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Abstract

The goal of this thesis is to create a mobile application which serves
to map agricultural areas using aerial photographs taken from a UAV.
An analysis was made in order to examine the options available to
create an application for communicating between the phone and a ROS
environment, which is the meta operating system running on the UAV.
The best-found option was implemented on an Android platform. The
thesis covers the issues of planning trajectories for complete coverage, of
taking photos from a flying object and of stitching images into a single
image to create a map of the desired area. A series of experiments is
presented. These show the performance of the system under various
conditions, both in a simulation environment and with a real platform.

Keywords: precision agriculture, ROS, Android, path planning

Abstrakt

Ćılem práce je vytvořeńı mobilńı aplikace, která bude sloužit pro
mapovańı zemědělských ploch formou leteckých sńımk̊u poř́ızených z
bezpilotńı v́ıcerotorové helikoptéry. Byla provedena analýza možnost́ı,
jak vytvořit aplikaci pro komunikaci mezi telefonem a prostřed́ım ROS,
které využ́ıvá koptéra. Nejvhodněǰśı varianta byla implementována na
platformě Android. Práce pokrývá problematiku plánováńı trajektorie
pro kompletńı pokryt́ı zadané oblasti a problematiku sběru sńımk̊u z
let́ıćıho objektu a jejich následného skládáńı pro vytvořeńı mapy zadané
oblasti. Byla uskutečněna série experiment̊u, které testuj́ı chováńı
výsledné aplikace, jak v simulaci, tak s reálnou platformou.

Kĺıčová slova: přesné zemědělstv́ı, ROS, Android, plánovańı trajektorie
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1 INTRODUCTION

1 Introduction

An unmanned aerial vehicle (UAV) is a unified term for a flying robot with no pilot on
board. It can be remote controlled (i.e., controlled by a human), it can fly autonomously
based on a preprogrammed trajectory, or it can present even higher levels of autonomy
(AI methods, response to the environment, etc.). In the past few years, the popularity of
UAVs is increasing rapidly, especially the popularity of multi-rotor helicopters, also called
MAVs (micro aerial vehicles - Figure 1), which have a lot of advantages compared with
other UAVs.

• The MAV is easy to learn to pilot even for a non-professional pilot, unlike remote-
controlled planes or helicopters.

• The user does not have to concentrate on piloting for the entire flight time. The MAV
can retain its position, while the pilot can focus on other tasks such as planning a
new trajectory, evaluating data from sensors, taking photos, etc.

• With a precise guidance system, multicopters are available to reach the desired po-
sition with a high level of accuracy.

• Due to vertical landing and take off sequence, landing areas can be relatively small,
which permits using the MAVs in crowded areas or even indoors.

Figure 1: MAV - Parrot Bebop 2 [1].

UAVs can be used in many different applications for various purposes. A significant po-
tential of UAVs is in mapping areas damaged by earthquakes or floods. In this case, UAVs
can locate survivors, bring necessary medical equipment or locate houses which are likely
to collapse. Defense forces use UAVs for exploring potentially dangerous areas, and first
concepts of using UAVs as weapons are presented. MAVs can be used to deliver post or
in the film industry for taking shots from the air. A large number of UAVs is intended for
the general public for entertainment only, which brings developers to the task of creating
simple controllers for everyday use, which are easy to understand and to work with.
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1 INTRODUCTION

1.1 Precision agriculture

Precision agriculture is one of the areas where UAVs could replace existing technologies.

Precision agriculture (PA) as defined in (V. Lukas at al., 2016 [2]) “is a unified term for
land management using modern technologies that began to be developed in the eighties and
early nineties of the twentieth century. The aim of precision agriculture is an optimization
of production inputs (fertilizers, pesticides, fuel, etc.) based on the local crop requirements
and soil condition. Crop management in this way can lead to the economically efficient use
of agrochemicals and minimization of environmental risks. Site-specific management takes
into consideration spatial variability within fields and optimizes the production inputs, thus
fulfilling the objectives of sustainable agriculture.”

The most common approach to PA is high-resolution satellite imagery. Although it is
a popular approach among agricultural companies, it is time-consuming, dependent on
weather conditions and the cost is not negligible, all of which are motivations to find an
alternative solution.

The answer could be UAVs. Low-cost of operation, the potential of a higher image resolu-
tion, the possibility of using multiple sensors (e.g., multispectral cameras, thermal cameras,
etc.) and high flexibility are just some of the reasons why a lot of recent studies concentrate
on the application of UAV imagery.

The goal of this thesis is to design, implement in Android and ROS (Robot Operating Sys-
tem), and experimentally verify in Gazebo simulator and real experiments an application
to support control of UAVs in an environment monitoring for precise agriculture, which is
motivated by the needs of Czech industry to apply UAVs to smart agriculture and water
protection.

3



2 RELATED WORK

2 Related work

The idea of using UAVs for PA is not new. Therefore a lot of papers dealing with this
problem can be found. A general overview of the problem is in (C. Zhang, J. Kovacs,
2012 [3]). In this paper, different unmanned vehicles are compared and limitations of us-
ing UAVs in PA are studied. Attention is also paid to image processing and information
extraction from UAVs images. The task of collecting and processing the UAV imagery is
also discussed in (K. C. Swain at al., 2010 [4]). This study examines possibilities of using
unmanned helicopters to measure chlorophyll concentration in a rice crop. An interesting
topic, independently discussed by several research groups, is the usage of UAVs in hyper-
spectral imaging for the purposes of PA (P. Katsigiannis, at al., 2016 [5]), (L. Piermattei,
at al., 2017 [6]), (T. Adao, at al., 2017 [7]) or (E. Honkavaara, at al., 2013 [8]).

Relevant research to the topic of this thesis was conducted at Mendel University in Brno,
well documented in (V. Lukas, J. Novák, 2016 [2]). This research aimed to compare un-
manned and multispectral satellite imaging for estimation of basic crop parameters during
the growing season and focused mainly on processing collected data and evaluating impacts
of fertilizers and water supply on tested plants.

An important task related to PA is the issue known as complete coverage path planning
(CCPP). CCPP is a problem of finding a path that passes through all the waypoints in the
desired area from a starting point to a final point while avoiding obstacles. Waypoints can
have many interpretations such as positions from which the robot performs measurements,
places from which the MAV takes a photo or spots on the floor for a vacuum cleaning robot.
The area of robotic applications dealing with CCPP is as wide as the number of waypoints
interpretations: vacuum cleaning (Yasutomi et al., 1988 [9]), robot painting (Atkar et al.,
2005 [10]), harvesting (Ollis and Stentz, 1996 [11]), ground mapping (Demim et al., 2016
[12]) etc. The problem of CCPP is described in detail in section 4.

As the altitude in which the MAV can fly is limited, mainly because of the resolution of
the on board camera, it is necessary to deal with the problem of combining multiple photos
into a single image in order to obtain a complete image of the desired area. This problem is
known as photo stitching. A general overview of photo stitching methods can be found in
(R. Szeliski, 2006 [13]). Currently used stitching algorithms are well documented in (Q. Fu,
H. Wang, 2017, [14]) and (X. Zhou et al., 2016 [15]). The problem of UAV image stitching
was discussed in (Ch. Cheng et al., 2017 [16]). In their paper, image stitching is established
using Speed-up Robust Features (SURF) techniques. Finally, the approach used in this
bachelor thesis is based on (Y. Ha, H. Kang, 2017, [17]). One of the advantages of their
method is the easy integration of an image stitching algorithm into the mobile application.
More information about image processing can be found in section 5.
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2 RELATED WORK

2.1 A review of UAV possibilities in precision agriculture

Over the past decade a numerous researches studying possibilities of the UVAs in PA has
been conducted using not only MAVs, but also other types of UAVs such as powered gliders
(V. Lukas, J. Novák [2]), helicopters (K. C. Swain et al. [4]), powered parachutes, fixed-
wing aircrafts (L. Piermattei, at al. [6]) etc. In the past, most of the published applications
ended up only as research, due to a strict aviation regulations, low sensor reliability and
high initial cost. This may change with the progress of UAV technology, falling prices of
the components and a relaxing trend of aviation regulations. Today it is possible to create
a cheap system providing a complete set of functions for PA application, which requires
only a standard smartphone as a controller, as will be demonstrated in this thesis, which
may increase the interest of agricultural companies in embedding UAVs to PA.
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3 PROBLEM SPECIFICATION

3 Problem specification

The following chapters will cover these points:

• Designing and implementing an application that enables the control of UAV equipped
with an onboard computer with ROS by mobile phone with an Android operating
system.

• Designing, implementing and comparing different algorithms of coverage to be able
to capture a compact image of the selected area.

• Testing algorithms of stitching of individual pictures with and without the use of
data from UAV onboard sensors and state estimators.

• Designing and implementing an application in which the user is able to edit areas,
where the environment monitoring has to be realized, to confirm/adapt obtained
plans of the mission, to download a composed image of the area.

• Verifying system functionalities in Gazebo and with a real platform equipped with a
down-looking camera in outdoor conditions.

• Creating a review of UAV possibilities in precision agriculture.

The final application assumes using a smartphone with an Android operating system with
API (Application Programming Interface) level 15 or higher in order to use all applica-
tion components, such as Google Maps advanced features, SQL libraries, recent Android
application structures, etc.

The concept of the presented ground mapping application is conceived as a “light solution”,
meaning that the goal was to present a fully working application using minimal hardware
equipment. To use all the application possibilities, MAV should be equipped with the
following components (Figure 2).

• a computer running a ROS

• a GPS to obtain the position of the MAV

• a high resolution down looking camera

• an altimeter to measure the altitude of the MAV above the ground (e.g., Garmin
rangefinder, LIDAR-lite laser rangefinder)

• a unit estimating the tilt of the MAV (e.g., Pixhawk Flight Controller with IMU-
Inertial Measurement Unit)

6



3 PROBLEM SPECIFICATION

The last assumption is the ability of the Android device and the MAV to communicate via
WiFi connection on the same frequency (usually 2.4 or 5 GHz).

Figure 2: MAV used in real platform experiments equipped with an essential list of com-
ponents. (1) computer running ROS, (2) battery, (3) differential GPS, (4) standard GPS
(for the case of differential GPS malfunction), (5) rangefinder (6) Garmin rangefinder (for
the case of ranger rangefinder malfunction) [18].

3.1 Application structure

The application can be divided into three parts: GUI (Graphical User Interface), Android
application (application running on the smartphone), ROS application (application running
on the MAV). In the GUI the user selects mapping areas, manages generated trajectories,
observes the progress of the mission etc. The Android application reacts to the user input
(plans trajectory, shows mission results, etc.) and sends appropriate commands to the ROS
application. The ROS application directly controls the MAV (e.g., sends MAV to specified
positions, controls the camera, etc.), collects data from onboard sensors and sends the data
to the Android application. A graph of the application structure is shown in Figure 3.

7



3 PROBLEM SPECIFICATION

Figure 3: Graph of the application structure. The Android application provides a GUI, re-
acts on the user input, visualize application results and sends commands to MAV. The ROS
application reacts on MAV commands, controls the MAV and sends data (GPS position,
images) back to the Android application.

8



4 COMPLETE COVERAGE PATH ALGORITHMS

4 Complete coverage path algorithms

Because of the wide range of applications dealing with complete coverage, trajectory cal-
culating algorithms became a widespread problem among the science community. Require-
ments on the trajectory are usually the same: Visit all waypoints in the selected area. Avoid
obstacles which may occur. Find the shortest path. Due to this similarity, it is possible to
apply the same approach on different robotic tasks. Algorithms solving the CCPP problem
can be divided into two categories.

(a) Algorithms adapting trajectory based on data from onboard sensors. This approach
is more complex and computationally demanding. The ability to detect obstacles goes
with expensive sensors and software which is not always available. This approach can
be used in applications such as mine or seabed mapping.

(b) Algorithms which rely on a consistent environment and advance map of the area. In
other words, obstacles are not present in the mapping area, or their position is known
at a time of planning the trajectory. This approach is simpler but fully satisfactory
in many cases such as ground mapping applications from a flying object.

Most of the complete coverage algorithms used in PA applications counts with an assump-
tion of a minimal altitude of 20 meters, usually more. Mapping larger areas from a lower
height is considered inefficient. This assumption enables to neglect the possibility of col-
lision with other objects, because, at such heights, obstacles are usually not present or
their position is known, and the pilot can adapt the trajectory to avoid collisions. Based
on this ascertainment two of the implemented algorithms (the Wavefront algorithm, the
Zigzag algorithm) omit the possibility of an obstacle inside the mapping area. The third
algorithm (the Trapezoidal algorithm) counts with a possibility of a forbidden area, and it
is able to avoid it.

4.1 The Wavefront Algorithm

The Wavefront algorithm (sometimes called a distance transform algorithm) was first pre-
sented in (Zelinsky et al. 1993 [19]) and the implemented algorithm was based on their
paper. The Wavefront algorithm uses the principle of cellular decomposition. The principle
of cellular decomposition is to divide the mapped area into a grid of cells. Those cells are
subsequently interpreted as nodes of an adjacency graph and boundaries between the cells
as edges of the graph which transforms the problem of a CPPP into a problem of finding
a path through the adjacency graph which is a well-known math task.

A cell represents a fundamental area in a given task (e.g., in grass cutting applications the
fundamental area corresponds to the area which the robot is able to cut from its position, in

9



4 COMPLETE COVERAGE PATH ALGORITHMS

ground mapping applications a fundamental area corresponds to the area which the UAV
is able to capture in a single picture, etc.). The cells in the grid are considered neighboring
if they have a common vertex (e.g., in Figure 4 cells neighboring with the G cell are all
cells with a number one).

The area contains two significant cells. The cell marked as a Start cell (S) is a starting cell
of the algorithm (usually a starting position of the robot). The cell marked as a Goal cell
(G) is a cell, where the algorithm ends. The Goal cell can be any cell of the area including
the S cell. The planning process starts with assigning a cost D to all the cells. In general,
the cost corresponds to the distance of a cell from the Goal. The cost is generated as a
propagation of a wavefront of values through all the cells in the area. The algorithm for
assigning the cost D is as follows:

Algorithm 1 Assigning the cost D

1: procedure assign cost to cells
2: parrentCells, childCells, goalCell
3: Dcost = 0
4: for (cell c: allCells) c.cost = none
5: goalCell.cost = Dcost
6: Dcost++
7: parrentCells = goalCell
8: loop:
9: if allCellsReceivedCost() then break

10: end if
11: childCells = getNeighbors(parrentCells)
12: childCells = selectCellsWithNoV alue(childCells).
13: for (cell c : childCells) c.cost = Dcost
14: Dcost++
15: parrentCells = childCells
16: goto loop.
17: end procedure

Example of a cost propagation is shown in Figure 4. The assigned cost can be used for
either calculating the shortest path between the S and G cell or calculating the complete
coverage path.

As defined in (Zelinsky et al. 1993 [19]) “the shortest path to the G cell from any point
in the environment is obtained by following the steepest descent path.” In other words, the
neighboring cell of the last point in trajectory with the lowest cost is selected for the next
point in the trajectory. If there is no unvisited adjacent cell, the algorithm returns to the
previous cell. Otherwise, the algorithm returns the shortest path.

10



4 COMPLETE COVERAGE PATH ALGORITHMS

Figure 4: Assigning the cost D. In the first iteration, all cells neighboring with the Goal cell
receive a cost one (one higher than the Goal cell). In the second iteration, all cells which
are the neighbors of the cells with the cost one, with no assigned cost, obtain a cost two,
etc. Source: [19].

Figure 5: Cost of the cells based on the
wavefront propagation started in a cell
marked as G. Source: [19].

Figure 6: Calculating the complete cov-
erage path from cell S to cell G. Source:
[19].

As defined in (Zelinsky et al. 1993 [19]) “calculating the complete coverage path begins at
the Start cell. The neighbor with the highest cost is always selected for the next point of the
trajectory. In other words, the robot moves away from the goal, keeping track of the cells it
has visited. The robot only moves into a grid cell which is closer to the goal if it has visited
all the neighboring cells which lie further away from the goal.” This approach forces the
robot to go through all the cells. The algorithm for complete coverage, whose results are
shown in Figure 5, 6, is as follows

11



4 COMPLETE COVERAGE PATH ALGORITHMS

Algorithm 2 Calculating the complete coverage

1: procedure Calculate complete coverage
2: setAllCellsUnvisited()
3: currentCell = startCell
4: loop:
5: neighbor = findUnvisitedNeigborWithHighestDcost(currentCell)
6: if neighbor equals null then
7: goToPreviousCell()
8: else
9: markAsVisited()

10: currentCell = neighbor
11: if currentCell equals goalCell then return sucess
12: end if
13: end if
14: if allCellsV isited() then return failure
15: end if
16: goto loop.
17: end procedure

Embedding the Wavefront algorithm into the application

When the mapping area is selected (see selecting mapping area in user manual 7.2.5) it is
split into a set of squares whose size matches the size of photos taken from the MAV flying
in the desired altitude. Squares are inflated by a necessary photo overlap (photo overlap
is dependent on a stitching algorithm, usually, at least 30 % of a photo size is required).
Each photo is interpreted as one cell. Then the Wavefront algorithm is applied to the set,
which generates the desired trajectory (Figure 7).

Figure 7: Example of the Wavefront algorithm in the application. Green markers represent
boundaries of the area, blue markers points of the trajectory.
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Advantages of the Wavefront algorithm

The biggest advantage of this approach is that when the MAV flies the trajectory, it stops
at each waypoint and before the photo is taken, time for stabilization of the platform is
left. This time can be directly set by the user, which means that they can influence the
accuracy of the whole process. However, this algorithm is usually inappropriate for larger
areas, because stopping at each point reduces the average speed and extends the flight
time.

4.2 ZigZag algorithm

The most common approach to CCPP in ground mapping applications is an algorithm
usually called the ZigZag algorithm, which covers the desired area using back and forth
motions (Figure 8). This method does not consider the possibility of obstacles inside the
mapping area and it is up to the navigator to choose the correct altitude to avoid collisions.

Figure 8: ZigZag principle, mapping us-
ing back and forth motions. Source: [20].

Figure 9: Example of the ZigZag algo-
rithm in final application.

Embedding ZigZag algorithm into the application

The MAV flies in corridors (as shown in Figure 8) above the mapped area while taking
photos periodically (with such frequency that the images have the necessary photo overlap).
A corridor is a straight line above the mapped area. The width of the corridor corresponds
to the width of the area, which the MAV is able to capture in a single picture while flying at
the desired altitude, where the width of the corridors is subsequently reduced by necessary
picture overlaps. An example of visualization of the results of the ZigZag algorithm in the
application is in Figure 9.

Advantages of the ZigZag algorithm

The biggest advantage and also the reason why the ZigZag algorithm is used in most PA
applications is that it eliminates disturbances on aerial photography caused by a change
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of tilt while the MAV accelerates/decelerates or changes the flight direction. The ZigZag
algorithm removes those effects by moving changes of the velocity and the flight direction
outside the mapping area. This means that the MAV accelerates to the mapping velocity
outside the area, flies through the area at a constant speed (i.e., with a constant tilt), then
decelerates, moves to the next transition and accelerates back to the mapping velocity
before reaching the border of the area. A second advantage is that calculating the ZigZag
trajectory is fast even with low mobile processor computational capacity.

4.3 Trapezoidal algorithm

Although most PA applications do not consider the possibility of a forbidden area inside
the mapping region, in some cases it is a necessary assumption (mapping area can contain
a no-fly zone, or contain high voltage pylons, or other obstacles which need to be avoided).
For these cases, the application offers an algorithm, which is able to avoid forbidden areas.
This algorithm is based on trapezoidal decomposition, therefore it is called the Trapezoidal
algorithm.

The idea of the Trapezoidal algorithm is to decompose a complex polygon (representing
the mapping area) into triangles and trapezoids, which are easier to cover using back and
forth motions. Moreover, if the correct way of a transition between the simpler polygons
is respected, the final trajectory avoids obstacles inside the area as will be shown in the
following paragraph.

Figure 10: Polygonal environment, ex-
ternal polygon represents the mapping
area, blue polygons represent obstacles.
Source: [21].

Figure 11: Example of a division of the
mapped area to the set of simple poly-
gons using trapezoidal decomposition.
Source: [21].

Consider a non-intersecting polygonal area and polygonal obstacles as shown in Figure 10.
Trapezoidal decomposition is achieved by creating a set of parallel lines, one line at each of
the area and obstacle vertexes. The presented algorithm uses a north-south (i.e., parallel to
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the y-axis of the plane of the polygon) orientation of the lines, but the orientation can be
arbitrary. After the lines are created the area is composed of simple polygons only, as can
be seen in Figure 11. Each of the simple polygons can now be interpreted as a node of an
adjacency graph and the edges of the graph are common sides of trapezoids. The process
of interpreting the decomposed polygon as the adjacency graph is indicated in Figures 12,
13.

Figure 12: Interpretation of simple poly-
gons received by trapezoidal decomposi-
tion as vertexes of an adjacency graph.
Source: [21].

Figure 13: Adjacency graph correspond-
ing to the result of trapezoidal decompo-
sition shown in Figure 12. Source: [21].

The next step is finding a path through the adjacency graph. Based on the specific appli-
cation, it is possible to search for the shortest path through the graph, using algorithms
such as Deep-first search (DFS), Breadth-first search (BFS), A* or D*, or for a complete
coverage path, which is the case of the typical traveling salesman problem (TSP). TSP is
an NP (non-deterministic polynomial-time) hard problem, which means that there is no
universal algorithm which would guarantee finding a solution in polynomial time for this
task. Although for a small number of nodes, TSP can be solved using iteratively improving
algorithms or repeatedly triggered randomize algorithm. Such algorithms can find an ideal
solution, or a solution which is satisfactorily close to the ideal. The size of the mapped area
(i.e., number of possibly created trapezoids and a number of nodes in the graph) is limited
by the flight time of the MAV, which enables using one of the simple solvers for TSP.
Based on this prediction, the Trapezoidal algorithm uses a randomized DFS algorithm to
calculate the trajectory through the adjacency graph. Randomize DFS starts in one node
of the graph, expands its successors, then chooses one successor at random which has not
been expanded yet, and goes to the next iteration. If there are no unvisited successors, the
algorithm goes back using backtracking. The algorithm is repeatedly triggered, and the
shortest solution is selected. Using 100 iterations for tested areas consisting of more than
20 points, with multiple obstacles inside the area, the algorithm always found the optimal
solution. Even for 1000 iterations the total computation time on the mobile processor is

15



4 COMPLETE COVERAGE PATH ALGORITHMS

shorter than 1 second, which shows that the algorithm is satisfactorily fast to be used in a
real application.

Once the path through the graph is found, the last step is to go along the path and map
each unmapped polygon using a simple mapping algorithm such as the Zigzag algorithm,
with the modification that the trajectory does not exceed boundaries of the polygon (as
shown in Figure 16). It is important to note that the transition between the two polygons
has to go through their common edge (Figure 14) otherwise it can result in the path
coinciding with obstacles (Figure 15). A result of the Trapezoidal algorithm is shown in
Figure 16.

Figure 14: Transition between
two polygons while avoiding the
obstacle. Source: [21].

Figure 15: Collision with an obstacle
due to wrong transition approach.
Source: [21].

Figure 16: Demonstration of the Trapezoidal algorithm. Source: [21].
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Trapezoidal algorithm in the application

In the following Figures, the Trapezoidal algorithm applied on a given area can be seen.
The MAV flies above the mapped area while taking photos periodically, as in case of the
ZigZag algorithm. Figure 17 shows an area to be mapped (green markers mark its corners)
with a forbidden subarea (red markers). Figure 18 shows a trajectory generated using the
Trapezoidal algorithm. Notice that no traversion crosses the forbidden area.

Figure 17: Selecting mapping area in the application.

Figure 18: Generated trapezoidal trajectory represented by blue markers.

The biggest advantage of the Trapezoidal algorithm is the ability to avoid the forbidden
area. Also, the Trapezoidal algorithm can be easily modified to find the shortest trajectory
between two points of the area, which guarantees avoiding obstacles inside the area.
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5 AERIAL PHOTOGRAPHY

5 Aerial photography

This chapter describes the process of taking a compound picture of the mapped area
from the MAV. At first the undesirable impacts of photography from flying object are
presented, together with possible solutions followed by real platform distortions and their
compensations.

5.0.1 Coordinate system

The tilt of the MAV in space is determined by a set of three parameters, roll, pitch and
yaw as shown in Figure 19. The camera is set to the center of the coordinate system. The
x and y-axes are parallel to booms of the quadcopter. The z-axis is perpendicular to both
of them and points downwards. Arrows symbolize a positive direction of the coordinates.

Figure 19: MAV coordinate system.

5.1 Image stitching

Three ways of stitching are used in the presented application. Stitching based only on a
sensor data (estimated MAV position, roll, pitch, and yaw while taking the photo). On-
board stitching using an OpenCV library. Stitching using a professional stitching software
Autopano.

5.1.1 Sensor based stitching

The method of sensor based stitching is suitable for an initial preview of the mapped area
in a system with limited computational power. The advanced image processing methods
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can be subsequently applied on the set of collected photos on a computer with higher com-
putational power. In the process of the exact image stitching based on a sensor data, several
distortions may occur. The following part studies their impacts and suggests possible so-
lutions. As the application assumes usage of additional stitching software, the trajectories
are calculated concerning an average demand on a photo overlap of the stitched photos.
Most of the stitching algorithms require at least 30% photo overlap. Trajectories in this
application are calculated in a way that taken images have ideally 40% overlap. The 10%
of the photo overlap is a precision which is necessary adhere to in order to obtain a full
map of the desired area without blind spots.

The precision of the image placement to the grid of photos depends on the accuracy of the
GPS sensor used. A standard GPS achieves accuracy of 4-5 meters, which would require an
increase of the average photo overlap to fulfill the overlap demands in every case. This effect
can be limited to several centimeters using a differencial GPS, which is enough concerning
the range of the desired photo overlap.

Without automatic camera stabilization, the image evaluating program had to deal with
effects caused by changing tilt of the MAV in space. In the ideal case, roll and pitch of the
MAV are zero (i.e., x and y-axes are parallel to the ground, see Figure 20).

Figure 20: Taking a photo from the MAV in an ideal case, when roll and pitch are exactly
zero.

In a real platform, the tilt of the MAV changes according to the current flight
requirements. Using the roll and pitch, the MAV changes the flight velocity and the flight
direction. Tilt also adjusts according to current wind conditions to preserve desired flight
velocity. The nonzero roll causes the change of the image content (Figure 21) together
with a change of the image perspective.

The effect of the changed perspective is negligible with respect to a high altitude (20m
and more) used while mapping areas, together with a flat surface of the agricultural areas
(i.e., surface without obstacles where the change of the perspective could appear). With
the knowledge of the MAVs roll α and pitch β the dislocation of the photo can be
calculated as follows
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∆x = h tanα (1)

∆y = h tan β (2)

Figure 21: Influence of the nonzero roll on a taken photo. Dislocation of the photo (red)
depends on the roll (α) and the altitude (h).

The last parameter which requires compensation is the yaw. In order to stitch the photos
correctly, it is necessary to take the photos with a constant yaw. Inaccuracy in the yaw
could cause rotation distortion, as shown in Figure 22. The influence of inaccurate yaw is
compensated by additional rotation of the photo by an angle δ, which is a deviation from
the desired yaw. Examples of sensor based stitching are presented in chapter 8.

Figure 22: Influence of rotation distortion on the taken photo.

5.1.2 Stitching using the OpenCV library

The OpenCV library [22] is a free C++ image processing library. It was designed with
respect to computational efficiency and with a strong focus on real-time applications, which
are the reasons why it is abundantly used in many robotic applications. Besides the simple
functions (image composition, image rotation, etc.) the OpenCV library offers a set of tools
for advanced image processing (image transformation, filter design, image stitching, etc.).
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For the purpose of image stitching, the OpenCV library offers a stitching API provided by
cv::Stitcher. The Stitcher class operates with two camera models. A Homography model
expecting perspective transformations between images is useful for creating photo panora-
mas and an Affine model for stitching images with a constant perspective suitable for
composing images from aerial photography. The result of the OpenCV stitching process is
presented in chapter 8.

5.1.3 Stitching using the Autopano software

The Autopano application [23] was selected as an example of advanced photo stitching. The
Autopano software, with results shown in chapter 8, was selected based on the following
features:

• Possibility of stitching up to thousand images

• Automatic color and exposition correction

• Multiple different projections

• Large number of input/output formats

• Possibility of showing individual pictures inside the stitched map

• Compatibility with Linux OS, Windows OS and Mac OS

5.2 Real platform distortions

Three distortions occurred while testing the application with a real platform. Tests showed
that the used Mobius C2 camera has a small unconstant delay 0.2-0.3s based on current
camera load, which caused an image dislocation. In order to compensate the delay, MAVs
tilt and position is saved 0.25s before the photo, which minimalized the inaccuracy.

The second additional distortion is also caused by the camera. The wide angle of the Mo-
bius camera causes an image distortion known as the fisheye effect (Figure 23), which was
not present in the simulated camera. A solution to this distortion is to apply the rectifica-
tion process on the photo, which changes the perspective of the image in order to obtain
planar photography. For the process of image rectification, tools from the OpenCV library
were used. The accuracy of the rectification process is dependent on the accuracy of the
camera model which is used as a reference when correcting the real camera distortion. Real
experiments showed that the Mobius camera model is not ideal. It compensates distortion
on edges of the photo well (Figures 23, 24), but the resulting image gets compressed in a
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direction of the wider FOV of the camera (in the x-axis) as can be seen, when the recti-
fied image (Figure 24) is compared with an image (Figure 25) taken from another MAV
(DJI Phantom), whose camera generates a minimal fisheye effect, flying 100m above the
mapped area. After the rectification process is finished, only the center of the image, which
is enlarged in order to compensate the compression, is used in the map. An experimentally
measured coefficient for image expansion in the x-axis is 1.5. The issue of the fisheye effect
suggests using another camera, generating a lower fisheye effect, for the final product.

Figure 23: Example of a camera image without a rectification process. Notice the fisheye
effect on the edges of the photo.

Figure 24: Example of a camera image with additional rectification, using the OpenCV
model of the Mobius camera. Notice the reduction of the fisheye effect together with the
change of the perspective mainly in the center of the photo (i.e., deformation of the circular
shape on the ground).
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Figure 25: An image taken from 100m using a DJI Phantom, which shows the actual
proportion of the circular shape on the ground.

The last distortion was caused by inaccurate knowledge of the MAV yaw. For evaluating
the yaw, a Pixhawk flight controller is used. In the process of changing yaw, MAV uses a
sliding change of the yaw to the desired value, which (depending on the size of the yaw
change) takes several seconds. Within this time, IMU (inertial measurement unit) of the
pixhawk controller already returns the final value of yaw. Due to this inaccuracy, some of
the photos taken with the wrong yaw cannot be properly rotated to the correct position
(the information about the yaw is incorrect). A possible solution for this problem can be
the usage of another yaw sensor, for example a pair of two differential GPS sensors (where
the yaw would be calculated from a difference of sensors position). Without additional
sensors, the problem of inaccurate yaw was partially compensated by adding extra time,
before each mapping sequence, left for the MAV to complete the rotation process.
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6 Application description

The content of this chapter assumes a basic knowledge of the ROS and Android operating
systems. If the reader is not acquainted with a ROS operating system and the Android
operating system, it is suggested to read (M. Quigley, B. Gerkey, W.D. Smart, 2015 [24])
for an introduction to ROS and (S. James, 2013 [25]) for an introduction to Android
development.

6.1 Wireless communication methods

Several different approaches can be used to establish communications between the MAV
and the mobile device:

• The first option is a Bluetooth technique. The advantage of this approach is that most
of modern mobile devices support the Bluetooth connection. However, parameters of
this connection vary according to the Bluetooth performance class which they use.
Class 1 has a range of approximately 100m with a transmission speed of 24 Mbit/s.
Class 2 also reaches 24 Mbit/s, but the range is limited to 10m, which is too short
concerning the manual control requirements. While most mobile devices are equipped
with the Bluetooth of class 2 this communication method is rather theoretical.

• The second option is controlling using radio control. This method is widely used in
commercially sold UAVs (DJI, power vision, ...). With a transmission frequency of
900 MHz, the range could reach up to 7000m. The disadvantage of this approach is the
requirement of a remote controller, which enables the communication, in addition to
a mobile device, which is against the requirement for a light solution to the problem.

• The third option is a Wi-Fi connection. It is a compromise between the Bluetooth
technique and the radio technique. The biggest advantage of this option is the same
as the advantage of a Bluetooth connection, almost all modern mobile devices sup-
port a Wi-Fi connection. Standard 2.4 GHz band reaches up to 46m indoors and
92m outdoors, which is satisfactory for manual control. While mapping larger areas,
the trajectory can be loaded while the connection is established and the MAV flies
the trajectory autonomously, when the mapping is finished the MAV returns to the
starting point and reestablishes the connection.

Based on the presented comparison, the Wi-Fi connection was selected as the best option,
and it is used as a communication method between the MAV and the mobile device.

24



6 APPLICATION DESCRIPTION

6.2 Establishing communication through Wi-Fi

Two options can be used to establish the communication between the ROS operating
system and the application running on the Android device.

6.2.1 Terminal

The first option is based on the possibility of connecting to a terminal of the MAVs com-
puter directly from the Android application using an SSH (Secure Shell) communication
protocol. When the connection is established, it is possible to call ROS services and send
ROS messages from a command line without creating ROS publishers and subscribers.
The advantage of this approach is that no program evaluating incoming messages from the
phone is necessary, while the messages are sent directly on a specific topic. A disadvantage
of thus created communication is that it is only unidirectional (the SSH communication
is bidirectional, but most mobile devices do not support a command line control of the
applications, which makes sending messages from UAV to phone problematic). However,
more complex applications require a bidirectional communication in order to obtain the
data from the UAV such as GPS position, battery state, camera images, etc., which lim-
its the range of applications where this approach can be used and makes this approach
inappropriate for a ground mapping application.

6.2.2 RosJava

The second option is based on an extension of ROS in a Java language, called Rosjava
(D. Kohler, K. Conley, 2011 [26]). The official definition, as defined in [27]: “Rosjava is an
implementation of ROS in pure Java with Android support. It provides a client library that
enables Java programmers to quickly interface with ROS Topics, Services, and Parameters.
It also provides a Java implementation of a roscore.”

The term “implementation of ROS in Java” means, that the developer is able to create
standard publishers and subscribers directly in the Java application with all requisites.
For example, all nodes running in the rosjava can be seen in a list of the nodes or in an
rqt graph after connection with a rosmaster is established. Still, there is one difference
between subscribers in rosjava and standard subscribers, which will be studied in the next
section.

The rosjava project was aimed at creating a tool for Android developers through which they
can access the ROS environment, which robots use if desired without a deep knowledge
of ROS. For this purpose, there is a repository on Github, called an android core (D.
Kohler, K. Conley, 2011 [26]), which contains a collection of components and examples
that are useful for developing ROS application on the Android device. The presented
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application is built on top of one of those examples. Although the rosjava project is still
under active development most of the work was done 5-6 years ago, which sometimes leads
to collisions with modern Android applications, but all of them can be solved with only
small modifications of rosjava code.

6.3 Publishers and subscribers in RosJava

A standard node in a ROS application is able simultaneously to publish on multiple topics
and subscribe to multiple topics (Figure 26), but publishers and subscribers in Rosjava
are treated differently. Each subscriber/publisher in the rosjava is created as one node,
and each node uses one thread from Android OS, which means that the application has to
operate with a limited number of publishers and subscribers. Experiments with the rosjava
showed that the number of nodes (i.e., the number of publishers/subscribers) running
simultaneously on the Android platform is limited to six, which is not sufficient for a
complex application. A possible solution is using one subscriber and one publisher running
on the Android application, each of them operating with one status message (one additional
subscriber for receiving images from the MAVs camera is used).

Figure 26: Ilustrative rqt graph for a standard ROS application. Notice, that the node
/turtlesim has one subscriber, that subscribes to topic /turtle/cmd vel, and two publishers,
one publishes on topic /turtle1/color sensor and the second on turtle/pose. Source: [28].
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6.4 Status messages

The concept of status messages is based on using one message carrying a set of instructions
or collection of data from various sensors instead of having one communication channel (one
topic) for each sensor and each instruction. Both messages (incoming to the application and
outgoing from the application) are of a type stdFloat64MultiArray where every element of
the array has a special meaning.

6.4.1 Outgoing messages

The outgoing messages are generated at the Android application as a result of user actions
(e.g., if the user clicks on take off button the Take off message is generated and sent to
MAV, if the joysticks, which provide the manual control, are used the manual control
message is sent to MAV, etc.). The type of the message is determined by the first element
of the message as shown in Table 1.

message[0] meaning

1 Take off message
2 Manual control message
3 Trajectory message
4 Wavefront message
5 ZigZag message
6 Trapezoidal message
7 Change settings message

Table 1: A list of message types based on the first element of the status message.

Other elements of the message differ according to the message type:

• Take off message

Take off message does not require any other elements as it is just an impulse for the
MAV to take off.

• Manual control message

Manual control of the MAV is provided through a set of two joysticks (see the man-
ual control in the user manual 7.2.4). Controlling is provided through the angle of
rotation of the joystick and its deflection. Example of a manual control message is
presented in Table 2
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Element in array meaning

message[1] Angle of the left joystick
message[2] Deflection of the left joystick
message[3] Angle of the right joystick
message[4] Deflection of the right joystick

Table 2: Elements of a manual control message, which carries information about the posi-
tion of joysticks which are used in manual control.

• Trajectory message

Trajectory message carries the list of points through which the MAV is supposed to
fly (Table 3).

Element in array meaning

message[1] n (number of points in trajectory)
message[2] x1 (latitude of a first point)
message[3] y1 (longitude of a first point)
message[4] z1 (altitude of a first point)
message[5] x2 (latitude of a second point)
message[6] y2 (longitude of a second point)
message[7] z2 (altitude of a second point)

... ...
message[3n] yn (longitude of a last point)

message[3n + 1] zn (altitude of a last point)
message[3n + 2] v (desired flightVelocity)

Table 3: Elements of a trajectory message. The length of the trajectory message depends
on the number of points in the trajectory. Each point in the trajectory is defined using
three coordinates.

• Wavefront message, ZigZag message, Trapezoidal message

Mapping, ZigZag and Trapezoidal messages use the same format. It is the same
format as the trajectory message complemented with additional elements (Table 4),
following after the message element representing the flight velocity. The next element
after the velocity represents if onboard stitching will be used when the mapping is
finished. The last item is the time used for rotation correction at the beginning of
the flight.
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Element in array meaning

... ...
message[3n + 2] v (desired flightVelocity)
message[3n + 3] us (use onboard stitching)
message[3n + 4] tr (time for initial rotation correction)

Table 4: Elements which are added to the trajectory message in order to use the trajectory
message as a Mapping, ZigZag and Trapezoidal message.

6.4.2 Incoming messages

Incoming message (Table 5) is produced by the MAV. It consists of a list of information
about the MAV, such as GPS position, altitude, battery state, etc. and a list of control
signals such as isMAVInAir or messageReceived (confirm variable which is set to one when
the MAV receives a new message).

Element in array meaning

message[0] UTMx (MAVs x possition in UTM coordinates)
message[1] UTMy (MAVs y possition in UTM coordinates)
message[2] alt (current altitude of the MAV)
message[3] lat (current latitude of the MAV)
message[4] lon (current longitude of the MAV)
message[5] bv (current voltage of the batery)
message[6] bp (aproximate percentage of the batery)
message[7] MAVInAir (1 if the MAV is flying )
message[8] messageRecieved (confirm command receival)

Table 5: Elements of the incoming message which carries a list of information about the
current state of the MAV and a list of control signals.

6.5 Complete communication structure

The whole communication structure between the Android application and the ROS pro-
gram running on the onboard pc of the MAV is shown in Figure 27.
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Figure 27: Project structure. Node running on UAV is called /uav1/groundMapping. This
node subscribes to a topic /uav1/android to drone, which is used for status messages
incoming from the Android application. Data from the MAV are published to a topic
/uav1/dron to android. The last topic /uav1/ground image/compressed is used for trans-
porting camera images to the phone.

6.6 Android user interface

The rest of the Android application was created by author’s coworker Š. Klouček [29],
solving an issue of bird repulsing using UAVs and creating an easily expandable Android
application for the MAV control. Klouček used the concept of fragments for the application
structure, which made the application scalable. This approach is based on dividing the
application to the set of cooperating components, called fragments, where each fragment
is responsible for one part of the application logic (e.g., one fragment is used for manual
control via a pair of joysticks 7.2.4, a second serves for saving the trajectories into the SQL
database 7.2.3, the third fragment contains Google maps together with a logic of selecting
trajectories and displaying the position of the MAV on the map 7.2.5, etc.).

The necessary modifications of the Klouček’s application for the purpose of ground mapping
are as follows:

• adding the logic for entering obstacle to the mapping area 7.2.5

• embedding the coverage algorithms to the application

• adding the possibility of displaying resizable images, to display the result of the
mapping process to the user

• adding additional fragments and dialog windows for entering and evaluating mapping
parameters

More information about the Android application structure can be found in Klouček’s thesis
(Š. Klouček, 2018 [29]).
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7 User manual

This chapter serves as a user manual for the final application. After reading the manual
a reader should be able to use all features of the application. A video demonstrating
the system behavior can be found at https://www.youtube.com/watch?v=epG3XwxIZeU&
feature=youtu.be.

7.1 Main screen

The Main screen contains a connection dialog (Figure 28) enabling the establishment of a
connection with the MAV based on the MAVs IP address.

Figure 28: Main screen. A Master URI defines the connection with the MAV. A connect
button is used to establish the connection and enter the application. The Cancel button is
used to enter the application without a previous connection.

For connecting to the MAV, the formula localhost in the Master URI had to be replaced
with the IP address of the MAV. After the Master URI had been completed, the user can
enter the application by clicking on the Connect button. The Cancel button serves for
opening the application without establishing the connection in order to modify existing
trajectories or plan new trajectories. It is possible to return back to the main screen and
establish the connection later.

7.2 Application tabs

The menu on the left side of the screen (Figure 29) enables moving through the application.
The menu opens by swiping from left to right on the screen or when clicked on the menu
button in the top navigation bar.
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Figure 29: Navigation bar. After an item from the navigation bar is selected the application
moves into the selected tab.

7.2.1 Information tab

Information tab contains a brief description of the application. A person unfamiliar with
the application should be able to control basics of the application based on this description,
without the requirement of reading the full user manual.

Figure 30: Information tab containing the description of the application.

7.2.2 Connection tab

The Connection tab contains information about the connection with the MAV. If the MAV
is fully connected, the user should see the MAV’s IP address, also as Is connected: true.
The Refresh button can be used to update the connection data. If the application was
opened without a previous connection to the MAV the user can return to the main screen
using the Connect button to establish the connection.
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Figure 31: Connection tab containing information about the established connection.

7.2.3 Trajectory tab

The Trajectory tab serves for managing trajectories. While mapping agricultural areas, a
possibility of periodical area mapping is considered in order to evaluate long-term effects of
used fertilizers. For this purpose, the application offers an option to prepare the trajectory
once (with setting of obstacles and any necessary adjustments) and save it for future use.

Figure 32: Managing trajectories. Each tab represents one trajectory. The tab contains a
short trajectory description (name, number of points, length of the trajectory) together
with buttons for managing the trajectory.

• By clicking on the Plus button a new empty trajectory will be added to the list.

• Option Select moves the user to the map and zooms on the selected trajectory.
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• Option Edit opens a popup window with additional options, such as adding a de-
scription to the trajectory, changing waypoints height in bulk, etc.

• Option Delete removes the trajectory (both from the application context and from
the SQL database).

7.2.4 Manual control tab

The Manual control tab provides an option of a non-autonomous take off in problematic
situations such as crowded areas or places where a precise starting sequence is necessary in
order to avoid obstacles close by a take-off spot. Switching to the manual mode can be also
used to interrupt the automatic flight and take control of the MAV in a critical situation.

Figure 33: Manual control. The left joystick controls the vertical motions of the MAV
together with the MAV’s a rotation. The right joystick influences the horizontal motions
of the MAV.

Joysticks

• Left joystick

– Vertical deflection - upwards and downwards motions

– Horizontal deflection - rotation of the MAV

• Right joystick

– Vertical deflection - left and right motions

– Horizontal deflection - forward and backward motions
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7.2.5 Map tab

The Map tab is the key tab of the application. Here, the user creates the trajectories,
calculates the coverage and observes the progress of a currently flown mission.

When entering the Map tab a view similar to Figure 34 will appear. If at least one point
of the trajectory was set in a previous run of the application, the map will automatically
zoom on the first point of the last used trajectory, otherwise it will zoom on the user’s
location. To search for a specific location the magnifying glass button can be used.

Figure 34: Map tab used for creating trajectories, defining mapped areas and observing
the progress of the flown mission.

By default, each tap on the map will add one marker to the map. The user can add two
types of markers to the map. Green markers represent boundaries of the mapped area while
red markers serve for defining an obstacle inside the mapped area. The button highlighted
in Figure 35 serves as a switch between defining the area and the obstacle.

Figure 35: Defining area/trajectory using the green markers. Notice the Area button which
defines if the markers belonging to area or obstacle are being inserted into the map.
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If the marker symbol is tapped a pop up window for marker modification will appear. If the
marker symbol is held, it can be moved on the map to the new location. If it is necessary
to avoid some sub-region of the mapping area, the user can define this sub-region using red
markers. When the trapezoidal algorithm is selected, the calculated trajectory will cover
the whole mapping area while avoiding the forbidden sub-region. When the area is defined
click on the menu button on the right side of the top navigation bar to access advanced
commands.

Figure 36: The right dropdown list, containing a list of advanced commands for calculating
the trajectory and managing markers.

• Fly through points command sends the MAV a command to fly along the perimeter
of the mapping area (along the green markers) starting from the first defined point.1.
The MAV icon will move along the trajectory as the mapping progresses.

• Calculate coverage command opens a pop-up window to select the mapping algorithm
and desired mapping height. Based on the selected algorithm the application will
calculate coverage through the area. The coverage will be added to the map as a
sequence of blue markers (Figures 37, 38, 39).

• Fly coverage command sends the MAV a command to fly along the trajectory calcu-
lated using Calculate coverage function 1.

• Clear map command removes all markers from the map.

• Remove trajectory command removes only trajectory markers from the map (e.g.,
the blue markers).

• Save and new command saves the currently defined area into the SQL database and
clears the map.

• Zoom on drone command zooms on the MAVs current position.

1If the MAV is not in the air, it will take off automatically
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Figure 37: Example of the mapping trajectory calculated using the Wavefront algorithm.

Figure 38: Example of the mapping trajectory calculated using the Trapezoidal algorithm.

Figure 39: Example of the mapping trajectory calculated using the Zigzag algorithm.
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Once the mapping is complete, the user receives a stitched photo of the mapped area
(Figure 40) created using sensor based stitching. It is important to note that the received
image is only a preview of the mapped area (sensor based stitching is able to achieve only
a limited accuracy). Using the preview the user can check if the mapping finished properly
(e.g., if the MAV mapped the whole area with no blind spots etc.). It is assumed, that for
future analysis, images taken from the MAV will be stitched using additional software such
as Autopano or Mircosoft ICE.

Figure 40: Result of the ZigZag mapping algorithm in the Gazebo simulation stitched using
the presented sensor based stitching approach.
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8 Verifying system functionalities

This chapter contains results of the realized experiments. At first behavior of the system
in the simulation environment is examined, applying the three mapping algorithms on
the same mapping areas. Their properties can be compared, especially their precision and
speed. Followed by real platform experiments, which concentrate on evaluating results
of the stitching process applied on real photos. Large version of selected images from
the following chapter can be found in Appendix C Images from experiments. A video
from the real platform experiments can be found at https://www.youtube.com/watch?

v=hLEZ9cOUXyM&feature=youtu.be.

8.1 Simulation experiments

For the purpose of simulation experiments a Gazebo simulator containing a copy of a real
MAV was used. An aerial photo of an agricultural area was used in the simulation to create
conditions similar to reality. Several different areas were mapped in order to compare the
precision of the presented algorithms. Each area was mapped without obstacle using all
implemented algorithms and with obstacle using the Trapezoidal algorithm. The following
pages show outputs of the algorithms applied on the first area (Figure 41). The rest of the
results can be found on the enclosed CD. Statistical results of the simulated experiments
are shown in Table 6 and the end of this section.

Figure 41: Mapped area in the Gazebo simulator. Full image - Figure 68.
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8.1.1 Wavefront algorithm

At first the behavior of the Wavefront algorithm was examined. As expected, the Wavefront
algorithm (Figure 42, 43) reached the highest accuracy thanks to the extra stabilization
time, before taking a photo. The precision of the taken photos also positively influences
the results of the stitching algorithms, as can be seen in Figures 44, 45.

Figure 42: Result of the sensor based
stitching of mapping by Wavefront algo-
rithm. Full image - Figure 69.

Figure 43: Preview of the flown trajec-
tory.

Figure 44: Result of the Autopano stitch-
ing algorithm applied on photos taken
during mapping using the Wavefront al-
gorithm. Full image - Figure 70.

Figure 45: Result of the OpenCV stitch-
ing algorithm applied on photos taken
during mapping using the Wavefront al-
gorithm. Full image - Figure 71.
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8.1.2 Zigzag algorithm

The Zigzag algorithm (Figure 46, 47) does not reach the accuracy of the Wavefront al-
gorithm but requires shorter mapping time. The worse accuracy is mainly caused by the
photo taking during the MAVs movement, at which to retain a constant tilt, which causes
the biggest distortion, is more difficult. A second significant distortion is the delay of the
simulated camera which depends on current computer usage and which causes image shift
inside the canvas. The results of the Autopano and OpenCV stitching algorithms are given
in Figures 48, 49.

Figure 46: Result of the sensor based
stitching of mapping by Zigzag algo-
rithm. Full image - Figure 72.

Figure 47: Preview of the flown trajec-
tory.

Figure 48: Result of the Autopano
stitching algorithm applied on photos
taken during mapping using the Zigzag
algorithm. Full image - Figure 73.

Figure 49: Result of the OpenCV
stitching algorithm applied on photos
taken during mapping using the Zigzag
algorithm. Full image - Figure 74.
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8.1.3 Trapezoidal algorithm without an obstacle

The accuracy of the Trapezoidal algorithm (Figure 50, 51) applied on the mapping area
without an obstacle is similar to the results of the Zigzag algorithm both in a sensor based
stitching also as in stitching using the additional stitching algorithms (Figure 52, 53).

Figure 50: Result of the sensor based
stitching of mapping by Trapezoidal
algorithm. Full image - Figure 75.

Figure 51: Preview of the flown trajec-
tory.

Figure 52: Result of the Autopano
stitching algorithm applied on pho-
tos taken during mapping using the
Trapezoidal algorithm. Full image -
Figure 76.

Figure 53: Result of the OpenCV
stitching algorithm applied on pho-
tos taken during mapping using the
Trapezoidal algorithm. Full image -
Figure 77.
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8.1.4 Trapezoidal algorithm with an obstacle

The quality of the sensor stitching process (Figure 54) decreases while mapping an area
with an obstacle due to an increasing number of flight direction changes above the mapping
area, which causes the changes of the MAVs tilt resulting in image placement distortions.
The quality of the Autopano and OpenCV stitching algorithms remain constant (Figures
56,57).

Figure 54: Result of the sensor based
stitching of mapping by Trapezoidal
algorithm applied on area with an ob-
stacle

Figure 55: Preview of the flown tra-
jectory.

Figure 56: Result of the Autopano
stitching algorithm applied on pho-
tos taken during mapping using the
Trapezoidal algorithm.

Figure 57: Result of the OpenCV
stitching algorithm applied on pho-
tos taken during mapping using the
Trapezoidal algorithm.
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The following table shows statistical results of the realized experiments. Distortion in
image placement was measured at each map using a set of points in which it was possible
to measure a dislocation of the placed photo. The inaccuracy of single image placement
measured in pixels was recalculated to a percentual inaccuracy with respect to the size
of the image. The total inaccuracy of image placement in the map is calculated as an
average of fractional inaccuracies. The inaccuracy of each algorithm is calculated from the
distortions measured in individual experiments.

algorithm experiment time[s] photos taken dislocation[%] average disloc. [%]

Wavefront
1 360 14 0.040

0.0372 417 18 0.033
3 472 24 0.037

Zigzag
1 322 26 0.057

0.0602 332 26 0.066
3 297 37 0.056

Trapezoidal
1 396 37 0.046

0.0582 400 36 0.063
3 433 57 0.064

Trapezoidal 1 460 43 0.085
0.068with 2 440 40 0.057

obstacle 3 495 66 0.063

Table 6: Table of results of the presented flights. Experiments with the same number,
mapped the same area from the same altitude using the same speed. Experiments number
one were executed in 20m altitude with a flight velocity 1.5m/s, experiments number two
at 19m and 1.5 m/s and experiments three at 17m and 2ms/s.

Although the precision of the algorithms calculated from the position of individual pictures
inside the map is only approximate, it is possible to confirm that the Wavefront algorithm
reaches the highest accuracy with the lowest number of photos. The Zigzag and Trapezoidal
algorithms reach a similar accuracy at an area without obstacles. The biggest distortion
occurs in the Trapezoidal algorithm while avoiding obstacles.
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8.2 Real platform experiments

8.2.1 Hardware specifications

The camera used in experiments, both simulated and real, is the latest product from Mobius
action cameras called Mobius C2 lens, a model of which was integrated into the Gazebo
simulator (Figure 58). It is a full HD sports camera, abundantly used in UAV applications,
because of its low weight and damage resistance. The advantage of this camera against
other cameras is a wide FOV (field of view), which is 132 degrees.

Figure 58: Mobius C2 lens [30].

List of camera specifications:

• 1080p HD @ 30fps, 720p HD at 60 or 30fps

• Micro SD Cards up to 32GB

• Photo resolution 2304 x 1536 (default) / 1920 x 1080 / 1280 x 720 / 848 x 480

• USB Specification: Mini USB 2.0 port

• Weight: 42 grams (camera only)/ 52 grams (camera and mounting sleeve)

Other camera specifications can be found on Mobius official web page [31];

Details about the MAV platform can be found in (G. Loianno, at al., 2018 [32]), (V. Spurný,
at al., 2018 [33]) or (T. Báča, at al., 2018 [34]). Details about the MAV control system are
well described at (T. Báča, G. Loianno and M. Saska, 2016 [35]), (T. Báča, P. Štěpán and
M. Saska, 2017 [36]) or (T. Báča, D. Heřt, at al., 2018 [37]).
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8.2.2 Experiments

Two experiments were carried out in order to examine the behavior of the system with a real
platform. Results of the Trapezoidal algorithm and the Wavefront algorithm from the first
experiment are presented. The Trapezoidal algorithm was applied on a surface composed of
a cultivated grassy area, a field and uncultivated high grass (Figure 59 polygon A), which
offers a lot of patterns for the stitching software. The Wavefront algorithm was applied on
a large planar grassy area (Figure 59 polygon B) with a minimal number of patterns, which
could be used by the stitching software as reference points, in order to test the capabilities
of the stitching software. An area with a minimal number of patterns was also selected for
the second experiment. This area (Figure 60) was mapped using the ZigZag algorithm.

Figure 59: Picture of mapped areas in the
first experiment taken from a DJI Phantom
flying at 100m. Full image - Figure 78.

Figure 60: Satelite image of the area mapped
in the second experiment. Full image - Figure
83.

8.2.3 Trapezoidal algorithm

The Trapezoidal algorithm used a MAV flying at 10m altitude in 1m/s. The sensor-based
stitching algorithm behaved as expected (Figure 61), also did the Autopano stitching soft-
ware (Figure 62). However, the onboard stitching algorithm using the OpenCV compo-
nents was able to stitch only several photos (Figure 63), which suggests that the OpenCV
stitching algorithm may be inappropriate for stitching images of environment with a small
number of reference point such as agricultural images.

46



8 VERIFYING SYSTEM FUNCTIONALITIES

Figure 61: Demonstration of the Trapezoidal
algorithm in a real system, during mapping
an area from an altitude of 10m. Full image
- Figure 79.

Figure 62: Result of the Autopano stitching
software applied on a set of real photos col-
lected using the Trapezoidal algorithm. Full
image - Figure 80.

Figure 63: Result of the OpenCV stitching software applied on a set of real photos collected
using the Trapezoidal algorithm.
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8.2.4 Wavefront algorithm

The Wavefront algorithm used the MAV flying 2m/s in an altitude of 15m. The accuracy of
the sensor based stitching (Figure 64) corresponds to the accuracy of the simulated results.
A wrong camera mode was selected in this experiment which caused that the camera used
a different FOV than expected so the collected images had a lower overlap (20 %) in the
y-axis. Due to the smaller overlap even the Autopano stitching software had a problem to
stitch all the images (Figure 65), which shows the importance of the image overlap while
stitching images with a low number of refernce points.

Figure 64: Demonstration of the Wavefront
algorithm in a real system, while mapping
an area from the altitude of 15m. Full image
- Figure 81.

Figure 65: Result of the Autopano stitching
software applied to real photos collected dur-
ing mapping using the Wavefront algorithm.
Full image - Figure 82.

8.2.5 Zigzag algorithm

The ZigZag algorithm mapped the area from the 20m altitude with a flight velocity 1.5m/s.
A result of the sensor based stitching is shown in Figure 66. With the correct overlap the
Autopano stitching software was able to create a complete map of the desired area (Figure
67) although the OpenCV stitching software was again able to stitch only several photos,
which confirms that the OpenCV stitching library is inappropriate for stitching agricultural
images.
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Figure 66: Demonstration of the ZigZag algorithm in a real system, while mapping an area
from the altitude of 20m. Full image - Figure 84.

Figure 67: Result of the Autopano stitching software applied to real photos collected during
mapping using the ZigZag algorithm. Full image - Figure 85.
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9 Conclusion

The presented thesis dealt with designing and implementing an application for precision
agriculture in order to offer a light solution of area scanning, available to work on a MAV
equipped with minimal hardware equipment. The application aimed at monitoring field and
water areas which offer minimal information for stitching algorithms. Therefore a sensor
based stitching algorithm, which uses an estimated position of the MAV in the stitching
process, was implemented in the application. The position of the MAV is estimated using
a sensory fusion described in (T. Báča, G. Loianno and M. Saska, 2016 [35]), (T. Báča, P.
Štěpán and M. Saska, 2017 [36]) and (M. Saska, T. Báča et al., 2017 [38]). Three different
algorithms of CCPP were implemented to examine the influence of a MAV movement on
the precision of the stitching process. The application was created using a RosJava tool for
Android developers and shows that it is possible to create an Android application providing
a complete set of functions for MAV piloting and real-time trajectory construction, available
to immediately display a preview of a mapped area. The application was successfully tested
on multiple mobile devices with different levels of the Android operating system.

The simulation experiments presented at the beginning of chapter 8 compared behavior
of the implemented algorithms. The Wavefront algorithm proved to be most accurate
algorithm, but requires the longest time for mapping areas. The Zigzag algorithm reaches
the shortest mapping times with a satisfying level of accuracy, which makes it the best
algorithm for mapping large areas. The Trapezoidal algorithm offers the ability to avoid an
obstacle inside the mapping area. Without the obstacle, the Trapezoidal algorithm reaches
similar results and mapping times as the Zigzag algorithm.

Real platform experiments presented in the second part of chapter 8 showed, that the
application works well even on a real system. The Autopano stitching software proved
to be appropriate for stitching agricultural images providing a small number of reference
points. On the contrary, the OpenCV stitching algorithm showed as inappropriate for
agricultural image stitching. A video from the real platform experiments can be found at
https://www.youtube.com/watch?v=hLEZ9cOUXyM&feature=youtu.be. Results from the
presented algorithms and videos demonstrating the application are also provided on the
enclosed CD.
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APPENDIX A CD CONTENT

A CD Content

Table 7 lists names of all root directories on CD.

Directory name Description
thesis the thesis in pdf format
thesis sources latex source codes
android sources android application source codes
ros sources ros application source codes
experiments results of the experiments
videos demonstration videos

Table 7: CD Content
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B List of abbreviations

Table 8 lists abbreviations used in this thesis.

Abbreviation Meaning
ROS robot operating system
API application programming interface
GUI graphical user interface
UAV unmanned aerial vehicle
MAV multi-rotor helicopter
CCPP complete coverage path planning
OS operating system
API application programming interface
DFS deep first search
BFS breadth-first search
TSP traveling salesman problem
SSH secure shell
FOV field of view

Table 8: List of abbreviations
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C Images from experimnts

Large version of images from the chapter Verifying system functionalities 8.

Figure 68: Mapped area in the Gazebo simulator.
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Figure 69: The result of the sensor based stitching of mapping by Wavefront algorithm.
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Figure 70: Result of the Autopano stitching algorithm applied on photos taken during
mapping using the Wavefront algorithm.
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Figure 71: Result of the OpenCV stitching algorithm applied on photos taken during
mapping using the Wavefront algorithm.
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Figure 72: Result of the sensor based stitching of mapping by Zigzag algorithm
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Figure 73: Result of the Autopano stitching algorithm applied on photos taken during
mapping using the Zigzag algorithm.
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Figure 74: Result of the OpenCV stitching algorithm applied on photos taken during
mapping using the Zigzag algorithm.
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Figure 75: Result of the sensor based stitching of mapping by Trapezoidal algorithm
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Figure 76: Result of the Autopano stitching algorithm applied on photos taken during
mapping using the Trapezoidal algorithm.
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Figure 77: Result of the OpenCV stitching algorithm applied on photos taken during
mapping using the Trapezoidal algorithm.
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Figure 78: Picture of mapping areas in the first experiment taken from a DJI Phantom
flying at 100m
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Figure 79: Demonstration of the Trapezoidal algorithm in a real system, during mapping
an area from an altitude of 10m.
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Figure 80: Result of the Autopano stitching software applied on a set of real photos collected
using the trapezoidal algorithm.
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Figure 81: Demonstration of the Wavefront algorithm in a real system, while mapping an
area from the altitude of 15m.
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Figure 82: Result of the Autopano stitching software applied to real photos collected during
mapping using the Wavefront algorithm.
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Figure 83: Satelite image of the area mapped in the second experiment
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Figure 84: Demonstration of the ZigZag algorithm in a real system, while mapping an area
from the altitude of 20m.
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Figure 85: Result of the Autopano stitching software applied to real photos collected during
mapping using the ZigZag algorithm.
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