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ABSTRACT

This bachelor’s thesis focuses on the design, implementation and experimental evaluation of

a localization system for mobile robotic platform, developed as part of the TRADR project

(http://www.tradr-project.eu/), with rich sensory equipment: LIDAR, IMU, odometer and

WiFi receiver. The localization system primarily uses the WiFi signal available in the environ-

ment, processed by machine learning techniques (Gaussian processes), since high WiFi coverage

provides a way to localize even low-cost robots that do not need to be equipped with excessive

computational power to run visual-based SLAM algorithms or expensive exteroceptive sensors.

Trajectory is considered in 3D, a 6-DOF, and to its estimation, it uses Gaussian processes fol-

lowed by Monte Carlo Localization. The proposed application is to use one SLAM robot to

map WiFi signal strength in the working area and provide it to a low-cost robot to correct drift

of its 6-DOF gyro-odometry localization system. Implementation of this localization system is

realized using MATLAB.

KEYWORDS

WiFi localization, WiFi signal strength, Gaussian processes, Particle filter, 6-DOF gyroodometry

localization system, mobile robots
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ABSTRAKT

Ćılem této práce je návrh, implementace a experimentálńı ověřeńı lokalizačńıho systému pro

robotickou platformu, která je vyv́ıjena jako součást projektu TRADR (http://www.tradr-

project.eu/) a je vybavena širokou škálou senzor̊u jako je LIDAR, IMU, odometr a WiFi př́ıjmač.

Lokalizačńı systém předně využ́ıvá dostupný WiFi signál, který je zpracován pomoćı strojového

učeńı (Gaussovské procesy). Dı́ky tomu, že je dnes většina budov pokryta hustou WiFi śıt́ı,

je možné využ́ıt śılu WiFi signálu pro spolehlivou lokalizaci levných robot̊u, kteř́ı tak ne-

muśı mı́t excesivńı výpočetńı výkon pro prováděńı SLAM algoritmů a nemuśı být vybaveni

drahými exteroceptivńımi senzory. Trajektorie je uvažována ve 3D, 6 stupň̊u volnosti a k jej́ımu

určeńı jsou využity Gaussovské procesy následované Monte Carlo lokalizaćı. Uvažovaná aplikace

systému je taková, že jeden SLAM robot zmapuje prostřed́ı a śılu WiFi signálu v něm. Tato

data budou zpracována a poskytnuta lévnému robotovi, který d́ıky tomu bude moci opravovat

výchylku svého gyro-odometrického lokalizačńıho systému se šesti stupni volnosti. Implementace

navrhnutého lokalizačńıho systému je provedena v Matlabu.

Kĺıčová slova

WiFi lokalizace, śıla WiFi signálu, Gaussovské procesy, částicový filtr, gyroodometrický lokalizačńı

systém, mobilńı roboti
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1 Introduction

The bachelor thesis builds on author’s publication in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)[1]. The thesis focuses on reliable localization in dy-

namic environment, where nowadays only robots equipped with expensive exteroceptive sensors

and excessive computational power to run visual-based simultaneous localization and mapping

(SLAM) algorithms succeed. The motivation is to provide also low-cost robots, which are popu-

lar and commonly used these days, with reliable localization system, enabling them to perform

tasks in large and dynamic environment such as warehouses, airports or factories using only

their gyro-odometry and WiFi receiver.

Almost every building is covered by multitude of WiFi networks. The idea is to use this already

built infrastructure for localization purposes, reducing the hardware requirements only to a WiFi

receiver. In this thesis one branch of WiFi localization methods based on WiFi signal mapping

that uses Gaussian processes (GP) is adopted. It is further combined with a 6-Degrees of freedom

(DOF) gyro-odometry for continuous localization in complex 3D environment. Two different

approaches are implemented and tested. One approach estimates robot’s position by selecting

the place with highest probability (HP). The second approach implements particle filter (PF)

and estimates the position as the mean of resampled particles.

At the beginning state of the art approaches in this field are presented, then they are compared

with our approach. In the next section is an overview on our localization system design given.

Moreover advanced localization methods used in this thesis are introduced there.

After presenting the theoretical background comes the practical part. The first section of this

part describes how the trajectories and WiFi signal strengths for our experiments are acquired.

It further presents our testing environment and dataset.

The next section deals with our implementation and is divided into two parts. One part explains

the data preprocessing and WiFi signal strength model creation in the offline phase. The second

part presents our approach to odometry correction.

The last practical section deals with experimental setting and the results of our two different

position estimation approaches. Each approach was experimentally evaluated with and without

yaw correction. The experimental results are summarized afterwards.
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2 Related work

This section introduces localization approaches suggested by various research papers and com-

pares them with our approach.

2.1 State of the art

In general two major methods for localization based on wireless networks are proposed in the

literature. These are:

• Signal propagation modeling methods.

• Signal propagation mapping methods.

The first approach [2, 3, 4] requires the position of a radio transmitter (typically WiFi access

point), walls and other obstacles to be known or estimated. Using these information a signal

distribution model for the environment can be created. But the real not modeled effects such

as signal attenuation, reflection or dispersion are the cause for lower accuracy of localization.

This approach does not require direct collection of training data in the environment to create a

signal distribution map.

On the other hand the signal mapping approach needs spatially localized radio signal strength

training set. Using this training set the signal distribution map can be approximated. There is

no need to have prior knowledge on the position of access points (AP), obstacles and effects on

the path between the radio transmitter and receiver in order to create the map [1]. Moreover

one approach is presented, which handles possible minor changes in the signal levels in the

environment [5].

Some research papers, which focus on localization techniques using signal map, explicitly build a

graph, where the recorded samples belong to the vertices of the graph and subsequent localization

is done by interpolating between those vertices [6].

There are also few approaches which focus on classification of new radio signal strength measure-

ments. One part uses the classified samples to generate a set of new artificial learning measure-

ments in order to increase the localization accuracy [7]. The other part uses the classified samples

to obtain a rough estimate of location further using other localization techniques[8, 9].

The character of measured radio signal strength is similar to Gaussian distribution. Therefore

many approaches [10, 11, 12, 13, 14] use the framework of Gaussian processes (GP) as it is

suitable for non-parametric modeling of the signal distribution over the environment. It further

9



allows to create probabilistic model of the environment and omit location labels. In several

papers dealing with mobile robot localization are GP often followed by Bayes particle filter

(PF) [12, 13, 11, 6]. This allows to incorporate a-priory knowledge from previous sequence of

odometry and WiFi measurements [1].

2.2 Comparison

In this thesis is the signal mapping approach adopted. It uses GP to model the WiFi signal

propagation. For localization is GP followed by particle filter (PF) used to incorporate a-priori

knowledge from previous sequence of WiFi and odometry measurements as [12, 13, 11, 6]. More-

over we combine it with a 6-DOF gyro-odometry. This allows mobile robots to continuously

localize themselves. With this approach the localization is possible even in a complex 3D envi-

ronment or outdoor, under the assumption that in the mapped area is sufficient WiFi coverage.

Compared to a classical 3-DOF problem, additional degrees of freedom allow continuous lo-

calization which can spread over multiple floors and capture movement in full 3D. We mainly

focus on the problem of drifting position and yaw angle, and propose an option how to correct

it.

To our best knowledge, no localization technique was yet published in context of mobile robot

localization, which extends the classical 3-DOF problem to 6-DOF and uses localization based

on WiFi signal strength. We found only [8, 11] which focus on 3D person localization in graph-

based map using WiFi reciever. We show that extending the 3-DOF problem to the 6-DOF

problem is possible.

For the space representation we use rather continuous over graph based representation [6],

because it is more suitable for the character of the 3D mobile robot localization. Experimental

verification was done in environment with presence of people and on different times of the day

and floors to mimic real application scenarios.
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3 Methodology

This section gives an overview on the general workflow of our localization system and further

presents advanced methods used this work.

3.1 Workflow

Figure 1: The localization system diagram is divided into SLAM robot part and low-cost
robot part. The SLAM robot precisely maps the environment and the mapping data are used
to create GP model of WiFi signal. Then a low cost-robot equipped only with gyro-odometry,
WiFi receiver and WiFi signal model can be applied with drift-free position estimation [1].

Our workflow for Wi-Fi signal based robot localization is schematically shown in Fig. 1. In

general it consist of one SLAM robot capable of reliable localization and a low-cost robot with

gyro-odometry that is prone to drift1. In order to estimate drift free position of the low-cost

robot, these 3 stages need to be completed:

1. Wi-Fi signal strength mapping with SLAM robot

2. Offline Gaussian process learning

3. Low-cost robot Wi-Fi localization

In the first stage the SLAM robot records surrounding Wi-Fi signal levels from access points

and performs SLAM to reliably localize itself in the environment. Then in the second stage

the acquired Wi-Fi signal levels from access points are paired with the corresponding positions.

These data are then used for learning Gaussian process models for each access point (recognized

by its physical MAC address). The last stage utilizes results of the two previous ones; the basic

gyro-odometry (prone to drift) is corrected by position inferred from the GP models (based on

signal strength of received Wi-Fi packets). The result is that the low-cost robot is capable of

reliable localization.

1For the purpose of this theses the same robotic platform was used as SLAM robot, to obtain reliable position
estimates, as well as low-cost robot, recording odometry data for localization system evaluation.
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Boxes in Fig. 1 have the following meaning:

• LIDAR: Our robotic platform on Fig. 4 is equipped with a laser range finder (SICK

LMS-151) that is rotated by a servo mechanism and creates 3D map of the environment

at rate of 0.3 Hz.

• EKF + CF gyro-odometry: EKF means Extended Kalman Filter and CF means com-

plementary filter. it processes the velocity vector from track encoders. Further EKF uses

complementary filter and processes the IMU measurements to probabilistically estimate

the position [15, 16].

• IMU: The inertial measurement unit of the robot (Xsens MTi-G) measures at 80 Hz the

acceleration and angular velocity which is later utilized by the EKF + CF gyro-odometry.

• Track encoders are sensing the velocity at 10 Hz. They are the source of velocity vector

further utilized by the EKF + CF gyro-odometry.

• WiFi receiver: 2.4 GHz WiFi adapter is attached to the robot and sniffs beacon packets

in monitor mode. The MAC address and the RSSI of the packet is further used to create

WiFi signal and position data.

• LIDAR snapping module utilizes the data from LIDAR and EKF+CF gyro-odometry.

It creates the groundtruth with the temporal resolution of EKF + CF gyro-odometry and

spatial accuracy resulting from LIDAR.

• WiFi signal and position data: This data are created by merging received WiFi signal

packets RSSI and MAC address with the corresponding position.

• GP localization correction: Implementation of our approach to correct odometry drift

using WiFi signal strength and GP models of WiFi signal.

• Offline learning of GP models of WiFi signal: The training phase where GP model

of WiFi signal is created from WiFi signal and position data.

• Drift-free position estimate: Desired result is to have a drift free position with the

temporal resolution of IMU, using only measurements from IMU, track encoders, WiFi

receiver and GP models of WiFi signal.

3.2 Gaussian processes

A Gaussian process is a collection of random variables, any finite number of which have a

consistent joint Gaussian distribution [17]. It defines probability distribution over functions.
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GP are suitable for WiFi signal based localization, as they are non-parametric, continuous and

provide uncertainty estimation for predictions at any given location [12, 18]. The standard GP

regression model assumes that dataset D := {X := [x1,...,xn]T,y := [y1,...,yn]T} was generated

so that yi = h(xi) + εi, where h : RD → R is a random function, εi ∼ N(0,σ2
n) is independent

Gaussian measurement noise, xi is in our case the position and yi the corresponding signal

strength. Gaussian distribution is specified by a mean vector and a covariance matrix. GP

is similar to the Gaussian distribution as it is fully specified by a mean function mh(·) and a

covariance function [19]

kh(x,x′) := covh[h(x),h(x′)],x,x′ ∈ RD (1)

specifying the covariance between any two function values. The covariance function kh(·,·) is

in terms of GP called kernel. In connection with WiFi signal strength modeling a prior mean

function mh = 0 and squared exponential (SE) kernel determined as [19]

kSE(xp,xq) := α2 exp(−1

2
(xp − xq)

TΛ(xp − xq)),xp,xq ∈ RD (2)

are used. Matrix Λ has diagonal elements set to the respective length scale so that Λ =

diag([`21,...,`
2
D]). The parameters α2 and ` are called hyperparameters, where α2 is the signal

variance and `i,...,`D are the characteristic length scales. As the WiFi signal strength y is a

noisy observation of f(x), it is necessary to add noise covariance function σ2
nδpq in the covariance

matrix resulting in [12]

kh = kSE + σ2
nδpq (3)

where δpq = 1 if p = q, else δpq = 0. For entire set of values X, covariance matrix can be

rewritten as Kh = KSE + σ2
nI where KSE is a covariance matrix resulting from kSE . The

collection of hyperparameters is denoted as vector θ and contains α2,` and σ2
n. This set of

hyperparameters denotes the smoothness of the functions estimated by GP. They are learned

from training data by maximizing the log marginal likelihood of the observations conditioned

on the hyperparameters. Learning of the hyperparameters can be completed offline after the

training dataset was collected [12, 18].

The posterior distribution can be then generated over functions for arbitrary points x? given

the training data X and y as [12]

13



p(f(x?)|x?,X,y) ∼ N(µx? ,σ
2
x?

) (4)

where the prediction means and variance are [12]:

µx? = kT
? (K + σ2

nI)−1y

σ2
x?

= kSE(x?,x?)− kT
? (K + σ2

nI)−1k?

(5)

where k? is a vector of covariances between x? and n training inputs [12, 18].

Example of simplified use of GP can be seen on Fig.2 and 3. On Fig. 2 is a dataset with samples

determined by the function y = f(x)+σ2, where f(x) is a function that is going to be estimated

by GP and σ2 is noise. On Fig. 3 is the estimation of the function f(x) using hyperparameters

learned by minimizing the negative log marginal likelihood of the corresponding dataset and

using squared exponential kernel. Using this dataset and learned parameters the probability of

a function value f(x?) at any arbitrary position x? as in equation 4 can be obtained [20].
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Figure 2: One dimensional example dataset
with 20 samples where y = f(x) + σ2, f(x) is
an unknown function and σ2 is noise [20].
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Figure 3: GP approximation of the un-
known function f(x) from Fig.2 with hyper-
parameters learned by minimizing the neg-
ative log marginal likelihood of the dataset
corresponding to f(x) using squared expo-
nential covariance function. The solid orange
line represent the mean function, the shaded
areas represent the 95% confidence intervals
of the GP distribution [20].
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3.3 Particle filter

The particle filter is a nonparametric Bayesian filtering technique, which is able to handle any

arbitrary probability density function. It approximates the posterior by a finite number of

parameters. The main idea of this approach is to represent the posterior believe bel(xt) by a set

of random state samples drawn from this posterior. The samples of posterior distribution are

called particles and are in the following form [21]:

χt := x
[1]
t ,x

[2]
t ,...,x

[M ]
t (6)

where M is a number of particles in set χt and x
[m]
t (1 ≤ m ≤ M) is a particle with concrete

instantiation of the state at time t [21]. The beliefs bel(xt) are constructed recursively from the

beliefs bel(xt−1) occurring one time step earlier.

Simple particle filter algorithm is shown bellow on in Alg. 1 [21]. The algorithm takes as input

the previous belief χt−1, an actuation command ut and data received from sensors zt. The

output is the new belief χt at current time t. At line 4 occurs the motion update where the

Algorithm 1 Simple particle filter algorithm [21]

1: procedure Particle filter(χt−1,ut,zt)
2: χt = χt = ∅
3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt|ut,x[m]

t−1) . Motion update

5: w
[m]
t = p(zt|x[m]

t ) . Importance factor (weight) update

6: χt = χt + 〈x[m]
t ,w

[m]
t 〉

7: end for
8: for m = 1 to M do . Resampling step

9: draw i with probability α w
[i]
t

10: add x
[i]
t to χt

11: end for
12: return χt
13: end procedure

particles are moved according to the robot’s movement. At line 5 the weight of each particle

is updated based on the data received from sensor. In our case the sensor data are the log

likelihoods acquired from the WiFi signal map given the particle position and RSSI. So the

weights are updated by the exponentiation of our log likelihoods [21].

On line 8-11 occurs the resampling step. In this step it is iterated over particles from set χt

and particles having probability over certain level are chosen and added to the set χt. In the

resampling phase is often the low variance algorithm used in order to select the particles. Our

approach uses this algorithm too [21].
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The basic idea of low variance algorithm (Alg. 2 [21]) is that it rather involves sequential

stochastic process than selecting the samples independently of each other. The algorithm takes

as its input the particle set χt and the the corresponding weights Wt of the particles in the

set. It chooses random number r as on line 3 and selects particle by repeatedly adding the fixed

amount M−1 to r and by choosing particle that corresponds to the resulting number [21].

Algorithm 2 Low variance sampling algorithm [21]

1: procedure Low varinace RS(χt,Wt)
2: χt = ∅
3: r =rand(0;M−1) . Choose random number r from the given interval

4: c = w
[1]
t

5: i = 1
6: for m = 1 to M do
7: u = r + (m− 1) ·M−1 . Add fixed M−1 to r
8: while u > c do
9: i = i+ 1

10: c = c+ w
[i]
t

11: end while
12: add x

[i]
t to χt

13: end for
14: return χt
15: end procedure
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4 Data collection

This section presents the data collection phase where the SLAM robot collects data about nearby

APs. The robot also records its trajectory, which we consider as the real trajectory that is used

as reference or so called ground truth. As our robotic platform serves as both SLAM robot and

low-cost robot, drift prone gyro-odometry trajectory is also recorded at this phase.

Figure 4: Our skid-steered search and rescue robotic platform that was used to record data
both in the role of a SLAM robot as well as a low-cost robot. The robot is developed as part of
the TRADR project1 and is equipped with a laser range-finder used for 3D SLAM [1].

4.1 Localization data collection

For robots it is important to know their position, therefore they use odometry to keep track

of their movement. As the position derived from odometry is actually the position one time

step earlier incremented by a known movement over elapsed time and course (known as dead

reckoning), it is subject to cumulative errors [22]. The error is integrated over time and it is

necessary to periodically correct it by other sources of position estimation.

Our mobile robot (Fig. 4) is equipped with a laser range-finder (SICK LMS-151). This laser

range-finder is rotated by a servo mechanism to create 3D scans with relatively low frequency

around 0.3 Hz. To obtain reliable position estimates, the scans are processed by the ethz-

asl/libpointmatcher [23] SLAM algorithm. Since the position estimation using SLAM algorithm

1http://www.tradr-project.eu
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depends on the 3D scans arriving every 3 seconds, the gyro-odometry sampled at 80 Hz is used

to support it. The position estimation from SLAM algorithm interpolated with gyro-odometry

is used to localize received WiFi-packets.

4.2 WiFi signal acquisition

To record WiFi packets, a 2.4GHz Wi-Fi adapter switched to the monitor mode is used. This

mode allows to inspect all packets the adapter receives.

Since the adapter can receive and transmit only on one channel at given time, it is necessary

to iterate over WLAN channels and sniff beacon frames. By selecting only these frames, traffic

transmitted by client devices is ignored.

Beacon frames are periodically transmitted by public APs to announce the presence of WLAN.

These frames contain all the necessary information about the AP from which they were sent.

For localization purpose is only the MAC address of the AP and the signal strength (RSSI) at

given time and position needed.

As 2.4 GHz Wi-Fi adapter is used, it is iterated over all 14 WLAN channels of that frequency

range in order to capture beacon frames from APs. These channels are spaced by 5 MHz except

the last 14th channel which is spaced by 12 MHz.

Figure 5: The flowchart shows sniffing of WiFi beacon packets. Sniffer starts at channel 1 and
sniffs for 0.1 on that channel, then the channel is switched and the process is repeated.

In practice is the WiFi adapter set to monitor mode and it is iterated over the 14 channels of
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2.4GHz frequency range while fetching the incoming packets as in Fig. 5. Every packet is checked

if it is a 802.11 packet and further of type Management Frame and subtype Beacon Frame. If

the packet has desired attributes specified above, then the MAC address of the originating AP

and the RSSI is extracted. This is then saved with the current time stamp into a .csv file.

4.3 Dataset description

Testing and training data were collected on different dates spanning nine months. The data

were collected also on different times of the day spanning from noon until late afternoon hours

in order to cover the variations in appearance of the environment.

Figure 6: Output of the ethz-asl/libpointmatcher [23] SLAM algorithm showing the three floor
testing environment of CTU department building. Red circle is the starting position of the
testing data in the dataset. Yellow lines denote one of the testing trajectory from the dataset.
On the right top view image is only the trajectory on the bottom floor showed. [1]

Experiments were performed with presence of people on three floors of the CTU campus building

on Karlovo náměst́ı in Prague (Fig. 6) to mimic real uncontrolled environment.
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Table 1: Dataset overview

Dataset overview

ID Date & time Changed axes Covered floor Lenght Note

20151 21.10.2015 14:22 Yes 1, 0 133 m

20152 21.10.2015 15:03 Yes 1, 0 133 m

20161 6.1.2016 14:48 Yes 0, -1 95 m floor 0 only par-
tially covered

20162 6.1.2016 15:08 No 1, 0, -1 155 m floor -1 only par-
tially covered

20163 6.1.2016 15:46 No 1, 0, -1 254 m

20164 6.1.2016 16:12 Yes 1, 0 75 m

201621 8.2.2016 12:31 No 1, 0,-1 265 m

201622 8.2.2016 12:54 No 1, 0,-1 281 m

201631 25.2.2016 17:33 No 0, -1 147 m

201632 25.2.2016 17:50 No 1, 0 133 m

201633 25.2.2016 18:03 No 1, 0, -1 261 m

201671 25.7.2016 12:59 No 0+ 179 m

201672 25.7.2016 13:25 No 0+ 178 m

Tab.1 summarizes our dataset for GP map learning and experimental evaluation. Changed

axis column means that the start of the collection was performed in different direction and for

evaluation we need to invert the x and y axes. The covered floor specifies which floors were

covered in the data collection. The starting floor is 0, the upper floor is 1, bottom floor is

-1 and 0+ stands for the starting floor covering some extra area on that floor. In the length

column is the length of the ground truth trajectory for which we have the corresponding WiFi

signals.
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5 Implementation

In this section is the implementation of 3D WiFi based localization discussed. This section con-

sists of two subsections dealing with offline training phase and correction phase. The repository

with source codes and dataset for this project is publicly available here [24].

5.1 Offline phase

In the offline phase are the recorded data paired and the ground truth is checked and corrected

if needed. As the ground truth data are recorded at much slower rate than gyro-odometry, it is

necessary to extend it to the same length in order to use in the next step, where the WiFi map

for each AP is created using GP.

5.1.1 Data preprocessing

While preprocessing the recorded data, it is necessary to check if the outcoming ground truth

trajectory is approximately the same as the real trajectory. This is done in order to use it for

pairing with WiFi packets and in order to compute the Root Mean Square Error (RMSE) later

in the experiments. If there is a drift in roll, pitch or yaw angle, then it needs to be manually

corrected so that it refers to the real trajectory. After manual correction the ground truth can

be used to pair corresponding WiFi packet with position.

As every measurement of the ground truth is recorded every 3 seconds (0.3 Hz), it is necessary to

extend the its temporal resolution to match the length of the gyro-odometry (80 Hz) in order to

use it for WiFi signal map learning see Fig. 7. For the extension is linear interpolation between

every two subsequent ground truth (0.3 Hz) records used [25]. The extended ground truth (80

Hz) will be further called just ground truth.

Before pairing the ground truth position with WiFi packets, MAC addresses which occur less

than 10 times are removed from the corresponding WiFilog file. The threshold of 10 measure-

ments from one MAC address is set based on observations of several WiFi signal maps created by

different number of measurements, where those containing less than 10 measurements were more

likely to be highly imprecise and were decreasing the localization accuracy. Every WiFi packet

is paired with the corresponding ground truth position in a way that the resulting position is

the one whose time stamp is nearest to the packet time stamp as in Fig. 8.
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Figure 7: Workflow where ground truth (0.3
Hz) and odometry data (80 Hz) are processed
to create ground truth with temporal resolu-
tion of 80 Hz. Data files contain time stamp,
positions on x, y and z axes and attitudes.

Figure 8: This workflow shows pairing of
WiFi packets with position. Packets with
MAC address which occurs less than 10 times
in the WiFilog are discarded. The remain-
ing packets containing time stamp (TimeW),
MAC address and RSSI are paired with the
ground truth position according to the near-
est ground truth time stamp. The result is
a WiFilog with time stamp TimeW, MAC
address and RSSI extended with x, y and z
position for every packet. The ground truth
contains time stamp (TimeGT), positions on
x, y and z axes and attitudes.

5.1.2 WiFi map creation

Before creating the WiFi signal map, all unique MAC addresses of the corresponding WiFilog

with position file are found and concatenated with their position and RSSI. Then it is iterated

over each unique MAC address and the WiFi signal map parameters are trained [20]. Zero

mean prior, squared exponential kernel and Gaussian likelihood are chosen to train the hyper-

parameters of the GP WiFi model. The resulting structure contains unique MAC addresses,

their corresponding position, RSSI and hyper-parameters. The resulting signal distribution map

of two APs in the CTU department building can be seen on Fig. 9

In order to make more generalized WiFi signal maps, more wifilogs with position are merged

together and used as the input for the GP training algorithm.
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Figure 9: Cuts through WiFi signal strength maps modeled by GP for two different APs on the
three floors of CTU department building. Red regions show areas of high WiFi signal strength
and the potential position of the AP. Black stars show the measurement locations used to learn
the models [1].

5.2 Odometry correction

Proposed scenario consist of low-cost robot equipped with gyro-odometry localization system

and WiFi adapter. The goal is to combine these two sources of information with created WiFi

signal map and improve the localization accuracy of the robot. As stated before, the main focus

is on the correction of the gyro-odometry drift, therefore the evaluation starts always at the

same position at (0,0,0) coordinates and in the same direction. First a general overview on the

odometry correction process is given and then is the implemented method described in more

detail.

The localization consists of multiple steps. The first one is WiFi packet buffering, which runs

until N packets are reached. Then the position probability distribution using our WiFi map is

estimated [20] and model constrains with prior position are added. There are two approaches

implemented to extract the position from the probability distribution. One approach is naive

and selects the position with highest probability. Second approach is more sophisticated and

uses particle filter and selects the mean position of resampled particles. We wanted to test our

assumption if estimating the position over more particles would lead to better accuracy and be

more resistant to biases than the first naive approach.

After estimating the position, the current position is corrected by the estimated position. The
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new position after each correction is buffered and after reaching M points, it is used for yaw

correction.

A simplified correction workflow scheme is on Fig. 10.

Figure 10: Odometry correction workflow scheme.

Odometry correction and position estimation require around 10 parameters to be set. Finding

the optimal parameters, which would work best over multiple testing data, is very time con-

suming process as every simulation takes around 3 to 6 minutes. Most of the parameters are

estimated from several observations and cannot be considered as optimal.
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5.2.1 Position estimation

For each fetched packet the learned WiFi signal maps are used to compute the logarithmic prob-

ability (LP) distribution over signal strength in the environment. As resulting LP distribution

might be biased, typically more packets are fetched and their LP distributions are added. LP

is in range from (−∞,0〉 and has a useful attribute that combining multiple probabilities can

be done by summation instead of multiplication. The addition of LP distributions can be seen

in Fig. 11, where the series under a) display LP distribution of a single packet on the floors

-1,0,1 (the difference between floors is 5 m). Series b) show the distribution after adding the LP

distributions of 10 consecutive packets on the same floors as in a). Series c) show the same but

from the summation of 20 LP distributions of 20 consecutive packets. Note that the more pack-

ets are added the more the LP peak at position (10, 0, 0) is distinguishable. This corresponds

to the position of the mobile robot that can be seen on the trajectory plot as a red cross.

Since the prior knowledge of the robot’s position is provided, it is sufficient to use Bayes filter

which reuses prior knowledge. The combination of Bayes filter with the LP distribution derived

from fetched packets creates the posterior probability. As it can be assumed that the robot

trajectory can only lie within the mapped space, a prior constraint LP distribution is added.

The process can be seen on Fig. 12. Series a) show the prior constraint map, where the region

within the mapped space has 0 log probability and the rest goes to −∞. Series b) show used

Bayes filter, which creates a Gaussian like LP distribution over the prior robot position. The

variance of the Gaussian is set the same for all 3 dimensions by diagonal matrix Σ. Series c)

show the LP distribution resulting from summation of 20 LP distributions from the fetched

packets. The last series d) show the summation of LP distributions from a), b) and c). The

position of the robot is marked as a red cross on the trajectory.

In one approach an equidistant grid of points around the prior position is used as the set of

arbitrary points X?. The log probability at the position of each point in this grid is computed

given the RSSI signal f(x?), training set X,y and the hyper-parameters θ [20]. This goes

through process displayed in Fig. 12. Then the point with highest probability is selected as the

estimated position. New position xnew is then computed from the estimated position xestimated

and current position xcurrent, so that xnew = k · xestimated + (1 − k) · xcurrent, where k is a

correction constant.
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Figure 11: Log probabilities maps on the three floors of the CTU building. a) show the log
probabilities given one packet, b) show log probabilities resulting from 10 consecutive packets,
c) show log probabilities resulting from summation of 20 consecutive packets. The position of
the robot can be seen on the trajectory and is marked as a red cross.
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Figure 12: Log probability maps on the three floors of the CTU building. a) show the log
probabilities of our model constraints, b) show Gaussian probability distributions over the prior
robot position, c) show the probability map from Fig.11 c) and d) show the resulting summation
of the three maps above. The position of the robot is marked on the trajectory as a red cross.
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Figure 13: Estimating position using GP and particle filter

Second approach uses particle filter to estimate the position, so instead of an equidistant grid,

the positions of the particles are used as arbitrary points X?. The same process as in Fig. 12

occurs to obtain the LP for each particle. The exponentiated LP is used as the weight for the

particles. Low variance argorithm (Alg. 2) is used to resample the particles in the resampling

phase. Then the mean of the resampled particles is used as the estimated position. New position

is corrected in the same way as in the previous approach.

Moreover the update of each particle by the actuation command ut is computed as follows:

Xupdated = Xresampled + xtravelled + r(v) + d ∗ k (7)

where X is a matrix containing positions of particles, xtravelled distance traveled from last

estimated position, r(v) is a random number of given variance v on x, y and z axes and d

is the difference between estimated position and the current position weighted with a constant
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k. As the particle cloud may drift away on some places, the term d is used to move the particles

back to the actual position. The actuation command itself is then ut = xtravelled + r(v) + d ∗ k.

The workflow for estimating position using particle filter is on Fig.13 .

5.2.2 Yaw estimation

For 6-DOF localization it is necessary to consider not only the position of the robot, but also the

attitude. Since roll and pitch angles are observable due to gravitational force, only correction

for yaw angle is needed (see Fig. 14). We propose to correct yaw angle drift using buffered new

positions at trajectory segments, where the robot moves in a straight line.

Figure 14: Coordinate system with x, y, z axes with their corresponding euler angles roll, pitch
and yaw. Dashed vector Fg shows the direction of gravitational force.

After estimating and buffering enough new positions {xk−d,...,xk}, the difference between the

oldest xk−d and the newest xk buffered position is checked to assure that the robot moved some

minimal distance.

The vector pointing in the robot heading is then computed from the set {xk−d,...,xk} by fitting

a line through the points using the least square method and only the x and y position. The

resulting line is described as [26]:

y = a+ bx (8)

and parameters a and b are determined as [26]

a =
(
∑
y)(

∑
x2)− (

∑
x)(

∑
xy)

n
∑
x2 − (

∑
x)2

b =
n
∑
xy − (

∑
x)(

∑
y)

n
∑
x2 − (

∑
x)2

(9)

where n is the number of buffered positions.

To assign at which end of the line is the robot heading, the vector from xk−d to xk is used.

Estimated yaw angle can be computed using the atan2 function.
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yawk = atan2(y2 − y1, x2 − x1) (10)

where y2,y1,x2,x1 are coordinates of two points lying on the fitting line respecting the direction

of the robot motion [1].

The estimated yaw is further checked with the previous new yaw to allow only corrections in a

straight line up to some tolerance set empirically to ±π
5 rad. This also avoids correcting the yaw

by too big yaw estimations, which could be potential source of error. The current yaw is then

corrected by an amount of the estimated yaw and the resulting new yaw is further used. The

correction amount was determined by observing multiple values and choosing the one, which

performed with the lowest Root mean square error (RMSE) in position over multiple testing

data.
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6 Experimental evaluation

Several experiments were done to show differences between proposed localization approaches

and evaluate their performance experimentally. Five WiFi signal maps were created and tested

on data which were different then those on which the maps were learned. Maps and their

corresponding training data can be seen on Tab. 2.

Table 2: Maps used for experimental evaluation

Map name Data used for GP model-
ing by ID (see Tab. 1)

Total length [m] Number of train-
ing samples

MAP 1 201622 281 15149

MAP 2 20163 254 8443

MAP 3 201633 261 17627

MAP 4 201622, 20163 535 23592

MAP 5 201622, 20163, 201633 796 41219

We performed three WiFi mapping sorties of 796m of total length with almost one month

difference in between experiments. We also compared impact of using data from single mapping

sortie, data from two merged sorties and data from three merged sorties.

To compare performance of the bare gyro-odometry to the one estimated and corrected by WiFi,

the Root-Mean-Square Error (RMSE ) is used:

RMSE(k) =

√∑k
i=1(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

k
(11)

where x, y and z are estimated coordinates, k is discrete time and x̂i, ŷi and ẑi is the ground

truth position.

The performance of the gyro-odometry to estimated and corrected yaw is also calculated using

the RMSE:

RMSEyaw(k) =

√∑k
i=1( ˆyawi − yawi)2

k
(12)

where yaw is the estimated yaw, k is discrete time and ˆyawi is the reference yaw.

There are four experiments made with two different position estimation approaches, each with

and without yaw correction. The structure of each experiment is:

1. Definition of the parameters for the experiment and comments.

2. Table of results for RMSE in position for the given approach.

3. Experiments with yaw correction have table of results for RMSE in yaw for the given
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approach.

4. One testing trajectory corrected by the given approach. To make it comparable, there are

always the same testing data with the same WiFi signal map showed in all approaches.

Top view of the trajectory is chosen in order to clearly show the performance of the yaw

correction.

5. RMSE in position graph for the testing trajectory above.

6. Experiments with yaw correction have RMSE in yaw graph for the testing trajectory above.

The localization was implemented in MATLAB. X value in table means that the corresponding

test data were used as the training data for the given WiFi signal map and therefore are excluded.

Fail cases of our localization system are in red.
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6.1 Highest probability

This Wi-Fi localization approach estimates the position by selecting the position with highest

probability. 20 Wi-Fi packets are fetched (that yields cca. 0.5m traveled by the robot, standard

gyro-odometry is running and localizing during this period) before computing the localization

correction.

Other parameters for the experiment are: variance on the Σ diagonal is σ2 = 6m2, position

correction smoothing weight is set to 0.045 ·x∗k+(1−0.045) ·xodom,k. We sample the probability

p(xk|s1:k) by samples 1m equidistant in the x,y dimension up to 8m far from the robot and

0.2m equidistant in the z dimension up to 2.5m far from the robot. The parameters were

derived from observations of the behavior depending on the parameter change.

It is assumed that initial position of the robot is known, otherwise sampling the whole map for

initialization would be necessary.

Table 3: RMS Error in position [m] using HP approach. X means that the corresponding test
data were used as the training data for the given WiFi signal map. Fail cases of our localization
system are in red.

ID Odometry MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 4.4 1.6 1.7 2.3 1.5 1.7

20152 3.7 1.2 1.5 1.9 1.4 1.5

20162 6.1 3 2.5 2.9 2.7 3

20163 8 4.7 X 4.7 X X

201621 7.6 2.7 3.2 2.6 2.5 2.7

201622 9.4 X 5.3 4.2 X X

201631 7.1 2 3 1.9 2.4 1.9

201632 3.6 1.8 2.5 1.2 1.7 1.4

201633 6.9 2 2.7 X 2 X

In Tab. 3 are 4 localization fail cases in red. They occurred in the same area on the bottom

floor. This might mean that the area is poorly covered by WiFi signal or the WiFi signal model

has some biases in there.
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Figure 15: Top view on a successful localization experiment in data 201631 using MAP 5 and
HP approach.
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Figure 16: RMSE in position of a successful localization experiment in data 201631 using MAP
5 and HP approach.
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6.2 Highest probability and yaw correction

This approach applies our proposed yaw correction from section 5.2.2. It is expected that the

yaw correction will make the corrected odometry stick to the ground truth. This should then

yield smaller RMSE in the corrected position. The experiment parameters are the same as in

the previous experiment, but some new connected to yaw correction are added. Yaw correction

weight is set to 0.23 · yawk + (1− 0.23) · yawodom,k and yaw angle is estimated from 4 previous

position estimations. The yaw correction weight was determined by observing multiple values

and choosing the one, which performed with the lowest RMSE in position over multiple testing

data.

Table 4: RMS Error in position [m] using HP approach and yaw correction. X means that
the corresponding test data were used as the training data for the given WiFi signal map. Fail
cases of our localization system are in red.

ID Odometry MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 4.4 1.8 1.5 2.3 1.6 1.7

20152 3.7 1.5 1.9 1.9 1.8 2.4

20162 6.1 2.3 2.1 3.1 2.6 2

20163 8 3.1 X 5.6 X X

201621 7.6 3 3.1 3.6 2.6 3

201622 9.4 X 4.3 3.1 X X

201631 7.1 1.5 2.9 2 1.6 1.4

201632 3.6 2.4 2.8 2 2.3 1.7

201633 6.9 2.6 4.4 X 3 X

Table 5: RMS Error in yaw [rad] using HP approach and yaw correction. X that the corre-
sponding test data were used as the training data for the given WiFi signal map.

ID Odometry MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 0.16 0.23 0.11 0.18 0.13 0.16

20152 0.13 0.16 0.17 0.17 0.21 0.24

20162 0.22 0.24 0.2 0.33 0.22 0.2

20163 0.28 0.14 X 0.4 X X

201621 0.33 0.27 0.21 0.3 0.25 0.26

201622 0.41 X 0.28 0.28 X X

201631 0.26 0.22 0.21 0.34 0.12 0.17

201632 0.18 0.22 0.14 0.3 0.21 0.2

201633 0.21 0.26 0.3 X 0.4 X
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Figure 17: Top view on a successful localization experiment in data 201631 using MAP 5 and
HP approach with yaw correction.
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Figure 18: RMSE in position of a successful
localization experiment in data 201631 using
MAP 5 and HP approach with yaw correc-
tion.
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Figure 19: RMSE in yaw angle of a success-
ful localization experiment in data 201631 us-
ing MAP 5 and HP approach with yaw cor-
rection.
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6.3 Particle filter

In this approach is the estimated position selected as the mean of the resampled particles. 10

WiFi packets are fetched before computing the localization correction (that yields cca. 0.25m

traveled by the robot). This is the only difference in the parameter setting as it showed to

achieve better results, than using 20 WiFi packets as in the HP approach.

The particle filter uses 1000 particles, the update variance for random number r(v) on x, y and

z axis is v = [1, 1, 0.1] m, update correction constant k is set to 0.15. The variance vector was

determined based on our robot movement capabilities. Correction constant k was estimated

from observations. Other parameters are same as in HP approach.

It is expected, that the particle filter will be more robust to WiFi signal strength biases and the

estimation of the position over several particles will be more accurate.

Table 6: RMS Error in position [m] using PF approach. X means that the corresponding test
data were used as the training data for the given WiFi signal map. Fail cases of our localization
system are in red.

ID Odometry MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 4.4 1.3 1.5 2 1.3 1.6

20152 3.7 1.2 1.7 2 1.2 1.4

20162 6.1 2.7 2.2 3.2 2.4 2.6

20163 8 15.9 X 7.5 X X

201621 7.6 2.2 2.8 2.4 2 2.3

201622 9.4 X 4.1 3.5 X X

201631 7.1 1.6 2.5 1.6 1.8 1.6

201632 3.6 1.7 2.4 1.2 1.7 1.2

201633 6.9 1.9 2.6 X 1.9 X
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Figure 20: Top view on a successful localization experiment in data 201631 using MAP 5 and
PF approach.
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Figure 21: RMSE in position of a successful localization experiment in data 201631 using MAP
5 and HP approach.
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6.4 Particle filter and yaw correction

In this experiment the PF approach for position estimation is used together with yaw correc-

tion. Again the same parameters for PF as in the previous experiment are used. The general

experimental parameters are the same as the HP with yaw correction approach.

Table 7: RMS Error in position [m] using PF approach and yaw correction. X means that the
corresponding test data were used as the training data for the given WiFi signal map. Fail cases
of our localization system are in red.

ID Odometry MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 4.4 2 1.7 2.3 1.7 2.4

20152 3.7 1.6 1.7 2 1.4 1.6

20162 6.1 3.6 1.8 2.5 2.5 2.6

20163 8 8.8 X 4.1 X X

201621 7.6 2 2 2.3 1.9 2

201622 9.4 X 2.6 2.7 X X

201631 7.1 1.5 2.7 1.2 1.5 1.3

201632 3.6 2.1 3.3 1.6 2.1 1.3

201633 6.9 2.1 12.2 X 2.2 X

Table 8: RMS Error in yaw [rad] using PF approach and yaw correction. X value in table
means that the corresponding test data were used as the training data for the given WiFi signal
map.

ID Odometry MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 0.16 0.23 0.27 0.24 0.28 0.29

20152 0.13 0.17 0.15 0.17 0.2 0.22

20162 0.22 0.26 0.16 0.23 0.23 0.17

20163 0.28 0.4 X 0.28 X X

201621 0.33 0.24 0.21 0.25 0.22 0.23

201622 0.41 X 0.34 0.3 X X

201631 0.26 0.17 0.38 0.14 0.19 0.16

201632 0.18 0.22 0.23 0.22 0.24 0.18

201633 0.21 0.26 0.43 X 0.26 X
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Figure 22: Top view on a successful localization experiment in data 201631 using MAP 5 and
PF approach with yaw correction.
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Figure 23: RMSE in position of a successful
localization experiment in data 201631 using
MAP 5 and PF approach with yaw correc-
tion.
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Figure 24: RMSE in yaw angle of a success-
ful localization experiment in data 201631 us-
ing MAP 5 and PF approach with yaw cor-
rection.
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6.5 Experiment summary

We performed 148 trials and the localization system was successful in 138 cases. Overall every

approach was able to correct drift of the gyro-odometry in at least 89% of the trials. Every

approach achieved smaller RMSE in position in all non fail cases. To make the RMSE results

comparable, the RMSE in position is divided by the length of the ground truth for given testing

trajectory, thus achieving the average RMSE per meter. This is further averaged over all non

fail trials of the given approach. The result are in Tab. 9.

Table 9: Average RMSE in position per meter for different approaches

Average RMSE in position per meter

Plain odometry 0.0329 m

HP 0.0131 m

HP with yaw correction 0.0138 m

PF 0.0119 m

HP with yaw correction 0.0127 m

In general the HP approach with yaw correction was less prone to fail than without yaw cor-

rection. Considering all successful testing cases, PF approach yields better results in terms of

RMSE in position (Tab. 10). It has also smaller computational requirements, as the log proba-

bility is computed only over 1000 particles instead of an equidistant grid space around the last

position of the robot in HP approach consisting of over 7500 points.

Table 10: RMS Error difference in position [m] between PF approach with yaw correction
and HP approach with yaw correction (PF RMSE - HP RMSE). Negative value denotes smaller
RMSE for PF approach. Results where the localization failed were not considered.

ID MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 0.2 0.2 0 0.1 0.7

20152 0.1 -0.2 0.1 -0.4 -0.8

20162 1.3 -0.3 -0.6 -0.1 0.6

20163 X X X X X

201621 -1 -1.1 -1.3 -0.7 -1

201622 X -1.7 -0.4 X X

201631 0 -0.2 -0.8 -0.1 -0.1

201632 -0.3 0.5 -0.4 -0.2 -0.4

201633 -0.5 X X -0.8 X

Mean -0.03 -0.4 -0.49 -0.21 -0.17

Moreover both approaches without yaw correction yield better results than with (Tab. 11 and

12). But it is not so significant and mainly caused by the first two testing data with ID 20151

and 20152.

In the example testing trajectory showed in each experiment, it can be clearly seen that the
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Table 11: RMS Error difference in position [m] between HP approach with yaw correction
and HP approach without yaw correction (HP yaw RMSE - HP RMSE). Negative value denotes
smaller RMSE for HP with yaw correction approach. Results where the localization failed were
not considered.

ID MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 0.2 -0.2 0 0.1 0

20152 0.3 0.4 0 0.4 0.9

20162 -0.7 -0.4 0.2 -0.1 -1

20163 X X X X X

201621 0.3 -0.1 1 0.1 0.3

201622 X X X X X

201631 -0.5 -0.1 0.1 -0.8 -0.5

201632 0.6 0.3 0.8 -0.6 0.3

201633 0.6 X X 1 X

Mean 0.11 -0.02 0.35 0.19 0

Table 12: RMS Error difference in position [m] between PF approach with yaw correction
and PF approach without yaw correction (PF yaw RMSE - PF RMSE). Negative value denotes
smaller RMSE for PF with yaw correction approach. Results where the localization failed were
not considered.

ID MAP 1 MAP 2 MAP 3 MAP 4 MAP 5

20151 0.7 0.2 0.3 0.4 0.8

20152 0.4 0 0 0.2 0.2

20162 0.9 -0.4 -0.7 0.1 0

20163 X X X X X

201621 -0.2 -0.8 -0.1 -0.1 -0.3

201622 X -1.5 -0.8 X X

201631 -0.1 0.2 -0.4 -0.3 -0.3

201632 0.4 0.9 0.4 0.4 0.1

201633 0.2 X X 0.3 X

Mean 0.33 -0.2 -0.19 0.14 0.08

yaw correction works fine and sticks the corrected trajectory to the ground truth. The RMSE

for different approaches in this example can be seen on Fig. 25. The RMSE in yaw decreases

in HP approach from 0.26 rad to 0.17 rad and in PF approach from 0.26 rad to 0.16 rad. This

can be seen on Fig. 26
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Figure 25: RMS error graph for the example data 201631 using MAP 5 comparing different
approaches and plain odometry.
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Figure 26: RMS error graph of yaw for the example data 201631 using MAP 5 comparing
different approaches and plain odometry.

43



7 Discussion and future work

From the experimental results derive few ideas for possible improvements.

• As the first point it is necessary to reduce the chance for the localization system to fail

and drift away. This can by done by computing the probability distribution not only

over the location around the robot, but rather over the whole environment. As this is

computationally expensive, it can be done each time after certain time period.

• Experimental results show that the yaw correction does not always provide expected result.

This could be caused by parameter setting or the method itself. Anyway more methods

should be tested out and compared.

• There are many parameters for the localization system that are tuned manually by ob-

serving the behavior and results. The idea for future work here is to find if there are

dependencies of the parameters on each other. And reduce the number of parameters,

which need to be tuned.
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8 Conclusions

The thesis proposes a WiFi signal based localization system using advanced localization methods

intended for a 6-DOF mobile robot. In order to accomplish this, several research papers and

state of the art approaches were studied. Based on the acquired knowledge the design of the

localization system was created. The main source of data for the localization system is the WiFi

signal strength. WiFi signal strength over the environment was modeled using machine learning

technique called Gaussian Processes. The trajectory for localization and correction is considered

in 3D, a 6-DOF and for the estimation are two approaches used. One approach estimates the

position by selecting the position in space with the highest probability. The second approach

adopts Monte Carlo Localization also known as particle filter localization. Further an approach

for correcting of the yaw angle was designed and implemented.

The implementation of the localization system is done in MATLAB. The repository with source

codes and datasets for this project is publicly available here: [24]. The dataset for experimental

evaluation was collect at the CTU department building on Karlovo náměst́ı in Prague. Four

different implemented approaches were experimentally evaluated and they were capable of suc-

cessful localization in 138 out of 148 trials. Moreover the RMSE in position per meter using

our four tested localization approaches ranged between 0.0119 m and 0.0138 m. In comparison

to the RMSE in position per meter of plain odometry, which was 0.0329 m, our approaches

performed almost three times better.
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