =

[
−1 0 0 0
0 0 −1 0

]
. (4.6)

Soon, we will need to design a reward function that will be used to train the agents.
A reasonable starting point might be the criterion minimized by the LQR,

� =

∞∑
:=0

@̄
ᵀ
:
&@̄: + Dᵀ: 'D: , (4.7)

which is used here to obtain the state feedback gain  that can then be used to generate
inputs as

D: = − 
[
Δ@̄: �:

]
. (4.8)

The baseline controller is generated by matrices

& = diag(3125, 1, 200, 1, 0.06, 0.001), ' = 1000�2. (4.9)

For readers’ convenience, I include the resulting matrix  of the baseline controller, which
is

 =

[
3.7 1.5 3.1 × 10−1 9.0 −5.4 × 10−3 −8.0 × 10−4

3.7 1.5 −3.1 × 10−1 9.0 −5.4 × 10−3 8.0 × 10−4

]
. (4.10)

4.2
�� The Segway Environment

The de-facto standard API for training RL agents is OpenAI’s Gym [38], so the simulation
implemented as a part of this work conforms to it as well. The resulting SK8O_Segway
class is highly configurable: the user can define the distributions of the initial states, target
states as well as specify the simulated measurement and process noise of the standard
form used in LTI systems,

@̄:+1 = �̄3 @̄: + �̄3D: + E: , E: ∼ N(0, &̃), (4.11)
H: = �@̄: + 4: , 4: ∼ N(0, '), (4.12)

using the respective covariance matrices (� = �4 in our case). Note that there is a collision
in standard notation and the meaning of matrices & and ' has been changed.

The default values were chosen so that the LQR is able to control the Segway model
in the majority of cases. The default initial state distributions used in the experiments can
be found in Table 4.1. The default process and measurement noise covariance matrices
were chosen as

& = ' = 0.01 diag(1, 5, 1, 1). (4.13)

Additionally, the environment can visualize the situation as shown in Figure 4.2
and optionally export animations into the GIF format. It is also possible to load the
environment with interactive input, where the user can control the Segway using the
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¤G0 ¤!0 ¤#0 !0

distribution N(0, 0.5) N(0, 0.25) N(0, 0.5) N(0, 0.25)
clipping - | ¤!0 | < 0.5 - |!0 | < 0.5

Table 4.1: The default initial states for the Segway Environment. To minimize the likelihood
of uncontrollable initial conditions, the values of ¤!0 and !0 are clipped.

keyboard (with an underlying LQR controller for stabilization) to gauge the behavior of
the system with the selected noise properties.

Figure 4.2: View of the linearized Segway model simulation

4.2.1
�� Varying model parameters

As discussed previously in Section 3.2.4, I wanted the simulator to be able to vary the
parameters of the model. Perturbing the linearized system matrices directly by a random
matrix is not ideal, because the norm of the perturbation matrix is not related to the
eigenvalue and eigenvector change in a straight-forward manner.

To avoid delving into pseudospectrum theory, we can illustrate this on a simple
example. Consider a linear discrete system with a state-transition matrix

� =

[
0.9 10
0 0.9

]
. (4.14)

This system has eigenvalues �1 = �2 = 0.9 and so it is stable. Now we perturb the matrix
by either one of two matrices

�1 = 1 × 10−2

[
1 1
0 1

]
, �2 = 1 × 10−3

[
0 0
1 0

]
, (4.15)
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with their respective norms ‖�1‖ ≈ 16 × 10−3 and ‖�2‖ = 1 × 10−3. The eigenvalues of
� + �1 are �1 = �2 = 0.91, which is not far from the original values. Yet the eigenvalues
of � + �2 change much more significantly to �1 = 1,�2 = 0.8, despite the norm of the
perturbation being over an order of magnitude smaller. Therefore, it makes sense to
perturb the actual physical parameters of the model, such as mass, length, etc., and then
derive the linear discrete model on-demand based on the altered parameters.

The actual implementation allows the user to specify the percentage standard deviation �

with the default being set to � = 10. This argument is then used to generate a normal
distribution for each model parameter ?, the value of which is then sampled from a
normal distribtion as

? ∼ N
(
�,

( �
100�

)2
)
, where � is the paramater value from Table C.1. (4.16)

Clearly, by setting � = 0, one obtains the original model.

4.3
�� Balancing

Now, we are almost ready to start the learning of RL agents. The first task we will
tackle is balancing: regaining the zero state from a random initial position. Because
the environment introduced in the next chapter is significantly more computationally
demanding (as well as harder to learn on, but let’s not get ahead of ourselves), we will also
test a few hyperparameter choices here with the hopes that the findings can be transferred
to the non-linear simulation.

In this case, the observation space will be O = R4 × {0}2 describing the reduced state
@̄ and the zero velocity reference vector (for compatibility with the models trained in
Section 4.4). The action space will beA = [−1, 1]2, describing the torques applied to the
left and right wheel respectively. The episodes are truncated after 20 s to let the agent
experience new initial conditions even after it learns to stabilize the Segway.

4.3.1
�� Rewards

There are three parts to an environment that we have discussed in Section 3.1. Equa-
tion (4.11) gives us function � that describes the dynamics and Equation (4.12) defines
function $ that generates the observations. What is left to define is the reward function
�, so let us focus on that for a moment.

Designing a (good) reward function is not a trivial task. Generally, researchers present
their results on already predetermined (set of) environments, such as the Atari, DMCon-
trol or the AI Gym benchmarks where rewards are set in stone. Although some theoretical
results have been achieved, reward function design is a largely empirical process guided
by domain expertise [24].

Luckily, we can get inspired by the LQR criterion from Equation (4.7) and design
a reward function that penalizes nonzero states, as well as system input and reference
error magnitude. Additionally, I decided to include a penalty for falling, which is in this
case defined as |! | > 1 rad and a reward for each step, which is meant to compensate for
degenerate strategies where falling immediately might obtain better return than poor
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name symbol value in
evaluation

training search

distribution range best

reference error 2� 50 log uniform [0.1, 10] 8
wheel input 2F 1 log uniform [1 × 10−4 , 1] 0.2
step cost 2B 0 uniform [-1, 0] -0.4

pitch angle 2! 1 uniform [0, 1] 0.7
fall penalty 2 5 10000 - - 100
error power ? 2 - - 1

Table 4.2: Parameters of the rewards sweep for Segway balancing

balancing. The reward at time C is then given as a linear combination

�balance(@̄ , A , D) = −2!!2 − 2�‖�‖? − 2F ‖DF ‖? − 2B − 2 5 fallen(!), (4.17)

where � is the reference error is defined as � := ( ¤G − ¤Gref , ¤# − ¤#ref), DF = (D! , D') is the
action input to both wheels and the last term is defined as

fallen(!) =
{

0 if |! | ≤ 1,
1 if |! | > 1.

(4.18)

Each of the terms is additionally normalized to a range of [−1, 1] before the coefficient
is applied to make the coefficients comparable. For example, the maximum considered
reference error was �max = (2, 4) and its norm was used as the scaling coefficient.

To find a reasonable combination of coefficients, I used the SAC algorithm with
parameters as suggested in [7]. Unless otherwise specified, this will be true for all
training runs presented here. Furthermore, I used what I will refer to as ideal conditions,
where the model is not randomized and there is no noise present in the system, in an
effort to make the training faster.

After I set 2 5 = 100 to anchor the coefficients somehow, I ran a Bayesian search (as
a W&B sweep¹) to maximize the mean episodic reward in evaluation. The coefficients
for evaluation were chosen so that it is clearly visible whether the agent has fallen and
the power ? of the errors was set to ? = 2 with the intention to make large errors more
visible at first glance. On the other hand, during training, it was set to ? = 1. The reason
for this will become clear in Section 4.4. The evaluation coefficients, search ranges and
results of the sweep are shown in Table 4.2.

4.3.2
�� Experiments

During reward search, virtually all evaluation runs ended in a timeout already after 20k
environment interactions (recall Figure 3.1 that illustrates a single interaction) and the
top performer has not fallen a single time after 100k interactions. Granted, no noise nor
model uncertainty was present but nonetheless, this was a promising start. It would

¹https://docs.wandb.ai/guides/sweeps
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4.3. Balancing

number of hidden layers
number of neurons per layer 1 2 3 4

64 578 4738 8988 13058
128 1154 17666 34178 50690
256 2306 68098 133890 199682

Table 4.3: Number of parameters of an MLP with 6 inputs and 2 outputs, as used for Segway
stabilization

seem that this task is even a little too simple and that changing the hyperparameters will
not have much effect. Therefore, we will limit ourselves to just three experiments here.

If the default SAC networks can “solve” the problem so fast, it might be interesting
to see just how small the networks can be before we run into issues even in the ideal
conditions. After all, the controller will be deployed on an embedded device running on
a battery, so model complexity is a significant factor. The results of this experiments are
shown in Figure 4.3.

Note that in all the experiments in this chapter, each run was evaluated five times
with different seeds for the pseudorandom number generator. The shaded area then
corresponds to the range of measured values and the line is their mean. The value at
each point is the average of 50 evaluation episodes. If applicable, the baseline value was
computed on 1000 evaluation episodes with the same settings, controlled by the LQR
from Equation (4.9).

At their best, all architectures perform similarly. However, when there is only a single
hidden layer or when the two hidden layers are small (64 neurons), the agent appears to
have fallen during some evaluation episodes. For reference, you can check the number
of parameters of each network, which should be roughly proportional to computational
demands, in Table 4.3.
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Figure 4.3: The two smallest networks are sometimes outperformed by the baseline con-
troller. Note that only the ranges of the two are displayed to improve readability.
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Chapter 4. Linearized Segway Model

For the next experiment, we depart from the ideal conditions and look at how frame
stacking – using last = observations as the input – helps the performance in the presence
of model uncertainty and noise. The answer, as demonstrated by Figure 4.4, is that it
makes a significant difference. However, increasing the number of observations from
= = 4 to = = 10 did not improve the episodic rewards any further.
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Figure 4.4: Stacking several last observations for the model input significantly improves
performance in the presence of noise.

Lastly, I tested the three architectures that performed well in the first experiment with
frame stacking to see if we can further remove some architectures from our considerations.
It turns out that the choice out of the configurations tested does not have much of an
effect. In an effort to make the text more cohesive, the plots from such experiments will
be included in the appendix. You can find the corresponding figure in this case in F.1.

4.4
�� Velocity Tracking

Balancing the robot on the spotwas successful, sowhat about amore general task? Instead
of requesting the zero state, we choose a specific reference A = ( ¤Gref , ¤#ref) ∈ [−1, 1] × [−2, 2]
for each episode. As before, I started with a sweep on the rewards.

4.4.1
�� Rewards

The reward function for velocity reference is almost identical to Equation (4.17) except
there is an additional term that grants an additional reward when the agent reaches the
reference velocity. But what constitutes reaching the goal? If we simply check whether
the state is close to the target state, we might incentivize the agent to disregard anything
that comes afterwards. This would likely cause the controller to overshoot the targets in
practice on a good day and often cause it to fall moments after reaching the target (which
would not happen during training). Clearly, we care about acceleration (or rather, the
velocity difference, since we are dealing with a discrete system) too.

The first solution I tested was simple – putting an additional condition on the magni-
tude of the acceleration 0C . This works fine in ideal conditions but the presence of noise
(especially process noise), the situation is more problematic. With increasing process
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4.4. Velocity Tracking

name symbol value in
evaluation

training search

distribution range best

reference error 24 50 log uniform [0.1, 10] 0.7
wheel input 2D 1 log uniform [1 × 10−4,1] 1.6 × 10−3

step cost 2B 1 uniform [0, 1] 0 (-0.4)
pitch angle 2! 0 uniform [0, 1] 0.7
fall penalty 2 5 10000 - - 100
error power ? 2 - - 1

Table 4.4: Parameters of the rewards sweep for Segway velocity tracking

noise, the respecitve component of ‖0C ‖ rises as well. Hence this approach would likely
require variable goal definition based on the amount of process and measurement noise.

Instead, I opted for a different solution. The environment keeps track of the exponen-
tial moving average of the acceleration vector,

0̄C := 
0C + (1 − 
)0̄C−1 , (4.19)

and tests for the magnitude of ‖ 0̄C ‖. From a theoretical standpoint, this solution is not
ideal, because it breaks theMarkovian property (or rather, makes the process only partially
observable). Nonetheless, as we will see, this is fine in practice.

The final reward function is

�velocity(@̄ , A , D, 0̄C) = �balance(@̄ , A , D) + 2 5 success(@̄ − A, 0̄C), (4.20)

where

success(�, 0̄C) =
{

1 if ‖�‖ < 0.1 and ‖ 0̄C ‖ < 1,
0 otherwise.

(4.21)

Note that the coefficient used with success is the same as the one used for falling, only the
term has an opposite sign.

Unfortunately, using the coefficients found in the stabilization task causes the agent
to learn the locally optimal strategy, in which the agent learns to fall as soon as possible.
I suspect that the issue lies in the fact that the initial reference error is typically much
larger here than in the case of zero reference.

Whatever the reason may be, I ran the sweep again to find a new set of coefficients.
Its results can be found in Table 4.4. Note that the error coefficient is a magnitude lower,
which supports the theory about the agent falling on purpose.

After the sweep was finalized, I made one additional experiment regarding rewards.
The resulting step coefficient 2B was rather close to zero, which motivated me to see
whether we can do without it altogether. The issue with positive 2B is that receiving a
reward for each step might incentivize the agent to prolong the episodes, for example by
staying close to the reference to minimize the error penalty but not close enough as to
reach the goal and end the run.

Hence I performed an experiment in which I vary the step reward and keep everything
the same. It turns out that setting 2B = 0 shows similar performance and lower variance
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Chapter 4. Linearized Segway Model

(as seen in Figure F.2) than the value found by the sweep. Therefore, I adjusted its value
to 2B = 0, because the term is not necessary to counter the undesirable “immediate fall”
strategy and may potentially cause other issues.

Intrigued by the outcome, I ran another experiment, this time with varying 2�. How-
ever, I did not made any adjustments based on the results in Figure F.3.

4.4.2
�� Choices of hyperparameters

Following a reference appears to be noticeably more difficult for the agent than just stabi-
lizing the Segway to the extent where the baseline LQR controller typically outperforms
it, despite not being optimized for precisely this form of reward. We should, therefore,
have an easier time discerning the effects of different hyperparameters.

It is time to address the value of ?. Why not just use quadratic errors that are common
in control and easier to both compute and differentiate? Well, it turns out that ? = 1
gives better results, as shown in Figure 4.5. Recall that in evaluation, we use ? = 2, so if
anything, this metric is biased towards ? = 2.² I am unsure about the reasons behind this
phenomenon but during our meeting with prof. Robert Babuška³, he affirmed that this
was his experience as well. Therefore, I will henceforth only use ? = 1 during training.
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Figure 4.5: Absolute errors are more beneficial to learning than quadratic errors.

Another experiment that may surprise a control engineer concerns control frequency.
Intuitively, the agent should be better posed to control the system when the period
between actions is lower. However, the results in Figure 4.6a, where we compare control
frequency at 200 Hz vs 50 Hz tell a different story. Note that the rewards in evaluation
are proportionally scaled, except for the one-time rewards for falling and achieving the
goal, to make the numbers comparable.

My explanation for this observation is as that for each observation the slower agent
sees, the faster one sees four. However, these are very similar to one another and as such
do not addmuch extra information to the replay buffer and perhaps even cause overfitting.
Additionally, for the same amount of interactions, the slower agent experiences four times
as many episodes.

²Note that the coefficient 2B was reoptimized for the quadratic error to avoid bias.
³Professor of intelligent control and robotics at TU Delft, a researcher in reinforcement learning.
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4.4. Velocity Tracking

If my explanation holds, adding process and measurement noise might help. There-
fore, I ran the experiments again, this time with noise and frame stacking with = = 4. If
the issues are due to overfitting, they should be mitigated by the noise to some extent.

The results support my theory – the network trained on faster control frequency still
takes longer to train (which can be explained by the fact that it takes longer to generate
meaningully different trajectories) and the performance is still somewhat lacking, yet the
difference in Figure 4.6b is not as pronounced.
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(a) In ideal conditions, the slower controller learns a significantly better policy.
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(b) In noisy conditions, the faster controller almost catches up (with higher variance).

Figure 4.6: Comparing the learning of 50 Hz and 200 Hz SAC controllers.
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Chapter 4. Linearized Segway Model

4.4.3
�� Frame stacking

With our previous choices justified, we can mostly repeat the experiments from balancing.
The results of frame stacking in Figure F.4 are largely the same as in the case of stabiliza-
tion. Curiously, the performance in a noisy environment actually surprasses the results
achieved in ideal conditions. I suspect that this may be due to the same reason the 200 Hz
controller was improved in such a case – mitigation of overfitting.

Additionally, I was curious to see whether adding the past actions to the input along
with past observations would improve performance – theoretically, knowing the past
actionsmay help the agent to identify themodel to some extent and correct for it. However,
that does not seem to be the case, as shown by Figure 4.7. It is possible that using a longer
observation window (possibly strided to decrease input dimension) could lead to this
effect but I leave that as an open question.

0.2 0.4 0.6 0.8 1.0
Step 1e6

2

4

6

8

10

M
ea

n
ev

al
ua

ti
on

re
w

ar
d

1e3
Effect of including past actions in frame stacking

on velocity tracking

included
not included
baseline

Figure 4.7: Including past = actions along with the observations decreased the performance
of frame stacking.

Finally, I tested the effect of network structure and again found that it largely did not
matter (the results are shown in Figure F.5). With the idea that perhaps a more significant
change in architecture was needed, I decided to see whether using the D2RL algorithm
brings any benefits to the table. As it turns out, SAC learns faster and achieves better and
more stable performance, as demonstrated in Figure 4.8.

4.5
�� Verification

In the previous section, we have seen more than a hundred models that were trained on
the linear model introduced in this chapter. Although the evaluation results tell a part
of the story, the reward function used for comparison was still somewhat arbitrary. It
is here that we will finally get to see how well the agents actually perform on the linear
model. Experiments on the MuJoCo model and real robot will be shown later in sections
5.5 and 6.1.

I will only show one experiment per category in full (that is, with all the state variables).
In other cases, only the variable(s) of interest will be shown. This was motivated by the
desire to keep the document brief.
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Figure 4.8: SAC with default settings outperforms D2RL when trained on the Segway model
for velocity reference tracking.

When it comes to balancing, we start by comparing the model that was trained in ideal
conditions to the one that experienced a more diverse environment. Interestingly, while
the agent that has not experienced noise before does tend to fall more often (depending
on the initial configuration), when it finds itself around the equilibrium, it is surprisingly
comparable to the controller trained with noise, as illustrated by Figure 4.9.
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Figure 4.9: In some cases, the agent trained in ideal conditions manages to compete with
the one that experienced noise during training.

Another observation we can make is the fact that the controller trained for reference
tracking manages to stabilize the Segway perhaps even better than the agent that special-
izes on this task. This is true to such extent that one may wonder whether it even makes
sense to train specialized agents for stabilization, besides for debugging reasons.⁴

Finally, one run with all the state variables is shown in Figure 4.11.

⁴Yes, this is foreshadowing of the results on the real robot, found in Section 6.1.
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Figure 4.10: The model trained for velocity tracking performs essentially the same.
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Figure 4.11: A balancing run with all the states plotted
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4.5.1
�� Velocity tracking

The impact of noise in training is much more severe when we use nonzero reference, as
illustrated by Figure 4.12. On the other hand, a change in experiment setting that does not
cause any issues is, almost ironically, increasing the control frequency to 200 Hz, which
can be found in Figure 4.13.
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Figure 4.12: In the case of velocity tracking, training with noise makes a notable difference
when noise is present.
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Figure 4.13: The model is not significantly affected by faster control frequency.

For reference, in Figure 4.14, I compare the best performing agent also with the LQR
running at 1 kHz. Please note that the controller was tuned for the actual robot and not
for the linear model, hence its response may seem slightly worse than it is in practice.
Finally, a full example can be seen in Figure 4.15.
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Figure 4.14: The performance is comparable to the LQR from Equation (4.9). Notice that the
RL managed to get close to ¤Gref, despite never seeing reference higher than ¤Gref = 1 during

training.
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Figure 4.15: A velocity tracking run with all the states plotted
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Chapter 5

Rigid Body Model

The second model and training environment we will introduce uses a full rigid body
simulator of the robot. As the robot was designed in-house, we have the original 3D files
at our disposal. These provide us with accurate dimensions of the robot and they can
also be used to infer (simplified) collision geometries.

As a part of his diploma thesis, Adam Kollarčík also created a full simulation of the
robot in Gazebo and Simulink [2]. Gazebo is a simulation framework commonly used in
robotics, being particularly useful when testing control strategies on the Robot Operating
System (ROS). However, the SK8O robot does not run ROS, so that is not an advantage
for us.

For our use-case, it would have been ideal if it were possible to easily interact with
the gazebo simulation to make it compatible with AI Gym API. Unfortunately, it seems
that gazebo simulation is not very popular among RL researchers. There are multiple
projects aiming to make gazebo seamlessly available in Python for RL, such as OpenAI
ROS, gym-gazebo2, DeepSim, FRobs_RL or gym-ignition. However, they have all been
left unmaintained for over a year or downright archived for one reason or another.

A possible reason why there is no simple/standard workflow for gazebo in RL might
be the popularity of a “rival” framework MuJoCo [39]. This simulation environment is
the de-facto standard for benchmarking RL algorithms on 3D problems and is used in
most of the research papers that deal with continous control referenced in this thesis.

This framework used to be prohibitively expensive (3000$ per year for a single lab
license), but was acquired by DeepMind in 2021 and made open-source in 2022 [40].
Naturally, I was curious to use this software now that it is available. It supports everything
necessary for our use-case, including simulation of closed kinematic chains, which is one
of the most challenging apects of SK8O that many frameworks do not support.

MuJoCo’s own format, MJCF, has a fundamentally different approach to model defi-
nition than gazebo’s SDF, in which the previous model was implemented. While they
both support the URDF format, it does not support kinematic loops, so chaining the
conversions as SDF→ URDF→MJCF is not possible.
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Chapter 5. Rigid Body Model

There is a tool for converting gazebo models into MuJoCo models.¹ However, in early
2023, it was still a work-in-progress and it also did not support closed kinematic chains.
After many attempts to do the (partial) conversion, I gave up and decided to recreate the
model essentially from scratch.

Identification of the parameters was not a part of this thesis and is not my work, with
one minor exception which we will get to later. I compiled the parameters from Adam’s
thesis, his code and other sources from the team behind SK8O and present them here, in
one place, for future reference.

5.1
�� MuJoCo Simulation

Unlike in the linear case, there is not much to be said about the physics, since almost
everything is being done behind the scenes by the simulation framework. We will mostly
deal with the high level structure of the robot and its parameters.

You can see approximately how the body is constructed in Figure 5.1, though I leave
the concrete values of all the parameters for Appendix D. Note that all the Centers of
Mass (COMs) are placed in the geometrical centers of the links, each of which can be
roughly approximated by a box, unless otherwise specified. I took special care to position
all the joint coordinate system origins on each side of the robot in a single plane and to
set their zero points and directionalities to simplify algebra in Section 5.2.1.
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Figure 5.1: Diagram of SK8O’s structure superimposed over the 3D mesh

¹https://github.com/gazebosim/gz-mujoco/tree/main/sdformat_mjcf#tools-for-converting-
sdformat-to-mjcf
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5.1. MuJoCo Simulation

There are two properties of the robot that need special deliberation. First, there are
torsion springs at the knees, each of which was modeled to generate torque

� = −�(
2,ref + 
2) (5.1)

in the direction that counters the weight of the robot’s body in the upright pose. I adjusted
the value of several joint properties compared to [2] for a more accurate description of
reality. The goal was to match the joint angle trajectories when extending a leg when the
robot is placed upside down (as shown in Figure 5.2). We also confirmed that the time
it takes for the robot to fall when there are no inputs at the hip motors is comparable in
simulation with the adjusted parameters and on the real robot.

(a) Render of the experiment
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(b) Comparison of the original and modified parameters, along
with the measured values of a leg extension. The overshoot with

original parameters is due to excessive force being developed
against the soft constraint that models the kinematic loop.

Figure 5.2: Justification for alterning the knee damping coefficient

The second parameter I had to adjust was the friction between the wheels and the
floor, because it is modeled differently in gazebo. I set the tangential, torsional and rolling
coefficients² 5tan , 5tor , 5A as described in Table D.1 by visually comparing the behavior of
the simulation and the real robot, making sure that slippage is unlikely in the simulation
and that the robot can rotate around one of the legs. Because we assume no slippage in
normal operation, I believe this to be an accurate enough assessment.

The joint configuration I embedded in the model XML file was found by leaving the
LQR to stabilize the robot and capturing the final position. You can view the angles in
Table 5.1. The resulting model can be seen in Figure 5.3.

angle 
0 
1 
2 
3
limits [deg] [45, 45] [20, 64] [51, 143] -

value in XML [deg] 45 43.8 92.4 100.5

Table 5.1: A joint configuration for a stable position of the robot, along with joint limits
imposed by the physical structure of the robot. The limits are set slightly smaller than on

the real robot to allow for some leeway in the solver.

²https://mujoco.readthedocs.io/en/stable/modeling.html#contact-parameters
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Chapter 5. Rigid Body Model

Figure 5.3: Resulting 3D model in MuJoCo

5.2
�� The MuJoCo Environment

The simulation is included in an AI gym compatible class, SK8O_Full. The environment
is highly configurable regarding initial conditions, noise properties etc., just like the
linear one. Additionally, it supports 3D rendering of the episode, which is (this time)
implemented directly by the parent class in the Gym library.

Measurement errors are simulated in the same way as in SK8O_Segway. On the other
hand, the process noise is modeled very differently – I apply random forces and torques to
the COM of the robot. Of course, such noise does not account for forces constant in time,
such as someone pushing the robot or a slightly different position of the COM. However,
this issue should be solved by domain randomization.

In addition to randomizing the masses, moments of inertia, damping coefficients, etc.,
I also vary the positions of the COM of each of the bodies at the start of each episode.
To randomize these positions, we cannot sample from a normal distribution centered
at the true value with a proportional standard deviation, like we did in Equation (4.16).
This is because the result would depend on the choice of origin – for example if the COM
is placed at the origin, there would be no variability. Instead, I sample the position in
each axis with the standard deviation being proportional to the size of the link in that
axis (recall that all of the SK8O’s body parts can be reasonably approximated by a box).
Offseting the COMs should have the same effect as constant forces.

40



5.2. The MuJoCo Environment

5.2.1
�� Initial configurations

So far, we have defined an XML file that describes the robot in one of many stable
positions. However, any reasonable implementation of the simulator should allow the
user to choose any (physically possible) starting configuration they wish. A certain
amount of randomness in the initial position is also key for proper training of the NNs,
as we have discussed in Section 3.2.4.

Of course, MuJoCo is “just” a general physical simulator and as such does not provide
inverse kinematics. The problem is compounded by the fact that the topology (closed
kinemtic loop) of each leg dictates that its configuration is fully determined by any
of the respective joint coordinates (barring wheel rotation). For users’ convenience, I
implemented two possible initialization methods:

� setting 
1 – the angle(s) at the hip,

� setting ℎ – the height of the equivalent Segway model.

Below, I go over the algebra necessary to compute all the joint coordinates depending
on the method chosen. Admittedly, this is nothing but high-school trigonometry. How-
ever, it does take a considerable amount of time and drawings of triangles to get to the
correct solution and therefore, I will go over it here with the hopes that no one will have
to solve this problem again in a year’s time.

The approach presented below uses the law of cosines repeatedly. In general, this
approach is problematic due to cosine not being injective (or, equivalently, due to its
inverse having range [0,�]), which may not reveal all possible solutions. However, this is
not a problem in our case due to the kinematic constraints – in fact, it is an advantage,
because it implicitly discards the invalid solutions and it is also the motivation behind its
use.

Hip angle initialization

In this scenario, we know the angle at the hip, 
1 (and 
0, which is fixed). We can than
find one of the diagonals in the kinematic loop, depicted as 31 in Figure 5.4, using

31 =

√
;2D + ;2D: − 2;D ;D: cos(
0 + 
1). (5.2)

This in turn can be used to compute the two partial angles of 
2 = 
20 + 
21 by applying
the law of cosines again, as

cos 
20 =
32

1 + ;2D − ;
2
D:

2;D31
, (5.3)

cos 
21 =
32

1 + ;
2
;:
− ;2

:

2;;:31
(5.4)

and then taking the inverse.
When we know that, we can find last missing angle by solving for

cos 
3 =
;2
;:
+ ;2

:
− 32

1
2;;: ;:

. (5.5)
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Figure 5.4: A drawing of the relevant quantities used in hip angle initialization

Leg length initialization

In this case, we know the height of the robot depicted as ℎ
in Figure 5.5. The solution is very similar to the one above.
We compute 
4 by

cos 
4 =
ℎ2 + ;2

;
− ;2D

2;;ℎ
, (5.6)

which is then used to compute the length of the second
diagonal of the kinematic loop,

32 =
√
(;; + ;;:)2 + ℎ2 − 2ℎ(;; + ;;:) cos 
4. (5.7)

This diagonal can then be used to solve for the partial
angles of 
1 using

cos(
0 + 
10) =
;2
D:
+ 32

2 − ;2:
232;D:

, (5.8)

cos 
11 =
32

2 + ;2D − ;2;:
232;D

. (5.9)

From then on, we can use the procedure above to get the
all of the necessary angles to set the desired configuration.
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Figure 5.5: A drawing of the
relevant quantities used in

leg length initialization

5.2.2
�� Connection to the Segway model

In order to use the controllers defined for the Segway model (such as our baseline LQR)
on the MuJoCo model, we need a way to obtain the state variables of the equivalent linear
model, as shown in Figure 5.6. On the real robot, the forward velocity ¤G is proportional
to the average of the angular velocities of the wheels, while the angular velocity ¤# is is
proportional to their difference.
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Figure 5.6: The segway we fit to
the 3D model. The partially vis-
ible white ball is the computed

COM of the robot.
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Figure 5.7: An equivalent rod we can use to properly
define the meaning of ¤G and ¤#.

In the end, I chose a different approach in the non-linear model for two reasons. First,
due to the way the robot is assembled in MuJoCo, the wheel joint velocity does not only
depend on the angular velocities of the wheels but also on the relative positions of the legs
(wheels can be stationary with nonzero wheel joint velocity for example when the robot
is falling forward), which makes this method more complicated. The second reason is
more important however – such approach is inherently imprecise in case of any slippage.

Since we are working with a simulator, we can get what we need in an easier way. I
mounted two artificial linear velocity sensors to each of the wheels. By projecting their
output vectors onto the GH−plane (the I−component should be small anyways when
driving in the plane), the situation can be modeled by Figure 5.7, where we know the
velocities of the left and right wheels, E! and E'. Note that due to the structure of the
robot, the two vectors will be colinear.

We would like to find a decomposition of the movement into ¤G and ¤# such that

E! = ¤G − A ¤#, (5.10)
E' = ¤G + A ¤#. (5.11)

It is easy to see that the solution to the above is

¤G =
1
2 (E! + E'), (5.12)

¤# =
1
2A (E' − E!). (5.13)

Of course, the simulation runs in three dimensions and it is necessary to convert the
incoming data into this description. To do this, we first need a way to find the forward
direction 5 of the robot. We can do this by computing the cross product of the imaginary
axle 0 := ' − ! and the vector from center of rotation to the body, A := � − (' + !)/2,
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defining

5 := 0 × A = (' − !) ×
(
� − ' + !2

)
. (5.14)

When we have 5 , we can compute the quantities of interest as

¤G =
1
2 sign((E! + E') · %GH 5 )‖E! + E'‖ , (5.15)

¤# =
1

2‖A‖2
sign $ · I‖$‖ , (5.16)

where $ =
1
‖A‖2
(E' − E!) × A, (5.17)

I = (0, 0, 1) and %GH = diag(1, 1, 0) is the projection matrix onto the GH−plane.
Computing a pitch angle !̄ is easier, now that we have everything defined. For the

equivalent model to make any sense, we assume that !̄ ∈ [−�/2,�/2], in which case it
can be computed as

!̄ = arccos( 5 · I) − �
2 . (5.18)

Additionally, there is an offset of approximately !0 = −0.1 rad (found by reading out the
value of !̄ in a stabilized position in simulation), so we define the final pitch angle as
! = !̄ + !0.

A good sanity check for the accuracy of the resulting model was to compare this
constant with the real robot. Indeed, a very similar value can be found in the controller
currently governing SK8O’s movement, which is certainly a good sign.

The last state variable missing now is the pitch rate, ¤!. To obtain its value, I mounted
an artifical gyroscope at the COM of the robot in simulation and read the value of the
appropriate axis.

5.3
�� Balancing

As with the linear model, we start with a simple(r) task – balancing. Besides the much
higher number of degrees of freedom (DOFs), there is another complication: we would
like to control the height (hip angle 
2) of the robot. In other words, even this task now
has a reference ℎref.

5.3.1
�� Observation and action space

At this point, we are at an ideological crossroads, so to speak – what features will we use
to train the networks? Should we use those identified as the state variables in Section 4.1,
or just use the data from the sensors and let the agent make sense of it on its own? Well,
we will test both. For now, let us define four different modes of operation which we will
test.

For compatibility with the linear simulation, we will use the segway mode. Optionally,
the environment can lock the hip positions in place to make it easier to test controllers
which only assume control over the wheel motors. Alternatively, there are PD controllers
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dim segway segway+ sensors all

Segway state @̄ 4 + + - +
references Gref , ¤#ref 2 + + + +

hip motor positions and velocities 4 - + + +
wheel motor positions and velocities 4 - - + +

IMU data 6 - - + +
body orientation 4 - - + +

roll � 1 - - - +
hip angle reference ℎref 1 - + + +

hip action Dℎ 2 - + + +
wheel action DF 2 + + + +

Table 5.2: The sk8o_full environment supports four different modes, each containing differ-
ent observations and actions.

prepared for both 50 Hz and 1 kHz control frequencies which can take control over the
hips if required.

As a very minimal extension, there is the segway+ mode, which additionally includes
the hip motor positions and velocities in the observation and allows for hip control. The
sensors mode can be used to train the model with the data coming directly from the
sensors and the exceedingly eloquently named all mode returns all the known data. A
comparison of all the modes is shown in Table 5.2.

5.3.2
�� Initial conditions

During training, the starting length of both legs is sampled from a normal distribution
ℎ0 ∼ N(0.225, 0.02). The body can optionally can also be randomly rotated with the
default values being set so that in most cases, the LQR controller can recover, though this
is not used in practice. The I−position of the robot is then adjusted so that at least one of
the wheels (in the case of rotations) is touching the ground at the start of the simulation.

This is in accordance with the start-up procedure with the real robot, which is also
being held in this standard position when the controller is turned on. Even though
in-the-air initializations might be possible with raw sensor data, I did not explore this
avenue.

5.3.3
�� Rewards

The reward function will be largely the same as in Section 4.3.1 – in fact, the plan is to
reuse the coefficients we have already found. We will add three additional terms due to
the additional degrees of freedom of the system. The new function is now

�balance,mjc(@̄ , A , D, �, ℎ̄) = �balance(@̄ , A , D) − 2ℎ ‖Dℎ ‖? − 2� |� |2 − 2



ℎ̄ − ℎref



? , (5.19)

where � is the roll angle, ℎ̄ is the average leg height (why we use the average will become
clear in velocity reference tracking) and Dℎ is the vector of hip actions (left and right).
Note that even though the penalization term contains ℎ̄ (which is what we ultimately
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care about), internally, the agent receives the reference for the hip angles, because we
receive hip motor positions and velocities from both the model and the real robot.

To find the new coefficients, we will take a different route than in the two previous
cases. Based on a few experiments, I set 2� = 0.05 and 2ℎ = 0.01 in training (and 2� = 1
and 2ℎ = 0.1 in evaluation so that they have an effect there). A justification for these low
values could be that their role is only to nudge the training in the right direction and we
will satisfy ourselves knowing that the models learn to stabilize the robot properly.

I admit that this approach is significantly less systematic than before. However,
training inMuJoCo takes considerably more time – some of the velocity reference tracking
models took three days to learn.³ For this very reason I only tested each run with three
seeds instead of five in the following figures.

With those two values set, we try to find a good value for 2
, as always with SAC
with default hyperparameters and no noise. Out of 2
 ∈ {5, 10, 20, 50}, I chose 2
 = 20,
based on the experiment included in the appendix (Figure F.6). Unfortunately, due to
high variance, it can be hard to convey the information you can get using an interactive
visualization, so to put my reasoning into words: this coefficient was not the fastest to
learn but was more stable in the evaluation afterwards.

5.3.4
�� Robustness against inconsistent rewards

In [41], the authors show that episode truncations can cause issues due to inconsistencies
in reward estimations if not handled correctly. In response, the gymAPI has been changed
to differentiate between reaching a terminal state (either falling or reaching target velocity
in our case) and episode truncation (end due to time limit being reached).

When adjusting the code of the sk8o_full environment to accommodate these
changes, I accidently flipped the order of these two variables in the return function. Apart
from the (significant) time I spent looking for this bug, I also discovered an interesting
fact about the DroQ algorithm.

Before we can get into that, however, we need to understand where lies the problem
with episode truncations. The issue stems from the fact that during training of SAC (and
others), the return ') from Equation (3.6) is generally approximated as

') =

∞∑
C=)

�CAC = A) + �&�̄8 (�(B)), B)). (5.20)

and when B) is a terminal state, it is simply

') = A) , (5.21)

because there were no more rewards in the episode.
When B) is reported to be terminal only sometimes (as it happens when we do not

handle truncations properly), the data is inconsistent and the accuracy of the &−function
is decreased. Though this difference looks very subtle, it can be noticeable in practice, as
has been observed by [41] and accidentally by me.

³All training was performed on an Intel Xeon 4410 CPU @ 2.1 GHz with two cores allocated.
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Interestingly, while vanilla SAC failed to learn anything with this bug in place, DroQ
was much more robust against this error, as shown in Figure 5.8. If we look at the average
loss of the &−functions in Figure 5.8b, we can see that for DroQ, though it is considerable
and does not go to zero, it does not grow without bounds like in the case of SAC, possibly
due to the inconsistencies in rewards.
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(a) SAC failed to learn anything but to fall immediately.
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(b) While the critic loss of DroQ was still an order of magnitude larger than standard, it was bounded.

Figure 5.8: DroQ learned to balance SK8O reasonably well even with inconsistent rewards,
unlike SAC.

5.3.5
�� Going deeper

With the bug out of the way, I started training the algorithmwith variable height reference.
I soon found out that unlike in the linear environment, the Deep Dense Architectures in
Reinforcement Learning (D2RL) network structure is a fair contender for the standard
MLP. As Figure 5.9 shows, D2RL is a significant improvement over vanilla SAC in this
case.

Why is that? If we look at the structure of the networks, one might wonder whether
the cause for that could be that the skip connections allow the deeper layers to act upon
the height reference earlier. Therefore, I trained a more shallow version with the same
structure to test this hypothesis. The results of the experiment can be seen in Figure 5.10.
Clearly, the advantage is not just due to the skip connections, the depth also plays a role.
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Figure 5.9: The D2RL network architecture learns faster and is more stable than SAC.
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Figure 5.10: Depth is key in the improved performance of D2RL.
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5.3.6
�� A case for feature engineering?

Having found the rewards and identified the benefits of D2RL, I then decided to check
what observations are best for training the robot. I tested three out of the four modes
presented in Table 5.2, leaving out the compatibility segway mode.

In my initial tests, the best performing one by far was the segway+ mode. The reason
for the question mark in the title of the section is another blunder of mine. The initial
experiment was launched before the environment was finalized and due to another bug
in the reported observations, which I later fixed, the results were significantly different.
However, encouraged by the idea that the simplest mode performed the best, I did not
think twice to recheck it before it was too late.

For integrity, I include the new experiment in Figure 5.11. Clearly, the segway+ ob-
servation mode is the one that allows for the fastest learning. However, eventually, the
mode containing also the raw data outperformes it (and the sensor mode is the slowest
to learn, though it may potentially get there after the training ended). For this reason, I
only consider the segway+ more in future text with the implicit asterisk that it may not
be optimal.
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Figure 5.11: The segway+ is the fastest to learn to balance but is eventually surpassed.

5.3.7
�� Adding noise into the mix

We conclude this section by experimenting with noisy measurements, as we have done
before. The results are largely the same as in the case when no noise was present – D2RL
is a significant improvement over vanilla SAC. The results of the experiment with D2RL,
along with the best performing SAC and shallow D2RL can be found in Figure 5.12. The
complete results of SAC are included in Figure F.7.
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Figure 5.12: The advantage of using D2RL is even more pronounced when we consider noise.

5.4
�� Velocity Tracking

Equipped with experience we gained in the previous three similar sections, we will move
faster here. For rewards, we will use the same coefficients as in Segway velocity reference,
combined with the MuJoCo-specific coefficients we identified above. The only exception
will be the roll coefficient, which we will lower to 2� = 0.01 in training and 2� = 0 in
evaluation. The reason for this is that we would like to allow the robot to lean into the
curves, which is beneficial especially at higher.

I argue that unlike 2�, 2
 can be left without change. Recall we had to change 2�
because the initial errors were too large with nonzero reference. This is not the case with
height – the initial error distribution is the same. For the very same reason, we can leave
the hip inputs without a change too.

I will only include the segway+ mode here due to reasons mentioned in the previous
section. However, I believe that using the all mode could allow for better performance
and it might be a good direction of future work.

Based on the behavior of the baseline controller, I also increased the window of
acceptable velocities in the success function from Equation (4.21) to 0.2 – double the
original value.

5.4.1
�� Noise saves the day

Like in the case of Segway, including noise in velocity tracking improves the performance.
Before I found that out, however, I started as usual with ideal conditions. One observation
we can make about Figure 5.13 is that it would seem that the dominance of D2RL in the
previous section was a random fluke, as its results are comparable with SAC in this setup.

Worried when I saw the problems when learning without noise, I commenced the
part with noise by testing out a slightly simpler scenario – what if we only consider going
forward and backward? That is, always setting ¤#ref = 0. The results are depicted in
Figure 5.14 and are certainly much more promising.
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Figure 5.13: Notice that the mean evaluation rewards are around zero, so in about half of
the episodes, the agents did not reach the target velocity.
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Figure 5.14: Learning to go in a straight line at a specified speed is a much easier task than
tracking any reference. The results of SAC were nearly identical and are therefore omited.

51



Chapter 5. Rigid Body Model

If youwere rooting for the relatively unknownD2RL, worry not, for whenwe consider
the complete problem, it is again in the lead, as depicted in Figure 5.15. However, the
scores are noticeably lower. It would seem that it is the combination of forward velocity
and yaw rate that is the main problem.
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Figure 5.15: When learning to track velocities in a noisy environment, both SAC and D2RL
are improved, with the latter coming out ahead.

5.4.2
�� Learning with a teacher

As humans, we often learn by mimicking others. Although we have seen the algorithms
learn to balance the robot and even reach a specified velocity, it might be interesting to
see whether we can use a profficient controller to “guide” the agent towards good actions
and speed up the learning.

For the first experiment, I tested the approach I outlined in Section 3.3.3: with ex-
ponentially decreasing probability ? = exp−�= , where = is the number of environment
interactions, the action will not be selected by the agent, but rather by the teacher – the
LQR. As we did not have a functional controller for this control frequency, I had to design
one. The resulting controller managed to reach a more relaxed goal in approximately
30% of the episodes, which is a possible explanation for why learning in Figure 5.16 was
not accelerated by the presence of a teacher (though it was decelerated when the teacher
was “too active”). Still I am a little surprised that the reasonable policy did not improve
performance even during the early stages of training.

Second, I tested the DroQ algorithm (discussed in Section 3.2.2), which boasts a much
higher sample efficiency, in a slightly different scenario. Here, there was a number of
trajectories pregenerated and the training started with a partially filled replay buffer.
However, the results were so abysmal that I initially assumed that my implementation as
incorrect. However, the algorithm performed as expected on the standard Humanoid
environment, so it is possible that this learning strategy is simply not good due to the
reasons outlined in Section 3.3.3.
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Figure 5.16: The presence of a teacher did not accelerate D2RL’s learning. Note that in this
case, the reference error window of Equation (4.21) was further increased to 0.4.

5.5
�� Verification

The first model we shall inspect was trained to balance SK8O in linear simulation, with
noise and model randomization. In Figure 5.17, we can see a major problem with its
behaviour – it is extremely sensitive to the offset pitch angle, denoted by !0 in Section 5.2.2.
We can see that depending on the value of this angle, the robot is leaning (and therefore
moving) either forward or backward. This is problematic because !0 changes in practice
with changing height but also in case of any changes in the robot, such as when it uses a
heavier battery.
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Figure 5.17: Depending on the offset pitch angle !0, the balancing Segway controller moves
either forward of backward.

As they say, “hindsight is 20/20”. Nonetheless, I should have predicted that this
problem could arise – after all, one of the few invariants of the simulation with parameter
randomization in place was the fact that the system is stable when ! = 0. In an effort
to mitigate this problem, I devised a training scheme, in which !0 is randomized as
!0 ∼ N(0, 0.1). However, while this fixed the problem in the sense that changing !0 does
not alter the behavior, the controller performs poorly either way, as seen in Figure 5.18.
Training with zero penalty on the pitch angle ! did not help with the issue either.
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Figure 5.18: Using variable pitch offset !0 in training causes oscillatory behavior.

Out of the linear simulation-based controllers, the one that performs the best was
trained for velocity tracking, shown in Figure 5.17. This is not very surprising, given that
it outperformed the balancing agent even on the Segway simulation. However, it still
suffers from the same issue – sensitivity to !0, which I was unable to suppress.
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Figure 5.19: The velocity reference controller show the best performance out of those trained
on the linear system - its sensitivity to pitch angle offset !0 is the lowest.

The reason why we decided to train RL agents on a full 3D model of robot was to
allow it to control the hips. Therefore, the balancing results in Figure 5.20 include variable
height reference. While the agent tracks the requested mean hip angle accurately, it looks
as though it tends to lean to one side. This was likely caused by the roll coefficient being
too low in the reward function.

5.5.1
�� Velocity tracking

The agents trained in the full simulation do not exhibit the same level of “mastery” as those
trained on the Segway model as illustrated by Figure 5.21. However, at least anecdotally,
the RL agents did learn to lean into the curves, as shown in Figure 5.22, which goes to
show that they do have at least some understanding of the system and it is, in my mind,
at least a partial success.
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Figure 5.20: A full view of balancing with noisy model and perturbations by an RL controller
trained in MuJoCo.
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Figure 5.21: The policies trained in MuJoCo are “beat at their own game” even by the con-
troller trained on the linearized Segway model.
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Figure 5.22: A full view of velocity tracking with noisy model and perturbations by an RL
controller trained in MuJoCo. Notice that the robot “leans into” the turns.
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Chapter 6

Deployment onto SK8O

Making the leap from simulation to the real world is a complex process, even with
classical methods. This is doubly true for Reinforcement Learning – neural networks tend
to overfit to the training environemnt (as illustrated by [19]) and they are significantly
more demanding, both from software and hardware point of view, than essentially all of
their standard counterparts.

Running the models

So far, SK8O has been mostly controlled from a Teensy board (recall Figure 2.2), although
Petr Brož has made progress in the past year to allow for control from the much more
capable ODroid board, which runs Ubuntu Linux. As of May 2023, there are still some
issues to be ironed out that may manifest themselves in our experiments but thanks to
his work, we were able to deploy the models to ODroid and not worry too much about
the extremely resource-constrained Teensy.

The control on both the Teensy and Odroid boards was implemented in C++, though
an interface to Python for high-level features, such as a web dashboard and Xbox control,
had been implemented. As discussed previously, the models we trained in Chapter 4 and
Chapter 5 were exported to the ONNX format with the hopes that that would allow an
easy transition to the real robot, with a control loop in C++.

Unfortunately, we had underestimated the difficulty to use these complex libraries on
the ARM architecture. Binaries for the x64 architecture are readily available from official
sources for both Torchscript (a method for creating C++ programs from a PyTorch model)
and the ONNX Runtime, which is not the case for ARM. After many hours of trying to
compile the libraries from source, we¹ decided that C++ was not the way to go here.

In the end, the control loop runs in Python.² Of course, this has some drawbacks –
Python is known formany things but being fast is certainly not one of them. Consequently,
the control loop cannot reliably run faster than at 50 Hz. Therefore, running the NNs was
not even the bottleneck (the default SAC agent runs at >10 kHz).

¹The deployment was greatly accelerated by the help of Martin Gurtner who had implemented a large
part of the current SK8O codebase.

²An interesting sidenote is that our unsuccessfull attempts at compiling either torch or the onnxruntime
took longer than implementing the control in Python.
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Discrepancies between the model and the real robot

Any simulation model is an idealized version of the real one and those presented in the
preceding chapters are no different. Let us now take amoment to go over the discrepancies
that proved to be most influential to the deployment.

The first minor hiccup is the fact that the state vector from Section 4.1 is not the one
used in the robot. Besides a reordering of the states, states ¤G and ¤# are replaced by
the sum and difference of wheel angular velocities $! , $'. Therefore, it is necessary to
compute the state used for predictions as

¤G = − A2 ($! + $') and ¤# = − A
3
($' − $!), (6.1)

where A and 3 are wheel diameter and axle length, with values found in Appendix C.
Note the negative signs due to different wheel orientation. For reference, the full state
transformation can be described by

@̄robot =


0 0 −3/A 0
−2/A 0 0 0

0 1 0 0
0 0 0 1


@̄ and Arobot =

[
0 −3/A
−2/A 0

]
A. (6.2)

Additionally, the angular velocities are quantized to steps of approximately 6/91 rad s−1.
Likewise, it is necessary to convert the data coming from the hip motors. They are

again oriented in the opposite direction and geared up by a factor of � = 16.5. Lastly,
during the homing procedure before the controller is started, motor positions with fully
extended legs are recorded. In my experiments, this value was found to be equal to

2,0 = 64◦. The complete transformation is then given by


2 = 
2,0 −
?

�
, (6.3)

where ? is the positional output of the respective motor. Apart from the offset, an
analogous equation can be used to obtain motor velocities.

6.1
�� Experiments

For the third time in this text, wewill get to see sample trajectories from themodels. In this
case, we will make one change: we do not differentiate between balancing and velocity
reference tracking. The reason for this is simple – the best performing balancing controller
is in fact a velocity reference controller, as seen in Figure 6.1, where it significantly
outperforms the best balancing controller I found.

My theory for this is that the controller that trains for velocity tracking explores the
state space better due to its task, while the balancing one only truly gains experiences
in the neighborhood of the origin. Due to the inevitable differences in dynamics, the
balancing controller thus finds itself in situations it had not seen before and has problems
stabilizing the system. Another explanation might be that the balancing controller is
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Figure 6.1: The velocity tracking controller is superior to the one trained only for balancing.

simply overfit, which the velocity reference either is not or is less so thanks to more
diverse training dataset. These are, however, only theories and would require more time
to be explored properly.

I was pleasantly surprised by the performance of the Segway-based controllers, as
I had not expected them to work without any fine-tuning. While they still exhibit the
sensitivity to pitch angle offset !0 we discovered in simulations, I would argue that the
issue is manageable in practice.

The controller is even able to survive being pushed, as illustrated by Figure 6.2.
Interestingly, it is much more resilient towards pushes that would make it fall backward.
This could be connected to the sensitivity to pitch offset variation – it is entirely possible
that the one used in the robot leads to stable position having nonzero pitch angle !,
biasing the controller to lean forward.

A minor issue we ran into was a very jittery movement, accompanied by strange
noises coming from the motors. Though it is also present in the LQR controllers when
being run on the ODroid, the RL agents exacerbated the issue. In an effort to try to solve
the problem, I retrained a new set of Segway-based agents with the quantization built-in
and, subjectively, this improved the behavior.

There is one more interesting experiment we can look at, which has to do with input
shaping (or the lack thereof). When requiring a linear controller to suddenly move at
a drastically different velocity, it is best to shape the reference change for example with
a low pass filter, because the response is roughly proportional to the reference error.
Theoretically, the RL agents should be immune to such issues – in the end, the were
trained without input shaping.
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Figure 6.2: Pushing the robot back and forward does not make it fall.
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The results are presented in Figure 6.3. The RL controller manages to stabilize the
robot with a much larger jump in reference. This is remarkable also due to the fact that the
agent has not experienced such references during training at all (recall that the maximum
velocity was 1 m s) and has likely never explored this part of the state space.
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2 4 6 8 10 12 14
time [s]

−1

0
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2
Reinforcement learning

Figure 6.3: The RL controller can withstand larger jumps in reference than the LQR used on
SK8O. The important areas in the figure are the responses to reference steps at the beginning
of each timeseries and at around 10s in the case of LQR and 12s for RL, both of which are
followed by a fall. Notice that the RL agent is able to respond to a change greater than the

one that caused the LQR to fall.

Finally, in Figures 6.4 and 6.5, you can compare the behavior of the RL Segway-based
agent to the LQR from Equation (4.9) running at 1 kHz. The RL policy has a nonzero
steady-state error and is more sensitive to noise in general. On the other hand, it is
subjectively less sensitive to changes in height of the robot. I think it is fair to admit
that the LQR controller is still superior in most cases. However, just the fact that we can
compare the RL-based controller to one running at 20x the frequency is, in mind, an
astounding achievement.
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Figure 6.4: Measurements from the real robot when controlled by SAC agent trained on the
linearized Segway model.
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Figure 6.5: Measurements from the real robot when controlled by the LQR currently used.
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6.1.1
�� MuJoCo-based controllers

Unfortunately, the MuJoCo controllers failed to deliver. To an extent, I had expected this –
we have had issues with LQR controllers working in simulation and not on the real robot
and vice versa, so we suspected that the simulation was not entirely accurate. Because
the controller from [2], which was also the source of almost all physical paramers, works
very well in simulation, I believe the issue might lie with the system identification. Since
then, the robot has undergone severl modifications: the RealSense camera was mounted,
the wheels have been swapped and some of the parts are worn out (especially the knee
springs), so it does not behave as it used to.

The behavior of a MuJoCo-based balancing controller is shown in Figure 6.6. Notice
that one of the legs oscillates with a higher magnitude. This is in accordance with our
experience – one of the legs is stiffer to the point where it sometimes does not even
extend when upside down. I tried to train new agents with different mean values of the
parameters of the knees (recall that this value was also randomized) but did not see an
improvement.
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Figure 6.6: The hips were likely not correctly identified and the controller did not manage to
maintain a fixed height.

Due to this issue, we did not perform any other experiments with hip control, both
due to the dangers to the robot and because the oscillation visible in Figure 6.6 would
make any velocity tracking unstable, even with a good wheel controller. Even though the
main reason behind training these more complex agents was to allow the robot to adjust
its roll angle, out of curiosity I also tested the performance of the agents with the control
over hips handed over back to the motors. The results can be found in Figure 6.7.

An interesting and relatively straight-forward future endeavour could lie in simpli-
fying the task as follows: instead of the agent directly controlling the torques, it could
instead request their positions and the motor’s PD controllers could set the torques ap-
propriately. One might even argue that leaving the problem that is easily solvable by the
motor controllers running at 20 kHz is even the proper engineering solution.
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Chapter 7

Liability of Future AI Systems

In 2020, the European Comission released a white paper¹ on Artificial Intelligence, in
which is states that it “entails a number of potential risks, such as opaque decision-making,
gender-based or other kinds of discrimination, intrusion in our private lives or being
used for criminal purposes” [42]. The stated purpose of the document is to define policies
that will govern the use and research of AI for civil applications.

In the context of AI-system development, the most relevant part is chapter five, which
sets out to define the regulatory framework for AI. It mentions several key requirements
including safety, transparency, fairness and accountability to promote trust in the field. It
has been shown that certain AI systems that are already deployed in practice can exhibit
bias with regard to protected characteristics. As an example, [43] discusses COMPAS, a
tool that forecasts the risk of recidivism of an individual and is used in courts in several
jurisdictions in the USA, which has been shown to be biased with respect to gender and
race.

For RL, which would typically be used in place of standard control system algorithms,
liability (and, tangentially, safety certification) is arguably the most important aspect. In
general, if a product is shown to be defective, the manufacturer is liable for any damanges
under the Product Libaility Directive. However, as the white paper states, it might be
difficult to judge whether an AI-based product is faulty – when a wheel falls off, the
defect is clear but with black-box systems (which most deep AI models are), it is hard
to show a causal link. The authors argue that current consumer protection legislature
may not suffice and that it might even be necessary to shift the burden of proof on the
manufacturer.

¹https://eur-lex.europa.eu/EN/legal-content/glossary/white-paper.html
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Additionally, the white paper proposes a few possible relevant requirements, such as:

� the need to provide assurances that the training datasets “cover all the relevant
scenarios needed to avoid dangerous situations”,

� proper documentation of the training procedures,

� possibility of human oversight (for instance a way to deactivate of the AI system in
case of unsafe operation),

� robustness and accuracy of at least being able to correctly identify their levels.

Currently, there is legislation in progress to pass these results into a directive, which
would then have to be implemented into each countries legislation [44]. Given the
influence of the old continent, it is possible that such action would cause a domino effect
among other democracies adopting similar measures.

7.1
�� Interpretability & Explainability

It would seem that at least in the EU, we will need a way to explain our (deep) models
in the near future. This concerns the field of XAI, which is still relatively unknown.
However, if a prediction made in 2021 by the consultancy firm Gartner is to be believed,
XAI is expected to reach plateau of productivity within 5-10 years [45]. In the same year,
they predicted chatbots to be productive in less than two years and I would argue that
their assessment was correct, as they are already being incorporated in certain web search
engines [46].

In this chapter, we will take a look at the current research being done in the field with
particular considerations for RL. This could serve as a starting point for possible future
applied research in RL, in case it is deemed necessary by the law-makers.

We will illustrate the techniques discussed on one of the models introduced in Sec-
tion 4.3, namely an SAC agent trained to balance a Segway in ideal conditions. To obtain
a dataset with approximately i.i.d. samples, the trained controller was left to interact
with the environment for a million timesteps (≥ 104 episodes to promote variety in initial
conditions). The resulting dataset was then subsampled to 104 observations to mitigate
the correlation between samples – on average, this should result in only one sample per
episode.

7.1.1
�� Model-agnostic Methods

Let us start with looking at the two terms in the title of this section. Interpretability
and explainability are often used interchangeably and there are no widely accepted
definitions [47]. One definition for both, given in [48], is “the degree to which an observer
can understand the cause of a decision”.

Some models are intrinsically interpretable, at least to an extent. An example of such
models are decision trees, where the reasons for each concrete decision (this is known as
local interpretability) can be understood analyzing the branching that lead to it. They are
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also globally interpretable (though perhaps not fully), because we can look at the factors
that influence the decisions the most (decision nodes closest to the root).

On the other hand, deep NNs have so many parameters and their interplay is so
complex that a human cannot realistically comprehend them beyond a single layer with a
handful of neurons. Therefore, to make sense of their outputs, we need a helping hand.

An excellent introductory book to this topic by Christoph Molnar [49], lists a wide
variety of model-agnostic methods. That is, methods that can be applied to analyze any
multivariable function such as deep NNs.

One possible approach is to only focus on a single feature at a time and analyze
its effect on the output(s). For example, the Partial Dependence Plot (PDP) shows the
marginal expected value of a function for all valid values of a parameter. In practice, to
compute the partial dependence on e.g. ! = 1, we need to compute the sample average
on a modified dataset in which the value of ! in all observations is replaced by 1.

In our case, we could expect that, on average, the magnitude of the wheel action
increases with growing !, as seen in Figure 7.1. While this kind of method might be
useful for finding poorly explored parts of the observation space which could cause
unexpected behaviours of the model, I do not think they have much chance at being
accepted by a regulatory body, because it lacks the nuance to detect the interaction
between parameters.

Another technique which might be of interest is finding a global surrogate model. This
means that we train an intrinsically interpretable model to approximate the predictions.
The problem in this case is clear – if the surrogate model provides accurate enough
predictions, it is quite possible that we should not have used DL in the first place.

So what if we used a set of such surrogate models to approximate different parts of
the observation space? One such method is called Local Interpretable Model-agnostic
Explanations (LIME) [50]. Whenever we need to explain a particular output of our
blackbox model, LIME fits a sparse linear model to the predictions of the blackbox model
on the neigborhood of the point of interest. An example of this can be seen in Figure 7.2.

Another popular approach is known as SHAP values, introduced in [51]. As primer
on the topic, I recommended reading the documentation of the Python shap packge.² The
technique is based on Shapley values from game-theory, which are used for analyzing
which subsets of players on a team are the most impactful for the outcome.

If a player’s absence leads to a lower score of the team, they get a positive Shapley
value. On the other hand, if they are detrimental to the result, they receive a negative
value. In this case, the observation features are viewed as the players and the blackbox
model as the game’s outcome.

The above selection of methods, as well as many others, can be found in [49] along
much more detail and examples. Even though these methods are general, or even focused
on supervised learning, I believe that the local explanations might be able to satisfy
the directive (in case of an accident) so I included them. Next, we take a look at some
examples of how these methods were applied in RL and also introduce techniques which
are more tailored towards it.

²https://shap.readthedocs.io/en/latest/overviews.html
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Figure 7.1: Partial dependence plot for Segway balancing. In particular, note that the
expected action with zero pitch angle ! is nonzero and for negative values, the actions are
not the same. This can possibly hint at issues with the model but it may be due to the data

(especially the latter problem).
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Figure 7.2: LIME explanation for left wheel action D! in the case when the Segway is going
forward, rotating slightly but at the same time, it is falling backwards, @̄ = (0.1,−0.2, 0.5,−0.2).
The G−axis corresponds to the effect the respective feature has on the model’s prediction.

Namely, it is the coefficient of a Ridge regressor fitted to the neigborhood of @̄.
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Figure 7.3: A beeswarm plot of SHAP values for left wheel control input D!. Each point
represents a single observation. Their colors correspond to the value of the respective
feature (highly positive values in red, negative in blue) and their positions encode the

impact they have on the action (the more right, the higher the requested torque).
We can see that in the dataset, the potentially most impactful variable was the pitch angle
and that except for extremal values, yaw rate ¤# only had mild impact, as all the intermediate
purple colors are centered around the origin. Lastly, notice that intermediate values of ¤G
had a slightly negative impact on the prediction, which suggests a possible problem with

the model or the dataset, as we would expect those to be around zero.

7.2
�� Explainability in Reinforcement Learning

When it comes to XAI in RL, the outlooks are largely the same as in the case of learning
– most current research is done in supervised ML, as a very recent summary paper on
the topic observes [47]. Nonetheless, progress in Explainable Reinforcement Learning
(XRL) has been made in the past decade, despite the fact that RL breaks the common i.i.d.
assumption, as we have discussed previously in Section 3.3.3. Let us now go over some
of the interesting applications and results the overview mentions.

When the surrogate methods we mentioned in the previous section are applied to RL,
they are often called policy simplificationmethods [47]. In [52], the authors show that when
a DQN is trained on a fully observable Lava Gridworld (discrete observation and action
space), one can create a set of rules that accurately describe the behavior of a “reasonable
agent”. This approach, however, might not be easily generalizable to continuous action
and observation spaces.

In [53], we can see decision trees being constructed to explain a black box model. They
introduce a novel algorithm tha strategically generates samples from the blackbox model
to prevent overfitting. They have shown that their method can be applied to approximate
RL agents trained for continuous action spaces.

If we are willing to structure our solution so that DL is only a single cog in a larger
machine, an inspiration can be [54], where the authors develop what they call a risk-aware
RL to control an autonomous vehicle. Their solution adds a collision prediction map
generated by a classical model, which not only increases the performance of standard RL
algorithms they tested but can be used in conjuction with post-hoc XAI to ensure that
the chance of collision is taken into account.

Finally, let us discuss a techinque which is not post-hoc, so it is not immediatately
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applicable to the models I have developed in this work. Additionally, this is an emerging
area of research and as such has not seen much success in practice apart from toy datasets.
Nonetheless, I personally find it elegant from a theoretical point of view, so I think it
deserves its own section.

7.2.1
�� Causal Learning

The idea behind statistical machine learning is to observe massive amounts of i.i.d. data
from a joint probability distribution ?(G, H) and to find a function 5 (in the case of DL
a neural network) that models ?(H | G) as H = 5 (G). Ideally, this predictor will be able
to correctly model the relationship even on unseen data. However, should the unseen
examples be sampled from an altered distribution, the model may become arbitrarily
inaccurate [55]. This can be exploited by malicious actors as famously demonstrated by
[56].

Figure 7.4: Illustration of an adversarial attack on a neural network. Image credit: Goodfellow
et al. [56]

Additionally, this ignores possible causal relationships between the variables, which
can be necessary for correct generalization of out-of-distribution examples, as noted by a
review of causal representation learning, which is the main source of this section [55].
Having causal models can also allow the model to answer interventional (“Will SK8O fall
if the pitch angle increases to 0.2 rad?”) and counterfactual (“Would SK8O have fallen even
if the pitch rate was negative?”) questions.

For example, the amount of civil engineering doctorates awarded correlates with
per capita consumption of mozzarella cheese with a correlation with A = 0.96.³ Should
the government subsidize cheese (more) in an effort to increase the number of highly-
educated citizens, or rather should “big mozzarella” lobby for an increase in postgraduate
students’ funding? In this case, such questions may sound ludicrous but it is exactly the
sort of interventional questions one may ask when deciding whether to run a discount
campaign on their product.

Schölkopf et al. describe causalmodeling as being between statisticalmachine learning
and differential equations. It can benefit from data like ML (thus reducing the need
for domain-expertise) but also provides a more in-depth understanding like the latter.
Unfortunately, it typically requires the ability to perform interventions (see the effect of
changing a particular feature) or data gathered in different environments [55].

³Courtesy of Tyler Vigen’s famous Spurious Correlations (available at https://www.tylervigen.com/
spurious-correlations)
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7.3. Summary

Causal learning is based on the Common Cause Principle, which states that “if two
observables - and . are statistically dependent, then there exists a variable / that
causally influences both and explains all the dependence in the sense of making them
independent when conditioned on /” [55]. In the mozzarella example, / could be the
average household income, which allows more people to pursue higher studies and also
buy more cheese.

The causal relationships can be modeled by directed (possibly acyclic) graphs, in
which an edge - → . exists if - is the cause of .. When it comes to learning such
structures from data, even identifying the components of the causal models is hard for
both ML and humans. One technique for its discovery is showcased for example in [57],
where they use a recurrent variational autoencoder, similar to the one we discussed in
Section 3.4.1, with a special structure of the decoder, which internally learns the causal
graph and achieves SOTA performance in medical timeseries generation.

Naturally, such solutions could bring a revolution for reinforcement learning. As [55]
notes, learning invariances in a causal graph structure could lead to better generalization
and possibly better sample efficiency, such as by creating an imagined world model (the
authors go as far as to compare this to the way human reason about the world). They also
mention that interventions may be necessary to discover causality – but that is the main
principle of online RL. They stress that future RL should include this ability to formulate
hypotheses in the imagined environment and then test them in the real environment.

The overview concludes by stating that here is still research to be done in this area
not only in solving the problem but even in finding a good problem formulation.

7.3
�� Summary

This chapter was a notable digression from the main topic of the thesis. However, the
topic of XAI is an important and fascinating one and is also clearly motivated by likely
future legal requirements. I chose a lighter tone and focused primarily on the motivation
for most of the discussion contained here as a way to balance the “legalese” that started it.
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Chapter 8

Conclusions

We have reached the final chapter of this thesis, marking a moment to both reflect back
on what we have seen and to envision potential avenues for further development.

The primary objective of this work was to develop a reinforcement learning-based
controller for the SK8O robot which can not only prevent it from falling but also allow it
to track a desired velocity reference. This was to be accomplished using two simulation
models: a linear dynamical model covered in Chapter 4 and a full 3D model, which was
implemented MuJoCo, as discussed in Chapter 5.

As outlined in Chapter 6, the resulting controllers were also successfully deployed
onto the real robot. Remarkably, the agents trained on the simpler model managed to
bridge the gap from simulation to the real world without any fine-tuning and in some
regards exceed the performance of the classical controller currently used on the robot.

The policies trained using the full model, however, failed to stabilize SK8O, despite
promising performance in simulation. It is possible that this outcome can be attributed
to robot parameters having changed since their identification and the agents failing to
generalize to the new system.

In Chapter 7, we took a slight detour and considered a possible upcoming EU liability
directive. This motivated an introduction to the field of Explainable Artificial Intelligence
and an overview of its most popular techniques. To maintain a connection to the rest of
the thesis, I used a model developed previously as a recurring example.

To improve the presented outcomes, a new identification of the robot’s parameters
could be conducted, as theymay have changed significantly since their original estimation.
The improved model should then lead to agents better suited to control the real robot.
Additionally, a conventional approach to augment the performance of RL agents is fine-
tuning – the practice of continuing the training of the model’s parameters based on the
data collected from the real robot [58].

Over the course of the past year, many people have told me something along the
lines that “reinforcement learning does not work”, when they found out the topic of my
thesis. However, I believe that at least in this case, it might be more accurate to say that
though reinforcement learning can be finicky and requires a lot of experimenting, it can
be persuaded to work in the end.
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Appendix A

Contents of the Attachment

text/ this thesis in PDF format
code/experiments/ scripts used to generate the trajectories presented here
code/explainability/ scripts that generate the explainability
code/training/ scripts for training the agents
models/ some of the models presented in this thesis in ONNX format

79



Appendix B

Software

The codebase is developed in Python 3.9, documented with NumPy style docstrings and
includes type hints. To install the dependencies, use the standard requirements.txt file.
Due to the need to execute most training in the Research Center for Informatics, CTU
Prague (RCI) cluster, there is also a Singularity container definition file sk8o-rl.def.
One benefit of the Singularity container is that it supports headless OpenGL rendering
via OSMesa, so that the script can save videos during training. Note that the processor
architecture of the machine where the container is built has to be the same as the one
where it is deployed. This was not an issue for me because the cluster has both AMD and
Intel nodes.

Below, I will summarize the most significant (nonstandard) libraries and tools used to
facilitate the development and training.

Reinforcement learning library

Having had worked with two of the most popular deep learning packages for Python,
namely Tensorflow and PyTorch, I was knew which one I wanted to use. I find the latter
to have better documentation and to be much more elegant and easy to use overall. This
already narrowed down the choices somewhat, although there seems to be a trend among
researchers to switch to PyTorch – none of the codes published in the recent papers I have
seen used Tensorflow.

In the end, I settled on Stable Baselines 3 [59]. It is a mature package that contains all of
the standard online RL algorithms and is extremely easy to start with. In particular, I use
the 2.0 alpha version that supports the new open-sourced Python bindings for MuJoCo.

I used its implementation of the SAC algorithm and implemented the other two
algorithms used in this thesis, D2RL and DroQ, as its modifications, so they were also
largely based on the library implementation.

One issue I have encountered with this library was that it is not made to be modular
(as a design choice), which complicates implementing new algorithms. For a future work,
I believe the Tianshou¹ library, which strives to be more research-friendly, might be a
good choice. However, at the time of writing, the package was not mature enough and I

¹https://tianshou.readthedocs.io/
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Appendix B. Software

found its documentation to be lacking. For high-scale applications, Ray[rllib]² might also
be a good choice.

Experiment & Configuration management

For this thesis, thousands of training runs with many varying (hyper)parameters had to
have been executed. Doing it manually at such scale is next to impossible and certainly a
bad practice. There are three issues that need solving:

� merging default values, command-line arguments and system environment vari-
ables,

� generating reasonable sets of parameters,

� visualizing the results.

To solve the first problem, there is a wide variety of standard Python packages that
parse command-line arguments, such as argparse³ or click⁴. However, the number of
parameters in this thesis is very high (>100) and their interplay is complex (different
combinations of environments and tasks may lead to different default values). For a more
fitting solution, I used hydra, developed by Meta (Facebook), which was created with
deep learning in mind [60].

The second and third problems are solved jointly by Weights & Biases [61]. The sweep
feature uses bayesian search to find a suitable combination of hyperparameters from
a user-specified range. The web dashboard shows any logged data and even supports
videos, which I found very useful when judging the performance of the algorithms.

²https://docs.ray.io/en/latest/rllib/index.html
³https://docs.python.org/3/library/argparse.html
⁴https://click.palletsprojects.com/en/8.1.x/
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Appendix C

Equations of the Segway Model

When we discussed the linearized Segway model of SK8O in Chapter 4, I stated that
the non-linear Lagrangian model for generalized coordinates @6 = (G, !,#) and input
D = (D! , D') as seen in Figure C.1, is described by the equation

¥@6 = "(@6)−1 (�D − �(@6 , ¤@6) − � ¤@6 − �(@6)) . (C.1)

𝑤

2𝑟
𝑙

𝑥𝑢

𝜓
𝜑 𝑚𝑝

𝑚𝑤

Figure C.1: The Segway model, its state and parameters

The values of the matrices are

" =
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0 0 <33
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0
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0

 ,
(C.2)
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Appendix C. Equations of the Segway Model

Symbol Parameter Value Unit

1 damping coefficient 1 × 10−2 N m s rad−1

� wheel moment of inertia about its turning axis 7.35 × 10−4 kg m2

 wheel moment of inertia about the vertical axis 3.9 × 10−4 kg m2

<F wheel mass 3 × 10−1 kg
A wheel radius 8 × 10−2 m
F distance between wheels 2.9 × 10−1 m
; COM height 2.907 × 10−1 m
�?G roll moment of inertia of the pendulum 1.5625 × 10−2 kg m2

�?H pitch moment of inertia of the pendulum 1.186 25 × 10−2 kg m2

�?I yaw moment of inertia of the pendulum 1.186 25 × 10−2 kg m2

<? mass of the Segway without wheels 4 kg

Table C.1: Parameters of the Segway model. All moments of inertia are shown with respect
to the COM of the body.

where the elements are

<11 = <? + 2<F + 2 �
A2 , <12 = <21 = <? ; cos !, <22 = �?H + <? ;

2 ,

<33 = �?I + 2 +
(
<F +

�

A2

)
F2

2 − (�?I − �?G − <? ;
2) sin2 !,

212 = −<? ; ¤! sin !, 213 = <? ; ¤# sin !, 223 = (�?I − �?G − <? ;
2) ¤# sin ! cos !,

231 = <? ; ¤# sin !, 232 = −223 , 233 = −(�?I − �?G − <? ;
2) ¤! sin ! cos !,

311 =
21
A2 , 312 = 321 = −21

A
, 322 = 21, 333 =

F2

2A2 1.

(C.3)

The values of the physical parameters can be found in Table C.1.
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Appendix D

MuJoCo Model Parameters

Here I present the values of all the parameters that define SK8O, as shown in Figure D.1.
The values are utilized in the MuJoCo model which can be found in the attachment in
code/training/env/sk8o_full/full_model.xml.
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Figure D.1: Diagram of SK8O’s structure superimposed over the 3D mesh
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Appendix D. MuJoCo Model Parameters

Body Symbol Value Unit

- 1 0.01 N m s rad−1

body

<1 3 kg
;1 100 mm
;D: 93 mm
;F 92.5 mm

upper leg <D 0.2 kg
;D 188 mm

lower leg

<; 0.2 kg
;; 190 mm
;;: 50 mm
;�$" 80 mm
1: 0.15 N m s rad−1

� 0.15 N m rad−1


2,ref -240 deg

kinematic loop <: 0.1 kg
;: 193 mm

wheel

<F 0.3 kg
;> 25.6 mm
A 80 mm

Table D.1: Parameters of the full model

Body �GG [kg m2] �HH [kg m2] �II [kg m2]
body 9.25 × 10−2 6.57 × 10−2 6.57 × 10−2

upper leg 6.04 × 10−4 1.67 × 10−5 5.91 × 10−4

lower leg 9.75 × 10−4 1.67 × 10−5 9.62 × 10−4

kinematic loop 6.36 × 10−4 1.67 × 10−5 6.22 × 10−4

wheel 3.90 × 10−4 3.90 × 10−4 7.35 × 10−4

Table D.2: Moments of inertia with respect to the COMs of all the bodies in the full model.
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Appendix E

Reward Tuning

In sections 4.3.1 and 5.3.3, we have searched for a reasonable set of coefficients in the
training reward function. The results were then shown in tables 4.2, 4.4. In Figure E.1,
you can find all the combinations of parameters that were tested by Weights and Biases’s
sweep function and their results. The plots were exported from the Weights and Biases
UI.
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Appendix E. Reward Tuning

(a) Reward sweep for Segway balancing

(b) Reward sweep for Segway velocity tracking

Figure E.1: Reward sweeps used to find the rewards functions for training of RL agents. Each
line corresponds to one training run with a set of parameters determined by the locations at

which it intersects the vertical lines. Its color encodes the mean evaluation reward.
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Appendix F

Director’s Cut

Below, you can find attached data from training runs which were referenced from the
main text but were not key to the understanding of the narrative, so they were moved
here in an effort to increase the text’s cohesion.
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Figure F.1: The choice of hidden layers does not make a significant difference in evaluation
reward, discussed in Section 4.3.2.
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Appendix F. Director’s Cut
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Figure F.2: Removing the step reward lowers variance at the cost of a slightly worse perfor-
mance, so in Section 4.4.1, 2B = 0 was selected.
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Figure F.3: Even though higher values of 2� lead to faster learning initially, the value found
by the sweep achieves better results in the end, discussed in Section 4.4.1.
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Figure F.4: The benefits of frame stacking are comparable to those found in balancing, as
mentioned in Section 4.4.3.
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Appendix F. Director’s Cut
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Figure F.5: The choice of architecture does not have a significant impact on prediction quality,
although the deeper network may be slightly overfitted, discussed in Section 4.4.3.
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Figure F.6: Although with 2
 = 20, the agent takes longer to train, it performs more consis-
tently in the end. Motivates the choice of the parameter in Section 5.3.3.
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Figure F.7: In Section 5.3.7, I mention that D2RL outperforms SAC. For reference, the perfor-
mance of SAC is included here too.
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