
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Multi-agent Systems for Production
Planning

Tomáš Staruch

Supervisor: Ing. Vojtěch Janů
January 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

465829 Personal ID number: Staruch Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and Robotics Study program:

Cybernetics and Robotics Branch of study:

II. Master’s thesis details

Master’s thesis title in English:

Multi-agent Systems for Production Planning

Master’s thesis title in Czech:

Multiagentní systémy pro plánování výroby

Guidelines:

The goal of this thesis is to get acquainted with the theory of multi-agent systems and to design, implement, and
experimentally verify an algorithm for multiagent planning of production. The following steps should be followed:
1. Get acquainted with the theory of multi-agent systems and write an overview of concepts that are important for the task
of production planning.
2. Get acquainted with the existing non-complete solution for production planning that is used in Testbed for Industry 4.0.
3. Propose sound and complete algorithm for production planning of a single product.
4. Implement and validate the proposed algorithm on the Testbed production line by executing a complete production of
the product.

Bibliography / sources:

[1] Shoham, Y., & Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations.
Cambridge University Press. doi:10.1017/CBO9780511811654
[2] FIPA Communicative Act Library Specification. (2002). Retrieved 9 January 2022, from
http://www.fipa.org/specs/fipa00037/SC00037J.html

Name and workplace of master’s thesis supervisor:

Ing. Vojtěch Janů Testbed - CIIRK

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 10.01.2023 Date of master’s thesis assignment: 24.01.2022

Assignment valid until:
by the end of winter semester 2023/2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Vojtěch Janů
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I want to thank Ing. Vojtěch Janů for his
outstanding support during this project.
I would also like to thank the other mem-
bers of the Testbed for Industry 4.0 group
for their valuable advice, and I would like
to thank Ing. Pavel Burget for the oppor-
tunity to work on this project at Testbed.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all source of information used within
it in accordance with the methodical in-
structions for observing the ethical princi-
ples in the preparation of university the-
ses.

Prague, 10. January 2023

v

Abstract

The aim of this thesis is to design, imple-
ment and experimentally verify an algo-
rithm for multiagent production schedul-
ing. The proposed algorithm uses the
principle of chronological backtracking
and is an extension of the existing plan,
commit, and execute algorithm, which
sometimes fails to find a solution. The
implementation of the proposed algo-
rithm is done in Java and uses the cur-
rently under-development multiagent plat-
form for agent-to-agent communication,
database, and logging. The functionality
of the proposed algorithm is verified and
compared with the existing algorithm in
a simulation environment that forms a
virtual twin of the Montrac testbed pro-
duction line. The results are evaluated
based on data from six test scenarios.

Keywords: production planning,
multiagent system

Supervisor: Ing. Vojtěch Janů

Abstrakt

Cílem této práce je navrhnout, implemen-
tovat a experimentálně ověřit algoritmus
pro multiagentní plánování výroby. Na-
vržený algoritmus využívá principu chro-
nologického backtrackingu a je rozšíře-
ním existujícího algoritmu plan, commit,
execute, který v některých případech ne-
dokáže najít řešení. Implementace navr-
ženého algoritmu je provedena v Javě a
využívá aktuálně vyvíjenou multiagentní
platformu pro komunikaci mezi agenty, da-
tabázi a logování. Funkčnost navrženého
algoritmu je ověřena a porovnána s existu-
jícím algoritmem v simulačním prostředí,
které tvoří virtuální dvojče testovací linky
Montrac. Výsledky jsou vyhodnoceny na
základě dat ze šesti příkladů.

Klíčová slova: plánování výroby,
multiagentní systém

Překlad názvu: Multiagentní systémy
pro plánování výroby

vi

Contents

1 Introduction 1

1.1 State of the art 1

1.1.1 Multiagent systems area of use 1

1.1.2 Multiagent systems in
production planning 3

1.2 Multiagent systems history 3

1.3 Description of multiagent systems 4

1.3.1 Agent description 4

1.3.2 Description of the environment
surrounding the agent 5

1.3.3 Intelligent agent description . . 6

1.4 Communication between agents . . 7

1.4.1 Speech act theory 7

1.4.2 Multiagent communication
languages . 8

1.5 Modeling techniques 11

1.5.1 Distributed Constraint
Satisfaction 11

1.5.2 Distributed optimization 11

1.6 Game Theory 12

1.6.1 Noncooperative game theory 12

1.6.2 Coalitional game theory 16

1.6.3 Multiagent resource allocation
and Auctions 16

2 Problem Description 19

2.1 Description of the Montrac test
line . 19

2.2 Thesis problem description 22

2.3 MES = Description of actual
solution concept 24

2.4 MAS = Description of the
developed version of the solution that
uses multi-agent systems 25

2.4.1 Description of agents 25

2.4.2 Description of testing solution
for production scheduling 25

2.4.3 Description of the proposal
price calculation 26

2.4.4 Problems of current solution . 28

3 Design of a new algorithm 29

vii

3.1 Design of communication
automata . 29

3.2 Finding a suitable algorithm that
is complete . 31

3.2.1 Parallel scheduling 31

3.2.2 Schedulers 32

3.2.3 Chronological backtracking . . 33

4 Implementation of the new
algorithm 37

4.1 Agents implementation without
transport . 38

4.2 Agents implementation with
product transport 38

4.3 Agents implementation with
product and parts transport 41

4.3.1 Agents implementation with
backtracking 44

5 Testing and comparison of
algorithms 47

5.1 Use case 1 47

5.1.1 Description of the use case . . 47

5.1.2 Production flow of the first
product . 48

5.1.3 Production flow of the second
product . 49

5.1.4 Production flow of the third
product . 51

5.1.5 Production flow of the fourth
product . 52

5.2 Use case 2 52

5.2.1 Description of the use case . . 52

5.2.2 Production flow of the first
product . 53

5.2.3 Production flow of the second
product . 54

5.3 Use case 3 55

5.3.1 Description of the use case . . 55

5.3.2 Production flow of the first
product . 57

5.3.3 Production flow of the second
product . 58

5.3.4 Production flow of the third
product . 60

5.4 Use case 4 61

5.4.1 Description of the use case . . 61

viii

5.4.2 Production flow of the first
product . 62

5.5 Use case 5 63

5.5.1 Description of the use case . . 63

5.5.2 Production flow of the first
product . 65

5.6 Use case 6 66

5.6.1 Description of the use case . . 66

5.6.2 Production flow for five
product . 67

5.7 Discussion 69

6 Conclusion 71

A Bibliography 73

B Additional tables 77

ix

Figures

1.1 Behaviour of an agent in its
environment, [1] 5

1.2 Example of simple communication
exchange between two rational agents 9

1.3 Example of communication state
machine between two rational agents,
CFP - call for proposal, NU - not
understood, P - propose, AP - accept
proposal, RP - reject proposal, C -
Confirm, D - disconfirm 10

1.4 The Sharing game described by
extensive-form game representation 15

1.5 The Sharing game with imperfect
information described by
extensive-form game representation 15

2.1 Diagram of Montrac safety zones 22

2.2 Architecture of MES 24

2.3 Description of the price calculation
for the operation, [2] 27

2.4 A production line with four robots,
where each robot can perform an
operation described by a number.
Between the robots is a
unidirectional conveyor belt, which is
shown by arrows 28

3.1 state communication automaton
for Request type messages 30

3.2 state communication automaton
(plan-commit) for production
operation or material import 31

3.3 Illustration of the algorithm with
backtracking on an example with four
robots . 34

3.4 The transport links between the
agents on the line - pruning example 35

3.5 DAG between strongly continuous
components . 35

3.6 Simplifying the example state
space by pruning 36

4.1 Transport routes in system 38

4.2 Diagram describing computing of
price for an operation 40

4.3 Diagram describing commit for an
operation . 40

4.4 Diagram describing computing of
price for a parts transport 41

4.5 Diagram describing commit for a
parts transport 42

4.6 Diagram describing computing of
price with product and parts
transport . 43

4.7 Diagram describing backtracking
algorithm . 45

x

4.8 Diagram describing transport
connection between agents in
backtracking example 45

4.9 Diagram describing flow through
the backtracking algorithm on
backtracking example. Cost are in
ms. 46

5.1 Diagram describing the transport
between agents for Use case 1. Costs
of transitions are in s. 48

5.2 Diagram describing first flow
through the Use case 1 for both
algorithms. Cost are in seconds. . . 49

5.3 Diagram describing second flow
through the Use case 1 for both
algorithms. Costs are in seconds. . 50

5.4 Diagram describing third flow
through the Use case 1 for both
algorithms. Costs are in seconds. . 51

5.5 Diagram describing first flow
through the Use case 2 for both
algorithms. Costs are in seconds. . 53

5.6 Diagram describing second flow
through the Use case 2 for both
algorithms. Costs are in seconds. . 54

5.7 Diagram describing the transport
between agents for Use case 3. Costs
of transitions are in s. 56

5.8 Diagram describing first flow
through the Use case 3 for both
algorithms. Costs are in seconds. . 57

5.9 Diagram describing second flow
through the Use case 3 for plan,
commit, execute algorithm. Costs are
in seconds. 58

5.10 Diagram describing second flow
through the Use case 3 for
backtracking algorithm. Costs are in
seconds. 59

5.11 Diagram describing third flow
through the Use case 3 for
backtracking algorithm. Costs are in
seconds. 60

5.12 Diagram describing the transport
between agents for Use case 4. Costs
of transitions are in s. 61

5.13 Diagram describing first flow
through the Use case 4 for
backtracking algorithm. Costs are in
seconds. 62

5.14 Diagram describing the transport
between agents for Use case 5. Costs
of transitions are in s. 64

5.15 Diagram describing first flow
through the Use case 5 for Plan,
commit, execute algorithm. Costs are
in seconds. 65

5.16 Diagram describing first flow
through the Use case 5 for
Backtracking algorithm. Costs are in
seconds. 65

5.17 Diagram describing the transport
between agents for Use case 6. Costs
of transitions are in s. 66

xi

Tables

1.1 game of Rock Paper Scissors
described using Normal Form
Representation. The rows describe
the actions of the first player and the
columns describe the actions of the
second player. The first value in
parentheses always describes the first
player’s utility 13

1.2 Battle of sexes game described
using Normal Form Representation 14

2.1 Diagram of Montrac production
line . 20

4.1 Price of paths between nodes in
Figure 4.1 . 39

4.2 Agent capabilities with their cost
and number of components for each
agent . 46

5.1 Agent capabilities with their cost
[s] and number of parts needed for
each operation in Use case 1. 48

5.2 The initial state of the agents’
magazines in Use case 1. 48

5.3 Table showing the collected data
from the first algorithm run in Use
case 1. The bottom part of the table
lists the number of messages received
by each agent. P = producer agent,
T = transport agent, D = Database 49

5.4 Table showing the collected data
from the second algorithm run in Use
case 1. The bottom part of the table
lists the number of messages received
by each agent. P = producer agent,
T = transport agent, D = Database 51

5.5 Table showing the collected data
from the third algorithm run in Use
case 1. The bottom part of the table
lists the number of messages received
by each agent. P = producer agent,
T = transport agent, D = Database 52

5.6 Agent capabilities with their cost
[ms] and number of parts needed for
each operation for Use case 2 53

5.7 The initial state of the agents’
magazines in Use case 2. 53

5.8 Table showing the collected data
from the first algorithm run in Use
case 2. The bottom part of the table
lists the number of messages received
by each agent. P = producer agent,
T = transport agent, D = Database 54

5.9 Table showing the collected data
from the second algorithm run in Use
case 2. The bottom part of the table
lists the number of messages received
by each agent. P = producer agent,
T = transport agent, D = Database 55

5.10 Agent capabilities with their cost
[s] and number of parts needed for
each operation for Use case 3. 56

5.11 The initial state of the agents’
magazines in Use case 3. 56

xii

5.12 Table showing the collected data
from the first algorithm run in Use
case 3. The bottom part of the table
lists the number of messages received
by each agent. P = producer agent,
T = transport agent, D = Database 57

5.13 Table showing the collected data
from the second backtrack algorithm
run in Use case 3. The bottom part
of the table lists the number of
messages received by each agent. P =
producer agent, T = transport agent,
D = Database 59

5.14 Table showing the collected data
from the third backtrack algorithm
run in Use case 3. The bottom part
of the table lists the number of
messages received by each agent. P =
producer agent, T = transport agent,
D = Database 60

5.15 Agent capabilities with their cost
[s] and number of parts needed for
each operation for Use case 4. 61

5.16 The initial state of the agents’
magazines in Use case 4. 62

5.17 Table showing the collected data
from the first backtrack algorithm
run in Use case 4. The bottom part
of the table lists the number of
messages received by each agent. P =
producer agent, T = transport agent,
D = Database 63

5.18 Agent capabilities with their cost
[s] and number of parts needed for
each operation for Use case 5. 64

5.19 The initial state of the agents’
magazines in Use case 5. 64

5.20 Agent capabilities with their cost
[s] and number of parts needed for
each operation for Use case 6. 67

5.21 The initial state of the agents’
magazines in Use case 6. 67

5.22 The table describes the individual
product production flows for use case
6. 68

B.1 The table shows the list of ISO
standards that were used to create
the safety on the Montrac line 77

B.2 Table showing the messages
received by each agent of the first
backtracking algorithm run in use
case 6. The number of messages is
the same for both algorithms. P =
producer agent, T = transport agent,
D = Database 78

B.3 Table showing the messages
received by each agent of the second
backtracking algorithm run in use
case 6. The number of messages is
the same for both algorithms. P =
producer agent, T = transport agent,
D = Database 78

B.4 Table showing the messages
received by each agent of the third
backtracking algorithm run in use
case 6. The number of messages is
the same for both algorithms. P =
producer agent, T = transport agent,
D = Database 78

xiii

B.5 Table showing the messages
received by each agent of the fourth
backtracking algorithm run in use
case 6. The number of messages is
the same for both algorithms. P =
producer agent, T = transport agent,
D = Database 79

B.6 Table showing the messages
received by each agent of the fifth
backtracking algorithm run in use
case 6. The number of messages is
the same for both algorithms. P =
producer agent, T = transport agent,
D = Database 79

xiv

Chapter 1

Introduction

This work aims to design and implement an algorithm that uses a multiagent
platform to remove current agent-based solutions’ shortcomings. Chapter
one provides a general description of agent systems, their current uses, agent
description, communication between agents, game theory, and methods for
modeling, reasoning, and creating multiagent systems. Chapter two describes
the Montrac line, a description of the given problem, a description of the
central planning solution, and a description of the agent solution. Chapter
three describes a comparison of approaches and communication design for
the new algorithm. Chapter four describes the implementation of the se-
lected algorithm. Chapter five describes the use cases and the results of the
algorithms based on the use cases.

1.1 State of the art

1.1.1 Multiagent systems area of use

Multiagent systems (MAS) have gained much attention from researchers in
various fields due to their ability to solve complex problems that can be
broken down into smaller tasks. A subtask is assigned to an autonomous
agent, which a distributed algorithm can solve. Although MAS have wide
applicability, there are still several problems such as agent coordination, task
assignment, and security. MAS are used in many different areas. The areas

1

1. Introduction
in which they are most commonly used are described below [3], [4].

MAS are mostly used in computer networks. The complexity of these
networks continues to increase due to new technologies and the increasing
number of devices connected to the network. Agents are used to overcoming
this complexity. Given the wide range of applications of MAS in networks,
we further divide them into four subcategories:

Cloud computing
Cloud computing provides access to configurable system resources and
computing services. Cloud computing often uses virtualization, meaning
that a single physical machine is shared among multiple customers
as multiple virtual machines. The complexity of cloud computing is
primarily due to the management of cloud resources, communication,
and accounting of resources and services used by individual users. These
problems can be solved by using MAS [5], [6]. Other uses of MAS in
cloud computing include resource monitoring, security, and resource
discovery.

Social networking
The complexity of these networks lies in their dynamic nature. It means
that many users join or leave the network in a short time. MAS can be
a potential solution to overcome this complexity. Gatti [7] proposed an
agent-based model to predict user behavior. The agents collect a dataset
of user behavior with which they create a profile. This profile is then
used to predict the future behavior of the user.

Security
The main use of MAS in network security is in the form of an agent-
based Intrusion Detection System (IDS). IDS was proposed in [8]. The
proposed IDS consists of five agents that work together to find suspicious
behavior in the network and take appropriate mitigation actions when
such behavior is detected.

Routing
Routing is finding a path for packets between source and destination with
certain metrics. Using agents for routing was one of the first applications
of MAS. Agent-based routing inspired by ants behavior was described in
[9].

Another area where MAS are commonly used is mobile robotics. Here,
agents are used to cooperate and coordinate the robots and to plan their
trajectories. For example, in this paper [10] they have used MAS for collision
avoidance for mobile robots. In recent years, MAS have also been used in large

2

...............................1.2. Multiagent systems history

cities for transport systems and traffic management or for freight distribution
planning. Another use is in building management where, for example, agents
manage heating.

The last thing MAS are often used for is modelling complex systems. Agents
are used here for their flexibility and autonomy, which greatly facilitates the
modeling of such systems. The main advantages of using agents, according
to D. Helbing [11]: 1) the possibility of aggregation and combination with
other modelling methods, 2) flexibility in assumptions for MAS modelling, 3)
flexibility in predefined knowledge, as agents can acquire knowledge by learn-
ing from the environment, 4) the possibility to explore emergent behaviour
due to the proactivity of agents.

1.1.2 Multiagent systems in production planning

Frequent changes in customer needs and requirements require reconfigurable
and adaptive production systems. In the last decade, extensive research has
developed on deploying multi-agent systems in several industrial environments.

Using MAS for production planning is similar to modeling a complex
system. An example of such a system is the newspaper industry, where
production planning using multiagent systems has been applied in Germany.
This planning had better results than static centralized optimization.[12]

Currently, the use of MAS in production planning is common in supply
chain management. One example is the use of agents to allocate orders
efficiently according to production line capabilities [13]. Another example is
the use of MAS for the collaborative forecasting and replenishment planning
process between trading partners [14]. A more detailed overview of the use
of MAS for supply chain management has been written in this paper[15].

1.2 Multiagent systems history

The evolution of multiagent systems in their field started simultaneously with
the distributed computational environment approximately in 1980. At that
time, distributed computing began to be used in LANs for expert systems,
systems that are supposed to provide advice or recommend solutions to a

3

1. Introduction
given situation. The multiagent systems got widespread recognition in the
mid of the 1990s, when local networks were connected to the Internet. The
rapid growth of multi-agent systems began when massive open distributed
systems became more common. The growth is due to the belief that agents
are a proper approach to exploiting these systems. A multiagent system is a
natural tool for understanding and designing an artificial social system, with
each agent representing an object in a larger system. [16]

1.3 Description of multiagent systems

1.3.1 Agent description

Multiagent systems combine multiple computational entities, known as agents.
Various authors have proposed different definitions of agents. The following
definition is taken from [1, p. 4]: "An agent is a computer system that is
situated in some environment, and that is capable of autonomous action in
this environment in order to achieve its delegated objectives." An agent is
autonomous if it can decide actions for itself without the intervention of other
systems or humans. An example of such behavior is depicted in Figure 1.1,
an agent takes sensory input from the environment and, based on the input,
produces an action that affects the environment. Usually, an agent has a
set of actions that could have some preconditions. The interaction with the
environment is usually an ongoing, non-terminating one. An agent usually
does not have complete control over its environment. It means that an action
can fail.

4

........................... 1.3. Description of multiagent systems

Figure 1.1: Behaviour of an agent in its environment, [1]

1.3.2 Description of the environment surrounding the agent

By definition Agent description, an agent is situated in some environment.
Russell and Norvig, in their book [17, p. 40], classified environment
properties by five attributes. These attributes are described below.

Fully observable vs. partially observable
In a fully observable environment, an agent has access to complete
information about his surroundings at any given time. An environment
can be partially observable because a sensors are inaccurate, or some
parts of the environment state are not observed or cannot be observable
at all. For example, in city traffic, one car cannot predict the actions
of other cars with certainty. Most real-world environments are partially
observable. The more observable environment is, the easier it is to define
a capable agent.

Deterministic vs. stochastic
An environment is deterministic if any action has one guaranteed effect.
There is no uncertainty about the state that will result from performing
an action. The non-deterministic environment is stochastic. It is more
challenging to define an agent in a stochastic environment. If the environ-
ment is partially observable, it may appear stochastic to the agent; this
is especially true if the environment is complex. Therefore, it is better to
consider this property of the environment from the agent’s perspective.

Episodic vs. sequential
In an episodic environment, the agent is working in discrete episodes. The
episodes are independent of each other, which means that agent actions

5

1. Introduction
in the episode depend only on the episode itself. Many classification
tasks are episodic, for example, product classification on the production
line or detection of defective parts on an assembly line. In some cases
agent decision can affect future decisions in a sequential environment.
Typical representatives are games like chess or real-life environments
like city traffic. Episodic environments are easier for agent development
because the agent makes decisions based only on the current episode.

Static vs dynamic
A static environment does not change over time. The static environment
is simpler because an agent does not need to worry about time passing
and the change in his surroundings. In a dynamic environment, other
processes continuously change the environment. An agent in this envi-
ronment is periodically asked what it is going to do; if it hasn’t decided
yet, it counts as doing nothing. An example of a dynamic environment
is again city traffic. If the environment is not changing with time, but
the agent utility function (a function that describes agent performance)
is, then the environment is called semidynamic. An example of this
environment could be chess with a clock.

Discrete vs continues
An environment is discrete if there is a finite number of percepts and
actions of the agent. An example of a discrete environment is chess.
An example of a continuous environment is city traffic. The speed and
position of cars are continuous values.

1.3.3 Intelligent agent description

By the agent definition mentioned above Agent description, an agent can
be any simple control system, and still, all aspects of the definition will be
valid. An example of such a control system often used in the literature is a
thermostat. A temperature sensor is situated in a room, and if the output
from the sensor is below the set threshold, then the heating of the room is
triggered. From our perspective, we do not view these simple systems as
agents, so we add more concepts to the agent definition to define "intelligent
agent". The following list of concepts was suggested in [18].

Reactivity
Reactive intelligent agents can perceive their environment and react
appropriately in a timely fashion to changes that occur in it to satisfy
their delegated objectives.

6

............................ 1.4. Communication between agents

Proactivity
Proactive intelligent agents can exhibit goal-directed behavior by taking
the initiative to satisfy their design objectives.

Social ability
Social able intelligent agents are capable of interacting with other agents
and possibly humans to satisfy their design objectives.

Furthermore, in this thesis, we assume that "intelligent agents" are rational
[19]. A rational agent behaves in such a way that he tries to maximize the
expected utility value given the information at his disposal.

1.4 Communication between agents

1.4.1 Speech act theory

Interaction in the social ability concept is not only the ability to exchange
bitstreams of information - an agent has to be able to interact in the human
sense. An agent must be able to understand and reason about the goals
of others in order to be able to negotiate to achieve its designed goal, for
example. Linguistics and the philosophy of language are generally concerned
with describing the communication. Of interest to us in this field is the notion
of speech act, on which communication between agents is based. The speech
act is an act performed by a speaker that not only carries the information
but also performs an action. [20] For example, the sentence "I like tea, could
you please make me some?" is a speech act because the sentence conveys not
only information but also a request to make tea. Commonly included types
of speech acts are apologies, complaints, compliments, responses, greetings,
invitations, refusals, requests, and thanks. [21]

According to J. L. Austin [20], a speech act consists of three different
components:

locutionary act
An locutionary act is to pronounce a sentence. The meaning of this
sentence is all the verbal, social, and rhetorical meanings of the sentence,
which are based on its semantics, syntax, and verbal aspect.

7

1. Introduction
illocutionary act

An illocutionary act is the intended meaning of a locutionary act by the
speaker. For example, if the locutionary act is the sentence "Someone is
talking there!" then the illocutionary act is the command "Silence!".

perlocutionary act
A perlocutionary act is the real consequence of the locutionary and
illocutionary acts. In other words, it is something that someone does or
becomes aware of.

Performatives are an important type of speech act for us because they
are used in agent-to-agent communication. J. L. Austin first mentioned
performatives in his book [20], and then the term was further elaborated by
J. R. Searle in the article "how performatives work" [22]. In performative
sentences, the action that the sentence describes is performed directly with
the utterance of the sentence. Examples of such sentences used by Austin are
"I bet you sixpence it will rain tomorrow" or "I name this ship the "Queen
Elizabeth". Moreover, in explicit perfomatives, the illocution force is directly
stated in that sentence, e.g., promise, order, request, etc. Searle considers
performatives to be what he calls declarations. An utterance is a declaration
if "the successful performance of the speech act is sufficient to bring about
the fit between words and world, to make the propositional content true." [22,
p. 97]

1.4.2 Multiagent communication languages

Most multiagent communication languages (ACLs) are based on the speech
act theory described by Searle. One of the consequences of basing ACLs
on speech act theory is the possibility of end-users to reason about agents’
behavior and thus understand their behavior. In other words, the human
client is able to predict the consequences of his actions, how the agent will
behave. The main reason for using Searle’s theory is the fact that this theory
defines acts in an algorithmic way, which makes them easier to implement on
computer systems. Finally, speech act theory fits well with the used models
of agents that maintain their internal representation of the environment and
their desires (goals).At least two standardizations have been developed based
on speech act theory - KQML and FIPA-ACL [23].

The KQML (Knowledge Query and Manipulation Language) standardiza-
tion was developed as part of the ARPA Knowledge Sharing Effort, which
aimed to develop techniques for creating large-scale knowledge bases that are

8

............................ 1.4. Communication between agents

shared and reusable [24]. Then Cohen and Levesque offered a formal seman-
tics for KQML in [25]. KQML is a communication language and is designed
as a universal standard for agent-to-agent communication. KQML provides
an extensible set of performatives that specify the types of communication
that agents can have with each other. In addition, KQML contains some set
of policies that specify a legal sequence of communication acts. KQML is
predecessor of FIPA-ACL.

FIPA - ACL is a standard for agent communication developed by the Foun-
dation for Intelligent Physical Agents (FIPA). The principles of this language
are based on KQML, but it tries to define semantics and communication
protocols better. Again, we have a set of messages that are fundamentally
similar to performatives and are called communication acts [26]. FIPA - ACL,
unlike KQML, has a closed set of acts, so new communication acts can only
be created by combining basic acts. The components of the communication
act model characterize both the reasons for which the act is chosen (rational
effect, or RE) and the conditions that must be met for the act to be planned
(feasibility preconditions, or FPs). An example of communication using the
FIPA protocol is shown and described below:

Figure 1.2: Example of simple communication exchange between two rational
agents

In the Figure 1.2, we assume that agents behave rationally, so they try to
achieve their goal by sending messages (acts). The first act sent from agent
one is a call for proposal, which starts the negotiation process. This act
may include a simple query about whether the other agent can perform an
action, such as whether he can put wheels on a car. Or this act may contain
some query, expecting to receive a proposal, for example, at what price the
other agent is able to assemble the car. To this the second agent replies with
a propose act, as already mentioned this is a response to a query from the

9

1. Introduction
first agent. The agent also uses this act to communicate its intention to take
action as soon as the preconditions are met. The first agent responds with
Accept Proposal, confirming that it agrees to the proposal and may send
additional information with this act, such as exactly when the action is to be
performed. The second agent may additionally reply Confirm to this act,
confirming to the first agent its desire to perform the action.

The following Figure 1.3 shows a state machine that represents the possible
evolution of communication between two agents. This state machine is only
used for a simple description of the communication, in real communication it
can theoretically be infinite. One ongoing communication (message exchange)
cannot give rise to another, in other words, there can be no branching, only
one branch is always selected.

Figure 1.3: Example of communication state machine between two rational
agents, CFP - call for proposal, NU - not understood, P - propose, AP - accept
proposal, RP - reject proposal, C - Confirm, D - disconfirm

The appearance of the state machine depends on the implementation of the
agents in a given system, for example, communication may terminate after
an act propose. Agent one will again initiate communication by asking for a
proposal. Agent two send propose or may send not understand if it cannot
parse the message or, for example, expects different act content. Agent one
can reject the proposal and thus end the entire communication, agree with
the proposal or make a counter proposal. Depending on the agents’ decisions,
the communication continues. Disconfirm can be sent if for some reason the
agent is no longer able to fulfill what was agreed upon.

Agents using these ACLs may only inform other agents of their actions or
may perform more complex message exchanges, for example, for coordination,
negotiation, or cooperation purposes. Coordination is a communication
process between agents that results in rational behavior of the system as a
whole with the aim of achieving an outcome in an optimal way. Negotiation
is a communication process used to reach an agreement between agents. In
other words, it is a negotiation of how to achieve the goals of all the agents
involved. Cooperation is a communication process in which agents try to
agree on a common solution to a given problem.

10

................................. 1.5. Modeling techniques

1.5 Modeling techniques

We have explained what an agent is, in what environment it can be situated,
and have described the principle of communication between agents. We now
outline various techniques for modeling, reasoning, and building multiagent
systems. These techniques include knowledge of logic, probability theory,
game theory, and optimization. The following information on the various
techniques is taken from a book on multiagent systems by Shoham and
Leyton-Brown [27].

1.5.1 Distributed Constraint Satisfaction

One of these techniques is Distributed Constraint Satisfaction. A constraint
satisfaction problem (CSP) is defined by a set of variables and domains for each
of the variables. Furthermore, the problem is defined by constraints on the
values that the variables can take simultaneously. Agents work cooperatively
to solve such a problem. The agents try to find the values of the variables
that satisfy all constraints or decide that there is no solution. One well-known
problem that belongs to CSP is graph coloring.

1.5.2 Distributed optimization

Distributed optimization is another technique that builds on the previous
one by adding a global objective function that we want to optimize. This
technique can be further divided into:

Distributed dynamic programming for path planning
Path planning aims to find the cheapest route using weighted links
between the two states in the graph. For example, this approach can be
used in internet networks or for car navigation where states represent
the cities, links are available roads between cities, and the link weight is
the time needed for crossing the road.

Distributed solutions to Markov Decision Problems
The optimal policy in Markov Decision Problems for a single agent
is described by mutually recursive Bellman equations. For multiple
agents, the global action is replaced by a vector of local actions of
all agents. A more detailed description of Markov Decision Problems

11

1. Introduction
is in the aforementioned book on multiagent systems by Shoham and
Leyton-Brown [27] Appendices C.

Optimization algorithms for scheduling or assignment problems
The scheduling problem involves a set of agents and a set of time slots.
Each agent has a task with a deadline and needs access to a shared
resource (some time slots) to complete the task. The solution to the
scheduling problem is to assign some time slots to the agents.
When solving the assignment problem, we have agents, objects, and a
possible pairing of an agent and object, where each pair has a value.
The algorithm finds a solution where each agent has an assigned object
(optimally, all assignments maximize the sum of values).

Coordination via social laws and conventions
An excellent example of social law is the traffic rule. The rule limits the
agent’s options (stop at a red light), but by limiting other agents, there
can be benefits. The agent can better guess the actions of other agents.

1.6 Game Theory

Game theory is one of the main tools used to design and model multi-agent
systems. Game theory describes the optimal behavior of self-interested agents
in a multiagent environment. Self-interested agents have their own goals,
which can help other agents or harm them. This theory has two main branches,
noncooperative game theory and cooperative (coalitional) game theory. In
noncooperative game theory, it is not always the case that the agents’ goals
conflict. The division of the branches is based on whether we build the
model for each agent separately (noncooperative) or the agents form a group
(coalition), and we build the model for it. Other well-known categories are
auction and multiagent resource allocation. [27]

1.6.1 Noncooperative game theory

Normal form representation

There are many possible formal representations of games. The most basic
representation is the normal form (or matrix), as most more complex repre-
sentations can be reduced to this. This representation can be described by a

12

.................................... 1.6. Game Theory

matrix, where for each state of the world, described by the combination of all
players’ actions, the player’s utility is determined.

Environments where the state of the world also depends on chance (Bayesian
games) can also be described in this form. Example of this representation,
described by a matrix, for the game Rock Paper Scissors is shown below in
Table 1.1

R P S
R (0,0) (-1,1) (1,-1)
P (1,-1) (0,0) (-1,1)
S (-1,1) (1,-1) (0,0)

Table 1.1: game of Rock Paper Scissors described using Normal Form Repre-
sentation. The rows describe the actions of the first player and the columns
describe the actions of the second player. The first value in parentheses always
describes the first player’s utility

The choices that players make in the game are called pure strategy. One
strategy can consist of multiple actions. The set of strategies for each player
is called a strategy profile. Not all games can be described by a pure strategy,
so there is also a mixed strategy, where a player chooses a pure strategy based
on a probability distribution.

Solution concepts

If we are to choose the optimal strategy in a single-agent environment,
we aim to maximize the payoff of this agent. The situation is much
more complex in a multi-agent environment where each agent aims to
maximize his profit. The choice of one agent’s best strategy depends on
the other agents’ strategies. This problem is solved by finding specific
subsets of outcomes that are somehow significant. These subsets are
called solution concepts.

Pareto optimality
An outcome a is pareto optimal outcome, if that there is no other outcome
b where one player would be better of and all other players have at least
the utility as in a.

Social welfare
An outcome that maximizes the sum of all players utilities.

Nash equilibrium
Nash equilibrium is a concept where the optimal outcome of a game is

13

1. Introduction
where there is no incentive to deviate from the initial strategy. That is,
the Nash equilibrium is stable.
A pure equilibrium contains only pure strategies (in Table 1.2, the top
left box and the bottom right box are pure eqilibrium - if one player
changed his decision, he would lose), but it does not always exist, for
example, in the game Rock Paper Scissors Table 1.1. Every game with
a finite number of players and strategy profiles has at least one Nash
equilibrium. This equilibrium may also contain mixed strategies.

M F
M (2,1) (0,0)
F (0,0) (1,2)

Table 1.2: Battle of sexes game described using Normal Form Representation

Correlated Equilibrium Each player chooses his mixed strategy indepen-
dently of the others in a standard game. If we look again at the battle
of the sexes game Table 1.2, this approach can lead to a state where the
utility of both players is zero. Therefore, it is better for both players
to choose the same strategy. The choice of this strategy is correlated
with some random input, such as a coin flip. For every Nash equilibrium,
there exists a corresponding correlated equilibrium.

Extensive form representations

Dynamic (sequential) games have a finite or infinite horizon. These games
can also be described using a normal form representation, but this is not
practical. The strategy in a dynamic game must reflect all possible situations
that can be encountered in the game. Thus, we must have a predetermined
action to play for every possible situation in the game. The problem with this
representation is that the number of possible strategies grows exponentially.
A suitable representation for finite dynamic games is the extensive (tree)
form representation. This representation can be further divided into Perfect-
information extensive form games and imperfect-information extensive form.

Perfect-information extensive-form games are represented by a tree (from
graph theory). Each node represents a player’s decision, each edge represents
an action, and the leaves describe the outcome (utilities for each player). An
example of a game in this representation is the Sharing game. The first player
proposes a division of items and then the second player approves or rejects it.
A tree describing of this game is shown in the Figure 1.4.

14

.................................... 1.6. Game Theory

Figure 1.4: The Sharing game described by extensive-form game representation

Games with imperfect information in extensive form are represented in
the same way as perfect games, and contain information sets (infosets) in
addition. If the actions of another player are unobservable, then the states
following these actions are indistinguishable and belong to the same infoset.

Every finite game can be represented as an extensive form game with
imperfect information. If we did not know the action of the first player in
the mentioned Sharing game, then the tree would contain one infoset. The
new tree is shown in the Figure 1.5.

Figure 1.5: The Sharing game with imperfect information described by extensive-
form game representation

15

1. Introduction
1.6.2 Coalitional game theory

As mentioned above, coalition games are about forming coalitions between
agents. A coalition is a set of agents who try to maximize the gain of the whole
coalition. Finding the optimal coalition structure is an NP-hard problem,
since the number of all possible coalitions grows exponentially as the number
of players increases.

Each agent gains some worth from the total coalition profit independently
of the actions of the other players. The solution to the game is a set of worth
allocations for all players. We describe here two basic solution concepts.

Shapley value
Shapley value describes each player’s contribution to the coalition. This
value is fair, meaning that players with the same contribution receive
the same amount and a player who has no contribution receives zero.

Core
Core "is a set of efficient allocations upon which no coalition can im-
prove" [28]. Core is stable and can be considered analogous to the Nash
equilibrium in non-cooperative games. The problem with the core is
that it is not always unique, it can be empty, and it is also not easy to
compute.

1.6.3 Multiagent resource allocation and Auctions

Multiagent resource allocation

Multiagent resource allocation is a process in which we try to distribute a
certain number of objects among agents. Each agent has some own object
rating, a preference.

The allocation of objects among agents is measured by social welfare.
Allocation can be either efficient, where we give the object to the one who
values it the most, or fair, where the goal is to make the agent who is worst
off the best off.

16

.................................... 1.6. Game Theory

Auctions

An auction is a protocol that allows agents to express an interest in a resource,
and this interest is used to make decisions about resource allocation and agent
payments [27]. Auctions can be held for one item (single-good), for multiple
identical items (multi-unit) or for multiple different items (multi-item). Agents
can also buy, sell, or both (exchange).

We describe here the most common example of auctions, agents buying one
or more items. We start with the simple case of a single item. Auctions
can be divided into five categories, depending on how they are conducted:

English
The most famous is the English auction. The auctioneer starts the
bidding at the starting price. The bidders then report their rising bids,
and when no one else raises, the last bidder is the winner and gets the
item for that price.

Japanese
In the Japanese auction, the auctioneer starts at the starting price and
all bidders stand. The auctioneer gradually raises the price and when
the price exceeds the amount the bidder is willing to pay, he sits down.
The last one standing is the winner and gets the item for that price.

Dutch
In a Dutch auction, the price of the item starts high and gradually
decreases. At some point, the bidder reports "mine" and gets the item
for the actual price. There is a problem in this auction because the
agent does not know the valuations of the other agents. There is a
trade-off between the probability of winning and the amount the agent
pays. There is no dominant strategy in this type of auction.

First price sealed bid
In this auction, bidders write their valuation on a piece of paper. The
auctioneer will then sell the item to the highest bidder at the price they
wrote. This type of auction is similar to a Dutch auction in terms of
agent behavior.

Second price sealed bid
In this auction, bidders write their valuation on a piece of paper. The
auctioneer will then sell the item to the highest bidder at the price
written by the second highest bidder. This type of auction is similar
to English and Japanese auctions in terms of agent behavior. In this
auction, writing the agent’s valuation as the final price is the best option,
this way the agent will achieve his best result.

17

1. Introduction
In sealed bid auctions, we can introduce a reserve price below which the

item will not sell.

If we are going to auction for several different items, we can use the Vickrey-
Clarke-Groves (VCG) auction. This auction is a sealed bid auction, so each
bidder will report their valuation for the items without knowing the valuations
of the others. The auctioneer then allocates the items in a socially optimal
way and charges each bidder the damage he caused to the others. It is similar
to a second price sealed bid auction and therefore the best option for the
agent is a true valuation of the items.

18

Chapter 2

Problem Description

This chapter describes the Montrac production line, a description of the task
and its problems, a description of the currently used MES solution and a
description of the first mutliagent solution.

2.1 Description of the Montrac test line

Montrac is the name of the testing line located in the Testbed for industry
4.0 at the Czech Institute of Informatics, Robotics and Cybernetics Czech
Technical University. This line is a smaller version of a real industrial
production line and is used to test new technologies and principles. For this
reason, the resulting algorithm was tested on this line. The Figure 2.1 shows
a layout of the line.

19

2. Problem Description..................................

Table
2.1:

D
iagram

ofM
ontrac

production
line

20

...........................2.1. Description of the Montrac test line

Five industrial robots of three different types from KUKA are on the line:

. The R1-R3 robots are KUKA KR 10 Agilus-2 - High-speed industrial 6-
axis robots programmed in KRL. These robots are used on the production
line for quick pick and place operations. It is possible to automatically
change the tools used or manually attach an electric screwdriver. The
manual is available here [29].. R10 is KUKA LBR iiwa 14 - A modern cooperative 7-axis robot that is
programmed in Java. This robot is used on the production line for pick
and place operations. It can be used for more complex operations thanks
to its 7 axes. At the same time, this robot can work in collaborative
mode with human. The manual is available here [30].. R20 is the KUKA Cybertech KR 8 R1620 - A fast industrial 6-axis robot
with a higher payload capacity programmed in KRL. This robot is used
on the production line for pick and place operations. It has a camera
mounted on it for more accurate localization of parts. This robot is the
only one that can unload new parts from the stock shelf. The manual is
available here [31].

The Montrac monorail transportation system connects the robots. It
consists of rails called tracks, track curves, track switches (letter "C" in the
figure), and positioning units (letter "S" in the figure) that ensure the exact
position of shuttles in working cells. The Montrac monorail on the production
line is used to transport parts or product between robots. The parts are
placed in shelves that are transported by Automated Guided Vehicles (AGV).
Imported parts are unloaded onto the shuttles using the R20 and distributed
between the individual robots.

These robots communicate with Siemens PLC via Profinet. This commu-
nication includes safety variables, control variables, and the acquisition of
diagnostic data from the robots. The PLC uses MQTT protocol to send
diagnostic data and OPCUA protocol to communicate with the control system
(scheduler/planner). An HMI panel is used to monitor the current status of
the production line.

21

2. Problem Description..................................

Figure 2.1: Diagram of Montrac safety zones

Safety features that meet ISO standards for safe industrial environment
(the ISO standards used are mentioned in the Table B.1 in the Appendix B)
are placed around the production line. There are seven total stops around
the production line, which immediately stops all robots and the conveyor. A
fence encloses part of the line to prevent access by people and safety devices
from SICK monitors the rest of the line. If one of these devices detects an
object, the PLC safety program stops all robots. The devices have their
detection zones; see Figure 2.1.

. Zone 1 is secured by two micro scanners. Zones 2 and 3 are secured by a safety scanner S3000. Zone Gate 1 is secured by a C4000 light curtain

This simulation production line contains industrial robots, communicates
using industrial protocols, and includes safety features, so it can be considered
a faithful copy of a typical industrial line.

2.2 Thesis problem description

This work aims to design, implement and test an algorithm that schedules
the production of one product on any production line if such schedule exists.
The principles of multi-agent systems are used and will be described later.
Another goal is to deploy the algorithm on a real production line. Thus, it

22

...............................2.2. Thesis problem description

will be possible to process a product order, schedule production and execute
it.

The production line contains robots that have specific capabilities and thus
can perform some sub-operations, sometimes different to each other. At the
same time, each robot has a magazine where it can store parts. A conveyor
connects the robots, but there may only be a connection between some of
the robots. The connection between robots can be unidirectional.

Exact sequence of sub-operations is known. An example of such an opera-
tion may be fitting a car hood. Each sub-operation needs some components
to be successfully performed. For example the hood mentioned above.

An example of such production is the current demonstration of a demo car
on the Montrac line. The demo car consists of three parts:

. chassis

. cabin, which can be of different colors.

. body, which has different type variations and colors

The manufacturing process consists of three steps: chassis placement, cabin
placement and body placement.

23

2. Problem Description..................................
2.3 MES = Description of actual solution concept

Production on the Montrac line is now controlled by a manufacturing execution
system (MES). This system consists of a planner, a digital twin, a scheduler,
and a plan executor. See Figure 2.2.

Figure 2.2: Architecture of MES

The plan executor receives orders, which it passes on to the planner, which
calculates the plan. This plan is passed to the scheduler, which enriches it
with schedule information and hands it over back to the plan executor. The
plan executor now assigns tasks to individual robots with the completed plan
and updates the digital twin whenever an operation starts or finishes. The
digital twin, therefore, contains a detailed history of the production.

A more detailed description of this system is given in [32].

Although improvements are still being made to the mentioned MES there
is an effort to develop an alternative solution. The computational complexity
of MES planning increases exponentially as the complexity of the production
line increases. The goal is to propose an alternative solution that will not
have such computational demands due to the simplification of the problem,
and we will be able to compare the two solutions.

24

...2.4. MAS = Description of the developed version of the solution that uses multi-agent systems

2.4 MAS = Description of the developed version
of the solution that uses multi-agent systems

This section describes a solution that uses a mutliagent approach. It describes
how production scheduling is done, how the price of the operation is calculated
by each agent and what problems this solution has. This solution is an
alternative approach to the problem using agent-based systems, as opposed
to an MES system (2.3) that uses central planning.

2.4.1 Description of agents

The main reason for using a multiagent system is the flexibility of the entire
production line. With this approach, a factory can easily modify the number
of robots on the production line or their capabilities. Each robot or transport
system is represented by an autonomous agent who knows its capabilities and
can determine the time required for each operation. The determination of the
time depends on the current state of the robot (time utilization, condition of
parts in the magazine).

All agents are part of the multiagent platform that uses RabbitMQ for
messaging and provides a database and logging. This platform defines the
agent interfaces, but the actual functionality (implementation) of the agent
can be different. This approach allows us to take the definition of an agent,
for example, from a robot supplier and integrate it into a production line
with ease. This platform is still under development and will be published in
a paper later this year.

Agents communicate with each other using messages, referring to the FIPA
communication protocol. (Section: Multiagent communication languages)

2.4.2 Description of testing solution for production scheduling

The existing solution for production scheduling is based on an immediate
reactive approach with a plan, commit, and execute negotiation protocol
introduced by Petr Kadera and Pavel Tichy [33]. In conjunction with the
agent system, this approach performs the same four steps for each operation

25

2. Problem Description..................................
from the production workflow. These steps are query, plan, commit, and
execute.

When a customer order is received, a new production agent is created to
represent that order. The order includes a production steps from which the
agent takes each operation in sequence and finds a solution for the execution.

. The first step is query - in this step, the production agent queries a
database to determine which robots can perform the operation, that
is, have the necessary capability. The database responds with a list of
agents.. The second step is plan (scheduling) - in this step, a call for proposal
message is sent to all agents in the list, which means asking whether the
agent will perform the operation and, if so, at what cost. Each agent
checks for itself whether it can perform the operation. There may be a
situation where the agent needs the cooperation of other agents in the
system to perform the operation, for example, for importing material, in
which case it initiates communication with the agent again using query
and then the call for proposal message and waits for a price proposal.
If it can perform the operation, it calculates the price (adds up all the
subprices) and replies to the production agent. The production agent
therefore receives a price proposal or refusal of the operation from each
agent.. The third step is commit - in this step, the production agent chooses
the proposal and sends an acknowledgment of this proposal to the agent
from whom it received the proposal. The agent checks its status to see
if it can still perform the operation at the given price and, if so, sends
an acknowledgment. The other agents who sent a price proposal will
receive a rejection from the order agent.. The last step is execute - in this step, the production agent sends a
request to the agent to start executing the operation. The agent sends
back information about the start of the operation (operation started)
and the successful completion of the operation (operation finished).

2.4.3 Description of the proposal price calculation

The calculation of the total price of the operation that is sent to the production
agent consists of several components. For clarity, we describe the price
calculation in Figure 2.3.

26

...2.4. MAS = Description of the developed version of the solution that uses multi-agent systems

Figure 2.3: Description of the price calculation for the operation, [2]

The agent first checks the availability of the required materials in its
warehouse. If it does not have any material, it arranges for its import. The
material owner (warehouse or another robot) and the conveyor are involved
in the import of the material. The import price is based on both the owner’s
and the conveyor’s workload. This may result in several different offers from
different agents for the import of one type of material. So, from the offers
received, the agent selects the cheapest offer and includes it in the price
calculation. There may be more than one type of material missing, so the
total price for importing the material is the sum of these prices.

The next step is to check whether the order in progress is in the agent’s
workspace. If not, it is necessary to arrange delivery of the work-in-progress
order to the agent. From these steps, another part of the total price is created.

The last step is the execution of the operation itself. This step may, for
example, consist of changing the tool and performing the operation itself.

The total price is the sum of the cost of importing the material, the price
of importing the work-in-progress order, and the operation price.

27

2. Problem Description..................................
2.4.4 Problems of current solution

One of the problems of the current solution is the algorithm used. This
algorithm uses a greedy approach and only produce good results for some
production lines. When applying the algorithm to a line where the transport
graph is complete, no problem arises. But a simple example can show that
this algorithm will not find a solution even if it exists.

Figure 2.4: A production line with four robots, where each robot can perform
an operation described by a number. Between the robots is a unidirectional
conveyor belt, which is shown by arrows

There are four robots in the Figure 2.4, where each robot knows one ele-
mentary operation described by a number. The conveyor is unidirectional and
therefore there is no possibility of return. To produce a product, operations
1,2 and 3 need to be performed in that order. The product just produced has
completed the first operation and the plan for the second operation is being
planned. The robot shown by the red circle will return a higher price than
the last robot. The product then moves to the last robot from which there is
no path back; therefore, the product cannot be completed. In this example,
there is a solution; the robot in the red circle would perform the second step
with the higher price.

The second problem is of an implementation nature. This solution is
written in pure Java as a test solution of the algorithm. Since then, the
platform mentioned above has been rewritten using opensource production
ready tools and frameworks. The advantage of this approach is the long-term
sustainability and maintainability of the platform. The new algorithm will
be built on this new platform.

28

Chapter 3

Design of a new algorithm

This chapter describes the design of the necessary components and a new
algorithm that is complete for single product scheduling on any production
line.

3.1 Design of communication automata

The multi-agent platform provides communication between agents but does
not manage the content of the communication. I designed communication
state machines to make communication between agents more understandable
from a logging perspective. The content type/performative of each message
corresponds to the FIPA protocol (Section: Multiagent communication lan-
guages), and it is clearly defined what response to this message can occur.
Each message contains a recipient, message ID, performative, conversation
(state machine) ID, and content.

In our case, three types of communication between agents can occur.

. informing about a state change - for example, completing an operation
or updating parts in the agent’s stack. a request to perform some one-time action - for example, a query about
an agent’s capabilities or a request to start executing an operation

29

3. Design of a new algorithm
. a plan-commit - Asking about the price of the operation and then possibly

confirming it. The operation could be a pick or import of parts, for
example

For the first case (inform), a communication state machine consists of one
node representing the message inform.

For the second case (request), the state automaton looks like this (Figure
3.1):

Figure 3.1: state communication automaton for Request type messages

For the third case (plan-commit), the state automaton looks like this
(Figure 3.2):

30

.......................3.2. Finding a suitable algorithm that is complete

Figure 3.2: state communication automaton (plan-commit) for production
operation or material import

The agent starts the conversation by sending a call for proposal message.
This message defines the action (operation execution, material import). If
the receiver does not understand the action, it replies with a Not Understood
message. If it understands the message, it calculates the price of the action
and replies with a proposal. If the receiver cannot perform the action, for
example, there is no way to transport the product or insufficient material, it
replies with a Refuse message. The Sender either accepts the proposal with
Accept proposal, thus performing a commit operation, or rejects it with Reject
proposal. The receiver checks if the cost of the operation has changed and
responds accordingly.

3.2 Finding a suitable algorithm that is complete

This section describes the solution search. An attempt has been made to take
advantage of common production line scheduling solutions.

3.2.1 Parallel scheduling

The first effort to find a complete algorithm to solve our problem was with the
help of parallel schedulers. So that, all production steps would be scheduled at
once, and in case of a problem with the sequence of steps, for example, with the
transportation of the product, the following steps would be rescheduled. An

31

3. Design of a new algorithm
example of such an algorithm is the asynchronous backtracking described here
[27]. There are many complex algorithms that use asynchronous scheduling.

We cannot use this type of algorithm because the agents calculate the price
with respect to the current state of the production line. The resulting price
includes the transportation of the work-in-progress, which directly depends
on the current position of the product. Furthermore, the resulting price may
include the import of components. The import price depends on the current
location of the parts. Determining the correct price for a given production
step is heavily dependent on who has performed the previous production
steps. Thus, production operations are interdependent. If the agents do not
correctly calculate the prices of the operations it is not possible to optimize
the solution in any way.

Moreover, using this approach could lead to mutual resource blocking, as
another agent would use the necessary components. Thus, re-planning would
have to occur.

For these reasons, we dropped parallel scheduling of production steps and
proceeded to chronological scheduling. Thus, one step is scheduled, and the
next step of the production process is moved on.

3.2.2 Schedulers

Another idea led to the use of schedulers, which are used for production
planning in the industry, even with multi-agent systems [34],[35]. With these
systems, we could optimally schedule production among robots to achieve
the optimal solution. More complex schedulers can also include the necessary
transportation of product-in-progress or materials in the schedule.

If we want to use these systems, we need to know the exact details of every
piece of equipment on the production line. This means the cost and time
requirements of each robotic operation, the transport operations, and the
layout of parts on the production line. This information changes reactively,
and so does the cost of each action. For this reason, we cannot use central
planning.

Our goal is to make the system flexible and to be able to define individual
agents in the system at will as long as they meet the basic requirements of
the communication platform. Therefore, in general, an agent cannot return

32

.......................3.2. Finding a suitable algorithm that is complete

the price of an operation to the scheduler since the price may depend on
the system’s current state and may change. For this reason, we do not use
schedulers, otherwise commonly used in industry, to solve the problem.

3.2.3 Chronological backtracking

The proposed and implemented algorithm is based on chronological back-
tracking. This algorithm can be very slow for larger state spaces. We perform
scheduling only for operations from the product workflow, and the agents
themselves handle sub-operations. For this reason, we can use this algorithm
because the state space will not be so large as to affect the speed of the
computation noticeably. At the same time, this algorithm can be extended
further to speed up he search solutions and to find more optimal solutions.

The algorithm is very similar to the current solution that uses agents
(Description of testing solution for production scheduling), and uses the same
steps as query, plan, commit and execute. The first two steps, query and plan,
are identical. Thus, a call for proposal is sent out to capable agents, and we
get responses from them.

During the commit step, the lowest cost agent is selected, and a confirmation
is sent to it. Nothing is sent to the other agents who responded positively. If
no positive response is received during the plan step, backtracking occurs. For
the last committed operation, the reverse operation is performed - UnCommit.
All resources are unreserved. Another agent that responded positively in the
previous step is selected, and scheduling continues. Backtracking is performed
to the next level if there is no such agent. If the solution is found, the product
agent starts sending execution requests (performing execute step) in the same
order in which we booked the operations for each agent.

The solution of the example Figure 2.4 on which the current algorithm did
not find a solution would be as follows.

For the first operation, we only get a response from R1 and therefore
commit to this robot. For the second operation, we get a response from R2
and R4. R4 has a lower total cost, so we commit to him. For operation three,
there is no solution from the current state. We perform an uncommit on
R4 and select another agent that has responded positively. In our case, it is
only R2. So we commit to R2 and continue with the planning. R3 can now
perform the last operation. Finally, we send an execute to R1, R2, and R3.

33

3. Design of a new algorithm

Figure 3.3: Illustration of the algorithm with backtracking on an example with
four robots

Backtracking can occur in two cases. In the first case when there is no
possibility of transferring the work in progress to any agent with the skills
for the next production step. The second case occurs if we can transfer the
product, but none of the agents to whom I can transfer the product has the
necessary parts to perform the operation, and no one can deliver them to
them.

Graph pruning

The first case can be avoided by performing graph pruning before the search
begins. We know what transport exists on the production line between the
machines, and therefore we know the context of the graph. The first step is
to partition the graph into strongly connected components. The next step is
to create a directed acyclic graph (DAG) between the components created
in the first step. Next, we know the product’s production process and each
agent’s capabilities. The last step is state space pruning. We proceed from
the last operation. If there is no path from a component to even one agent
that can perform the operation, we can discard that component because we
can never solve it. We can exclude in advance paths that cannot reach a
solution and thus speed up the algorithm.

An example of pruning is shown in the following example. The production

34

.......................3.2. Finding a suitable algorithm that is complete

line consists of five agents, and the product manufacturing process consists of
4 different operations. The capabilities of the agents are divided as follows:

.Operation 1 -> Agent 1, Agent 4.Operation 2 -> Agent 2, Agent 5.Operation 3 -> Agent 1, Agent 3, Agent 4.Operation 4 -> Agent 4, Agent 5

The transport link between the agents is shown in the Figure 3.4.

Figure 3.4: The transport links between the agents on the line - pruning example

After splitting into strongly continuous components, we are left with two
nodes. Now we create a DAG between the components, see Figure 3.5

Figure 3.5: DAG between strongly continuous components

The last operation can only be performed by agents that are in component
[A4, A5]. So we can exclude component [A1, A2, A3] from the state space.
This will make the state space for this product very simple, see Figure 3.6.

Pruning hasn’t been implemented yet, because the test line in Testbed
is one highly contiguous component and therefore would have no effect. If
this solution is found to be beneficial, pruning will be implemented and the
optimization of the solution will be addressed as next.

35

3. Design of a new algorithm

Figure 3.6: Simplifying the example state space by pruning

time complexity of the algorithm

The time complexity of the algorithm depends on the number of agents
in the system, the number of operations needed to produce the product
and the possible transport between agents. The behaviour of the algorithm
corresponds to a deep tree search.

Worst-case time complexity occurs if there is a connection between all
agents and the product cannot be produced. In this case, the entire space is
searched and the time complexity corresponds to this equation 3.1. Where N
is the number of operations required to produce the product and K is the
number of agents in the system.

O(N · K + (N − 1) · K2) (3.1)

The time complexity of the algorithm can be reduced by implementing the
aforementioned pruning, which can significantly reduce the state space or
by checking the sufficiency of the necessary components before running the
algorithm.

36

Chapter 4

Implementation of the new algorithm

This chapter describes the actual implementation of the selected algorithm -
chronological backtracking.

The algorithm was implemented in Java. I used the following technologies.
Spring Boot, which allows you to create stand-alone, production-grade
Spring-based Applications that you can "just run". Lombok is a popular
and widely used Java library used to minimize or remove the boilerplate code.
It saves time and effort. Spring AMQP, which provides a "template" as
a high-level abstraction for sending and receiving messages. Spring Data
JPA, Its purpose is to unify and easily access the different persistence stores,
both relational database systems and NoSQL data stores. Jackson-core,
which defines public API for writing JSON content.

I implemented one version of the code for all agents. According to the
service name, the agents are divided into order agents, database, and work
agents (robots, transport).

I developed the algorithm on a new multiagent platform, starting from
scratch. The first step was implementing the original agent solution and then
adding the backtracking extension.

37

4. Implementation of the new algorithm
4.1 Agents implementation without transport

The first step was a proof of concept. I tested the functionality of the
multiagent platform by producing a simple product consisting of four parts.
I did not address inter-agent transport or code extensibility. After the
functionality was verified, code refactoring was needed. I created a class to
represent the agent (robot) capabilities and a database that contains the
capabilities of each agent in the system, resource status in the system, and
products-in-progress information. The agent represented the database because
the platform did not contain its own database at the time of implementation.
After these steps, I tested the production of the mentioned product again
using the database.

4.2 Agents implementation with product transport

The next step was to add transport between agents. In the first step, I only
handled the transport of the product in progress. I know the transport edges
and their prices between nodes (agents). I assume that the end of one edge
can be connected to the beginning of the next edge if it ends at the same
point. A conveyor can be connected physically, or an agent (robot) at a
given node can transfer the product to the other conveyor. Based on this
information, all possible paths can be found by Dijkstra’s algorithm. This
algorithm was taken from [36] and then slightly modified. Each of these paths
is the shortest possible. The following Figure 4.1 describes the transport in
the system using each edge. The Table 4.1 below lists the paths found and
their prices using Dijkstra’s algorithm.

Figure 4.1: Transport routes in system

A single agent represents all the transportation in the system. Under this

38

...................... 4.2. Agents implementation with product transport

From To Cost From To Cost
A1 A2 500 A2 A1 350
A1 A3 300 A2 A3 150
A1 A4 600 A2 A4 100
A3 A1 550 A4 A1 None
A3 A2 200 A4 A2 None
A3 A4 300 A4 A3 None

Table 4.1: Price of paths between nodes in Figure 4.1

agent, there may be other agents that will represent different conveyors. For
simplicity of testing, I use only the parent agent, i.e., one type of transport.

After adding a product transport, I cannot respond to the production agent
immediately, and communication with the transport agent must occur. Busy
wait can’t be used because the program runs single-threaded, and there would
be no processing of the new incoming messages. Therefore, I created a new
class that maintains and updates the state of the pricing conversation.

This class provides three main functions: computing the price for an
operation (Figure 4.2), commit the computed operation (Figure 4.3), and
executing the operation. The execution of the operation is straightforward;
the sub-operations start executing sequentially. If this operation is handled
by another agent (transport), a message is sent, and a response is awaited.
After the operation is executed, a message is sent to the database to update
the agent’s parts status.

When a CFP message is received from a production agent, an instance of
this object is created and stored. It is addressable by conversation ID. When
an accept proposal or execute request is received, this instance is accessed.
The instance is deleted if the step is successfully executed, the production
agent rejects the operation, or when there is no possibility of completing the
operation (no transport path, not enough components).

39

4. Implementation of the new algorithm

Figure 4.2: Diagram describing computing of price for an operation

Figure 4.3: Diagram describing commit for an operation

40

................. 4.3. Agents implementation with product and parts transport

4.3 Agents implementation with product and parts
transport

After verifying the code’s functionality, I proceeded to the last implementation
step to deploy the original agent solution. It was necessary to provide
transportation of parts between agents in case of shortages. As in the previous
step, I had to maintain information about the state of the conversation between
the agents. In this case, two more significant conversations between agents
could have arisen - arranging the transport of parts and determining the price
of an agent’s operation. I duplicated the class I created and modified it for
both cases.

The class that maintains the state of the transport of parts has been
simplified. The following figures show the state machines for determining the
price of transporting a part (Figure 4.4) and for booking an order (commit)
(Figure 4.5). The executing step performs the operations in the given order.
Also, the agent updates the status of the parts for itself and sends a message
to the database.

Figure 4.4: Diagram describing computing of price for a parts transport

41

4. Implementation of the new algorithm
For simplicity, we can ship any number of parts of one type at a time. On

a real production line, there is a limited capacity for the transport cart and a
limited size of the parts bins. If multiple parts bins need to be moved, the
cost of the robot transport operation will increase. And if the bins would not
fit on one transport cart, the transport price would increase. In both cases,
this does not change the solvability of the problem.

At the same time, since we are scheduling production for only one product,
the state of the parts at the agent cannot change during the scheduling event.
Checking the state of the parts at the agent is redundant in this case, but
this step is necessary if we would like to plan multiple orders at once.

Figure 4.5: Diagram describing commit for a parts transport

Also, there can be no rejection during confirmation of the operation, as
production is now planned for only one product. The future work should
be able to schedule multiple products at once, and confirmation might be
needed; therefore, this step is included.

The state machine for calculating the price of an operation is more complex,
see Figure 4.6. The first step is to check the product’s location and possibly
arrange its transport. The second step is to arrange transport of the missing
parts. Multiple types and numbers of parts may be needed for a given

42

................. 4.3. Agents implementation with product and parts transport

Figure 4.6: Diagram describing computing of price with product and parts
transport

operation. The agent checks its current stock of parts and accordingly queries
the database to determine which agent has the exact or higher number of
missing parts. It makes one query for each type. This approach may have a
problem if there are enough parts in the system for a given operation, but
they are spread among the agents. This problem is addressed in the Use
case 5. In this case, the database will return an empty field, and the agent
will return the Refuse message. An alternative approach is to query for one
missing part at a time and reserve them one at a time, which could put a
strain on the communication network. Another approach is to query the
database for who has what number of parts, and the agent would decide
for itself from whom and how many it wants to import. The complexity of
this approach would increase considerably if any agent refused it. Then the
import distribution would need to be changed by the type of rejection, and
some previous queries would need to be cancelled and new ones sent out. The
chosen approach is most appropriate for a typical industrial operation where
parts are imported regularly.

The database will return a list of agents that have the required number
of parts. The agent sends a CFP message to calculate the cost of importing
parts to all agents and waits for responses. It chooses the best possible one
from the responses, adds its price, and rejects the other offers. Finally, it

43

4. Implementation of the new algorithm
adds the price of the operation itself and sends the price proposal to the
production agent.

The operation and booking of resources are confirmed sequentially according
to the previous price calculation (product transport, component transport/s,
agent operation). The confirmation message is sent to the production agent
if all agents confirm the operation. Again, in single product planning, there
can be no non-confirmation.

The algorithm implemented in this way behaved similarly to the original
agent solution. In this step, backtracking was integrated into the algorithm.

4.3.1 Agents implementation with backtracking

As described above (Description of testing solution for production scheduling),
the test ("greedy") algorithm executes each process step as soon as it is
scheduled. To perform backtracking, it is not possible to execute the steps
immediately. The whole solution has to be created first, and then the
execution can start. This is a major change in the implementation described
below. Also, for backtracking, the ability to UnCommit operations is needed.
That is a method that releases the reserved resources that are related to the
operation. This method has been added to the classes maintaining state about
the operation. Thus, the class contains methods for pricing the operation,
reserving resources, unreserving resources, and executing the operation.

I will describe the algorithm flow using the following example. The transport
connections between the agents are described by the Figure 4.8. The product
consists of 4 parts - chassis, tires, cabin, and body. Agent operations are
named after the component and each operation requires one component of
the same name, except for the tires operation which requires four tires. The
capabilities of agents and placement of the components are described in Table
4.2. The cost of the operation to load the parts onto the conveyor is zero.

The flow through the algorithm is described in the Figure 4.9. In the first
step, the product does not exist, so we do not have to deal with its transport.
The first operation is the chassis, and it is possible operation for agents A1
and A3. We ask for the price of the operation and get the prices from the
agents. We choose the cheaper agent, make a commit and proceed to the
second step. This step will proceed similarly to the first step. The third
step follows. The operation is cheaper from agent A4, a commit is made to

44

................. 4.3. Agents implementation with product and parts transport

Figure 4.7: Diagram describing backtracking algorithm

Figure 4.8: Diagram describing transport connection between agents in back-
tracking example

this agent and the proposal from agent A1 is stored in the array, as in the
previous steps. In the fourth step, we get no proposal because there is no path
from agent A4. So we go back one step, perform the UnCommit operation
and take the proposals from the array in this step. The only proposal is from
agent A1, so we commit it and continue to step four. Now we get proposals
from agents A2 and A4. Agent A2 has a better price for the operation even
with the import of material, we commit it, and thus we have found a solution.
Now we start executing the operations one by one.

45

4. Implementation of the new algorithm
Agent chassis tires cabin body

A1 1500 2600 2000 - cost of capability [ms]
1 4 1 0 number of parts [-]

A2 - 2000 - 2000 cost of capability [ms]
0 4 0 0 number of parts [-]

A3 1800 - - 2500 cost of capability [ms]
1 0 0 2 number of parts [-]

A4 - - 2200 - cost of capability [ms]
0 0 1 0 number of parts [-]

Table 4.2: Agent capabilities with their cost and number of components for
each agent

Figure 4.9: Diagram describing flow through the backtracking algorithm on
backtracking example. Cost are in ms.

In some cases, this solution could schedule multiple products simultaneously
if there are enough components in the system and they do not block each other.
This issue could be solved by reimplementing the behavior of the production
agent if resources are not reserved by commit, for example, to perform the
scheduling of a given step again. At the same time, agents currently do not
have an internal operations scheduler, so the total production time would
often not match the expected time. Furthermore, there could be a dining
philosopher problem. The plan is to develop this algorithm further and solve
all these problems.

46

Chapter 5

Testing and comparison of algorithms

In this chapter, I describe the results of two algorithms on six use cases. The
algorithms used for testing are the plan, commit, execute algorithm (section:
Description of testing solution for production scheduling, implementation
description in section: Agents implementation with product and parts trans-
port) and the chronological backtracking algorithm (section: Chronological
backtracking, implementation description in section: Agents implementation
with backtracking). The use cases were tested in a simulation environment
running on a single computer. The communication platform was running in
Docker.

5.1 Use case 1

In this use case, the transport of parts between robots and the determination
of prices for individual operations is tested.

5.1.1 Description of the use case

The transport between robots forms a complete graph so that deadlock cannot
occur, see Figure 5.1. The Table 5.1 lists the agents’ capabilities and their
costs. The product manufacturing process corresponds to the operations in

47

5. Testing and comparison of algorithms
the table from top to bottom, except for the transport parts operation. The
Table 5.2 describes the initial magazine status of each agent.

Figure 5.1: Diagram describing the transport between agents for Use case 1.
Costs of transitions are in s.

Parts quantity A1 A2 A3 A4
Operation 1 1 x Part 1 2 - - 1.8
Operation 2 1 x Part 2 - 4 4 -
Operation 3 1 x Part 3 - 3 4 3
Operation 4 1 x Part 4 2.5 - 3 -

Transport parts - 1 1 1 1

Table 5.1: Agent capabilities with their cost [s] and number of parts needed for
each operation in Use case 1.

A1 A2 A3 A4
Part 1 2 0 0 1
Part 2 0 1 2 0
Part 3 0 2 1 0
Part 4 1 0 2 0

Table 5.2: The initial state of the agents’ magazines in Use case 1.

5.1.2 Production flow of the first product

Both algorithms had the same output, which is shown in the Figure 5.2. The
rows show the responses from each agent for a given operation. The total
cost of the operation is written in parentheses, and the nodes show the cost
of the operation plus any cost of importing materials. Operations confirmed
to agents and then executed are shown in green. The Table 5.3 shows the
values obtained during the run of the algorithms. Both algorithms behave
identically unless backtracking is required. For this reason, the number of
messages received by each agent is identical, and the total time is very similar.
The total time describes the time from receiving an order to completing it or
detecting a failure.

48

......................................5.1. Use case 1

Plan, commit
execute algorithm

Backtracking
algorithm

Successfully
completed Yes Yes

Total time 23.758 [s] 23.774 [s]
P A1 A2 A3 A4 T D P A1 A2 A3 A4 T D

Call for proposal 0 2 3 4 2 8 0 0 2 3 4 2 8 0
Propose 9 1 2 4 3 0 0 9 1 2 4 3 0 0
Refuse 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reject proposal 0 2 1 3 1 0 0 0 2 1 3 1 0 0
Accept proposal 0 0 2 1 1 2 0 0 0 2 1 1 2 0

Confirm 4 0 1 1 0 0 0 4 0 1 1 0 0 0
Disconfirm 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Request 0 1 3 2 2 3 11 0 1 3 2 2 3 11
Inform 18 0 2 2 1 0 14 18 0 2 2 1 0 14

Table 5.3: Table showing the collected data from the first algorithm run in Use
case 1. The bottom part of the table lists the number of messages received by
each agent. P = producer agent, T = transport agent, D = Database

Figure 5.2: Diagram describing first flow through the Use case 1 for both
algorithms. Cost are in seconds.

5.1.3 Production flow of the second product

The Figure 5.3 describes the second pass in use case 1. The pass is different
because the state of the magazines of each agent has changed and therefore
the cost of the operations has changed. The Table 5.4 describes the data
collected during the run of the algorithm. The table has been simplified
because the number of messages sent is the same for both algorithms.

49

5. Testing and comparison of algorithms

Figure 5.3: Diagram describing second flow through the Use case 1 for both
algorithms. Costs are in seconds.

The number of messages sent between agents depends on the flow of the
algorithm through the state space. At the same time, there is a dependency
between some types of messages. The total number of Call for proposal
messages is the same as the number of Propose and Refuse messages. The
Reject proposal message is sent to reject an operation or import of parts.
This message is not sent to the transport agent to avoid communication
overhead. The number of Accept proposal messages is the same as the number
of material or product imports and the number of operations performed. The
producing agent gets Confirm message for each agent operation, and other
agents get Confirm message for each material or product import. Agent
A3 has received a confirmation message for the product import in this run.
Request messages are sent as a request, for example, to perform an operation.
Inform messages include a change of status on the production line.

50

......................................5.1. Use case 1

Plan, commit
execute algorithm

Backtracking
algorithm

Successfully
completed Yes Yes

Total time 21.783 [s] 21.683 [s]
P A1 A2 A3 A4 T D

Call for proposal 0 3 3 5 2 9 0
Propose 9 2 4 3 4 0 0
Refuse 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0
Reject proposal 0 2 3 2 2 0 0
Accept proposal 0 1 0 3 0 1 0

Confirm 4 0 0 1 0 0 0
Disconfirm 0 0 0 0 0 0 0

Request 0 1 0 3 0 1 13
Inform 18 0 1 2 2 0 9

Table 5.4: Table showing the collected data from the second algorithm run in
Use case 1. The bottom part of the table lists the number of messages received
by each agent. P = producer agent, T = transport agent, D = Database

5.1.4 Production flow of the third product

Figure 5.4: Diagram describing third flow through the Use case 1 for both
algorithms. Costs are in seconds.

51

5. Testing and comparison of algorithms
Plan, commit

execute algorithm
Backtracking

algorithm
Successfully
completed Yes Yes

Total time 33.188 [s] 33.191 [s]
P A1 A2 A3 A4 T D

Call for proposal 0 4 4 4 2 10 0
Propose 9 3 5 4 3 0 0
Refuse 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0
Reject proposal 0 2 3 2 2 0 0
Accept proposal 0 2 1 2 0 3 0

Confirm 4 1 1 2 0 0 0
Disconfirm 0 0 0 0 0 0 0

Request 0 2 1 2 0 3 15
Inform 18 2 3 6 2 0 10

Table 5.5: Table showing the collected data from the third algorithm run in Use
case 1. The bottom part of the table lists the number of messages received by
each agent. P = producer agent, T = transport agent, D = Database

5.1.5 Production flow of the fourth product

When trying to produce a fourth product for which there were no parts in
the system, the algorithms terminated at the first operation with the error
"Not enough parts for operation in production line".

5.2 Use case 2

This use case tested the transportation of multiple different parts between
robots and the pricing of each operation.

5.2.1 Description of the use case

The distribution of agents on the production line and the transport between
them is the same as in use case 1, see Figure 5.1. The Table 5.6 lists the agents’
capabilities and their costs. The product manufacturing process corresponds

52

......................................5.2. Use case 2

to the operations in the table from top to bottom, except for the transport
parts operation. The capabilities and their costs are identical to the use case
1. The change is in the components needed for the operations. Multiple
components of one or more types are required. The Table 5.7 describes the
initial magazine status of each agent.

Parts quantity A1 A2 A3 A4
Operation 1 1 x Part 1 2 - - 1.8
Operation 2 4 x Part 2, 16 x Part 3 - 4 4 -
Operation 3 8 x Part 3, 1 x Part 4 - 3 4 3
Operation 4 3 x Part 5 2.5 - 3 -

Transport parts - 1 1 1 1

Table 5.6: Agent capabilities with their cost [ms] and number of parts needed
for each operation for Use case 2

A1 A2 A3 A4
Part 1 1 0 0 2
Part 2 0 6 6 0
Part 3 0 20 30 22
Part 4 0 1 0 2
Part 5 5 0 4 0

Table 5.7: The initial state of the agents’ magazines in Use case 2.

5.2.2 Production flow of the first product

The Figure 5.5 describes the first pass in use case 2. The Table 5.8 describes
the data collected during the run of the algorithm. The table shows a slight
increase in the total number of messages sent compared to the first pass in
use case 1. This is due to more queries for importing parts.

Figure 5.5: Diagram describing first flow through the Use case 2 for both
algorithms. Costs are in seconds.

53

5. Testing and comparison of algorithms
Plan, commit

execute algorithm
Backtracking

algorithm
Successfully
completed Yes Yes

Total time 24.828 [s] 24.882 [s]
P A1 A2 A3 A4 T D

Call for proposal 0 2 3 4 4 10 0
Propose 9 1 4 6 3 0 0
Refuse 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0
Reject proposal 0 1 2 4 2 0 0
Accept proposal 0 1 1 0 2 3 0

Confirm 4 1 1 0 1 0 0
Disconfirm 0 0 0 0 0 0 0

Request 0 2 2 1 3 4 12
Inform 18 2 3 1 2 0 16

Table 5.8: Table showing the collected data from the first algorithm run in Use
case 2. The bottom part of the table lists the number of messages received by
each agent. P = producer agent, T = transport agent, D = Database

5.2.3 Production flow of the second product

The Figure 5.6 describes the second pass in use case 2. For operation 2, agent
2 returned a significantly higher price compared to agent A3 because he
needed to import 2 types of parts. The Table 5.9 describes the data collected
during the run of the algorithm. Again, we see an increase in messages sent
between agents, due to more frequent queries about importing parts.

Figure 5.6: Diagram describing second flow through the Use case 2 for both
algorithms. Costs are in seconds.

54

......................................5.3. Use case 3

Plan, commit
execute algorithm

Backtracking
algorithm

Successfully
completed Yes Yes

Total time 36.482 [s] 36.605 [s]
P A1 A2 A3 A4 T D

Call for proposal 0 2 3 7 5 14 0
Propose 9 2 8 8 4 0 0
Refuse 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0
Reject proposal 0 2 3 5 3 0 0
Accept proposal 0 0 0 2 2 3 0

Confirm 4 0 0 2 1 0 0
Disconfirm 0 0 0 0 0 0 0

Request 0 0 0 2 2 3 15
Inform 18 1 3 5 2 0 11

Table 5.9: Table showing the collected data from the second algorithm run in
Use case 2. The bottom part of the table lists the number of messages received
by each agent. P = producer agent, T = transport agent, D = Database

5.3 Use case 3

This use case tested the backtracking algorithm and its ability to use backtrack
and find a solution.

5.3.1 Description of the use case

The transport between robots does not form a complete graph, there is an
agent from which there is no path back, see Figure 5.7. The Table 5.10 lists the
capabilities of the agents and their costs. The product manufacturing process
corresponds to the operations in the table from top to bottom, except for
the transport parts operation. The Table 5.11 describes the initial inventory
state of each agent.

55

5. Testing and comparison of algorithms

Figure 5.7: Diagram describing the transport between agents for Use case 3.
Costs of transitions are in s.

Parts quantity A1 A2 A3 A4
Operation 1 1 x Part 1 1.5 - 2.5 -
Operation 2 4 x Part 2, 4 x Part 3 4 2 - -
Operation 3 2 x Part 4 2 - - 2.2
Operation 4 1 x Part 5 - 3 4 -

Transport parts - 1 1 1 1

Table 5.10: Agent capabilities with their cost [s] and number of parts needed
for each operation for Use case 3.

A1 A2 A3 A4
Part 1 2 0 1 0
Part 2 6 6 0 0
Part 3 6 6 0 0
Part 4 4 0 0 2
Part 5 0 1 2 0

Table 5.11: The initial state of the agents’ magazines in Use case 3.

56

......................................5.3. Use case 3

5.3.2 Production flow of the first product

The Figure 5.8 shows the first run of the algorithms. Since the cost of agent
A4 was higher, both algorithms successfully found a solution. In this case,
backtrack was not needed.

Figure 5.8: Diagram describing first flow through the Use case 3 for both
algorithms. Costs are in seconds.

Plan, commit
execute algorithm

Backtracking
algorithm

Successfully
completed Yes Yes

Total time 17.668 [s] 17.483 [s]
P A1 A2 A3 A4 T D

Call for proposal 0 3 2 2 1 4 0
Propose 8 0 2 1 1 0 0
Refuse 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0
Reject proposal 0 0 2 1 1 0 0
Accept proposal 0 3 0 1 0 1 0

Confirm 4 0 0 1 0 0 0
Disconfirm 0 0 0 0 0 0 0

Request 0 4 1 2 1 2 10
Inform 18 0 0 2 0 0 15

Table 5.12: Table showing the collected data from the first algorithm run in
Use case 3. The bottom part of the table lists the number of messages received
by each agent. P = producer agent, T = transport agent, D = Database

57

5. Testing and comparison of algorithms
5.3.3 Production flow of the second product

The Figure 5.9 shows the second run of the plan, commit, execute algorithm.
In this run, the cost of agent A4 was lower, and therefore the algorithm ended
with the third operation in error. The total time of the algorithm was 14.24
s. Moreover, with the immediate execution of the operations, there is now an
unfinished product on the production line.

Figure 5.9: Diagram describing second flow through the Use case 3 for plan,
commit, execute algorithm. Costs are in seconds.

The Figure 5.10 shows the second run of the backtracking algorithm. The
nodes marked in green have executed at the end of the scheduling and the
green arrows indicate the passage of the algorithm. The algorithm proceeded
identically to the previous algorithm until the third operation. It did not
receive any proposal for the fourth operation, so it chose a different agent for
the third operation and thus found a solution. Among the messages received
in Table 5.13, there are already Refuse messages that the production agent
received in the fourth operation before backtracking occurred.

58

......................................5.3. Use case 3

Figure 5.10: Diagram describing second flow through the Use case 3 for back-
tracking algorithm. Costs are in seconds.

Backtracking algorithm
Successfully completed Yes

Total time 25.424 [s]
P A1 A2 A3 A4 T D

Call for proposal 0 3 5 3 1 9 0
Propose 8 3 5 2 1 0 0
Refuse 2 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0
Reject proposal 0 1 3 1 0 0 0
Accept proposal 0 2 1 1 1 4 0

Confirm 5 1 1 1 1 0 0
Disconfirm 0 0 0 0 0 0 0

Request 0 2 1 1 1 4 14
Inform 22 4 2 2 1 0 14

Table 5.13: Table showing the collected data from the second backtrack algorithm
run in Use case 3. The bottom part of the table lists the number of messages
received by each agent. P = producer agent, T = transport agent, D = Database

59

5. Testing and comparison of algorithms
5.3.4 Production flow of the third product

The Figure 5.11 shows the third run of the backtracking algorithm. In
this run, the components needed for the third operation were located at
agent A4. It was not possible to transfer them to another agent, and there
was no possibility of coming back with the product. Thus, the algorithm
sequentially searched the entire state space and then ended with a parts
shortage error. The Table 5.14 shows the number of messages received by
each agent. Because there was repeated backtracking, the total number of
messages is high compared to previous number of messages.

Figure 5.11: Diagram describing third flow through the Use case 3 for back-
tracking algorithm. Costs are in seconds.

Backtracking algorithm
Successfully completed No

Total time 7.088 [s]
P A1 A2 A3 A4 T D

Call for proposal 0 14 12 8 9 34 0
Propose 18 11 16 6 9 0 0
Refuse 12 4 0 0 0 0 0

Not understood 0 0 0 0 0 0 0
Reject proposal 0 0 2 1 1 0 0
Accept proposal 0 10 6 3 4 17 0

Confirm 14 10 10 2 4 0 0
Disconfirm 0 0 0 0 0 0 0

Request 0 11 7 4 5 18 46
Inform 61 9 14 3 4 0 82

Table 5.14: Table showing the collected data from the third backtrack algorithm
run in Use case 3. The bottom part of the table lists the number of messages
received by each agent. P = producer agent, T = transport agent, D = Database

60

......................................5.4. Use case 4

5.4 Use case 4

This use case tested multi-level and repetitive backtracking.

5.4.1 Description of the use case

The transport between robots does not form a complete graph. The graph
is formed by two strongly connected components, see Figure 5.12. The
Table 5.15 lists the capabilities of the agents and their costs. The product
manufacturing process corresponds to the operations in the table from top to
bottom, except for the transport parts operation. The Table 5.16 describes
the initial inventory state of each agent.

Figure 5.12: Diagram describing the transport between agents for Use case 4.
Costs of transitions are in s.

Parts quantity A1 A2 A3 A4 A5
Operation 1 1 x Part 1 2 - - 4 -
Operation 2 1 x Part 2 - 2 8 - 5
Operation 3 1 x Part 3 2 - 2 6 -
Operation 4 1 x Part 4 - - - 2 1

Transport parts - 1 1 1 1 1

Table 5.15: Agent capabilities with their cost [s] and number of parts needed
for each operation for Use case 4.

61

5. Testing and comparison of algorithms
A1 A2 A3 A4 A5

Part 1 1 0 0 1 0
Part 2 0 0 1 0 1
Part 3 1 0 0 1 0
Part 4 0 0 0 0 1

Table 5.16: The initial state of the agents’ magazines in Use case 4.

5.4.2 Production flow of the first product

Figure 5.13 shows the first run of the backtracking algorithm. The nodes
marked in green have executed at the end of the scheduling and the green
arrows indicate the passage of the algorithm. The plan, commit, execute
algorithm performed the first three operations just like the backtracking
algorithm and ended with an error. Due to the wrong initial choice of the first
operation, the algorithm searched almost the entire state space and only found
a solution towards the end. This corresponds to significant communication
between agents, see Table 5.17. If the algorithm had been extended with
pruning (Graph pruning), the solution would have been found sooner because
the state space would have been greatly simplified.

Figure 5.13: Diagram describing first flow through the Use case 4 for backtracking
algorithm. Costs are in seconds.

62

......................................5.5. Use case 5

Plan, commit
execute algorithm

Backtracking
algorithm

Successfully
completed No Yes

Total time 15.805 [s] 31.345 [s]
P A1 A2 A3 A4 A5 T D

Call for proposal 0 9 2 8 17 13 45 0
Propose 18 8 6 15 16 13 0 0
Refuse 18 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0 0
Reject proposal 0 4 0 2 2 3 0 0
Accept proposal 0 5 2 6 5 2 17 0

Confirm 15 4 4 8 4 2 0 0
Disconfirm 0 0 0 0 0 0 0 0

Request 0 6 3 7 6 3 18 39
Inform 62 4 6 12 6 4 0 69

Table 5.17: Table showing the collected data from the first backtrack algorithm
run in Use case 4. The bottom part of the table lists the number of messages
received by each agent. P = producer agent, T = transport agent, D = Database

5.5 Use case 5

This use case tested the problem of component placement between agents.
The system has enough components to produce a product, but they are
distributed among multiple agents.

5.5.1 Description of the use case

The transport between robots does form a complete graph, and for simplicity,
there are three agents in the system, see Figure 5.14. The Table 5.18 lists the
capabilities of the agents and their costs. The product manufacturing process
corresponds to the operations in the table from top to bottom, except for
the transport parts operation. The Table 5.19 describes the initial inventory
state of each agent.

63

5. Testing and comparison of algorithms

Figure 5.14: Diagram describing the transport between agents for Use case 5.
Costs of transitions are in s.

Parts quantity A1 A2 A3
Operation 1 2 x Part 1 2 - -
Operation 2 2 x Part 2, 1 x Part 3 - 2 4
Operation 3 4 x Part 4 2 3 2

Transport parts - 1 1 1

Table 5.18: Agent capabilities with their cost [s] and number of parts needed
for each operation for Use case 5.

A1 A2 A3
Part 1 3 0 0
Part 2 0 1 1
Part 3 0 1 0
Part 4 2 1 1

Table 5.19: The initial state of the agents’ magazines in Use case 5.

64

......................................5.5. Use case 5

5.5.2 Production flow of the first product

The Figure 5.15 shows the flow of the plan, commit, execute algorithm. The
first operation is executed, the second operation is executed, and then agent
A1 must import two components, and the remaining agents must import
three parts. There is no one in the system, and the run ends with an error of
"Not enough parts for operation in production line". As mentioned in Agents
implementation with product and parts transport, this problem could be
solved. The total time of production flow is 11.086 [s], and the product is
unfinished on the production line.

Figure 5.15: Diagram describing first flow through the Use case 5 for Plan,
commit, execute algorithm. Costs are in seconds.

The figure shows the flow of the backtracking algorithm. The green arrows
describe its behavior. No solution is found, and the algorithm terminates
with the same error. The total time of the production flow is 2.773 [s] because
there was no start of the product production.

This problem is related to the implementation of each agent.

Figure 5.16: Diagram describing first flow through the Use case 5 for Backtrack-
ing algorithm. Costs are in seconds.

65

5. Testing and comparison of algorithms
5.6 Use case 6

This use case tested the production of a more complex product on a virtual
twin of the montrac production line Description of the Montrac test line. The
production process is similar to the planned production of an RC car.

5.6.1 Description of the use case

The transport between robots corresponds to the assembly line layout, see
Figure 5.17. The Table 5.20 lists the capabilities of the agents and their
costs. The product manufacturing process corresponds to the operations in
the table from top to bottom, except for the transport parts operation. The
Table 5.21 describes the initial inventory state of each agent.

Figure 5.17: Diagram describing the transport between agents for Use case 6.
Costs of transitions are in s.

66

......................................5.6. Use case 6

Parts quantity A1 A2 A3 A4 A5
Operation chassis 1 x A1 - - 6 5 4

Operation E1 1 x E1 - - 6 5 4
Operation M1 1 x M1 - - 6 5 4
Operation E2 1 x E2 - - 6 5 4
Operation M2 1 x M2 - - 6 5 4

Operation screw 1 8 x C1 - 4 8 - -
Operation tire L 2 x Tire 7 - - - 15
Operation tire R 2 x Tire 7 - - - 15

Operation screw 2 4 x C1 - 2 4 - -
Operation body 1 x Body 4 - - 7 8

Operation screw 3 8 x C1 - 4 8 - -
Transport parts - 1 1 1 1 1

Table 5.20: Agent capabilities with their cost [s] and number of parts needed
for each operation for Use case 6.

A1 A2 A3 A4 A5
A1 0 0 0 4 3
E1 0 0 3 2 2
M1 0 0 3 1 3
E2 0 0 4 0 3
M2 0 0 2 3 2
C1 0 90 50 0 0

Tire 18 0 0 0 10
Body 4 0 0 2 1

Table 5.21: The initial state of the agents’ magazines in Use case 6.

5.6.2 Production flow for five product

The Table 5.22 describes the production runs for five products for both
algorithms. Both algorithms successfully completed each production and the
total times are almost identical. The behavior of both algorithms is also
identical.

The specific messages received by the agents are described in the tables
(B.2,B.3,B.4,B.5,B.6) in the appendix Additional tables. The tables are very
similar to the previous tables showing received messages and take up a lot of
space, so they are placed in the appendix.

67

5. Testing and comparison of algorithms
First

product
Second

product
T

hird
product

Fourth
product

Fifth
product

Plan,
com

m
it,

execute
algorithm

Successfully
com

pleted
Yes

Yes
Yes

Yes
Yes

Totaltim
e

[s]
88.318

87.675
105.982

99.347
123.769

Progress
ofthe

product
production

w
ith

the
cost

of
the

each
operation

R
5-(4),R

5-(4),
R

5-(4),R
5-(4),

R
5-(4),R

2-(10),
R

1-(17),R
1-(7),

R
2-(5.25),

R
4-(12.25),

R
2-(9.25)

R
5-(4),R

5-(4),
R

5-(4),R
5-(4),

R
5-(4),R

2-(10),
R

1-(17),R
1-(7),

R
2-(5.25),

R
4-(12.25),

R
2-(9.25)

R
5-(4),

R
5-(11.75),

R
5-(4),R

5-(4),
R

5-(11.75),
R

2-(10),
R

1-(17),R
1-(7),

R
2-(5.25),R

5-(14),
R

2-(10)

R
4-(5),R

4-(5),
R

4-(5),R
3-(12),

R
3-(6),R

3-(8),
R

1-(17.75),
R

1-(7),
R

2-(5.25),
R

1-(14),
R

2-(7.25)

R
4-(5),R

4-(5),
R

3-(12),R
3-(6),

R
4-(11),

R
2-(9.25),

R
1-(17),

R
1-(20.25),

R
2-(5.25),R

1-(14),
R

3-(12)
Totalnum

ber
of

m
essages

sent
betw

een
agents

300
288

344
340

380

B
acktracking
algorithm

Successfully
com

pleted
Yes

Yes
Yes

Yes
Yes

Totaltim
e

[s]
88.247

87.819
105.937

99.181
123.818

Progress
ofthe

product
production

w
ith

the
cost

of
the

each
operation

R
5-(4),R

5-(4),
R

5-(4),R
5-(4),

R
5-(4),R

2-(10),
R

1-(17),R
1-(7),

R
2-(5.25),

R
4-(12.25),

R
2-(9.25)

R
5-(4),R

5-(4),
R

5-(4),R
5-(4),

R
5-(4),R

2-(10),
R

1-(17),R
1-(7),

R
2-(5.25),

R
4-(12.25),

R
2-(9.25)

R
5-(4),

R
5-(11.75),

R
5-(4),R

5-(4),
R

5-(11.75),
R

2-(10),
R

1-(17),R
1-(7),

R
2-(5.25),R

5-(14),
R

2-(10)

R
4-(5),R

4-(5),
R

4-(5),R
3-(12),

R
3-(6),R

3-(8),
R

1-(17.75),
R

1-(7),
R

2-(5.25),
R

1-(14),
R

2-(7.25)

R
4-(5),R

4-(5),
R

3-(12),R
3-(6),

R
4-(11),

R
2-(9.25),

R
1-(17),

R
1-(20.25),

R
2-(5.25),R

1-(14),
R

3-(12)
Totalnum

ber
of

m
essages

sent
betw

een
agents

300
288

344
340

380

Table
5.22:

T
he

table
describes

the
individualproduct

production
flow

s
for

use
case

6.

68

......................................5.7. Discussion

5.7 Discussion

The previous examples (Use case 1 - all production flows, Use case 2 -
all production flows, Use case 3 - first production flow, and Use case 6
- all production flows) show that both algorithms behave the same when
backtracking is not needed. The number of messages sent between agents is
exactly the same, and the total time differs by a few tenths of a second, which
is negligible deviation. If the transport graph is incomplete, backtracking
may be needed (Use case 3, Use case 4). In this case, the original algorithm
ends with a work in progress on the production line and does not complete
production. The backtracking algorithm either finds a solution if one exists
and produces the product or does not find a solution and does not start
producing the product. This case can be seen in the Use case 5 (wheres no
solution to the problem), where the total time for the backtracking algorithm
is shorter because it has not started production. The backtracking algorithm
removes the original algorithm’s main weakness, i.e., finding a solution if one
exists in incomplete transport graphs.

Testing of the algorithms was performed in the test environment, which in
Use case 6 is a one-to-one copy of the Motrac production line. Unfortunately,
the development of the multiagent platform was delayed, and therefore it was
impossible to test the backtracking algorithm on a real Montrac line. For
this reason, a comparison between the multiagent approach and the central
approach, which runs on the physical production line, cannot be made. The
approaches are sufficiently different that a comparison cannot be made based
only on the results from the test environment.

69

70

Chapter 6

Conclusion

In chapter three, chronological backtracking was proposed as a suitable
algorithm to overcome the weaknesses of the original solution that uses
multiagent systems. Chapter four describes an implementation based on the
multiagent platform under development, which allows for easy sustainability
and scalability of the solution. In chapter five, the functionality of the
proposed algorithm has been tested and compared with the original algorithm.

The proposed algorithm has identical behavior when backtracking is not
required. Otherwise, it searches the state space and finds the solution if one
exists. Chronological backtracking behaves as well or better than the original
algorithm and is, therefore, a suitable replacement.

Future work on the new algorithm will involve the implementation of
pruning to speed up the solution search. Furthermore, the proposed algorithm
does not address the solution’s optimality; therefore, we will look for ways to
achieve some optimality of the solution.

Now only the production of one product running simultaneously has been
tested. There is a need to test the algorithm’s behavior during parallel
scheduling and production of multiple products and modify the algorithm
accordingly to work in this mode. The necessary modifications will include,
for example: changing the code to reschedule the production of a product if
an order confirmation is rejected and solving the dining philosophers problem.

71

72

Appendix A

Bibliography

[1] Gerhard Weiss. Multiagent systems. MIT press, 2 edition, 2013.

[2] Ondřej Šebek. Testbed multiagent platform manual. https:
//github.com/testbedCIIRC/braine-multiagent-platform/blob/
master/doc/TestbedMultiAgentPlatform_Manual.docx, 2021.

[3] Ali Dorri, Salil S Kanhere, and Raja Jurdak. Multi-agent systems: A
survey. Ieee Access, 6:28573–28593, 2018.

[4] Fei Chen, Wei Ren, et al. On the control of multi-agent systems: A
survey. Foundations and Trends® in Systems and Control, 6(4):339–499,
2019.

[5] Javier Bajo Pérez, Fernando de la Prieta Pintado, Juan Manuel Cor-
chado Rodríguez, Sara Rodríguez González, et al. A low-level resource
allocation in an agent-based cloud computing platform. 2016.

[6] Jelena Fiosina and Maksims Fiosins. Density-based clustering in cloud-
oriented collaborative multi-agent systems. In International Conference
on Hybrid Artificial Intelligence Systems, pages 639–648. Springer, 2013.

[7] Maíra Gatti, Paulo Cavalin, Samuel Barbosa Neto, Claudio Pinhanez,
Cícero dos Santos, Daniel Gribel, and Ana Paula Appel. Large-scale
multi-agent-based modeling and simulation of microblogging-based online
social network. In International Workshop on Multi-Agent Systems and
Agent-Based Simulation, pages 17–33. Springer, 2013.

[8] Leila Mechtri, Fatiha Djemili Tolba, and Salim Ghanemi. Masid: multi-
agent system for intrusion detection in manet. In 2012 Ninth Interna-
tional Conference on Information Technology-New Generations, pages
65–70. IEEE, 2012.

73

https://github.com/testbedCIIRC/braine-multiagent-platform/blob/master/doc/TestbedMultiAgentPlatform_Manual.docx
https://github.com/testbedCIIRC/braine-multiagent-platform/blob/master/doc/TestbedMultiAgentPlatform_Manual.docx
https://github.com/testbedCIIRC/braine-multiagent-platform/blob/master/doc/TestbedMultiAgentPlatform_Manual.docx

A. Bibliography.....................................
[9] Gianni Di Caro, Marco Dorigo, et al. An adaptive multi-agent routing

algorithm inspired by ants behavior. In Proceedings of PART98-5th
Annual Australasian Conference on Parallel and Real-Time Systems,
pages 261–272, 1998.

[10] Angel Soriano, Enrique J Bernabeu, Angel Valera, and Marina Vallés.
Multi-agent systems platform for mobile robots collision avoidance. In
International Conference on Practical Applications of Agents and Multi-
Agent Systems, pages 320–323. Springer, 2013.

[11] Dirk Helbing. Agent-based modeling. In Social self-organization, pages
25–70. Springer, 2012.

[12] Dominik Böhnlein, Katharina Schweiger, and Axel Tuma. Multi-agent-
based transport planning in the newspaper industry. International
Journal of Production Economics, 131(1):146–157, 2011. Innsbruck 2008.

[13] Chafik Abid, Sophie D’amours, and Benoit Montreuil. Collaborative
order management in distributed manufacturing. International journal
of production research, 42(2):283–302, 2004.

[14] Maria Caridi, Roberto Cigolini*, and D De Marco. Improving supply-
chain collaboration by linking intelligent agents to cpfr. International
journal of production research, 43(20):4191–4218, 2005.

[15] Roberto Dominguez and Salvatore Cannella. Insights on multi-agent
systems applications for supply chain management. Sustainability,
12(5):1935, 2020.

[16] Michael Wooldridge. An introduction to multiagent systems. John wiley
& sons, 2 edition, 2009.

[17] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall Upper Saddle River, NJ, USA:, 2 edition, 2003.

[18] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory
and practice. The knowledge engineering review, 10(2):115–152, 1995.

[19] Stuart J Russell. Rationality and intelligence. Artificial intelligence,
94(1-2):57–77, 1997.

[20] John Langshaw Austin. How to do things with words. Oxford university
press, 1975.

[21] Speech acts category. https://carla.umn.edu/speechacts/
descriptions.html. Accessed: 2021-12-19.

[22] Daniel Vanderveken and Susumu Kubo. Essays in speech act theory,
volume 77. John Benjamins Publishing, 2002.

74

https://carla.umn.edu/speechacts/descriptions.html
https://carla.umn.edu/speechacts/descriptions.html

..................................... A. Bibliography

[23] Rodger Kibble. Speech acts, commitment and multi-agent communica-
tion. Computational & mathematical organization theory, 12(2):127–145,
2006.

[24] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. Kqml
as an agent communication language. In Proceedings of the third inter-
national conference on Information and knowledge management, pages
456–463, 1994.

[25] Philip R Cohen and Hector J Levesque. Communicative actions for
artificial agents. In ICMAS, volume 95, pages 65–72. Citeseer, 1995.

[26] Fipa communicative act library specification. http://www.fipa.org/
specs/fipa00037/SC00037J.html#_Toc26729686. Accessed: 2021-12-
21, Specification dated 2002-12-03.

[27] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algo-
rithmic, game-theoretic, and logical foundations. Cambridge University
Press, 2008.

[28] Computational game theory, coalition games and the core, lecture from
tomáš kroupa. https://cw.fel.cvut.cz/wiki/_media/courses/cgt/
cg01_lectures.pdf. Accessed: 2022-02-03, Specification dated 2002-
12-03.

[29] Kuka kr manual. http://www.wtech.com.tw/public/download/
manual/kuka/KUKA%20KR%206%2010_AGILUS.pdf. Accessed: 2023-01-
03, Specification dated 2015-03-25.

[30] Kuka lbr iiwa manual. https://www.oir.caltech.edu/twiki_oir/
pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.
pdf. Accessed: 2023-01-03, Specification dated 2015-01-28.

[31] Kuka cybertech kr 8 r1620 manual. http://www.wtech.com.tw/
public/download/manual/kuka/KUKA%20CYBERTECH_nano_en.pdf.
Accessed: 2023-01-03, Specification dated 2016-07-25.

[32] Petr Novák, Jiří Vyskočil, and Petr Kadera. Plan executor mes: man-
ufacturing execution system combined with a planner for industry 4.0
production systems. In International Conference on Industrial Appli-
cations of Holonic and Multi-Agent Systems, pages 67–80. Springer,
2019.

[33] Petr Kadera and Pavel Tichy. Plan, commit, execute protocol in multi-
agent systems. In International Conference on Industrial Applications
of Holonic and Multi-Agent Systems, pages 155–164. Springer, 2009.

[34] Marc-André Dittrich and Silas Fohlmeister. Cooperative multi-agent
system for production control using reinforcement learning. CIRP Annals,
69(1):389–392, 2020.

75

http://www.fipa.org/specs/fipa00037/SC00037J.html#_Toc26729686
http://www.fipa.org/specs/fipa00037/SC00037J.html#_Toc26729686
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cg01_lectures.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cg01_lectures.pdf
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20KR%206%2010_AGILUS.pdf
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20KR%206%2010_AGILUS.pdf
https://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf
https://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf
https://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20CYBERTECH_nano_en.pdf
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20CYBERTECH_nano_en.pdf

A. Bibliography.....................................
[35] Georg Egger, Dmitry Chaltsev, Andrea Giusti, and Dominik T Matt. A

deployment-friendly decentralized scheduling approach for cooperative
multi-agent systems in production systems. Procedia Manufacturing,
52:127–132, 2020.

[36] Dijkstra shortest path algorithm. https://www.baeldung.com/
java-dijkstra. Accessed: 2022-10-31, Specification dated 2022-03-29.

[37] Branislav Bošanský. Normal form games. https://cw.fel.cvut.cz/
wiki/_media/courses/cgt/cgt_l02_nfgs_2022.pdf, 2022.

[38] Branislav Bošanský. Solving normal-form games. https://cw.fel.cvut.
cz/wiki/_media/courses/cgt/cgt_l03_solvingnfgs_2022.pdf,
2022.

[39] Branislav Bošanský. Extensive-form games. https://cw.fel.cvut.cz/
wiki/_media/courses/cgt/cgt_l04_efgs_2022.pdf, 2022.

[40] Branislav Bošanský. Solving extensive-form games. https://cw.fel.
cvut.cz/wiki/_media/courses/cgt/cgt_l05_solvingefgs_2022.
pdf, 2022.

[41] Michal Jakob. Auctions. https://cw.fel.cvut.cz/wiki/_media/
courses/cgt/cgt2022-auctions-1.pdf, 2022.

[42] Iso ts 15066. https://www.iso.org/standard/62996.html. Accessed:
2022-12-28.

[43] En iso 12100. https://www.iso.org/standard/51528.html. Accessed:
2022-12-28.

[44] En iso 13849-1. https://www.iso.org/standard/69883.html. Ac-
cessed: 2022-12-28.

[45] En iso 13850. https://www.iso.org/standard/59970.html. Accessed:
2022-12-28.

[46] En iso 13855. https://www.iso.org/standard/42845.html. Accessed:
2022-12-28.

[47] En iso 13857. https://www.iso.org/standard/69569.html. Accessed:
2022-12-28.

[48] En iso 10218-2. https://www.iso.org/standard/41571.html. Ac-
cessed: 2022-12-28.

76

https://www.baeldung.com/java-dijkstra
https://www.baeldung.com/java-dijkstra
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l02_nfgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l02_nfgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l03_solvingnfgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l03_solvingnfgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l04_efgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l04_efgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l05_solvingefgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l05_solvingefgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt_l05_solvingefgs_2022.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt2022-auctions-1.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/cgt/cgt2022-auctions-1.pdf
https://www.iso.org/standard/62996.html
https://www.iso.org/standard/51528.html
https://www.iso.org/standard/69883.html
https://www.iso.org/standard/59970.html
https://www.iso.org/standard/42845.html
https://www.iso.org/standard/69569.html
https://www.iso.org/standard/41571.html

Appendix B

Additional tables

Name date of
release Description Accessible at

ISO TS 15066 2016 Robots and robotic devices -Collaborative robots [42]

EN ISO 12100 2010 Safety of machinery - General principles
for design, risk assessment and risk reduction [43]

EN ISO 13849-1 2017
Safety of machinery - Safety components

of control systems - Part 1: General principles
for design

[44]

EN ISO 13850 2017 Safety of machinery -Emergency stop
function -Design principles [45]

EN ISO 13855 2010
Safety of machinery - Positioning of safeguards

with respect to the approach speeds
of parts of the human body

[46]

EN ISO 13857 2020
Safety of machinery - Safety distances
to prevent hazard zones being reached

by upper and lower limbs
[47]

EN ISO 10218-2 2011

Robots and robotic devices -
Safety requirements for

industrial robots - Part 2:
Robot systems and integration

[48]

Table B.1: The table shows the list of ISO standards that were used to create
the safety on the Montrac line

77

B. Additional tables
P A1 A2 A3 A4 A5 T D

Call for proposal 0 3 3 9 7 10 24 0
Propose 28 2 3 10 8 5 0 0
Refuse 0 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0 0
Reject proposal 0 1 0 9 6 5 0 0
Accept proposal 0 2 3 0 1 5 5 0

Confirm 11 1 3 0 1 0 0 0
Disconfirm 0 0 0 0 0 0 0 0

Request 0 3 4 1 2 6 6 26
Inform 46 2 6 1 3 0 0 29

Table B.2: Table showing the messages received by each agent of the first
backtracking algorithm run in use case 6. The number of messages is the same
for both algorithms. P = producer agent, T = transport agent, D = Database

P A1 A2 A3 A4 A5 T D
Call for proposal 0 3 3 9 7 10 24 0

Propose 28 2 3 10 8 5 0 0
Refuse 0 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0 0
Reject proposal 0 1 0 9 6 5 0 0
Accept proposal 0 2 3 0 1 5 5 0

Confirm 11 1 3 0 1 0 0 0
Disconfirm 0 0 0 0 0 0 0 0

Request 0 2 3 0 1 5 5 26
Inform 46 2 6 1 3 0 0 23

Table B.3: Table showing the messages received by each agent of the second
backtracking algorithm run in use case 6. The number of messages is the same
for both algorithms. P = producer agent, T = transport agent, D = Database

P A1 A2 A3 A4 A5 T D
Call for proposal 0 4 3 11 9 11 30 0

Propose 28 3 3 12 12 10 0 0
Refuse 0 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0 0
Reject proposal 0 2 0 9 9 5 0 0
Accept proposal 0 2 3 2 0 6 7 0

Confirm 11 1 3 2 0 3 0 0
Disconfirm 0 0 0 0 0 0 0 0

Request 0 2 3 2 0 6 7 29
Inform 46 2 6 5 2 8 0 25

Table B.4: Table showing the messages received by each agent of the third
backtracking algorithm run in use case 6. The number of messages is the same
for both algorithms. P = producer agent, T = transport agent, D = Database

78

....................................B. Additional tables

P A1 A2 A3 A4 A5 T D
Call for proposal 0 5 3 13 11 8 31 0

Propose 28 4 3 11 9 16 0 0
Refuse 0 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0 0
Reject proposal 0 2 1 10 8 8 0 0
Accept proposal 0 3 2 3 3 0 5 0

Confirm 11 2 2 1 0 0 0 0
Disconfirm 0 0 0 0 0 0 0 0

Request 0 3 2 3 3 0 5 33
Inform 46 4 4 3 2 6 0 23

Table B.5: Table showing the messages received by each agent of the fourth
backtracking algorithm run in use case 6. The number of messages is the same
for both algorithms. P = producer agent, T = transport agent, D = Database

P A1 A2 A3 A4 A5 T D
Call for proposal 0 5 3 14 11 9 34 0

Propose 28 5 4 13 11 15 0 0
Refuse 0 0 0 0 0 0 0 0

Not understood 0 0 0 0 0 0 0 0
Reject proposal 0 2 1 11 8 8 0 0
Accept proposal 0 3 2 3 3 1 8 0

Confirm 11 3 2 2 1 1 0 0
Disconfirm 0 0 0 0 0 0 0 0

Request 0 3 2 3 3 1 8 37
Inform 46 7 5 6 5 8 0 24

Table B.6: Table showing the messages received by each agent of the fifth
backtracking algorithm run in use case 6. The number of messages is the same
for both algorithms. P = producer agent, T = transport agent, D = Database

79

	Introduction
	State of the art
	Multiagent systems area of use
	Multiagent systems in production planning

	Multiagent systems history
	Description of multiagent systems
	Agent description
	Description of the environment surrounding the agent
	Intelligent agent description

	Communication between agents
	Speech act theory
	Multiagent communication languages

	Modeling techniques
	Distributed Constraint Satisfaction
	Distributed optimization

	Game Theory
	Noncooperative game theory
	Coalitional game theory
	Multiagent resource allocation and Auctions

	Problem Description
	Description of the Montrac test line
	Thesis problem description
	MES = Description of actual solution concept
	MAS = Description of the developed version of the solution that uses multi-agent systems
	Description of agents
	Description of testing solution for production scheduling
	Description of the proposal price calculation
	Problems of current solution

	Design of a new algorithm
	Design of communication automata
	Finding a suitable algorithm that is complete
	Parallel scheduling
	Schedulers
	Chronological backtracking

	Implementation of the new algorithm
	Agents implementation without transport
	Agents implementation with product transport
	Agents implementation with product and parts transport
	Agents implementation with backtracking

	Testing and comparison of algorithms
	Use case 1
	Description of the use case
	Production flow of the first product
	Production flow of the second product
	Production flow of the third product
	Production flow of the fourth product

	Use case 2
	Description of the use case
	Production flow of the first product
	Production flow of the second product

	Use case 3
	Description of the use case
	Production flow of the first product
	Production flow of the second product
	Production flow of the third product

	Use case 4
	Description of the use case
	Production flow of the first product

	Use case 5
	Description of the use case
	Production flow of the first product

	Use case 6
	Description of the use case
	Production flow for five product

	Discussion

	Conclusion
	Bibliography
	Additional tables

