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Abstract

The objective of this thesis is to implement an unscented kalman filter for
integrating INS with GPS and to analyze and compare the results with the
extended kalman filter approach. In a loosely coupled integrated INS/GPS
system, inertial measurements from an IMU (angular velocities and accel-
erations in body frame) are integrated by the INS to obtain a complete
navigation solution and the GPS measurements are used to correct for the
errors and avoid the inherent drift of the pure INS system. The standard
approach is to use an extended kalman filter in complementary form to model
the errors of the INS states and use the GPS measurements to estimate cor-
rections for these errors which are then feedback to the INS. Although the
unscented kalman filter is more computational intensive, it is supposed to
outperform the extended kalman filter and be more robust to initial errors.
The main goal of this work is to analyze the difference in performance and
robustness between both implementations. As a first step, a simplified At-
titude estimation of a stabilized platform is implemented in both, the UKF
and the EKF and eventually the UKF will be implemented in a more com-
plex realistic 3D navigation problem and compare against the current model
used by Honeywell.
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Chapter 1

Introduction

1.1 Introduction

Navigation was an important and interesting filed of study in all times. Today
with the technologies like GPS, everyone is benefited. It has become an
inexpensive and common tool in day today life. It’s almost everywhere,
in mobile phones and navigators in vehicles. There are different tools and
techniques for navigation but Inertial Navigation System and GPS are the
most important of them. Each of these has some limitations and advantages.
Inertial navigation system is fairly accurate for a short period of time but it
tend to drift from reality as time elapses. GPS gives good accuracy over long
period, but it is also not immune from errors and some times there may be
problem with availability of signal. One of the solutions in such situations is
to combine the measurements from both of these instruments and integrate
it using some sensor fusion algorithms. The most commonly used method in
such a situation is the kalman filter. There are mainly two different strategies
in this sensor fusion, loosely coupled and tightly coupled integration. In
loosely coupled integration, there is no effort to correct the GPS signals from
its errors. But in tightly coupled integration, usually there are two kalman
filters involved, One to correct the errors of GPS using its error models and
the other for INS-GPS integration. For nonlinear systems and especially
for INS-GPS integration applications, extended kalman filter has proven and
widely used for more that three decades. Common approach is to consider the
errors of the process instead of the mechanization equations itself. In 1997,
Julier S.J and Uhlmann J.K introduced a new extension, ’UKF’ of kalman
filter for nonlinear systems. This approach claims to be superior to EKF
when the system nonlinearly is higher. Also it is believed that UKF is more
immune to the initial errors. Due to its computational complexity, it was
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not considered for applications like navigation. This work try to investigate
the difference between two approaches in terms of computational complexity
and Performance achieved especially with the initial errors. major tasks in
this study are

• To investigate the performance of both EKF and UKF filter in state
estimation and error rejection.

• To compare the computational complexity of both Algorithms.

• To compare the performance with initial errors of UKF and EKF.

1.2 Thesis Layout

The chapter 2 explains in detail the inertial navigation system, co-ordinate
frames, inertial sensors and its error sources. Also INS mechanization is
well explained. Chapter 3 briefly explains the Global Positioning System,
its working and error sources. Chapter 4 explains different kalman filter
algorithms KF, EKF and UKF. Chapter 5 describes the state model and
measurement model proposed for UKF implementation of the INS-GPS in-
tegration. Chapter 6 throughly explains the implementation in matlab. An
attitude estimation problem was finally studied to acquaintance with the fil-
tering techniques and to understand the difference in EKF and UKF. It is also
briefly explained. The trajectory generator used to generate the input data
is also explained and the different softwares (mainly matlab toolkits) used in
simulation is also highlighted. Chapter 7 summarizes the results and chapter
8 concludes the work. Next chapter 9 suggest some future works. Some of the
very useful literatures which were very helpful in formulating understanding
about the topics were pointed below. Strapdown Inertial Navigation Tech-
nology, 2nd Edition by David H. Titterton and John L. Weston[21], fairly
covers the Strapdown Technology. Applied Mathematics in Integrated Navi-
gation System by Robert M. Rogers [4] also very interesting literature which
clearly explains mechanization equation and derivation of error equations
used in ekf implementation. Another literature to mention is Aircraft Con-
trol and Simulation by Brian L. Stevens, Frank L. [3] (first chapter available
from www.wiley.com ) which contain beautiful explanation of geodesy, earth’s
gravitation, terrestrial navigation and kinematics and dynamics of aircraft
motion. PhD thesis by Eun Hwan Shin [23] tried to implement the UKF for
INS-GPS integration which would be very useful in the further development
of this work.
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Chapter 2

Strapdown Inertial Navigation
System

An inertial navigation system is based on classical mechanics to provide the
direction of acceleration of the body concerned and also rotational motion
of the body with respect to the inertial frame. The traditional inertial nav-
igation system consists of accelerometers which give the information of the
direction in which body is accelerating and gyroscopes which measures the
rotational motion of body with respect to the inertial reference system. They
are together know as Inertial Measurement Unit. Inertial navigation system
is self contained in the sense that there is no need of a signal from outside
the system for navigation. Unlike the stable platform techniques (where the
inertial sensors are attached to a stable platform and isolated from the rota-
tional motion of the vehicle) the sensors are attached directly to the body of
the vehicle in strapdown technology.

2.1 Coordinate Frames

The purpose of coordinate frames here is to exchange the information be-
tween interfacing systems in efficient manner. Below is some of the systems
commonly used in navigation implementations.

2.1.1 Earth Centered Inertial Frame

The earth centered inertial (ECI) system is oriented with respect to the sun.
Its origin is fixed at the center of the earth. The z axis points northward along
the earth’s rotation axis. The x axis points outward in the earth’s equatorial
plane exactly at the sun or to vernal equinox. The y axis completes the right

3



Figure 2.1: ECI frame, image downloaded from mathworks.com[12]
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hand system pointing towards eastward direction.

Figure 2.2: ECI and ECEF frame, image downloaded from
mathworks.com[12]

2.1.2 Earth Centered Earth Fixed Frame

This coordinate system is fixed within the earth and its rotation. It is cen-
tered at the center of earth and the z axis is parallel to and aligned with the
direction of earth rotation. x axis is along the Greenwich meridian and y
axis complete the right hand system[4].

2.1.3 Local Geodetic Frame (n-frame)

This coordinate system is particularly useful in representing vehicle attitude
and velocity for operations on or near the surface of the earth. A commonly
used such a coordinate system is the North-East-Down (NED) system.

5



Figure 2.3: ECEF and navigation frame

2.1.4 Body Frame (b-frame)

The body frame is rigidly attached to the body of the vehicle and defined by
its geometry. The x axis is along the longitudinal axis and z axis pointing
downward and y axis completing the right angle system. In the case of
strapdown INS sensors, its triad frame is identical to the body axis of the
vehicle.

2.2 Inertial Measurement Unit

The inertial measurement unit consists of two 3-axis sensors, accelerometer
and gyroscope. IMU with the navigation computer is known as INS. The
sensors widely used these days are MEMS sensors. Advancements in MEMS
sensor technology has produced cost effective accelerometers and gyroscopes
which have advantage of reduced cost and weight and offer more reliability.
But these sensors are more affected by inaccuracies influenced by temperature
variation and bias. A detailed description of the technology is not intended
here.

6



Figure 2.4: Body axis, image downloaded from
http://www.aerospaceweb.org [11]

2.2.1 Accelerometer

Accelerometer measures the specific force (f b) associated with the body. Spe-
cific force is the difference between true acceleration in space and acceleration
due to gravity. The common MEMS accelerometer contains a small plate at-
tached to torsion levers. This plates move under acceleration which changes
the capacitance between them. This change in capacitance is proportional
to the linear acceleration.

f b =
..
r −G (2.1)

where G is acceleration due to gravity and r is the position vector

2.2.2 Gyroscope

Gyroscope is used to measure the orientation of the body and it gives the
angular rate as outputs which corresponds to the rotation of body with re-
spect to inertial frame expressed in body frame (ωbib). The core of a MEMS
gyro is a vibrating lever. When undergoing an angular rotation, its vibration
frequency is changed and detect the rotation.

7



Figure 2.5: MEMS accelerometer, image downloaded from www.hsg-
imit.de[10]

Figure 2.6: MEMS gyroscope, image downloaded from www.hsg-imit.de[10]
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2.2.3 IMU Errors

Below is a brief introduction of some major error sources associated with
MEMS sensors.

Accelerometer Bias error

There is some constant offset in accelerometer output which changes slightly
after each turn on.

Misalignment and Nonorthogonality

The axis of the sensors may be misaligned from the body axis which will
produce an error measurement

Accelerometer Scale Factor error

This error is resulted from the scale factor which is used to convert the value
to common measurement units. This error is proportional to the sensed
acceleration.

Gyroscope Drift

The gyroscope drift or bias error results from bias which is a constant offset
from correct output but this varies after each turn on of the sensor.

Gyroscope Scale Factor error

This error is proportional to sensed angular rates resulting from variation in
the scale factor of the gyro sensor.

Random Noise

Random noise errors associated with measurements

Nonlinearity due to Temperature variations

The operation of the MEMS technology is affected considerably by temper-
ature variations.

9



2.3 Coordinate Transformation

2.3.1 Euler Rotations

Euler angles were developed by Leonhard Euler to describe the orientation
of a rigid body in 3-D space. Spatial orientation of any frame is represented
by three sequence of rotation described by euler angle. In order to represent
a vector in different coordinate system, we use coordinate transformation.
There are different methods to do it, but the most common method is euler
angles roll (θ), pitch (φ) and yaw (ψ). It is important to specify the order of
rotation and most common one is

• A positive φ.

• A positive θ.

• A positive ψ.

In the case of a coordinate transformation from n-frame to body frame for
an aircraft, this sequence corresponds first to a right handed rotation around
the aircraft’s z axis (positive ψ), followed by a right handed rotation around
aircraft’s y axis (positive θ) and a right handed rotation around aircraft’s x
axis (positive φ). The rotation matrix Cb/r for this sequence of rotation can
be written as

Cb
r =

 Cθ Cψ Cθ Sψ −Sθ
(−CφSψ + SφSθ Cψ) (CφCψ + SφSθ Cψ) SφCθ
(−SφSψ + CφSθ Cψ) (−SφCψ + CφSθ Cψ) CφCθ

 (2.2)

Where C and S represent cosine and sine respectively. The euler angle can
obtain from above rotation matrix as follows

θ = −sin−1(C13)

φ = atan2(C23, C33)

ψ = atan2(C12, C11)

(2.3)

Where Cij is the (i, j)th element of Cb|r and atan2 is four quadrant inverse
tangent.

2.4 Equation of Motion

2.4.1 INS kinematic Equations

In navigation applications, navigation information is commonly required in
navigation frame (Local Geodetic Frame). Position and velocity expressed

10



in navigation frame as

rn = [ϕ λ h]T (2.4)

vn = [VN VE VD]T (2.5)

Where ϕ is latitude, λ is longitude, h is altitude, VN is velocity towards north,
VE is velocity towards east and VD is velocity towards down. Motion of the
vehicle is expressed by the INS kinematic equation or navigation equation.
Derivation and more explanation about these equations can be found in many
literatures, for example in Strapdown Inertial Navigation Technology[4]. This
equation has 3 parts position, velocity and attitude equations as shown below.

ṙn =

ϕ̇λ̇
ḣ

 =

 1
M+h

0 0

0 1
(N+h)cosϕ

0

0 0 −1

VNVE
VD

 (2.6)

V̇
n

e = Cn
b f

b − (2ωnie + ωnen)× V n + gn (2.7)

Ċn
b = Cn

b Ωb
nb

= Cn
b (Ωb

ib − Ωb
in)

(2.8)

where M and N are radius of curvature of meridian and prime vertical. Cn
b

is the rotation matrix from b-frame to n-frame. g is gravity vector. Ωb
nb is

skew symmetric matrix of wbnb and wbnb is equal to wbib −Cb
n(wnie +wnen). f b is

the specific force which is the difference between true acceleration in space
and acceleration due to gravity. ωbib is the output of the gyroscope and ωnie is
the earth rotation rate with respect to inertial frame expressed in navigation
frame. ωnen is the rotation rate of the navigation frame with respect to ECEF
frame.

2.4.2 INS Mechanization

This section gives a brief explanation about how the INS calculate the nav-
igation frame values from the IMU measurements. The inertial navigation
sensors measure f b the specific force (accelerometer) and the rotation of body
(gyroscope) ωbib. The process of converting this measurements to navigation
information have mainly 4 steps. (For more about this, please check Adri-
ano’s thesis report[22])

• Correction of raw measurement data.
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• Attitude update ( Cn
b )

• Transform specific force into n-frame.

• Velocity and position calculation

Usually the IMU sensors outputs the velocity and angular increments (∆Ṽ
b

f

and ∆θ̃
b

ib) in body frame for a sampling time period.

Correction of measurement data

The raw measurement data is corrupted by turn on bias, in run bias, scale fac-
tor errors and measurement noise. These errors can be measured on ground
or it can be estimated during operation. Such measurements can be corrected
according to the following equations.

∆θbib =


1

(1+Sgx )
0 0

0 1
(1+Sgy )

0

0 0 1
(1+Sgz )

 (∆θ̃
b

ib − bg∆t) (2.9)

∆V b
f =


1

(1+Sax )
0 0

0 1
(1+Say )

0

0 0 1
(1+Saz )

 (∆Ṽ
b

f − ba∆t) (2.10)

where ba and bg are bias of the accelerometer and gyroscope respectively.
Similarly sa and sg are the scale factor errors of the accelerometer and gyro-
scope respectively. ∆t is the sampling time.

Attitude update

The Body angular increments with respect to the navigation frame can be
represented as

∆θbnb = [∆θx ∆θy ∆θz]

= ∆θbib − Cb
n(ωnie + ωnen)∆t

Cb
n = (Cn

b )T
(2.11)

The direction cosine matrix (Cn
b ) is calculated from the angular increments

using quaternion approach. In quaternion approach, the rotation matrix is
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expressed by a single rotation angle about a fixed axis. The angular increment
obtained before can be used to update the quaternion vector q as,

q
k+1

= q
k

+ 0.5


c s∆θz −s∆θy s∆θx

−s∆θz c s∆θx s∆θy
s∆θy −s∆θx c s∆θz
−s∆θx −s∆θy −s∆θz c

 qk (2.12)

where

s =
2

∆θ
sin

∆θ

2

c = 2(cos
∆θ

2
− 1)

∆θ =
√

∆θ2
x + ∆θ2

y + ∆θ2
z

(2.13)

The direction cosine matrix Cn
b can finally obtained in terms of quaternion

as

Cb
n =

(q2
0 + q2

1 − q2
2 − q2

3) 2 (q1 q2 + q0 q3) 2 (q1 q3 − q0 q2)
2 (q1 q2 − q0 q3) (q2

0 − q2
1 + q2

2 − q2
3) 2 (q2 q3 + q0 q1)

2 (q1 q3 + q0 q2) 2 (q2 q3 − q0 q1) (q2
0 − q2

1 − q2
2 + q2

3)


(2.14)

Transformation of specific force into n-frame

For the implementation of the INS equations, specific force needs to convert
into the n-frame. This is done as follows

∆V n
f = Cn

b

 1 0.5 ∆θz −0.5 ∆θy
−0.5 ∆θz 1 −0.5 ∆θx
0.5 ∆θy −0.5 ∆θx 1

∆V b
f (2.15)

Velocity and position update

The velocity increment in n-frame is obtained by applying the coriolis and
gravity correction

∆V n = ∆V n
f − (2ωnie + ωnen)× V n∆t+ γn∆t (2.16)

where γn is [0 0 γ]T and γ is the normal gravity at the geodetic latitude ϕ
and height h. Once the velocity increment is obtained the updated velocity
is given by

V n
k+1 = V n

k + ∆V n
k+1 (2.17)
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Finally the position in n-frame can be obtained by integrating the velocity

rnk+1 = rnk +
1

2
D−1 (V n

k + V n
k+1) ∆t (2.18)

where

D =

 1
M+h

0 0

0 1
(N+h)cosϕ

0

0 0 −1

 (2.19)

Figure 2.7: INS mechanization, image from MSc thesis of Adriano Solimeno
[22]
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Chapter 3

Global Positioning System

This chapter briefly cover the GPS navigation system. Since the implemen-
tation considered is loosely coupled, there is not much interest in considering
the errors or there is no effort to correct for the GPS errors. The information
presented here is mainly collected from wikipedia[7] and kowoma website[9].

3.1 GPS

The global positioning system is a satellite based navigation system which
was developed for US military purposes during 70’s and declared completely
operational in 1995. Generally it has two quality of service, one for military
and another for civilian purposes. Also they have the option to degrade the
quality of the signals whenever and wherever they need, known as “selective
availability”. This policy was reconsidered in 2000 and ended the selective
availability and gives an accuracy of 100m to 20 m for civilian users.

3.1.1 System Information

The whole GPS system has three components satellites or space segment,
control centers (control segment) and GPS receiver modules (user segment).
The GPS space segment consists of 24 satellites orbiting in six different or-
bital planes (four each in a plane) and completing one rotation in 11 hrs 58
minutes. Figure 3.1 gives an approximate idea about the satellite position
and orbits. These planes have an inclination of 55 and are separated by 60
right ascension of the ascending node (Fig. 3.2). These satellites have an
average orbital radius of 20200 km. This arrangement make sure that at least
six satellites are visible in any point of earth. GPS satellites continually send
navigation messages at 50 bit/s and main information contained are the time
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Figure 3.1: Orbits of GPS satellites, image courtesy of kowoma.de

when message was sent, precise orbital information (the ephemeris), and the
general system health and rough orbits of all GPS satellites (the almanac).
The data format received is usually known as “NMEA” message. The re-
ceiver measures the transit time of each message and computes the distance
to each satellite[7]. The control center continuously check the health of the
satellites and do necessary correction when needed. The main monitoring
stations are in Hawaii, Kwajalein, Ascension Island, Diego Garcia, Colorado
Springs, Colorado and some other monitor stations operated by the National
Geospatial-Intelligence Agency. The tracking information is sent to the mas-
ter control station. Then mainly two corrections have to perform, the satellite
clocks are synchronized to very high precision and also necessary orbital ma-
neuvering have to perform on satellites which are diverted from the correct
orbits. During orbital maneuvering, satellite is marked unhealthy and the
signal is excluded by the receiver.

The GPS receivers receive the signals from different satellites and calcu-
late the position information. The important components of GPS receivers
are antenna, receiver processors and a highly stable clock (crystal oscillator).
At least visibility of 4 satellites are necessary for the accurate determination
of the position. In some applications a kalman filter (tightly coupled imple-
mentation) can be employed to correct for the errors in the GPS signal. In
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Figure 3.2: Orbital inclination of GPS satellites, image courtesy of
kowoma.de

the presence of some auxiliary sensors even three satellites can determine the
position well accurately.

3.1.2 Calculation of Position

All satellites broadcast at the same two frequencies, 1.57542 GHz (L1 signal)
and 1.2276 GHz (L2 signal)[7]. It employs CDMA technique to transmit
these signal. The low rate message signal is encoded with Pseudo Random
codes and each satellites has different codes. Two distinct CDMA encodings
are used, the coarse/acquisition (C/A) code (Gold code) and the precise (P)
code [7]. The L1 signal employs both C/A and P codes and it’s for the
civilian receivers . L2 employs P codes and it’s meant for military purposes.

GPS receivers use the geometric trilateration to combine the information
from different satellite to predict the correct location. The GPS message
contains the information about the time when message was sent, precise
orbital information, health of the system and rough information regarding
the orbits of other satellites. The receiver measures the time of transit of each
message and compute the distance to the satellite. If we know the distance
from one satellite, we can assume that the receiver is on the surface of a sphere
centered by the satellite having the radius equal to the distance. Intersection
of two spheres (if it intersect at more than one point) will be a circle and
when three spheres intersect result will be two points. Intersection of two
spheres is shown in figure 3.3 to have an understanding. We can assume
that the indicated position of the GPS receiver is at the intersection of four
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spheres with the assumption of no errors. But in reality there is a large error
contribution by the receiver clock. So the estimated distance from satellite
to the receiver (pseudo range) is corrupted by error. The assumption of
intersection of three spheres may be valid in such a case but the intersection
of four spheres is unlikely. The distance from the valid estimate of GPS
receiver position to the surface of the sphere corresponding to the fourth
satellite can be used to compute a clock correction [7].

Figure 3.3: Sphere intersection, image courtesy of wikipedia

3.2 Errors in GPS

Though the GPS system is very accurate in theory, its performance is affected
by many error sources. Some of them are explained in the next section.

Clock and Calculation Errors

In GPS satellites, highly accurate atomic clock (eg. fig 3.4) is used but it
also has some inaccuracy and problem with synchronization of all clocks in
satellites. In practice the clocks are allowed to operate in small relative drift
but it is estimated in ground station and clock correction data is generated
and send in the navigation message (GPS time). This GPS time is used in the
calculation of the pseudo range. The clock in the receiver is usually low cost
quartz oscillator which have very low accuracy. Due to this, some error in the
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navigation parameter is introduced. Also calculation on the microprocessors
in the receivers cause the round off errors.

Figure 3.4: Atomic clock used in GPS satellites, image courtesy of kowoma.de

Atmospheric Effects

Atmospheric properties have considerable influence on the accuracy of the
GPS signal. The major effect is the delay in ionosphere and troposphere. In
ionosphere, the presence of electrons and other particles affect the propaga-
tion of the signals and these charge distribution often affected by the solar
activities. This effect is less when the satellite is overhead and increases
when it moves to horizon. Where as in troposphere the water vapor causes
the refraction of the signals and there by causing the phase delay. Please see
figure 3.5 for better understanding.

Multipath

Navigation signals reflecting from the geographical objects and building are
also received in the GPS receiver. These received signals interfere with the
pure signals and add the errors in signals. Multipath is a major issue when
navigating in cities. Figure 3.6 will give more understanding about this effect.
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Figure 3.5: Effect of atmosphere on GPS signals, image courtesy of
kowoma.de

Figure 3.6: Multipath, image courtesy of kowoma.de
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Satellite Orbital Errors

Ephemeris data which is transmitted to receiver is calculated from the orbital
dynamics of the satellites. These calculation involve the gravity model and
it is a curve fit to the measured data. The trajectory of the satellites can be
affected by many factors like atmosphere and other perturbations. Satellites
also need constant monitoring and maneuvering to keep the correct trajec-
tory.

Relativity

Relativity effects have some contribution to the errors. For example the
relativistic time slowing due to the speed of the satellite of about 1 part in
1010, the gravitational time dilation that makes a satellite run about 5 parts
in 1010 faster than an earth based clock, and the Sagnac effect due to rotation
relative to receivers on earth[7].

Measurement Noise

There is substantial contribution to error by the measurement noise. These
noise are created in stages of signal propagation and processing. Some well
known sources of error are the receiver noise, quantization noise and noise
due to electronics.

Summery of Errors

The errors contributed from some of the major sources are listed as a ta-
ble 3.1. These errors added together can accumulate up to ±15 m without
considering the selective availability. With the addition of satellite based
augmentation system (like WAAS and EGNOS) accuracy can be improved
up to or less than ±5 m. Such systems will compensate for the ionospheric
effects and also improve orbit and clock errors.
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Ionospheric effects +
−

5 m

Shifts in the satellite orbit +
−

2.5 m

Clock errors +
−

2 m

Multipath effect +
−

1 m

Tropospheric effects +
−

0.5 m

Calculation and rounding errors +
−

1 m

Table 3.1: Summery of GPS errors obtained from kowoma.de[9]
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Chapter 4

Sensor Fusion (Kalman
Filtering)

4.1 Introduction to Kalman Filter

The kalman filter is a recursive filter which estimate the states of the dynam-
ics of a system by noisy measurement. It was published in 1960 by Rudolf
E. Kalman and it is now used in many fields of engineering, Economics and
Science. It is known as linear quadratic estimator and together with linear
quadratic regulator it solves the linear quadratic gaussian control problems
[6]. The kalman filter has two distinct steps, prediction and update. Predict
or time update step utilize the previous state estimate information to pre-
dict the current estimate of state variables. In the second step, also known
as measurement update, the measurement information at current time step
is used to correct the estimate to get more accurate state information

Time Update

Predicted state X̂k|k−1 = FkX̂k−1|k−1 +Bk−1uk−1 (4.1)

Predicted estimate covariance Pk|k−1 = FkPk−1|k−1F
T
k +Qk−1 (4.2)

Measurement Update

Innovation (residual) covariance Sk = HkPk|k−1H
T
k +Rk (4.3)

Optimal kalman gain Kk = Pk|k−1H
T
k S
−1
k (4.4)

Updated state estimate X̂k|k = X̂k|k−1 +Kk(Zk −HkX̂k|k−1)
(4.5)

Updated estimate covariance Pk|k = (I −KkHk)Pk|k−1 (4.6)
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Where X̂k|k is the estimate of state at time k given observations up to and
including time k, K is kalman gain, H is measurement model, Zk is the
measurement at time k, F is state transition matrix, B is input matrix,
P is estimate covariance, R is measurement covariance and Q is process
covariance.

4.2 Extended Kalman Filter

The simple kalman filter is applicable only to linear systems. But the real
world problems are usually nonlinear either in process model or in measure-
ment model or both. Extended kalman filter is applicable to such problems
with the condition that the process model and measurement model to be
differential functions of state variables. In EKF, nonlinear state equation
and measurement equation are represented as

Ẋ(t) = f(X(t), U(t)) + w(t) (4.7)

Zm(t) = h(X(t), U(t)) + v(t) (4.8)

Where f is the nonlinear state equation, h is the nonlinear measurement
equation, U is the input vector. w and v represent process and measurement
noise. The above state and measurement nonlinear equations are linearized
about the prior estimate of the state at each instant of time by calculating
the Jacobian with respect to the state variables as.

Fk =

(
∂f

∂X

)
; Hk =

(
∂h

∂X

)
; (4.9)

And for discrete time implementation of EKF, the linearized system is dis-
cretized in time by computing the system state transition matrix from Fk as
[17], where 4t is time interval.

Φk|k−1 = eFk4t ∼= [I + Fk 4 t] (4.10)

The time update and measurement update are as follows.

Time Update

X̂k|k−1 = X̂k−1|k−1 +

∫ k

k−1

f(X(t), U(t)) dt (4.11)

P k|k−1 = Φk|k−1P k−1Φ
T
k|k−1 (4.12)
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The state integration can either done using simple approximation or using
fourth order Runge-Kutta method.

Measurement Update

Sk = HkPk|k−1H
T
k +Rk (4.13)

Kk = Pk|k−1H
T
k S
−1
k (4.14)

X̂k|k = X̂k|k−1 +Kk(Zk − h(X̂k|k−1)) (4.15)

Pk|k = (I −KkHk)Pk|k−1 (4.16)

4.3 Unscented Kalman Filter

The unscented kalman filter was proposed in 1997 as alternative to extended
kalman Filter. When the system become highly nonlinear, ekf is less efficient
in estimation. There are two drawbacks in ekf, that it is too difficult to
tune and only reliable for systems which are almost linear on the time scale
of the update intervals [18]. In this new approach ”Unscented Transform”
[20] is used to parameterize mean and covariance which is founded on the
intuition that it is easier to approximate a Gaussian distribution than it is
to approximate an arbitrary nonlinear function or transformation [18].

4.3.1 Unscented Transform

The unscented transform is a method for calculating the statistics of a
random variable which undergo nonlinear transformation [16]. For example
consider a random variable x with dimension L through a nonlinear function
y = f(x), and x has covariance Pxx and mean x. A set of points ”sigma
points” are chosen such that their mean and covariance are x and Pxx re-
spectively. These points are applied in the nonlinear function y = f(x) to
get the y and Pyy[18]. It is important to note that the sigma points are not
chosen in random but rather according to some deterministic algorithm. The
n-dimensional random variable x is approximated by 2L+1 weighted sigma
points as,

X0 = x

Xi = x+ (
√

(L+ λ)Pxx )i , i = 1, ..L

Xi+L = x− (
√

(L+ λ)Pxx )i−L , i = L + 1, ..2L

(4.17)
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Wm
0 = λ/(L+ λ)

W c
0 = λ/(L+ λ) + (1− α2 + β)

Wm
i = W c

i = 1/2(L+ λ) , i = 1, ..2L

(4.18)

Where Wm
i and W c

i are the weights of the mean and covariance calculation
associated with ith point. λ = α2(L + k) − L is a scaling parameter and α
determine the spread of the sigma points around x. k is secondary scaling
parameter and β corresponds to the prior knowledge of the distribution of X
(for Gaussian distributions, β=2). The default values for these parameters
are α = 10−4, β = 2 and k = 3 − L. The method instantiate each sigma
point through the function y = f(x) resulting in a set of transformed sigma
points, mean and covariance as

Yi = f(Xi) (4.19)

The mean is given by the weighted average of the transformed points,

y =
2L∑
i=0

Wm
i Yi (4.20)

The covariance is the weighted outer product of the transformed points,

Pyy =
2L∑
i=0

W c
i [Yi − y][Yi − y]T (4.21)

Figure 4.1 clearly shows the idea of EKF and UKF in a nice manner.

4.3.2 Unscented Kalman Filter

This method claims to have superior performance than ekf and directly com-
parable to second order Gaussian filter and do not restrict to assume that the
distributions of noise sources are Gaussian [18]. There can be two different
implementations, non-augmented and augmented ukf. In augmented ukf the
state and covariance matrices are augmented with process and measurement
noise components. This method results in better state estimation when the
noise is non-additive but the estimation process will become more computa-
tional intensive due to the increase in number of states. Non-augmented ukf
is implemented in this thesis. Considering the nonlinear state and measure-
ment equations as before ((4.7) and (4.7)), the time update and measurement
update are as follows.

Time Update
The time update is as explained in unscented transform where a set of 2L+1
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Figure 4.1: Comparison of mean propagation in EKF , UKF and Sampling.
image form the reference[19]

sigma points (X i
k−1|k−1, i = 0, ..2L) are calculated from the previous known

mean (xk−1|k−1) of state vectors according to the equations (4.17), where L
is the number of states. Then these sigma points are propagated through
the non-linear state equations (4.7) to obtain the updated state vector and
covariance matrix (X̂k|k−1 and P̂xx,k|k−1) according to the equations (4.20)
and (4.21) respectively as

X̂ =
2L∑
i=0

Wm
i X

i
k−1|k−1 (4.22)

Pk|k−1 =
2L∑
i=0

W c
i [X i

k|k−1 − X̂k|k−1][X
i
k|k−1 − X̂k|k−1]

T (4.23)

Measurement Update
As in time update, a set of 2L+1 sigma points (X i

k|k−1, i = 0, ..2L) are de-
rived from the updated state and covariance matrices where L is the dimen-
sion of the state. The sigma points are propagated through the observation
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function h as
γik = h

(
X i
k|k−1

)
, i = 0, ..2L (4.24)

The predicted measurement and measurement covariance are calculated with
weighted sigma points as follows

Ẑk =
2L∑
i=0

Wm
i γ

i
k (4.25)

Pzz,k =
2L∑
i=0

W c
i [γik − Ẑk][γik − Ẑk]T (4.26)

The state-measurement cross covariance matrix is obtained as

Pxz,k =
2L∑
i=0

W c
i [X i

k|k−1 − X̂k|k−1][γ
i
k − Ẑk]T (4.27)

and ukf kalman gain, updated state and covariance are respectively

Kk = Pxz,k P
−1
zz,k (4.28)

X̂k|k = X̂k|k−1 +Kk (Zk − Ẑk) (4.29)

Pk|k = Pk|k−1 −Kk Pzz,kK
T
k (4.30)
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Chapter 5

INS-GPS Integration

5.1 System Process Model for Integration

In ekf implementation of ins-gps integration, the errors of the system mecha-
nization is modeled. There are different approaches, proposed by different re-
searchers. In all such implementation, idea is to avoid the need of calculating
Jacobian necessary for ekf by simplifying the error equations using different
approximations and assumptions. But when the errors are very large, these
methods fail to give a reasonable estimation. Also problems with the initial
errors and alignment. In ukf implementation the mechanization equation
itself is considered for implementation. To utilize the full potential of ukf
algorithm, mechanization equations explained in section 2.4.1 ((2.6), (2.7),
(2.8)) need to consider. The state of the system is augmented by adding bias
and scale factor errors as state variables.

5.2 Sensor Modeling

The INS sensors used in this study are of MEMS technology. The noise
sources considered here in modeling are bias errors, scale factor errors and
white random noise.

5.2.1 Inertial sensor error models

The measurement equation for accelerometer and gyroscope can be written
as follows

29



f̃
b

= f b + ba + diag(f b)Sa + wa (5.1)

ω̃bib = ωbib + bg + diag(ωbib)Sg + ωg (5.2)

where f̃
b

is the measured accelerometer value and f b is the true value.

ω̃bib is the measured gyroscope value and ωbib is the true value. ba and bg are
the biases of accelerometer and gyroscope respectively. Sg and Sa are scale
factor errors of gyroscope and accelerometer.

The bias error of low cost MEMS sensors are sum of a constant bias
(turn-on bias) plus a non constant variation (in-run bias)

b(t) = btob(t) + δb(t) (5.3)

where btob is turn on bias and δb(t) is the in-run bias drift. The random
constant although being constant, can vary on each turn on. So the best
model is the random constant.

.

b(t) = 0 (5.4)

The in-run bias can be modeled as first order Gauss-Markov process.

δ
.

b(t) = − 1

Tb
δb(t) + wb(t) (5.5)

The scale factor error is usually a constant but for MEMS sensors it can vary
with time so it is also modeled as first order Gauss-Markov process as

δ
.

S(t) = − 1

TS
δS(t) + wS(t) (5.6)

The random noise is modeled as zero mean white Gaussian noise.

5.3 Measurement Equations

The equations for measurement update can be summarized as follows. Though
GPS can be considered as very accurate, it is still affected by some errors. It
is modeled as white Gaussian noise. Finally all the measurement equations
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are given below.

f̃
b

= f b + ba + diag(f b)Sa + wa

ω̃bib = ωbib + bg + diag(ωbib)Sg + ωg

ϕ̃gps = ϕ+ wϕ

λ̃gps = λ+ wλ

h̃gps = h+ wh

ṼN,gps = VN + wVN

ṼE,gps = VE + wVE

ṼD,gps = VD + wVD

(5.7)

The variables ϕ̃gps, λ̃gps, h̃gps, ṼN,gps, ṼE,gps and ṼD,gps are the corresponding
measured values from GPS unit and w is white Gaussian noise.
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Chapter 6

Implementation in Matlab

Unscented kalman filter algorithm was implemented and simulated using
matlab. AeroSim an aeronautical simulation block set was utilized for gen-
erating the trajectory.

6.1 Trajectory Generator

In order to simulate the algorithms, one proper trajectory was necessary.
Freely available aeronautical simulation blockset from Unmanned Dynam-
ics (AeroSim-blockset) was employed to generate the trajectory of an air-
craft. This toolbox can be downloaded for academic and non-commercial
use for free of charge [13]. According to their website, AeroSim blockset is a
Matlab/Simulink block library which provides components for rapid devel-
opment of nonlinear 6-DOF aircraft dynamic models. In addition to aircraft
dynamics the block set also includes environment models such as standard
atmosphere, background wind, turbulence and earth models (geoid reference,
gravity and magnetic field). This block set currently only works under win-
dows operating system. Some of the features they claim are

• Full 6-DOF simulation of nonlinear aircraft dynamics

• Visual output to Microsoft Flight Simulator and FlightGear Flight Sim-
ulator

• Complete aircraft models that can be customized via parameter files

• Sample aircraft models including the Aerosonde UAV and the North
American Navion

• Ability to automatically generate C code from Simulink aircraft models
using Real-Time Workshop.
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After installation of the blockset (which is explained in detail in the manual
[14]) the the blocks are available in the simulink library browser. It includes
different simple blocks to complete aircrafts and some demo blocks. Here the
inertial navigation demo block shown in figure 6.2 is modified and extended
for the implementation of thesis. A 6-DOF Aerosond UAV model (see fig.
6.1) with equations implemented in geodetic frame is used in it. Details of
how this blockset can be initialized and configured is well explained in the
user manual of blockset [15].

Figure 6.1: 6-DOF aircraft block used in the simulation (Aerosond UAV
model), image courtesy of Unmanned Dynamics [13]
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Figure 6.2: Inertial navigation demo block, image courtesy of Unmanned
Dynamics [13]

34



6.2 Software for UKF Implementation

There are some useful packages and blocksets available from different sources
for implementation of Kalman filters and smoothers. The ReBEL toolkit is
one of such toolkit available from the OGI School of Science and Engineering,
Oregon Health and Science University. They claim it is free for academic use.
Another useful toolbox, EKF/UKF toolbox for matlab from Department of
Biomedical Engineering and Computational Science (BECS), Center of Ex-
cellence in Computational Complex Systems Research, Helsinki University
of Technology is available from their homepage [25]. In this thesis for imple-
mentation of ukf, the functions available from this toolbox is used in greater
extend but I have modified some of the matlab files for more convenience in
my implementations. Also there are a number of good examples implemen-
tations along with this blockset. Interestingly the Reentry Vehicle Tracking
problem which was used (Julier and Uhlmann [18]) to demonstrate the per-
formance of UKF is also implemented and included as demonstration.

6.3 INS-GPS Integration Implementation

The state vectors are ϕ, λ , h, VN , VE, VD , q0, q1, q2, q3, bax , bay , baz , bgx ,
bgy , bgz , Sax , Say , Saz , Sgx , Sgy , Sgz . There are 22 state variables in this pro-
posed implementation. They are composed of position, velocity, quaternion,
bias of sensors and scale factor of sensors as noted above. Non-augmented
ukf implementation is performed here. Suitable initial conditions are set for
the states. Other variables needed for the operation of the blocks are set
using initialization file. In order to generate the trajectory and sensor data,
simulink Aerosond UAV model is simulated with suitable initial conditions.
To choose a particular trajectory the control inputs (rudder, throttle etc.)
and environmental constraints are applied to the model. The UAV model
outputs the sensor data which is used in later stage for filter implementation
and comparison. One set of measurement data is passed to the unaided INS
module which will generate the uncompensated output. Other set of data is
passed over to the aided INS block and ukf filter implementation for estima-
tion. Figure 6.3 shows the ins-gps integration implementation and figure 6.5
shows in more detail about how estimated values are applied in correction of
navigation information. Figure 6.4 shows the INS error modeling in simulink.
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Figure 6.3: INS-GPS integration (only the relevant part is shown)
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Figure 6.4: INS error model
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Figure 6.5: INS corrected using estimated information
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In the original implementation in Aerosim blockset, the sensor output
from gyroscope was the rate of the body with respect to the navigation
frame (ωbn), but the gyroscope measurement is with respect to inertial frame.
INS block was implemented to use this value to generate the navigation in-
formation. So model is modified to get the correct gyro output and then INS
block is also modified according to that. Figure 6.7 shows the modification
and figure 6.6 shows the original INS implementation.

Figure 6.6: INS block, aerosim

39



Figure 6.7: INS block, modified
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6.4 Attitude Estimation Implementation

An attitude estimation problem explained in [1] (of a stabilized platform)
was considered finally due to the difficulties faced with INS-GPS integration
and also due to time constraints. The main difficulties were the instability
of cholesky factorization implementation “chol“ and availability of trajectory
generator. Sensors used in this implementation are 3-axis accelerometer, gy-
roscope and magnetometer. Here is a brief problem description and equations
used in the filtering implementation.

6.4.1 Kinematic Equation in Quaternion

The kinematic equation of rigid body motion is derived as follows in the
literature [3] and is widely used in digital navigation processing. Analogous to
the euler kinematic equation, let Fr be a reference frame and Fb be a rotating
frame and orientation at any time ’t’ can be represented in quaternion as
qb|r(t). Let the instantaneous angular velocity of Fb along a unit vector k̂ be
w, then in δt interval δqb|r can be approximated as

δqb|r(δt) ≈
[

1

k̂ wδt/2

]
(6.1)

and finally the derivative of quaternion is obtained as

q̇ =
1

2
qb|r ∗ wbb|r (6.2)

Where ’*’ is quaternion multiplication and wbb|r is the angular velocity of b
frame with respect to r frame expressed in b frame. And in matrix form

q̇0
q̇1
q̇2
q̇3

 = 1/2


0 −P −Q −R
P 0 R −Q
Q −R 0 P
R −Q −P 0



q0
q1
q2
q3

 (6.3)

Here P, Q and R are angular velocities in body axis and q0, q1, q2, q3 are com-
ponents of quaternion. These equations are the basics of attitude estimation
implementation in digital navigation aids.

6.4.2 Sensor Modeling

For attitude estimation of stabilized platform, the sensors used are 3-axis
accelerometers, gyroscope and magnetometer. The sensor errors considered
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are temperature drift, CG offset, bias and random noise. The bias errors
(both in accelerometer, gyroscope and magnetometer) are considered as state
variables. The accelerometer is modeled as

AxAy
Az


measured

=

AxAy
Az


true

+

 − 0.0056T + 0.043
0.00056 − 0.0023T + 0.000143

0.034 − 0.0096T + 0.0073

+

−(q2 + r2)XAx

−(p2 + r2)XAy

−(p2 + q2)XAz

+

BAx

BAy

BAz


(6.4)

And gyroscope is modeled as followspq
r


measured

=

pq
r


true

+

 − 0.0065T 3 + 0.0045T 2 − 0.0026T + 0.053
0.00056T 2 − 0.000823T + 0.000543

0.000037T 3 + 0.014T 2 − 0.0094T + 0.000373

+

Bpx

Bqy

Brz


(6.5)

Where −(q2 + r2)XAx

−(p2 + r2)XAy

−(p2 + q2)XAz

 (6.6)

accounts for the CG offset error. Ax, Ay and Az are the accelerometer values.
p, q and r are the gyroscope values and they are angular rates in body frame.
XAx , XAy and XAz are the CG offset of accelerometer. T is temperature and
B is corresponding bias value. The temperature drift is not estimated but
just corrected before the estimation and in real situation the temperature
sensor is used to get the accurate temperature which will be used for above
temperature drift calibration. Constant bias error is considered in all sensors
and the random noise is white Gaussian noise.

6.4.3 Matlab Implementation

For simulation, the sensor measurement data was generated using simulink
blocks. The simulink blocks are shown in figures 6.8, 6.9 and 6.10. The state
model consists of 15 state variables including four quaternion and the bias
of each sensors. Quaternion was used in the implementations because of its
advantages over euler angles.
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The state model is

q̇0 =
1

2
(−q1 p− q2 q − q3 r)

q̇1 =
1

2
(−q0 p+ q2 r − q3 q)

q̇2 =
1

2
(−q0 q − q1 r + q3 p)

q̇3 =
1

2
(−q0 r + q1 q − q2 p)

ṗ = −1

τ
p

q̇ = −1

τ
q

ṙ = −1

τ
r

Ḃp = 0

Ḃq = 0

Ḃr = 0

ḂAx = 0

ḂAy = 0

ḂAz = 0

ḂHx = 0

ḂHy = 0

(6.7)

where τ is time constant

The measurement model is

1 = (q2
0 + q2

1 + q2
2 + q2

3)

Ax,m = Ax1 +BAx + wAx

Ay,m = Ay1 +BAy + wAy

Az,m = Az1 +BAz + wAz

Hx,m = Hbx +BHx + wHx

Hy,m = Hby +BHy + wHy

(6.8)
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whereAx1

Ay1
Az1

 =

AbxAby
Abz

−
(q2 + r2)XAx

(p2 + r2)XAy

(p2 + q2)XAz

−
 − 0.0056T + 0.043

0.00056 − 0.0023T + 0.000143
0.034 − 0.0096T + 0.0073



(6.9)

and

AbxAby
Abz

 =

(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

Agx

Agy

Agz


(6.10)

[
Hbx

Hby

]
=

(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

Hgx

Hgy

Hgz


(6.11)

where Agx , Agy and Agz are the gravitational acceleration along geodetic
frame (eg. [0 0 -9.81] m/s2) at the location. Hgx , Hgy and Hgz are earth
magnetic vector along geodetic frame (eg. [18 0 45] µ tesla) at the location.
B is the bias of corresponding sensors.
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Figure 6.8: Data generation simulink block, attitude estimation
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Figure 6.9: Data generation in detail
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Figure 6.10: Sensor modeling
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Chapter 7

Results

The main objectives of the thesis were to compare the computational require-
ments of both algorithm and then the performance of the filter with different
initial errors. Ins-gps integration implementation faced different difficulties
and needed more time, so an attitude estimation problem was finally consid-
ered. Please note that the objectives of the thesis were achieved with this
attitude estimation problem. Both extended and unscented implementation
were done using matlabR2007b in a Lenovo 32-bit Dual Core laptop. System
configuration is given in table 7.1.

The main difficulty faced in tuning ukf filter was the instability of ‘chol’
decomposition which was used as an approximation for calculating square
root of P matrix. When if the R and Q matrix are not chosen properly,
the algorithm will fail in the first step or after a few iterations. This made
it difficult to tune the filter. By observation the step where the instability
occurs was found to be at (4.23) in time update where process covariance
prediction is done. This is the step where the P matrix becomes negative
definite for the first time. Below is the detailed discussion of the results
obtained from implementations.
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System Configuration
Operating System Ubuntu Release 9.04, Kernel Linux 2.6.28-

11-generic, GNOME 2.26.1
Hardware Configuration Dual Core Processor, Processor 0: Genuine

Intel(R) CPU T2080@1.73GHz, Processor 1:
Genuine Intel(R) CPU T2080@1.73GHz

Software Tool used for simulation Matlab R2007b

Table 7.1: System Configuration for Simulations

Figure 7.1: Snap of system monitor during EKF algorithm execution

Figure 7.2: Snap of system monitor during UKF algorithm execution
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CPU time used
EKF UKF

CPU time used for processing of data (3500
data samples)

.77s 31.64s

CPU time used for single time update step 2.59× 10−04s 56× 10−04s
CPU time used for single measurement up-
date step

4.42× 10−04s 52× 10−04s

Table 7.2: Comparison of computational resources utilized

7.1 UKF Vs EKF

In order to compare the performance of the ukf and ekf, estimation of
attitudes (roll, pitch and yaw) of stabilized platform in both implementations
were considered. Different aspects of filters were considered, such as sum of
squares of difference of filtered values to the true attitude values, system
resources like CPU time used and performance with initial errors. These
results are summarized in tables.

Table 7.2 compares the CPU time used by both implementations. Also
figures 7.1 and 7.2 are the snaps of the system monitor window during exe-
cution of ekf and ukf implementations respectively. The CPU time used by
ekf and ukf are found to be .77 seconds and 31.64 seconds respectively. For a
single prediction step in ekf and ukf, the average time used was 2.59× 10−04

and 56×10−04 seconds respectively. Where as the measurement update took
4.42 × 10−04 and 52 × 10−04 seconds respectively. Table 7.3 gives the sum
of squares comparison of both ukf and ekf implementations. The figures 7.3,
7.4 and 7.5 are from the corresponding ekf implementation results and fig-
ures 7.6, 7.7 and 7.8 are from ukf implementation results. Though it is not
clear from the graphs, when considering the sum of squares of first 500 data
samples, it is clear that ukf has less variation from reality in the beginning.
It is also clear from the figures 7.5 and 7.8 that estimation of psi angle is
worse in ekf implementation but better in ukf.
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Sum of Squares of Difference
Attitude angle EKF UKF
Phi 36.86 .1926
Theta 15.04 .1939
Psi 465.75 .1833

After 500 data samples(filter stabilized)
Phi 0.0022 .1635
Theta 0.0021 .1739
Psi 63.57 .1568

Table 7.3: Estimation performance comparison

Figure 7.3: phi angle, EKF

Figure 7.4: theta angle, EKF
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Figure 7.5: psi angle, EKF

Figure 7.6: phi angle, UKF
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Figure 7.7: theta angle, UKF

Figure 7.8: psi angle, UKF
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In order to test the performance of the filter with different initial errors,
three different set of initial conditions are applied with more variation from
first set to third set. The results of sum of squares of difference are presented
as tables 7.4 and 7.5 for ekf and ukf respectively. The values for first 200
data samples and complete samples are separately shown to understand the
performance in the initial stage of estimation. It is seen that the ukf attain
stability before ekf when the initial conditions are more away from reality.
Also estimation of psi angle (see figure 7.9) in ekf was degraded considerably
with increasing initial errors but ukf has a good result (see figure 7.10).
The figures 7.11 and 7.12 are results of ekf implementation with second set
(medium errors) of initial values. The figures 7.13 and 7.14 are results of
ekf implementation with third set (larger errors) of initial values. It is clear
form comparing theses two graphs that as initial error increase, ekf estimation
takes more time to stabilize. The figure 7.15 is result of ukf implementation
with third set (larger errors) of initial values and it is not affected much by
the initial errors. In order to enhance the understanding of results, residuals
(difference between actual and estimated values) are plotted for simulations
with different set of initial errors. Figures 7.16, 7.17 and 7.18 are residual
plots with smaller initial errors. Figures 7.19, 7.20 and 7.21 are residual plots
with medium initial errors. Figures 7.22, 7.23 and 7.24 are residual plots with
larger initial errors. The ekf has more variations in the beginning, but both
algorithms have similar performance in a long run.

Figure 7.9: psi angle, ekf with third set (larger errors) of initial values
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Figure 7.10: psi angle, ukf with third set (larger errors) of initial values

Figure 7.11: ekf results with second set (medium errors) of initial values
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Figure 7.12: First 200 data samples of ekf results with second set (medium
errors) of initial values

Figure 7.13: ekf results with third set (larger errors) of initial values
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Figure 7.14: First 200 data samples of ekf results with third set (larger errors)
of initial values

Figure 7.15: ukf results with third set (larger errors) of initial values
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Figure 7.16: Residual of phi angle estimate with small initial errors (first 200
data samples)

Figure 7.17: Residual of theta angle estimate with small initial errors (first
200 data samples)
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Figure 7.18: Residual of psi angle estimate with small initial errors (first 200
data samples)

Figure 7.19: Residual of phi angle estimate with medium initial errors (first
200 data samples)
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Figure 7.20: Residual of theta angle estimate with medium initial errors (first
200 data samples)

Figure 7.21: Residual of psi angle estimate with medium initial errors (first
200 data samples)
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Figure 7.22: Residual of phi angle estimate with larger initial errors (first
200 data samples)

Figure 7.23: Residual of theta angle estimate with larger initial errors (first
200 data samples)
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Figure 7.24: Residual of psi angle estimate with larger initial errors (first 200
data samples)
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EKF
first 200 data samples

1st set 2nd set 3rd set
phi 1.4650 ∗ 10−4 0.0226 33.7858
theta 1.5413 ∗ 10−4 0.0239 5.7586
psi 0.0164 1.552 ∗ 103 748.31

complete samples
1st set 2nd set 3rd set

phi 0.0013 0.0238 33.7870
theta 0.0012 0.0250 5.7597
psi 4.8335 1.2517 ∗ 104 5.2688 ∗ 103

Table 7.4: Comparison of sum of squares of difference in ekf with different
initial conditions

UKF
first 200 data samples

1st set 2nd set 3rd set
phi 1.6147 ∗ 10−4 1.6571 ∗ 10−4 1.7014 ∗ 10−4

theta 1.5587 ∗ 10−4 1.7598 ∗ 10−4 1.7601 ∗ 10−4

psi 1.4510 ∗ 10−4 1.7423 ∗ 10−4 1.8607 ∗ 10−4

complete samples
1st set 2nd set 3rd set

phi 0.0102 0.0120 0.0140
theta 0.0116 0.0118 0.0128
psi 0.0109 0.0111 0.0119

Table 7.5: Comparison of sum of squares of difference in ukf with different
initial conditions
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7.2 INS-GPS Integration Results

Because of the lack of time, the complete tuning of the UKF filter for INS-
GPS integration had to stop in the middle. Some available results so far is
added below. Figures 7.25, 7.26 and 7.27 are results of estimation of latitude
longitude and altitude respectively. Both implementation and tuning of the
filter have to be improved from the current state and so far no considerable
result is obtained.

Figure 7.25: latitude
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Figure 7.26: longitude

Figure 7.27: altitude
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Chapter 8

Conclusion

Attitude estimation of a stabilized platform is studied and implemented to
compare ekf and ukf. The original plan of implementing the ins-gps inte-
gration and to compare performance was not able to finish due to different
difficulties faced and also due to time constraints. The attitude estimation
results show that the performance comparison of the ekf and ukf filter is not
that important to mention. But ukf performance with large initial error is
very good, which makes it very acceptable for applications like navigation,
where system is more susceptible to initial errors. But computational com-
plexity of ukf algorithms compared to ekf is very evident with approximately
40 times more time consuming in terms of CPU time usage.
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Chapter 9

Future Works

The information gathered and experience gained are useful in completing the
implementation of ins-gps integration. Also the Square Root UKF can be
tested because it claims to be more stable and less computational intensive.
In Shin’s PhD thesis [23], he point out the need of special treatment for the
position (lat, long, alt) and quaternion states in UKF implementation. The
reason being is that they are not belonging to any vector space. According
to him, intrinsic characteristics of rotation needs to consider in quaternion
estimation and also suggested the intrinsic gradient descent algorithm for
that. It would also be interesting to test some auxiliary sensors like odometer
and speedometer in navigation implementation in land vehicle applications.
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