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Abstract
The aim of this work is to develop a neural
network model which could be used used
for determination of a road surface using
mobile sensors data. Mobile was attached
to a bike to be able to measure vibration
while cycling. I used measured data for a
neural network training. I used mainly the
Python language for the implementation
of data processing and the neural network.

I have developed a neural network that
can predict the surface with success rate of
81,7%. This model has following setting:
60 LSTMs, 200 sample sequence length,
50 ms resample.

The results of the work show up that
the road surface can be predicted with
usage of the mobile sensors. It can help to
map surfaces in cities and the application
can offer better roads options.

Keywords: Neural network, Surface
detection, Android, Python, LSTM,
PyBrain, Keras

Supervisor: Ing. Drchal Jan, Ph.D.

Abstrakt
Cílem této práce je vytvořit model neu-
ronové sítě, který umožní identifikovat
povrch (vybranou množinu povrchů) po-
mocí senzorů mobilního telefonu. Tento
problém jsem řešil hlavně pomocí akcele-
rometru. Naměřená data jsem použil pro
učení modelu neuronové sítě, který po na-
učení předpovídá projetý povrch.

Podařilo se mi vytvořit model, který
předpovídá povrch s úspěšností 81,7%.
Tento model je nastaven na: 60 LSTMs,
200 záznamů na sekvenci, 50 ms vzorko-
vací frekvence.

Výsledky této práce ukazují, že je
možné pomocí mobilních senzorů s rela-
tivně dobrou úspěšností analyzovat po-
vrch, po kterém cyklista jede. To může
pomoci ke zmapování povrchů, po kte-
rých cyklisté ve městě jezdí a zlepšit tak
rozmanitost nabízených variant trasy.

Klíčová slova: Neuronová síť, Detekce
povrchu, Android, Python, LSTM,
PyBrain, Keras

Překlad názvu: Extrakce parametrů
cyklodopravní sítě z dat ze senzorů
mobilního telefonu
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Chapter 1
Introduction

Nowadays smartphones and modern technology are moving the world.
Thanks to these smart devices and using their oportunities with applications
we could make our life easier. These devices contain wide range of various
sensors that could be used for completely different purposes as both measuring
life functions and measuring surroudings. Using smartphones while doing
daily work as driving, shopping or training is becoming a part of modern
lifestyle. I can find various Android applications for navigating and tracking
cyclist route that can offer both GPS tracking and for example cyclist energy
expenditure. It is important to create an Android application, that can offer
something new to the cyclists. Having the Android application that can
determine a surface from mobile sensors is good advantage. Cyclists could
choose their route according to the surface preferences on the way.

The aim of this work is to create a neural network model which could
be used to determine a surface from mobile sensors data. Neural network
predicts surface according to learned dependecies between measured data and
given surfaces. The creation of the model requires data measurement during
cycling, data preparation for training and then using the data to train neural
network. To be able to measure some data I have to create an application that
will measure data on a phone and save them. Data has to be prepared before
being used for training. Then I can train models with different parameters
and find the best solution.
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Chapter 2
Phone Sensors

2.1 Overview

Android devices have several different sensors for measuring orientation,
motion, environmental conditions, etc. These sensors can be cleverly used in
lots of applications. For our purpose we chose the position and the orientation
as the best ones.

Most of the sensors could be used only as a support for the basic ones.
From the list below, the main I will use, is an accelerometer. A GPS performs
principally location provider and an audio is for my purposes used as a
support but we can assume it to be a sensor.[6]

2.1.1 Accelerometer

An accelerometer is one of the most used sensor in general. It is really
cheap and easy to use. Most of the devices contains the accelerometer. Its
function can be described as measuring the acceleration force in ms−2 that is
applied to the device on all axes (x, y, z). This information can be used to
get a phone tilt in axes or to measure shaking with a phone, etc.

I can describe an accelerometr coordinating system with a default phone
orientation showed in the picture 2.1. The default orientation of the device is
(0,0,0). It means that the x axis is horizontal and points to the right, the
y axis is vertical and points up and the z axis points toward the outside of
the screen face. Accelerometer values also include the gravity force that is
applied in axes according to the phone orientation. If the phone lies freely
on straight ground, we can measure approximately 9,81 ms−2 value on the z
axis. I will focus on accelerometer settings in the Android at 3.1.1.

An accelerometer is very sensitive to any movements. It is almost impossible
to hold it without detecting any change in axes. Great advantage is that
an accelerometr allows to measure fast-frequent vibration while the phone is
attached to a bike.[7]

3



2. Phone Sensors ....................................

Figure 2.1: Coordinate system (relative to a device) that’s used by the Sensor
API [1]

2.1.2 Gyroscope

A gyroscope is used to measure the tilt and the position of a device just like
the accelerometer, but the difference is in measured quantity. A gyroscope
gives data in rads−1 so the angular velocity is measured.[7]

But this sensor is quite expensive and devices with the gyroscope are much
more expensive. This is one of the reasons why the gyroscope can’t be a basic
sensor for my task. Second reason is that the phone position (axes) on a bike
is mostly changed along the axes so the gyroscope can’t notice almost any
change in value.

2.1.3 GPS

A GPS can measure the longtitude and the latitude of the device that can
be used to locate the device, track the route, offer a route option, etc. I used
it for tracking my routes (measurements) to be able to reconstruct the route.
It doesn’t have any special impact on the surface detection.

2.1.4 Audio

I have used audio records to record surroudings of the cycled route, but
mainly for my own notes during the cycling, because the GPS is often not so
accurate. Records may be used for detecting traffic intesity.

2.2 Conclusion

In summary the accelerometer appears to be the most suitable sensor for
surface recognition. Both the accelerometer availability and given values are
necessary for basic detection of surfaces. The gyroscope could be used as a
support sensor for the accelerometer, but the problem is its availability in
phones. There are some other sensors in mobile phones that might be usefull,
but they occur very rarely. It is possible to do more specialized research
about phone sensors to find out if there is any added value to this task.
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Chapter 3
Android application

3.1 Description

To be able to do measurements I firstly had to create an Android appli-
cation that records data from chosen sensors. The application is targeted
on the Android 6.0 Marshmallow (SDK 23), but minimal running Android
version is the 4.1 JellyBean (SDK 16). Below you can see the main screen of
the application.

Figure 3.1: Application main window
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3. Android application ..................................
3.1.1 Implementation

Accelerometer and Gyroscope

Android application development tools allows an access to sensors through
the class SensorManager. This class allows to create an instance of a con-
nection to chosen sensor. Firstly, it is recommended to check if the phone is
equipped with the chosen sensor. For this purpose you can use the Package-
Manager class.

I have used the SensorEventListener to get the values from sensors. In-
stance of the listener has to implement two methods: onAccuracyChanged(),
onSensorChanged(). In the method onSensorChanged() can be specified what
happens if the sensor data changed. In the program can be created just
one instance of SensorEventListener. Inside the method has to be specified
the logic decision which sensor is calling method onSensorChanged(). The
SensorEventListener has to be registered with relevant sensor to be able to
listen to changes of sensor values.

While registering the sensor you can specify the delay between samples of
recording data. I set this value to zero to get the data as fast as possible.
Each phone has different sensor so it will give values on the average every 5
miliseconds. Firstly, I had problem with the delay between samples. At the
beginning, I didn’t set the delay value to zero and it was default set to 200
miliseconds which is too much.

GPS

A GPS tracking could be accessed with the instance of LocationManager
class. Difference between sensors and location providers are that location
providers, such a GPS, has to be turned on to use them.

Then a onLocationChanged() listener has to be implemented. The listener
will be called when the GPS coordinates change.

The listener has to be added to the requestLocationUpdate() list of the
LocationManager instance.

Audio

An audio is set with the MediaReccorder class. You have to create an
instance of the class and then specify the save format and the encoding.
There is no other special requirements for audio recording. More about audio
records in the Android at [8].

3.1.2 Application Settings

On the top-right side of the screen there are two buttons to start and stop
measuring.

Below there is a list of checkboxes to choose sensors that will be recorded.
The camera is disabled because I have decided not to use it due to small
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.................................. 3.2. How to save data?

benefit.
In the bottom of the screen there are three buttons. The first one should

open a directory where the data are saved, but it hasn’t been implemented
yet so it is unavailable. The second one checks if the GPS is enabled. The
last button switches the application off.

3.1.3 Real time information

On the left side of the screen there is information about the real data
obtained from sensors. Each box contains a time stamp, and a value from
each axis. In case of the audio, there is information about the status (on/off)
of chosen device.

3.2 How to save data?

Measured data are saved on a phone into a folder:

storage:\\Cycleplanner\month-day\hour-minute-second\

The folder path could be for example:

storage:\\Cycleplanner\3-22\17-33-02\

The application saves data from the sensors and the GPS in .csv file. Name
of the file in the folder is Accelerometer.csv and Gyroscope.csv The format of
each variant will be displayed below.

The audio record is saved in .3gp format. Name of the file in the folder is
Audio.3gp. It is common format for mobile phones recording.

3.2.1 Sensors

Accelerometer

Time Stamp X Y Z
2016_03_22_17_33_02_403 -0.051076304 0.03405094 0.017025948
2016_03_22_17_33_02_421 0.1021526 -0.11917782 0.017025948
2016_03_22_17_33_02_422 0.1021526 0.03405094 0.017025948
2016_03_22_17_33_02_449 -0.051076304 0.03405094 0.017025948

Table 3.1: Example of the accelerometer CSV file

Each row contains information about the time stamp and the actual values
from the sensor. In case of the accelerometer values contains information
about the acceleration in given axis. Data displayed in the table are raw.
Data has to be processed before using. More about the sensor data processing
in the chapter 5.1.3

7



3. Android application ..................................
Gyroscope

The gyroscope format is the same as the accelerometer. Just the values
are different.

3.2.2 GPS

Time Stamp Latitude Longitude
2016_05_08_14_00_23_719 50.09209919 14.10519621
2016_05_08_14_00_24_458 50.09209978 14.10519448
2016_05_08_14_00_25_460 50.09209981 14.1051928

Table 3.2: Example of GPS file

Each row contains information about phone position in time. The GPS
gives information almost every second. More about the GPS data processing
at 5.1.3.

3.3 Conclusion

I have created the Android application for data measurement. This ap-
plication isn’t the main target of this work. I have studied the Android
operating system, especially how to implement loading and saving the data
for the sensors (SensorManager class), the GPS (LocationManager class)
and the audio (MediaRecorder class). The application is just an example of
recording/measuring and saving the data and could be modified and improved
as required.

8



Chapter 4
Data Measurement

4.1 Description

Next important step is the practical measurement itself. I have cycled
several cycleroutes, asphalt streets, cities pavements, brick streets and coun-
tryside roads. One measurement took about 2 hours.

I chose two phones for measurement. First was a "Vodafone Smart Prime 6".
This phone has just the accelerometer so I had to find another for measuring
with the gyroscope also. I used a mobile phone "LG G3".

4.2 Used sensors

I have performed measuring almost exclusively with the accelerometer. I
have decided to use just one sensor because my methods haven’t been tuned
and I wanted to measure using the best method. At the end I decided to use
also the gyroscope for measuring in order to pursue certain tests with the
both sensors together.

4.3 Challenges

4.3.1 Phone holder

I had to choose a holder for the phone. I bought the holder "CONNECT
IT M7" that simply allows to attach the phone to the bike. I had to solve
problems with slipping of the holder which caused few errors in my data. The
holder often slipped on the handlebar and zero value of axes changed. More
about this problem in the chapter 4.3.2.

4.3.2 Phone holder placement

The phone position on the bike is essential for measurement. The phone
could be placed both on the handlebar and a top tube of an axle. On the
handlebar the phone could be placed both closer and further to the fulcrum
which can add error during measurement caused by moves with the handlebar

9



4. Data Measurement ..................................
by a biker.

I have had only the phone holder that could be attached only to the
handlebar, so I tried to eliminate the cyclist error by mounting the holder
as close as possible to the fulcrum. If the holder is moved from the default
position during measurement, it could slightly affect the neural network
learning.

I have decided to keep the holder in the fixed position on a bike. To
eliminate the gravity force of the default position, I have made the average of
10 first values from the sensor and the algorithm constantly subtracts this
average from following sensor values. It means that the algorithm will save
just the differences from the average value.

4.3.3 Choice of surfaces

I have chosen following set of surfaces: Asphalt, Bricks, Pavement and
Countryside. The Asphalt do not include only roads, but also pavement
covered with asphalt. The Pavement means mainly interlocking pavement.
The Bricks means cobblestones. The Countryside means bike roads. Set of
surfaces is able to be extended for another ones.

4.3.4 Speed of measurement

It is important to remember, that the cyclist speed has significant influence
to vibration measured with the phone. If the cyclist’s speed is firstly 15
kmh−1 and then is increased up to 40 kmh−1 vibration will be recorded with
approximately . It could be possible to find out how the speed of measuring
influences neural network learning. However, I didn’t consider this factor in
this work and tried to measur data with average speed 15 kmh−1.

4.4 Conclusion

Measuring is very tricky part of the whole work. If the data are not
measured properly, it is impossible to create a functional model of a neural
network. It is important to do a lot of measurements on different surfaces to
gather a lot of objective data. I have tried to measure huge amount of data,
but because of mistakes in the implementation and phone position fixing
(4.3.2) it wasn’t easy. It is possible to try much more positions of the phone
on a bike to find out which is the best one for measurement.

As I mentioned in 4.3.3 the list of surfaces could be modified. For example
the Bricks surface is probably the easiest one to recognize, but it is hard to
find this surface in the reality.

Despite all kinds of problems and posibilites I measured enough usable
data that will be used for neural network learning.

10



Chapter 5
Data Preparation

5.1 Overview

Next necessary processing step is to prepare the data for neural network
learning. I have to load measured data to filter the useless ones, annotate
the rest and save them for neural network learning.

I have used the Python as a programming language mainly for two reasons.
Firstly, it is easy to code and read. Secondly, there are various libraries for
both data preparation and network learning.

5.1.1 Loading data

I used the Pandas library for data loading. It simply allows to read .csv
files with read_csv() method and prepares dataset that can be later easily
used for the next steps. I also had to reformat the time stamp using method
to_datetime() applied to chosen column.

At the beginning, I had problems with resampling, because of the format
of miliseconds. The value of miliseconds smaller than 100, i.e. 0-99 was
resampled into 000-990, i.e. one zero was added to the end. This error created
mistakes in the dataset so it had to be removed. I changed the Android
application to save miliseconds always with 3 digits.

I used the Matplotlib library for displaying measured data. It allows to
display the data in a graph similar to graphs in the Matlab. Here is an
example of graph with measured data.

11



5. Data Preparation ...................................

Figure 5.1: Displayed measured data with Matplotlib library

5.1.2 Annotation

To be able to learn neural network with the data, I have had to annotate
measured data. That means to add an information to data about the surface
from measurement. I solved this issue with mouse listeners that the Matplotlib
library offers.

At the beginning, I did resampling right after annotation. Later I figured
out that I needed different resampling time but it was impossible to change
that because the original time information was lost. This is why I have
decided to do resampling just right before training.

Interval mode

I added a listener to the graph, that reads a time stamp information from
the position in the graph where user has clicked. On the clicked position
there is created a blue line, that devides the data into two intervals. You
can place any quantity of intervals you require. If user wants to exit interval
settings, he has to click on left mouse button.

12



...................................... 5.1. Overview

Figure 5.2: Created intervals

Surface mode

In this mode user assigns surface information to created intervals with each
next right mouse click. The surface description is changed with every right
click. Text is changed in given order: Asphalt, Bricks, Pavement, Countryside,
Mess. Text is always displayed in the data interval which has the user clicked
in. If the user wants to exit the surface mode and save intervals, he has
to click on left mouse button. After the click new data will be loaded and
displayed in a new graph or if it is a last data file, algorithm finishes.

13



5. Data Preparation ...................................

Figure 5.3: Added surfaces to intervals

Mess surface

I have created a new surface called Mess, which won’t be used for training,
but provides me with a space where I annotate all data I have acquired. I
stopped cycling several times during measurement in order to have a rest
for a moment. These intervals are useless but they are included in measured
data.

5.1.3 Data save format

Accelerometer

After annotation, during which I also erased useless data, I added one
column to the table with number that indicates surface of the interval. The
Asphalt is indicated by zero, the Bricks is indicated by one, the Pavement
is indicated by two, the Countryside is indicated by three and the Mess is
indicated by four. As an example I show the table with the new column.

14



..................................... 5.2. Conclusion

Time Stamp X Y Z Surface
2016-03-22 17:33:40.710 -4.341486 -2.724069 1.396085 0
2016-03-22 17:33:40.726 -2.655968 7.082580 -5.958901 0
2016-03-22 17:33:40.729 -3.422112 6.009979 -13.467118 0
2016-03-22 17:33:40.745 -1.123678 -0.732093 7.984928 0
2016-03-22 17:33:40.761 -2.502739 3.405087 -3.966926 0

Table 5.1: Example of Accelerometer CSV file

Annotated data are saved in a new .csv file that contains only one interval
and name of this file is created with this pattern:

"DD-MM_hh-mm-ss_Surface_IntervalNumber.csv"

where:
DD - day of measurement
MM - month of measurement
hh - starting hour of measurement
mm - starting minute of measurement
ss - starting second of measurement
Surface - surface of interval
IntervalNumber - number assigned to the interval from original data set

Gyroscope

All procedures are identical with those described on accelerometer.

GPS

The GPS data aren’t used for training, but I have used them to display
route in the program Google Earth. To display the data in Google Earth they
must be transformed into different format, I chose .kml. I have used [9] for
transformation the data from .csv to .klm format.

5.2 Conclusion

In the data preparation I have filtered the useless data and have annotated
the usefull samples. I have studied the Python language, development tools
and libraries, for example Pandas and Matplotlib.

A human is able to distinguish the surface pattern just by a look at the
graph. It means that if I can find the surface data pattern just by looking
at the graph, the neural network model can learn to recognize each surface.
This is key information because if there isn’t any visible difference between
the surface data pattern, the neural network model might have a problem
with surface recognition.
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Chapter 6
Neural Networks

6.1 Basic Overview

In informatics the neural network is a model that is inspired by the bi-
ological neural network such as the brain. It is provided with units called
neurons similar as biological neurons. Each neuron can have more inputs,
but has just one output. Neurons are connected with connections, that have
some values. Generally these values (weights) describe how much important
the connection between connected neurons is. All connection weights can be
tuned according to success of leraning. It makes neural network adaptive to
inputs and capable of learning.[10]

The type of neural network that we will be interested in is the recurrent
neural network alias RNN. This network is different from the classic Feedfor-
ward neural network[11] with connections to previous neurons layer. These
backwards connections create an internal state of the network. RNNs can
use this state to process sequences of inputs dependent on time. Firstly, I’m
going to explain the general artificial neuron, recurrent networks and then
the used neuron [12].

6.1.1 Artificial neuron

There are several types of neurons. I will explain basic idea on a neuron
unit called the perceptron created by Warren McCulloh and Walter Pitts.

Figure 6.1: Perceptron model [2]
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6. Neural Networks ...................................
This model can be described with following equations:

Y = S(x)

x =
∑N

i=1(wixi) + Θ

where:
xi - neuron inputs
wi - weights of connections
Θ - a treshold value
S(x) - neuron activation function
Y - neuron output

In this model inputs xi are mutiplied by weights wi. If summary of mu-
tiplied values reaches the threshold value Θ, the summary goes throug the
activation function to output that leads to another neuron. [13]

6.1.2 Activation function

The activation function "activates" an input or an output to normalize
value. Function could be discrete or continous in depending on the data. I
will use just continous functions because I will work with continous flow of
data. I will use especially the sigmoid and the tanh.

Figure 6.2: Activation functions for neural networks. Left - sigmoid, Right - tanh

These functions are useful to normalize values in the interval (0,1) or (-1,1).
I will describe their usage more in chapter 6.2.3.

6.1.3 Loss function

The loss function is type of a function which maps values of one or more
variables onto a real number representing some "cost" associated with the
value. This "cost" should be depreciated in order to reach the best results.
There are a lot of loss functions that can be used for different tasks. I will
focus on loss function in chapters 7.1.5, 7.1.7 and 7.1.8
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6.2 Recurrent Networks

The difference between the FeedForward model/neuron and the recurrent
one is in the backward connection. This connection allows to remember
information which is dependent on time or is saved in time sequencies. You
can imagine that, for example, with sentences. Humans usually try to predict
next words, even if they do it unintentionally. It is natural, when you heard
some sequences of words your brain tries to guess next words. I’m goint to
show an example of the neuron below however that is just one variant of a
neuron. It can be much more complicated. [3]

Figure 6.3: Recurrent neuron model [3]

Obstacle that appears with using simple RNNs is called vanishing gradient
problem. Firstly I have to explain what is the term backpropagation and
then I can explain the problem [14].

6.2.1 Backpropagation

A backpropagation is a type of an algorithm used in order to train a neural
network. It uses a gradient descent as an optimization algorithm. More about
the gradient descent alogithms see in[15]. The algorithm calculates the gradi-
ent of the loss function with respect to all the weights in the network. The
gradient are then used to adjust weights up or down according to direction of
the error.[4][16][17]

Obstacle that appears with using simple RNNs is called a Vanishing Gradi-
ent Problem.

6.2.2 Vanishing Gradient Problem

The backropagation algorithm calculates the gradient from the end to the
beginning of the model. The gradient is a rate which costs changes with
the respect to weights and the bias. The algorithm uses the chain rule to
calculate earlier gradients which is just multiplication of gradients that were
calculated before. Usually the tanh is used as an activation function therefore
the result of the gradient will be between 0 and 1. The gradient is calculated
for each neuron in the model. Then all gradients are mutiplied together to
get the total difference between the output and the input. If you mutiply
several numbers between 0 and 1, you are going to get a number really close
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6. Neural Networks ...................................
to the zero. Gradient value is then much smaller in the earlier layers. As a
result, the earlier neurons are hard to train, or almost impossible to train. It
is a big problem. If your first neurons can’t detect properly, all other neurons
in model will be effected.

Simple solution for solving the vanishing gradient problem is the LSTM. In
the LSTM the activation function is the identity function with a derivative of
1.0. The backpropagated gradient neither vanishes nor explodes when passing
through, but remains constant.

6.2.3 LSTM

We can assume that LSTM unit is a neural network too, because it has
its own mechanism to control data flow. I can describe the LSTM unit with
picture easier.

Figure 6.4: LSTM model description [4]

LSTM consists of 4 main parts. An input gate, a forget gate, a cell
and an output gate. All inputs in one LSTM unit contain data from
previous state to be able to find relations between seqeunces of data. All
input data are the same, but they affect different modules as described below.
Input gate

Data that appears in the input gate are activated with the sigmoid function
that decides "how much" data from the block input will let in. Simply it just
muptiply the input with value in the interval (0,1).
Forget gate

The forget gate decides when the cell memory should be changed. According
to the result f of the sigmoid activation function the result will be mutiplied
with the state of the memory cell, that contains information from the previous
state. If f is 0, the memory is erased, if f is 1, the memory value remains the
same.
Cell

Function of the cell is just to keep the value. The input value is provided
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..................................... 6.3. Conclusion

by a sum of the input gate result and the forget gate result. The output of
the cell leads to the tanh activation function and after is mutiplied by the
result from the output gate.
Output gate

According to the state of the variable o that is value between (0,1) after
activation from activation function sigmoid in the output gate. This value
mutiplies an output from the cell. In other words the output gate decides,
how much of the cell value will go out [18].

6.3 Conclusion

In this section I have explained basics about neural networks. I have
described a basic artificial neuron known as a perceptron, what is an activation
function, its examples and basics about a loss function. I explained why I’m
using the recurrent networks especially the LSTM.
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Chapter 7
Network Learning

7.1 Implementation

An implementation of sequential datasets is necessary property of a library
that I’m going to use. Sequential datasets allow to divide loaded data into
fixed-length sequences of samples that contains only a one surface. It is
important having data in the one sequence from raw measured data without
shuffling. It means that the order of samples in sequence has to be the same
as in raw measured data. Then samples keep information about the surface.

In next section I will explain separately implementation in different libraries.
Firstly I will show common settings. At the end, there will be a comparison
at testing phase.

7.1.1 Loading

Loading and preparing required data into the dataset is the first step of
the implementation. I load data as described in section 5.1.1. Only difference
compared to the previous method is that there is one more column with the
surface information.

7.1.2 Resampling

Resampling is very important step. Samples that I have obtained from
measuring was recorded with a frequency "as fast as possible" as mentioned
in 3.1.1. It means that the time interval between the samples is not constant
but I require that. This is the reason why I have to do resampling. But how
to choose the right resampling time? If intervals between data records are
too large, I will lost information about the surface and then learning will be
complicated. If an interval is too small, the model could mix up surfaces. The
algorithm takes data 5.1 and resample the time stamp with chosen freqeuncy.

I will present an example with 25 ms resampling.
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Time Stamp X Y Z Surface

2016-03-22 17:33:40.700 -4.341486 -2.724069 1.396085 0
2016-03-22 17:33:40.725 -2.400586 4.120156 -3.813697 0
2016-03-22 17:33:40.750 -2.272896 1.949412 2.928374 0

Table 7.1: Example of resampling

Data are now resampled with 25 ms spacing between records. Axes values
are now averages of values between time stamps from original data. This
prevents from having values NaN (Not a Number).

7.1.3 Dataset

A format of raw data is called the dataset. Creating a dataset is the
necessary step. Libraries are using different types of a dataset. There
are libraries with their own system of dataset creation, which can be easily
prepared, but can’t be directly transfered for another library. It is for example
the PyBrain. More about the PyBrain dataset in section 7.1.7.

Second group uses an external library to create the dataset. This dataset
can be easier transfered to other libraries. It is for example the Keras. More
about the Keras dataset in 7.1.8.

It is necessary to prepare training and validation data for a model. It is
done by splitting whole dataset into two parts. Training and validation data
are usually in ratio of 0.8:0.2.

The training data are those which the model uses for training in each
epoch. The loss function and the accuracy is used to tune model neuron
weights and parameters.

The validation data are those which the model uses to check quality of
the trained model. The validation data loss and the accuracy are usually
used to control the end of the learning process.

7.1.4 Model

Now I can create a neural network model containing the LSTM.
The first step is to decide how many neurons will the model have. You can

design various models with various layers that can affect learning in a good
or a bad way.

If you put too much of neurons, your model could be overfitted during
training. This means that the model is fitted directly to the training data
and if you validate the model with new data on the trained model, results
will be bad. This problem could be partially solved by changing the neurons
quantity (usually makes the model simplier) or doing a cross-validation. I
will describe the cross-validation in section 7.1.5.
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7.1.5 Training methods

Firstly I have to choose an appropriate loss function and an optimizer.
This can also significantly influent the learning process.

Then a choice of learning method follows. In summary you have 2 basic
methods. A "training until epoch" or a "training until convergence" (train
until minimal loss or accuracy is achieved). These two methods can be used
in the cross-validation method or just alone.

The training until epoch just trains the model for given number of
epochs without respect to any other parameters. It is a basic method but
not much efficient. For example, you can easily overfit your model.

The training until convergence is much more suitable method. It
monitors chosen value while training and tries to find the minimal/maximal
value of the monitored parameter. If you monitor the loss, you require the
minimal value. With the accuracy it is vice versa. Using this method you
can usually find the best solution for given data.

The Cross-validation is method that splits the given dataset into K parts.
The algorithm runs for K steps and in each step of training it validates with
the Kth part of the validation set and trains with the rest. If you calculate the
loss for each training, you can get the total loss over chosen dataset and thus
eliminate influence of data error. Here is an example of the cross-validation

Figure 7.1: Cross-validation [5]

7.1.6 Result

Calculating of the training success is the last step of learning process.
Trainers usually provide results during the training, but it is important to
get the result at the end. A validation accuracy or a validation loss is
probably a reasonable parameter for watching. It shows how well you trained
the model. I will use the validation accuracy.

I will also use a confusion matrix to display success of training. More
about the confusion-matrix see in [19]. The confusion matrix could be used
for calculating derivatives like a F1 score. The F1 score is weighted average
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7. Network Learning...................................
of the true positive rate and the precision. It provides good overview of the
training success rate.

7.1.7 PyBrain

This library allows to implement a neural network. It is easy to start with
and more suitable for beginners. However nowadays the library is not actively
updated, and not commented well.

The slow speed of calucation while using LSTMs is its biggest disadvantage.
The library isn’t optimized enough for multithreading and working with
models using LSTMs. Models with LSTMs have lot of parameters and
variables that can be tuned while training. Time of the final training of
one model could be around couple of weeks. It is necessary to experiment
with various combinations of loss functions and optimizers which causes
that training with the PyBrain can be lengthy. Also the PyBrain has just
limited amount of loss functions and optimizers. You can find more about
the PyBrain in [20].

Dataset

The PyBrain offers 4 options of datasets. I will use the SequenceClassi-
ficationDataSet which combines sequences of samples and the classification
into classes. The dataset is created internally by function appendLinked()
which accepts the input data and the target output. The PyBrain uses
internally the NumPy library to create the dataset. Sequences are created
by calling the newSequence() method which ends a sequence and starts a
new one. The PyBrain allows to have sequences which don’t have the same
length.

Model

Firstly I have to specify parameters for the buildNetwork function. This
function will create a model that will be trained.

buildNetwork( indim, numneurons, outdim, hiddenclass, outclass, recurrent)

where:
indim - input dimension into the neural network which is the size (length) of
the one sample in the dataset.
numneurons - the number of neurons in the model. This model will contain
only one fully connected layer.
outdim - output dimension from the model which has to be the same as the
output dimension of the dataset.
hiddenclass - hidden class is type of the neuron that is used in the model. In
my case it will be set to the LSTMLayer.
outclass - out class is the output representation of the model output. In my
case it will be the SoftMaxLayer. This will represent the probability of class
in relation to the input. The summary of probabilities will be always 1.
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recurrent - indicates if network is recurrent or not. If set to True a Recurrent-
Class instance will be created. If set to False a FeedForwardNetwork instance
will be created.

Then I have to choose the trainer. The PyBrain doesn’t have list of trainers
to choose from. There are just two: the Backpropagation and the RProp-
MinusTrainer. I used the RPropMinusTrainer, because it is more suitable
for my task. More about the RPropMinusTrainer you can find in [21]

Training

The PyBrain offers all options of training methods as I mentioned in section
7.1.5. Problem appeared using the Cross-validation implementation in the
PyBrain. At the beggining of training, I succesfully created an instance of the
CrossValidator class but then an error occured. The error was in the third
party library therefore I decided to create my own Cross-validation method.

I decided to do the Cross-validation with 10 folds. Firstly I prepared the
dataset which means to divide data into 10 parts. Then I created two lists.
The former was created for the validation data and the latter for the training
data. Then I run training 10 times for each item in the list and validated the
model. You can imagine that seeing picture 7.1

Result

I use the Scikit-learn library to present training results. This library has
it’s own implementation of the neural network learning, but I have used it
just for calculating results.

The Scikit-learn library allows to create the confusion matrix and the F1
score too. More about this library you can find in [22].

7.1.8 Keras

All negatives mentioned in the chapter 7.1.7 are practically removed in
the Keras library. It is based on the Theano [23] (or the TensorFlow) library
which has been made for evaluation of mathematical expressions involving
multi-dimensional arrays efficiently. This means that calculations are much
faster then with the PyBrain.

The Keras has also implemented other optimizers and loss functions. It is
also newer and actively updated. More information about the Keras you can
find in [24].

Dataset

The Keras uses directly the Numpy library to create a dataset. In com-
parison with the PyBrain, the Keras require already created dataset, but
the PyBrain creates the array by its own methods. If you want to know
more information about the Numpy visit [25]. Basically I need to create the
dataset, which has 3 dimensions.
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(nb_sequences, sequence_length, sample_length)

where:
nb_sequences - total number of sequences. This number depends on amount
of loaded data and the sequence length.
sequence_length - length of one sequence. This value depends on the set
value.
sample_length - length of one sample. It depends on number of used sensors
(resources).

The problem is that the length of each sequence of the dataset in the Keras
has to be the same. This is why I can’t use thePyBrain dataset directly. It is
necessary to cut the shorter sequences from the PyBrain dataset. Then it is
possible to create the Numpy array from the PyBrain.

Model

The Keras has big variability of models. It is possible to create multi-layer
models with different neurons.

I require just the LSTM and the Sigmoid layer for my task. Here is code
example of creating a model in the Keras:

model = Sequent i a l ( )
model . add (LSTM(num_neu , input_shape=(seq_len , input_dim

) ) )
model . add (Dense (num_out , a c t i v a t i o n=’softmax ’ ) )
model . compi le ( l o s s =" l o s s " , opt imize r="opt imize r " ,

met r i c s =[" accuracy " ] )

At first I have to create an instance of the Sequential model. The Keras
offers just two possibilites of models - the Sequential and the Model.

I added one LSTM layer which has following parameters:
num_neu - amount of neurons in the layer. Actually it means number of
outputs, but it means the same thing.
input_shape - shape of the input data. Basically it is 2 dimensions of the
dataset in the Keras.7.1.8

I added the Dense layer which is fully connected layer with the SoftMax
activation function.

Finally it is needed to compile the model with some chosen loss function
and optimizer. The model will evaluate the accuracy during training and
testing.

Training

Unfortunately the Keras doesn’t have its own implementation of the Cross-
validation. Luckily, it is possible to use the Scikit-learn library implementation
of the Cross-validation.

s k f = St ra t i f i edKFo ld ( data se t_c la s s e s , n_folds=N_FOLDS,
s h u f f l e=True )
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f o r i , ( t ra in , t e s t ) in enumerate ( s k f ) :

I created an instance of the StratifiedKFold class that takes the dataset
and splits it into training and validation datasets that I can directly use for
training. Then I show how to do the training properly after the data splitting.

It can be done as described because the Scikit-learn library also use the
Numpy library for dataset representation.

Next I have to prepare the Keras callbacks for stopping training at the
best moment. The Keras has several callbacks to be applied at training. I
will use the EarlyStopping and the ModelCheckpoint.

s top = EarlyStopping ( monitor=’val_acc ’ , pa t i ence =30,
verbose=0, mode=’auto ’ )

checkpo inte r = ModelCheckpoint ( monitor=’val_acc ’ ,
f i l e p a t h="weights . hdf5 " , verbose=0, save_best_only=
True )

I created the EarlyStopping instance that stops training when monitoring
value, in my case ’val_acc’, reaches its minimum and haven’t changed for 30
epochs. This callback just stop the training, but I need to use the best model
parameters values.

This is why I set also the ModelCheckpointer which saves parameters of
the model, which of ’val_acc’ is better than saved before. This provides to
remember just the best values from training.

Result

I have used the same library and system as for the PyBrain library.7.1.7

7.2 Training results

In following chapters I describe the results of trials where I have used
various combinations of the LSTMs quantity, the sample sequence length,
the resample value, the optimizer and the loss function.

7.2.1 Tests with the PyBrain

First series of tests with the PyBrain

Firstly I trained just with data originated from the Asphalt and the Bricks
surface. It was the first measurement I had made. It was small dataset
containing around 20 minutes of useable data. Here are the results of the
first training in the table followed by the confusion matrix shown below.

All tests are made with the 25 ms resample and trainer was the Rprop-.
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Testing LSTM Sequence Method Validation F1

1 10 100 Min 0,9711
2 10 100 Epoch 0,9681
3 20 100 Epoch 0,9638
4 5 100 Epoch 0,9591
5 10 50 Epoch 0,9591
6 10 200 Epoch 0,9022

Table 7.2: First neural network model training with the PyBrain

Result Asphalt Bricks
Asphalt 1483 21
Bricks 95 1954

Table 7.3: Confusion matrix for testing Nr. 1

Explanation for the Method column:
Min - means that the algorithm tries to find the best solution and ends
training when the best solution is found.
Epoch - means that the algorithm runs until chosen epoch passes regardless
any parameter. If you want to know more about the training methods, read
7.1.5.

Colours in the table indicate how good is the result in comparision with
the others in the table. The green indicates the best value, otherwise the red
indicates the worst.

As you can see the results are really good. Even it is just a small dataset
it shows that it is possible to detect the surface from mobile sensors. The
neural network model was able to recognize almost all new sequences. It is
also important to notice, that there are small but relevant differences in the
Validation result between the testing #2, #3 and #4. I trained just with
the different number of LSTMs. It looks like 5 units is not enough but this
finding must be tested to be approved. I also didn’t have enough samples.

I found out also one big problem. My computer is not powerful enough
to run all necessary experiments. One training could also lasts for weeks.
This was the reason why I started to do tests on the MetaCenter, which is a
virtual organization for academics providing computing and storage resources.
It has helped a lot.

Second series of tests with the PyBrain

Secondly, I went on with much more measured data. I also extended the
number of surfaces. Now there are the Asphalt, the Bricks, the Pavement
and the Countryside. I started to do tests just with the Cross-validation
with 10 folds. I made the F1 score at the end of training of one fold of the
Cross-validation. Then I made an average of F1 scores. Since now I will test
exclusively on the MetaCenter.
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Neurons Sampling Seq length F1 average
5 15 100 0,60443
5 15 200 0,59971
5 15 400 0,58992
5 25 100 0,57683
5 25 200 0,60954
5 25 400 0,61680
10 15 100 0,62239
10 15 200 0,59789
10 15 400 0,60740
10 25 100 0,63437
10 25 200 0,63171
10 25 400 0,63525
20 15 100 0,59702
20 25 100 0,60714
20 25 200 0,60482
20 25 400 0,60479

Table 7.4: Second neural network model training with the PyBrain

Colours in the table indicate how good is the result in comparision with
the others in the table. The green indicates the best value, otherwise the red
indicates the worst.

In the table above you can see that the validation F1 score (F1 average
column) rapidly decreased. First idea was that the increasing number of
surfaces made training much harder and results would not be good, but then
I found a mistake in my implementation of the Cross-validation. Mistake was
related to the sequence length which was much longer than the set value.

Third series of tests with the PyBrain

In this phase of testing I fixed the problem of the sequence length and I tested
a lot of combinations of parameters.
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Test Neurons Sampling Sequence F1 score
1 8 10 400 0,61444
2 8 15 100 0,63349
3 8 15 200 0,63249
4 8 15 400 0,64465
5 8 25 100 0,61753
6 8 25 200 0,62230
7 8 30 100 0,62356
8 8 30 200 0,67125
9 8 40 100 0,70523
10 8 45 200 0,65369
11 8 50 30 0,61949
12 8 50 50 0,61492
13 8 50 100 0,67787
14 8 50 200 0,66884
15 8 50 400 0,68612
16 8 50 500 0,61628
17 10 25 100 0,62662
18 10 25 200 0,63169
19 10 25 400 0,63068
20 10 50 100 0,68229
21 10 50 200 0,66261
22 10 50 400 0,67554

Table 7.5: Third neural network model training with the PyBrain

Colours in the table indicate how good is the result in comparision with
the others in the table. The green indicates the best value, otherwise the red
indicates the worst.

As you can see, the F1 score has improved, but not so much. Even the best
result are probably the combinations shown in the middle, it doesn’t mean
they are the best ones. It just shows, that these settings can give good results,
but it can be also little bit coincidence. Since the PyBrain library doesn’t allow
more availability of settings and because of other disadvantages mentioned in
the section 7.1.7 I decided for neural network learning implementation in the
Keras.

7.2.2 Tests with the Keras

At the end I tested just with the Keras and on the MetaCenter. In all tests
I used the Cross-validation. I tested each combinations at least five times
in order to precisely test the measured data for deviations and then make
average of the F1 score. I think that this method was the best one, because I
almost eliminated all errors.

Firstly I tested just with the Rmsprop optimizer and the Categorical
crossentropy loss function because it is usually used for recurrent networks
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and LSTMs. Then I found out that the Keras offers various loss functions
and optimizers so I wanted to test their combinations in order to find the
best ones even most of them are not suitable for recurrent networks.

Optimizer Tests

The Keras has now 11 loss functions and 6 optimizers. If you want to
know more about the Keras loss functions and optimizers, read about them
in the Keras documentation at [26]. To test all of the combinations with the
Cross-validation and several times it requires lots of computation resources.
This is the reason why I tested optimizers just with one loss function that is
the Categorical crossentropy. Settings of model are 8 LSTMs, 200 samples
sequence length and 50 ms resample.

test sgd rmsprop adagrad adadelta adam adamax
1 0,6191 0,7202 0,5975 0,7217 0,6104 0,6243
2 0,5999 0,7259 0,5784 0,7560 0,6576 0,6292
3 0,6534 0,7080 0,5544 0,7145 0,6787 0,5679
4 0,6052 0,7048 0,6059 0,7286 0,7076 0,5755
5 0,5917 0,6988 0,5990 0,7270 0,7042 0,5801
6 0,6235 0,7004 0,5781 0,7079 0,6866 0,5729
7 0,6354 0,6633 0,5661 0,7128 0,6963 0,6421
8 0,6041 0,7169 0,6430 0,7646 0,6947 0,5649
9 0,6012 0,7042 0,6240 0,7266 0,6995 0,5990
10 0,6026 0,7100 0,5469 0,7316 0,6720 0,5901
avg 0,6136 0,7053 0,5893 0,7291 0,6808 0,5946

Table 7.6: Comparison of optimizers in the Keras for the Categorical crossentropy

Colours indicate how good optimizers are in comparition with the other
optimizers.

You can see in the table, that the 3 best optimizers are the rmsprop, the
adadelta and the adam. I consciously displayed every test values, because I
wanted to show that individual averages of the Cross-validation tests results
are similar. That means that training datasets are properly shuffled.

Loss functions test

For the loss functions test I will use just the three best optimizers chosen in
the optimizer test chapter 7.2.2. The table is devided into two parts, because
it is too large for the one table. Settings of the model are 8 LSTMs, 200
samples sequence length and 50 ms resample.
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TEST mse mae mape msle cosine

rmsprop 0,6874 0,6245 0,6055 0,6274 0,6383
adadelta 0,7316 0,6494 0,6292 0,6540 0,6701
adam 0,6656 0,6169 0,5995 0,6215 0,6304

Table 7.7: Comparison of loss functions - part 1

TEST cate-cros sqr-hinge hinge poisson bin-cross
rmsprop 0,6491 0,6542 0,6419 0,6479 0,6528
adadelta 0,6807 0,6844 0,6688 0,6766 0,6826
adam 0,6379 0,6425 0,6330 0,6392 0,6440

Table 7.8: Comparison of loss functions - part 2

Colours indicate in each row how good the loss function is in comparition
with the other loss functions in the single row.

In tables 7.7 and 7.8 you can see that the Mean squared error(mse)
optimizer is the best one of all otpimizers. Further there are several loss-
functions that has the similar average. In the next test I will continue with
the mse, the Categorical crossentropy, the Squared hinge and the
Binary crossentropy.

First series of tests with the Keras

So far the mse had been the best loss function but I decided to test with the
Categorical crossentropy as suitable loss function for recurrent networks as
well. Simultaneously I compared some results obtained by both loss functions.

LSTM Seq Resample Loss func Rmsprop Adadelta Adam
5 200 50 Categ cross 75,24% 75,05% 73,25%
8 100 50 Categ cross 73,07% 74,20% 72,40%
8 200 10 Categ cross 78,05% 77,84% 77,79%
8 200 25 Categ cross 73,48% 73,14% 69,80%
8 200 50 Categ cross 74,88% 76,95% 74,26%
8 200 50 MSE 75,25% 76,07% 72,41%
8 400 50 Categ cross 69,26% 71,99% 68,57%
15 200 50 Categ cross 78,31% 79,58% 78,65%
20 200 10 Categ cross 76,78% 75,86% 75,01%
20 200 25 Categ cross 76,95% 77,38% 75,33%
20 100 50 Categ cross 80,25% 79,59% 77,63%
20 200 50 Categ cross 80,95% 80,34% 79,01%
20 200 50 MSE 80,17% 80,16% 78,21%

Table 7.9: First neural network model training with the Keras

Colours in table indicates, how good the results are. It means that I focused
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just on the best result regardless the loss function or the optimizer.
As you can see from the table, the more LSTMs model has, the better

results are. It looks like the increasing number of LSTMs could rapidly
improved the results. It looks really promising. The validation F1 score in
the average 82% is a great success. Because of low results from the adam
optimizer I decided to remove it from my future tests.

Second series of tests with the Keras

I decided to start the training with all chosen loss functions from Loss
functions test at 7.2.2 and two optimizers: the Rmsprop and the Adadelta. In
the table below I display the validation F1 score results just for the Categorical
crossentropy loss functions, because the table would be otherwise really big.
For the best result with the Categorical crossentropy I will display results for
other optimizers.

Test LSTM Seq Resample Loss func Rmsprop Adadelta
1 20 400 50 Categ cross 78,66% 78,29%
2 30 200 50 Categ cross 82,25% 81,18%
3 40 100 50 Categ cross 81,57% 80,88%
4 40 200 25 Categ cross 78,94% 77,68%
5 40 200 50 Categ cross 82,23% 80,98%
6 40 300 50 Categ cross 81,84% 80,58%
7 40 400 50 Categ cross 81,29% 80,13%
8 40 500 20 Categ cross 75,16% 72,84%
9 40 500 40 Categ cross 81,50% 80,24%
10 40 500 50 Categ cross 82,77% 81,44%
11 40 500 60 Categ cross 82,08% 80,53%
12 40 500 70 Categ cross 81,46% 79,68%
13 40 600 50 Categ cross 80,69% 79,12%
14 40 700 50 Categ cross 79,91% 78,63%
15 40 1000 10 Categ cross 68,17% 67,23%
16 60 200 50 Categ cross 82,67% 80,27%
17 100 200 50 Categ cross 82,46% 81,47%
18 200 200 50 Categ cross 81,92% 80,54%

Table 7.10: Second series of tests with the Keras

Colours in table indicates, how good the results are. It means that I focused
just on the best result regardless the loss function or the optimizer.

As you can see I mostly tested with 40 LSTMs in the model. It is because
I found out that it is probably the best qunatity. I also tried much more
LSTMs in last tests but the tests lasted much longer because of the number
of LSTMs parameters in model.

After settling the quantity of LSTMs I tried to find the best combination
of the sequence length and the resampling time. It is important to change
the both parameters, because they are dependent. According to the results I
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chose 500 samples per sequence and 50 ms resample time as the best one.

Best result

Below is displayed the table and the confusion matrix with the best results
I’ve got for settings with 40 LSTMs, 500 sample sequence length and 50 ms
resample.

Loss func Rmsprop Adadelta
MSE 82,36% 80,88%

Categ cross 82,77% 81,44%
Sqr Hinge 82,79% 81,17%
Bin cross 82,58% 81,27%

Table 7.11: Best result of tests with the Keras

Result Asphalt Bricks Pavement Countryside
Asphalt 7 0 0 0
Bricks 0 2 0 0

Pavement 1 0 2 0
Countryside 0 0 0 9

Table 7.12: Confusion matrix for one of the the Cross-validation test of best
result

At the end, the best loss function is the Square Hinge, but the Categorical
crossentropy has almost the same results. The Categorical crossentropy is
more suitable for recurrent networks therefore I will use it. Risky is that the
confusion matrix had just 20 samples to analyse. With more sequences to
analyze the success may could decrease and other models could be better.
This is why I also display results of second best settings: 60 LSTMs, 200
sample sequence length, 50 ms resample

Loss func Rmsprop Adadelta
MSE 82,18 % 80,34 %

Categ cross 82,50% 81,06%
Sqr Hinge 82,64% 81,07%
Bin cross 82,58% 81,11%

Table 7.13: Second best result
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Result Asphalt Bricks Pavement Countryside
Asphalt 18 0 0 2
Bricks 0 5 0 0

Pavement 1 0 9 1
Countryside 2 1 0 21

Table 7.14: Confusion matrix for one of the the Cross-validation test of second
best result

As shown in the table 7.14 the validation F1 score is almost the same but
number of the samples in the confusion matrix is 60 which is more than
doubled in the previous test. It means that this option might be more suitable
than the first best option.

Best result test

At the end I decided to test the two best options without the Cross-
validation. It means testing just once with all available data. I have to split
the dataset just into the validation and the training part in ratio 0.2:0.8. This
split could also infulents how the data will occur in both sets. This is why I
decided to test the option 10 times to eliminates the wrongly shuffled data.
Option 1: 40 LSTM, 500 sample sequence length, 50 resample
Option 2: 60 LSTM, 200 sample sequence length, 50 resample

Option 1 2
80,12% 81,7%

Table 7.15: Final result

Result Asphalt Bricks Pavement Countryside
Asphalt 34 0 3 3
Bricks 0 10 0 0

Pavement 1 0 17 1
Countryside 2 0 4 46

Table 7.16: Confusion matrix for one of the tests of option 2

The last test shows that the second option looks better. The confusion
matrix also contains lot of sequencies so this result is considered as a success.

Gyroscope test

As the end I tested my two best options also with the gyroscope data. I
made new measurement for both the accelerometer and the gyroscope. It
is not same amount of data as it was before, but the main point is to test
these options with the two sensors. I used the same training method as in
the previous section.
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Option 1: 40 LSTM, 500 sequence length, 50 resample
Option 2: 60 LSTM, 200 sequence length, 50 resample

Option 1 2
67,68% 76,71%

Table 7.17: The validation result of training with the gyroscope

As you can see the second option is again better than the first one. The
lower validation F1 score result is caused with small amount of data, but I
think that using these two sensor could leads to the better results.

Special test

I also tested settings with 100 ms resample. Firstly, I thought it is probably
the best solution I found, but then I found out in the confusion matrix that
it is not entirely true.

LSTM Seq Resample Loss func Rmsprop
40 500 100 Categ cross 85,57%

Table 7.18: Special test

Result Asphalt Bricks Pavement Countryside
Asphalt 3 0 0 0
Bricks 0 1 0 0

Pavement 0 0 1 0
Countryside 0 0 0 4

Table 7.19: Confusion matrix for one of the the special Cross-validation tests
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In the confusion matrix is shown that the model succesfully analysed
all given sequences. But problem is, that the model had to analyse just 9
sequences which is really small number. This is why I’m not using this option.
It is important to have big amount of measured data to test this option.

7.3 Conclusion

I spent the most of the time on training because it was the main part of
my work. I have to studied the Python libraries for neural network learning
such as the PyBrain, the Keras and the Scikit-learn. It is necessary to know
basic functionality of used neurons but it’s still a little bit magic to find the
best option. It is almost impossible for me to declare one option as the best
one, because the model needs to be trained and validated with much more
data. But this uncertainty will be always present and it must be taken into
account.

There were various combinations and setting options to try and test. The
best result was obtained with the option: 60 LSTMs, 200 sample sequence
length and 50 ms resample. This model can predict the surface with success
rate of 81,7% using the accelerometer data.

The same model with the data from both the gyroscope and the accelerom-
eter can predict the surface with success rate of 76,71%.
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Chapter 8
Conclusion

In this work I have developed a functional process from a mobile phone
data measuring on a bike over data analyzing to a neural network model
predicting surfaces. This process contains the Android application which
allows recording and saving data from chosen sensors. I have studied the
Android operating system, especially how to implement loading and savig the
data for the sensors, the GPS and the audio.

The application has provided valuable data which I have used. I rode about
a hundred kilometers which provided approximately 6 hours of records.

The application for filtering and annotating data has followed as a next
process step. I have studied the Python language, development tools and
libraries, for example, the Pandas and the Matplotlib. It was shown that it is
possible to analyse differences between surfaces.

Afterwards I have chosen the LSTM as the best option for sequential and
time dependent learning. The LSTM could be successfully used with different
training settings and options. I have studied a neural network implementation
libraries such as the PyBrain and the Keras. I made a few hundred tests and
experiments both on my computer and the MetaCenter. The best option I
have discovered for neural network model is: 60 LSTM, 200 sample sequence
length, 50 ms resample. This model can predict the surface with success rate
of 81,7%.

The same model with data from both the gyroscope and the accelerometer
can predict the surface with success rate of 76,71%.

This work could be extended in different ways.
Firstly, you can focus on other mobile phone sensors. Mobile phones offer

more sensors which can be useful to analyze. It could also include further
development of the Android application development and phone positioning
on a bike. I suggest to consider modifications in the measuring application
or in the data preparation so that measured data are as little as possible
dependent on a phone position.

Secondly, it is possible to work with the measured data trying to improve
neural network learning process. Variability of neural network models is large.
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Content of the CD

sensorData

Files_loading.py

Network_PyBrain.py

Network_Keras.py

BW_Bednar_2016.pdf

The folder with the Android project of the Android
application in the chapter 3
The Python file containing code described in the
chapter 5
The Python file containing code described in the
chapter 7.1.7
The Python file containing code described in the
chapter 7.1.8
The electronic version of bachelor work

47



48



Czech Technical University in Prague  
Faculty of Electrical Engineering 

Department of Control Engineering 
 

BACHELOR PROJECT ASSIGNMENT 

Student: Jan Bednář 

Study programme: Cybernetics and Robotics 
Specialisation: Systems and Control 

Title of Bachelor Project: Bicycle Transport Network Parameters Extraction Based on 
Mobile Phone Sensors 

Guidelines: 

1. Develop an Android application collecting time-series data from available mobile phone 
sensors. An appropriate subset of sensors will be chosen in a cooperation with the supervisor. 
It might include: GPS, accelerometer, gyro, microphone or even a camera. 
2. Use the application to collect a reasonable training dataset by recording while riding 
a bicycle on preselected tracks. The task might involve a development of a simple time-series 
annotation tool. 
3. Propose and implement machine learning methods for modelling transport network 
properties like surface type or traffic intensity. Focus on approaches based on Long-Short 
Term Memory (LSTM). 
4. Evaluate implemented methods using real-world data. 

 
Bibliography/Sources: 

[1] Baccouche, Moez, et al. "Sequential deep learning for human action recognition." Human 
Behavior Understanding. Springer Berlin Heidelberg, 2011. 29-39. 
[2] Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006. 
[3] Greff, Klaus, et al. "LSTM: A Search Space Odyssey." arXiv preprint arXiv:1503.04069 
(2015). 

Bachelor Project Supervisor: Ing. Jan Drchal, Ph.D. 

Valid until the summer semester 2016/2017 
 
 
 
 

L.S. 

prof. Ing. Michael Šebek, DrSc. 
Head of Department 

 prof. Ing. Pavel Ripka, CSc. 
Dean 

Prague, February 1, 2016 


	Introduction
	Phone Sensors
	Overview
	Accelerometer
	Gyroscope
	GPS
	Audio

	Conclusion

	Android application
	Description
	Implementation
	Application Settings
	Real time information

	How to save data?
	Sensors
	GPS

	Conclusion

	Data Measurement
	Description
	Used sensors
	Challenges
	Phone holder
	Phone holder placement
	Choice of surfaces
	Speed of measurement

	Conclusion

	Data Preparation
	Overview
	Loading data
	Annotation
	Data save format

	Conclusion

	Neural Networks
	Basic Overview
	Artificial neuron
	Activation function
	Loss function

	Recurrent Networks
	Backpropagation
	Vanishing Gradient Problem
	LSTM

	Conclusion

	Network Learning
	Implementation
	Loading
	Resampling
	Dataset
	Model
	Training methods
	Result
	PyBrain
	Keras

	Training results
	Tests with the PyBrain
	Tests with the Keras

	Conclusion

	Conclusion
	Bibliography
	Content of the CD
	Project Specification

